
1

Efficient Federated Low Rank Matrix Completion
Ahmed Ali Abbasi and Namrata Vaswani

Abstract

In this work, we develop and analyze a novel Gradient Descent (GD) based solution, called Alternating GD and Minimization
(AltGDmin), for efficiently solving the low rank matrix completion (LRMC) in a federated setting. Here “efficient” refers to
communication-, computation- and sample- efficiency. LRMC involves recovering an n× q rank-r matrix X� from a subset of
its entries when r � min(n, q). Our theoretical bounds on the sample complexity and iteration complexity of AltGDmin imply
that it is the most communication-efficient solution while also been one of the most computation- and sample- efficient ones.
We also extend our guarantee to the noisy LRMC setting. In addition, we show how our lemmas can be used to provide an
improved sample complexity guarantee for the Alternating Minimization (AltMin) algorithm for LRMC. AltMin is one of the
fastest centralized solutions for LRMC; with AltGDmin having comparable time cost even for the centralized setting.

Index Terms

Low rank matrix completion, Federated learning, Alternating Gradient Minimization (AltGDMin), Alternating Minimization
(AltMin).

I. INTRODUCTION

In this work, we introduce a fast and communication-efficient solution for solving the low rank matrix completion (LRMC)

problem [2, 3, 4, 5, 6, 6, 7, 8, 9, 10] in a federated setting. Our proposed algorithm, and the guarantees that we prove for it,

are applicable in centralized settings as well. LRMC finds important applications in recommender systems’ design, survey data

analysis, and video inpainting. Federation means that (i) different subsets of the data are acquired at different distributed nodes;

and (ii) all nodes can only communicate with the central node or “center”.

Communication efficiency is a key concern with all distributed algorithms, including federated ones. Privacy of the data

is another concern in a federated setting. In this work, “privacy” means the following: the nodes’ raw data (observed matrix

entries) cannot be shared with the center and the center should not be able reconstruct the unknown LR matrix.

A. Notation and Problem Setup

1) Notation: For any matrix M , mk denotes its k-th column while mj denotes its j-th row transposed (so it is a column

vector). (·)ᵀ denotes the matrix/vector transpose. We use I to denote the identity matrix and ek to denote its k-th column (this

is a 1-0 vector with 1 at the k-th location and zero everywhere else). We use ‖ · ‖ to denote either the �2 norm of a vector or the

The authors are at the Department of Electrical and Computer Engineering, Iowa State University. Email: namrata@iastate.edu. A part of this work (only
simulation experiments) appeared in Allerton 2023 [1].

Symbol Description

X� ∈ R
n×q The unknown rank-r matrix X� SVD

= U∗Σ∗V ∗ = U∗B∗

uj ∈ R
n j-th row of U∗

v∗
k ∈ R

q k-th column of V ∗

μ ∈ R Coherence parameter μ such that

max
j∈[n]

‖u∗j‖ ≤ μ
√

r/n,max
k∈[q]

‖v∗
k‖ ≤ μ

√
r/q

μu ∈ R μu = 20κ2μ.

U The set of n× r row-incoherent matrices. U := {Ǔ : maxj∈[n] ‖ǔj‖ ≤ μ
√

r/n}
κ ∈ R Condition number κ = σ∗

max/σ
∗
min, where σ∗

max = σ1(X�), σ∗
min = σr(X�)

ξjk i.i.d Bernoulli random variable with Pr[ξjk = 1] = p

Ω Ω :− {(j, k) | ξjk = 1}, the set of observed entries of X�

Ωk Ωk := {j ∈ [n] | ξjk = 1} Set of indices of observed entries of k-th column of X

Sk ∈ R
n×n Row sampling matrix, Sk := IΩk

, k ∈ [q]

yk ∈ R
n yk = Skx

�
k , the k-th column of Y

γ Total number of nodes; we assume γ = O(1) in this work

R� The indices of the subset of columns of Y available at node �

GradU∈ R
n×r The gradient of f(U ,B) = ‖(Y −UB)Ω‖2F with respect to U

TABLE I: Table summarizing the notation used in this paper.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

2

induced �2 norm of a matrix (‖M‖ := maxz:‖z‖=1 ‖Mz‖ = σmax(M)), while ‖ · ‖F denotes the Frobenius norm of a matrix.

The notation [q] := {1, 2, . . . , q}. For a tall matrix M ∈ R
n×r, M † � (MᵀM)−1Mᵀ and QR(M) maps M to Q ∈ R

n×r

such that M = QR is the QR decomposition of M . In this work, we only use QR decomposition for tall n× r matrices with

r < n. For tall n× r matrices U1,U2 with orthonormal columns, the two commonly used measures of subspace distance (SD)

between their column spans are [11, Sec 2.2] SD2(U1,U2) := ‖(I−U1U
ᵀ
1)U2‖ and SDF (U1,U2) := ‖(I−U1U

ᵀ
1)U2‖F with

SDF ≤ √
rSD2. These have been used in past works on LR matrix recovery, e.g., [4, 12, 13]. We use M = diag(mk, k ∈ [q])

to denote a diagonal q× q matrix with scalar entries mk and M = blockdiag(Mk, k ∈ [q]) to denote a qr× qr block-diagonal

matrix with diagonal r×r blocks Mk. Also, we use vec(M) to vectorize the matrix M column-wise; thus ‖M‖F = ‖vec(M)‖.

For a set Ω, we use |Ω| to denote its cardinality. For a set of matrix entry indices Ω, we use MΩ to refer to the matrix M with

all entries whose indices are not in Ω zeroed out. For a set of matrix row indices Ωrow, we use IΩrow
to denote the identity

matrix with diagonal entries whose indices are not in Ωrow zeroed out. We reuse the letters c, C to denote different numerical
constants in each use with the convention c < 1 and C ≥ 1.

2) LRMC problem: LRMC involves recovering a rank-r matrix X� ∈ R
n×q, where r � min(n, q), from a subset of

its entries. Entry j of column k, denoted X�
jk, is observed, independently of all other observations, with probability p. Let

ξjk
iid
∼ Bernoulli(p) for j ∈ [n], k ∈ [q]. Then, the set of observed entries, denoted by Ω, is

Ω := {(j, k) : ξjk = 1}
By setting the unobserved entries to zero, the observed data matrix Y ∈ R

n×q can be defined as

Yjk :=

{
X�

jk if (j, k) ∈ Ω,

0 otherwise.
or, equivalently, Y := X�

Ω (1)

We use Ωk := {j ∈ [n] | ξjk = 1} to denote the set of indices of the observed entries in column k and we define a diagonal

row-sampling matrix Sk ∈ R
n×n as

Sk := IΩk

Thus (Sk)j,j = ξjk, for all j ∈ [n]. With this, we can express

yk := Skx
�
k for all k ∈ [q].

Here yk, x�
k denote the k-th columns of Y , X� respectively. Let X� SVD

= U�(Σ∗V ∗) := U�B� denote its reduced singular

value decomposition (SVD) with U� ∈ R
n×r with orthonormal columns, V � ∈ R

r×q with orthonormal rows, and Σ∗ being

a diagonal r × r matrix. We use κ = σ∗
max/σ

∗
min to denote the condition number of the diagonal r × r matrix Σ∗. Here

σ∗
max, σ

∗
min are its largest, smallest singular values. Also, we let B� := Σ∗V ∗ so that X� = U�B�.

3) Assumption: As in all past works on LRMC [2, 3, 4, 5, 6, 6, 7, 8, 9, 10], we need the following assumption on the

singular vectors of X�. This is a way to guarantee that the rows and columns of X� are dense (non-sparse). This and the LR

assumption, along with the i.i.d. Bernoulli observed entries selection, help ensure that one can correctly interpolate (fill in) the

missing entries even with observing only a few entries of each row or column.

Assumption 1.1 (μ-incoherence of singular vectors of X�). Assume row norm bounds on U�: maxj∈[n] ‖u∗j‖ ≤ μ
√
r/n,

and column norm bounds on V ∗: maxk∈[q] ‖v∗
k‖ ≤ μ

√
r/q for a μ that is not too large. In most of the discussion in this work,

we assume that μ is a numerical constant. Since B� = Σ∗V ∗, this implies that ‖b�k‖ ≤ μ
√
r/qσ∗

max.

Remark 1.2. The above assumption can also be interpreted as follows. Let μ :−
max

(
maxj∈[n] ‖u∗j‖ ·√n/r,maxk∈[q] ‖v∗

k‖ ·
√
q/r
)

. We are assuming that μ is not too large; our discussion of
complexities treats it as a numerical constant.

The above definition of μ was used in [4, 6, 10]. Other works such as [14] defined μ as the square of the above quantity. A
different and weaker notion of coherence was used in [15, 16].

To understand the need for the above assumption, we repeat the example from [2, Sec 1.1.1]. Let X� = Ce1e
ᵀ
1 ∈ R

n×n be

a rank r = 1 matrix. For this matrix, U� = e1 and V ∗ = eᵀ1 . Thus , μ =
√
n =

√
n/r (since r = 1). This is a very large value

of μ (in fact this is the largest value that μ can take). In this case, it is impossible to estimate X� even with almost all observed

entries. If the set of observed entries Ω does not contain the (1,1) entry, the observed matrix Y would be the all zeros matrix.

4) Federation: We assume that there are a total of γ nodes, with γ ≤ q. Each node has access to a different subset of the

columns of the observed data matrix Y . We use R� to denote the subset of columns of Y available at node �. The sets R�

form a partition of [q], i.e., they are mutually disjoint and ∪γ
�=1R� = [q]. Let Y� = [yk, k ∈ R�], X

�
� = [x�

k, k ∈ R�], and

B�
� = [b�k, k ∈ R�]. We have

Y = [Y1,Y2, . . .Yγ] where Y� = (X�
�)Ω(�)

= (U�B�
�)Ω(�)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

3

Algorithm Computation Comp. Communic. Comp. Sample Comp.

AltGDMin (this work) κ2 |Ω|
γ

r2 log(1
ε
) κ2nr log(1

ε
) κ6μ2qr2 log q log(1

ε
) (this work)

(Private)

FactGD [9, 10] κμ
|Ω|
γ

r2 log(1
ε
) κμnr2 log(1

ε
) κ4μ2qr2 log q

(Private)

AltMin [4]
|Ω|
γ

r log2(1
ε
) nr log2(1

ε
) κ4μ2qr4.5 log q log(1

ε
) [4]

(Private) κ4μ2qr2 logn log(1/ε) (this work)

AltMin [4]
|Ω|
γ

r2 log(1
ε
)

|Ω|
γ

log(1
ε
) κ4μ2qr4.5 log q log(1

ε
) [4]

(Not-Private) κ4μ2qr2 logn log(1/ε) (this work)

Smooth-AltMin [14]
|Ω|
γ

r2 log q log(1
ε
)

|Ω|
γ

log q log(1
ε
) κ2μ2qr3 log q log(1

ε
) [14]

(Not-Private) Cκ2μ2qr2(log(n/ε) log2 n) (this work)

ProjGD [6, 18] μ4 |Ω|
γ

r log2(1
ε
) μ4 |Ω|

γ
log2(n

ε
) μ4qr2 log2 n log2(1

ε
)

(Not-Private)

TABLE II: Comparing computation, communication and sample complexities for federated LRMC. γ = 1 gives the centralized
LRMC computation cost. Here Communic Comp = T ·max(Communic.(node), Communic.(center)). Similarly for the computation cost. For
the sample complexities, we assume max(n, q) = q. Treating κ, μ, γ as numerical constants, and assuming r < log(1/ε) and |Ω| ≥ qr2 (sample
complexity needed for accurate recovery), clearly, AltGDmin is the most communication-efficient, while all of AltGDmin, AltMin and FactGD
are equally computationally efficient.

To keep notation simple, we assume that q is a multiple of γ and |R�| = q/γ. This federated LRMC setting is also considered

in [17]. Since the LRMC problem is symmetric, if each node had access to a different subset of rows of Y , we would transpose

both Y and X� and convert the problem to this one.

In a federated setting, the two desirable properties are communication-efficiency and “privacy”. In this work, “privacy” means
the following. The nodes’ raw data cannot be shared with the center and the center should not be able reconstruct X�.

Our discussion treats γ as a numerical constant. Thus order |Ω|/γ is equal to order |Ω|. Also, |Ω| ≥ (n+ q)r is a necessary

condition since the number of observed matrix entries needs to be larger than the number of unknowns for specifying an n× q
rank r matrix. Such a matrix can always be expressed as X = UB where U ,B have r columns and rows respectively. .

5) Applications: An important application where the LRMC problem occurs is movie, or any product, recommendation

system design. The goal is to fill in the missing entries of the n× q product-ratings’ matrix; this is a matrix with q total users

and n products, and with column k denoting the preferences of user k for the n products. This matrix can be modeled as

being low-rank (LR) as first argued in [2, 4]. The idea is that user preferences are governed by much fewer factors (r factors)

than either n or q [2, 4]. Users rate only a small subset of movies/products and hence we only have a few observations of

this LR matrix. An important setting where the above federation is relevant is a movie recommendation system designed for

a set of γ dorms within a university, or for a set of apartment buildings in a small town. Node � is the router for dorm or

apartment building �. Each node (building) has samples of a different subset of q/γ users (residents). Another application noted

in [17] involves γ different hospitals having records for different groups of patients (users) about some of a large set of diseases

(items); hospitals want to cooperatively train a patient-disease prediction model. In all these examples, the number of nodes γ
is much smaller than the number of users at a node, q/γ.

B. Related Work

Starting with the seminal work of [2, 19] which introduced a nuclear norm based convex relaxation, the LRMC problem

has been extensively studied in the last decade and a half [2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 19]. Two classes of algorithms feature

prominently in this literature - solutions to convex relaxations and direct iterative algorithms. The former [2, 19] are slow: the

required number of iterations for ε accuracy (iteration complexity) grows as 1/
√
ε [4]. The first provably accurate iterative

solution was the Alternating Minimization (AltMin) algorithm with a spectral initialization [3, 4]. AltMin was shown to converge

geometrically, i.e., its error was shown to decay as ct with iteration count t, for a numerical constant c < 1, with a sample

complexity of order κ4μ2nr4.5 log(1/ε) in [4]. AltMin factorizes the unknown LR matrix X as X = UB. After initializing

U , it alternately updates B and U using minimization for one, keeping the other fixed. Subsequent work [14] considered

a modified version of AltMin and improved its sample complexity to order κ2μ2nr3 log(1/ε). The work of [8] introduced

a complicated modification of AltMin with the goal of proving a result that has almost no dependence on κ; however their

guarantee instead has a much worse dependence of r9 on the matrix rank r.

Later works proposed two gradient descent (GD) based algorithms - Projected GD (ProjGD) [6, 18] and Factorized GD

(FactGD) [9, 10] - that reduced the sample complexity dependence on the rank to r2. ProjGD involves GD, followed by

projection onto the space of rank r matrices after each GD iteration. FactGD factorizes the unknown LR matrix X as X = UB,

where U ,B have r columns and rows respectively, and updates both by GD as follows. At each iteration, it updates U and B
by one GD step for the cost function g(U ,B) := f(U ,B) + c1‖UᵀU −BBᵀ‖2F ; followed by projecting each of them onto

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

4

the set of matrices with incoherent rows and columns respectively. Initialization involves computing the top r left singular

vectors of Y followed by projecting their matrix on the set of row incoherent matrices. The second term of g(U ,B) is a norm

balancing term that ensures the norm of U does not keep increasing with iterations while that of B decreases (or vice versa).

The best ProjGD guarantee needs a sample complexity of μ4nr2 log2 n log2(1/ε) while FactGD reduces this even further to

κ4μ2nr2 log2 n. For the error to decay exponentially with iterations, a constant GD step size suffices for ProjGD. On the other

hand, FactGD needs the GD step size to be of order 1/r. Because of this, its iteration complexity is worse than that of ProjGD

by a factor of r. However, in terms of per-iteration time cost, ProjGD is significantly slower. Consequently, overall in terms of

total cost, it is slower. Numerically, it is much slower than all other methods, because each ProjGD iteration involves a rank r
SVD step (constants per iteration are much larger); see of [1, Fig. 1b and 1d]. This discussion is summarized in Table II.

To our best knowledge, there is no existing work on provably accurate federated LRMC. Federation requires a communication-

efficient and private solution, with “private” as defined above.

The Alternating GD and Minimization (AltGDmin) algorithm was introduced in our past work [13, 20] as a fast solution to

the LR column-wise compressive sensing (LRCS) problem. It was also shown to be the most communication-efficient in a

federated setting. LRCS involves recovering X� from yk := Akx
�
k when Ak’s are m× n i.i.d. random Gaussian matrices

(each entry of each Ak is i.i.d. standard Gaussian), and the right singular vectors of X� satisfy the incoherence assumption.

In tangentially related work [21, 22], distributed-computing solutions to LRMC are studied. These do not consider the federated

setting, instead these assume that all data is observed centrally and then is distributed to different nodes to parallelize the

computation; and these develop an approximate solution to the convex relaxation which is known to be very slow. Other somewhat

related works include [17, 23, 24] which study differential privacy or attack resilience for LRMC; and [15, 25, 26, 27, 28]

which focus on the fully sampled matrix factorization problem.

C. Contributions and Novelty

In this work, we develop and analyze the AltGDmin algorithm for solving the LRMC problem. The design of AltGDmin is

motivated by a federated setting. To our best knowledge, our work provides the first theoretical guarantees for solving LRMC

in a federated setting; see Theorem 2.1. The sample and iteration complexity bounds that we prove are applicable in centralized

settings as well. In addition, we also show how our lemmas can be used to provide an improved sample complexity guarantee

for AltMin which is the fastest centralized solution for LRMC.

Using our results we can argue that, in a federated setting, AltGDmin is the most communication-efficient solution. It is also

one of the two fastest private solutions and has the second smallest sample complexity. See Table II. Our new corollary for

AltMin, and smooth AltMin, proves that both have the same sample complexity as that of AltGDmin. This discussion treats

κ, μ and γ (number of nodes) as numerical constants.

1) Novelty of Proof Techniques: The most important difference between LRCS and LRMC is that the LRMC proof requires

incoherence of each algorithm iterate U and B. When analyzing AltGDmin for LRCS [13, 20], this was needed only for B
because LRCS measurements are column-wise global. To show the incoherence of U at each iteration, we cannot borrow ideas

from existing work because the update of U in AltGDmin is different from that in all existing LRMC solutions. FactGD [10]

projects U onto the space of row incoherent matrices after each GD step; this automatically ensures its incoherence after each

update. AltMin [4] updates U by solving a least squares problem (and not by GD) and so its incoherence proof is different.

ProjGD [6] implements projected GD for X , it does not factorize X . There are other important proof differences too between

our work and the two works from which we borrow some proof ideas – [20] and [4]. We explain these in Sec. III.

2) Paper Organization: We develop the AltGDmin algorithm and give our main theoretical guarantee, Theorem 2.1, for it,

along with a detailed discussion comparing it to existing work, in Sec. II. Sec. III describes the novel proof ideas. Theorem 2.1

is proved in Sec.IV. The lemmas used in this proof are proved in Sec. V. The corollary for noisy LRMC is provided in Sec. VI

and proved in the Appendix. We show how we can use our lemmas to also prove an improved guarantee for AltMin and one

for Smooth AltMin in Sec. VII. Numerical experiments are described and discussed in Sec. VIII. We conclude in Sec. IX.

We summarize the symbols used in this work in Table I.

II. ALTERNATING GD AND MINIMIZATION (ALTGDMIN) ALGORITHM AND GUARANTEES

A. AltGDmin overall idea

The goal is to minimize the following squared loss cost function

min
B,U : UᵀU=I

f(U ,B), f(U ,B) := ‖(Y −UB)Ω‖2F (2)

We impose the orthonormal columns constraint on U to ensure that ‖U‖ = 1 always. Since UB = UMM−1B for any

invertible r× r matrix M , if we do not impose this constraint, the norm of U can keep increasing over iteration, while that of

B decreases (or vice versa).

The AltGDmin algorithmic framework was introduced in [13, 20] for solving the LRCS problem. More generally, it is useful

for solving any partly decoupled optimization problem. To understand what this means, consider solving minZ f(Z). This is

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

5

Algorithm 1 AltGDMin

Require: partial observations Y , rank r, step size η, and number of iterations T

1: Partition Y into 2T + 1 subsets YΩ(0) , · · · ,YΩ(2T) . Define S
(t)
k = IΩk

, for all k ∈ [q], for each subset.

2: U (00) ← top r left-singular vectors of YΩ(0)

3: M (0) ← ΠU (U (00))
4: U (0) ← QR(M (0))
5: for t ∈ 1 · · ·T do
6: Uk ← S

(t−1)
k U (t−1) for all k ∈ [q]

7: b
(t)
k ← (Uk)

†y(t)
k for all k ∈ [q] and B(t) = [b

(t)
1 , b

(t)
2 , . . . b

(t)
q]

8: Ũ (t) ← U (t−1) − η(U (t−1)B(t) − Y)Ω(T+t)B(t)ᵀ

9: U (t) ← QR(Ũ (t)) , i.e. Ũ (t) QR
= U (t)R(t)

10: Return U (T),B(T) and X(T) := U (T)B(T)

Algorithm 2 AltGDmin-Federated

1: Partition Y into 2T + 1 subsets YΩ(0) , · · · ,YΩ(2T) . Define Sk = IΩk
, for all k ∈ [q], for each subset.

2: //Initialize U (0) by Power Method
3: Center: Initialize random U ∈ R

n×r; push to nodes.

4: for t ∈ 1 · · ·Tinit do
5: Node �, � ∈ [γ]
6: M� ←

∑
k∈R�

y
Ω

(0)
k

yᵀ
Ω

(0)
k

U ; push to center.

7: Center: U ← QR(
∑

� M�); push to nodes.

8: Center: Clip and orthonormalize U as given in Algorithm 1

//AltGDMin Iterations
9: for t ∈ 1 · · ·T do

10: Node �, � ∈ [γ]:

11: Uk ← S
(t−1)
k U (t−1) for all k ∈ R�

12: b
(t)
k ← (Uk)

†y(t)
k for all k ∈ R�

13: GradU� ←
∑

k∈R�
(Ukb

(t)
k − y

(t)
k)(b

(t)
k)ᵀ; push to center.

14: Center:

15: U (t) ← QR(U (t−1) − η
∑

� GradU�); push to nodes.

16: Return U (T),B(T) and X(T) := U (T)B(T)

partly-decoupled if we can split the set of optimization variables Z into two blocks, Z = {Za,Zb}, so that the minimization

over Zb, keeping Za fixed, is decoupled. This means that it can be solved by solving many smaller-dimensional, and hence

much faster, minimization problems over disjoint subsets of Zb. That over Za, keeping Zb fixed, may or may not satisfy such

a property. If such a decoupling holds for Zb, and if the data is federated across the nodes in such a way that the smaller

problems can be solved locally at the nodes, then AltGDmin provides a faster and more communication-efficient solution than

AltMin. After initializing Za, it alternatively updates Zb,Za using minimization for Zb and GD for Za. In the LRCS problem

studied in our past work [13, 20], factoring X as X = UB, the optimization to be solved was minU ,B

∑
k ‖yk −AkUbk‖22.

Clearly in this case, Za = U , Zb = B since the problem is decoupled over B but is coupled over U . For the LRMC problem

being studied here, the decoupling holds for both U (with B fixed) and for B (with U fixed). Thus, we can pick either of

them to be Zb. The choice of which one to pick as Zb depends on how the data is federated. In our case, since the data is

vertically federated, we use Zb = B again and Za = U .

B. AltGDmin algorithm for LRMC

AltGDmin for LRMC proceeds as follows. We initialize U as explained below; this approach is adapted from that in FactGD

[10]. After the initialization, different from AltMin [4], which used alternating exact minimization for both U and B, and

different from FactGD [10], which used GD for updating both U and B, AltGDmin alternates between exact minimization over

B and a single GD step for U . The GD step is followed by an orthonormalization (QR) step. The use of exact minimization

for one of the variables helps ensure that AltGDmin provably converges with a nearly constant step size. Because of this, the

AltGDmin iteration complexity is better than that of FactGD by a factor of r.

1) AltGDmin for LRMC: Initialization: As in most previous work [4, 10], the first step of our initialization computes the top

r left singular vectors of Y . Denote the n× r matrix formed by these left singular vectors by U (00). This has computation

cost [29] |Ω|r · log(1/δ0) where δ0 is the accuracy level needed for the initialization step. Our guarantee given below proves

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

6

that we need δ0 = c/κ2; see Remark 2.2. Thus, this step has time cost |Ω|r log κ. This is followed by a step to make U (00)

incoherent. We borrow this step from [10]. It involves projecting U (00) onto the space of row incoherent matrices,

U := {U : max
j∈[n]

‖ǔj‖ ≤ μ
√
r/n} (3)

i.e., computing the n× r matrix ΠU (U (00)) := minU∈U ‖U −U (00)‖F . It is easy to see that this projection can be obtained

in closed form by the following row norm clipping operation:

[ΠU (M)]j = mj ·min

(
1,

μ
√
r/n

‖mj‖

)
, for all j ∈ [n]

In words, if a row of M has �2 norm that is more than the threshold μ
√
r/n, then one renormalizes the row so that its norm

equals the threshold. If the norm is less than this threshold, then we do not change it. Clearly this is an order nr time operation.

Finally, we obtain U (0) by orthonormalizing ΠU (U (00)) using QR decomposition. This needs time of order nr2.

2) AltGDmin iterations: We alternately update B using minimization and U using GD. The minimization over B is a

decoupled least squares (LS) problem since f(U ,B) decouples as f(U ,B) =
∑

k∈[q] ‖yk − SkUbk‖2. We update bk as

bk = argmin
b̌

‖y − SkUb̌‖2 = (SkU)†yk, for all k ∈ [q]

Let Uk := SkU , then bk := U †
kyk. Recall that M † := (MᵀM)−1Mᵀ. We emphasise here that we write things as above for

notational ease. The computational complexity for computing bk depends only on the sub-matrix of Uk with nonzero rows.

This is of size |Ωk| × r. Thus the cost of computing bk is order |Ωk|r2 for a given k. Hence, the total cost for all nodes is∑
k |Ωk|r2 = |Ω|r2.

We update U by one GD step followed by orthnormalization using QR, i.e.,

Ũ+ = U − η∇Uf(U ,B)), and U+ = QR(Ũ+)

The gradient is

∇Uf(U ,B) = 2((UB)Ω − Y)Bᵀ = 2

q∑
k=1

(SkUbk − yk)b
ᵀ
k

For the gradient computation, the computational cost is
∑

k |Ωk|r = |Ω|r. The QR step needs time of order nr2.

We summarize the complete algorithm in Algorithm 1. Sample splitting (line 1) is assumed, as is common in most structured

data recovery literature, e.g., [4, 6, 14, 18]. In fact, as we discuss in Sec. II-E, sample-splitting is assumed for obtaining

provable guarantees for all iterative solutions for LRMC (and those for LRCS) in which one or both of the alternating steps is

a minimization step.

C. Federated AltGDmin

The federated AltGDmin algorithm is given Algorithm 2. At each algorithm iteration, t, each node � = 1, 2, . . . , γ
performs two operations i) updating bk by the LS solution, for all k ∈ R�; and ii) computation of the partial gradient∑

k∈R�
[∇Uf(U ,B)]k =

∑
k∈R�

(Ukbk − y)Ωk
bᵀk . Only the n× r partial gradient needs to be sent to the center. The center

sums the received partial gradients, implements the GD step, and computes the QR decomposition, and broadcasts the updated

U+ to all the nodes. This is used by the nodes in the next iteration. The communication cost from nodes to center is equal to

the number of nonzero entries in ∇Uf(U ,B); this is r ·min(n,
∑

k∈R�
|Ωk|) = r ·min(n, (|Ω|/γ)) = nr since we assume

γ is a numerical constant and |Ω| ≥ (n + q)r is a necessary lower bound for any approach to work. The center to nodes

communication cost is also nr. The computation cost is as explained above with |Ω| replaced by |Ω|/γ.

The initialization can be federated using the power method applied to Y Y ᵀ. This has time cost
∑

k∈R�
|Ωk|r = |Ω|r/γ per

power method iteration. The upstream (node to center) per-node communication cost is min(n,
∑

k∈R�
|Ωk|)r = nr and the

downstream cost is also nr. The power method converges linearly and thus, for δ0 accuracy, log(1/δ0) iterations are required.

Our guarantee given below proves that we need δ0 = c/κ2; see Remark 2.2.

D. AltGDmin Guarantee

Recall from above that the per-iteration per-node computation and communication complexities of AltGDmin are

max(nr2, (|Ω|/γ)r2) and max(nr,min(n, (|Ω|/γ))r) = nr. We use this and the iteration complexity (expression for T)

derived in the result below to provide an expression for its total per-node computation and communication complexities.

For LRMC, the sample complexity |Ω| is a random variable. Thus, the term “sample complexity” always refers to the

expected sample complexity E[|Ω|]. This is equal to nq · p for each iteration. Theorem 2.1 given next provides a lower bound

on the required value of p in each algorithm iteration.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

7

Theorem 2.1. Consider Algorithm 1 or 2. Let nmx := max(n, q) and nmn := min(n, q). Pick an ε < 1. Assume that
Assumption 1.1 holds and that, at each iteration t, entries of X� are observed independently with probability p satisfying
nqp > Cκ4μ2nmxr

2 log nmx. Set η = 0.5/(pσ∗2
max) and T = Cκ2 log(1/ε). Then, with probability (w.p.) at least 1− 4T/n3

mn,

SDF (U
(T),U�) ≤ ε and ‖X(T) −X�‖F ≤ ε‖X�‖. (4)

The total sample complexity is T · nqp ≥ Cκ6μ2nmxr
2 log nmx log(1/ε). The total per-node computation complexity is T ·

max(n, |Ω|/γ)r2 = Cκ2 log(1/ε) ·max(n, |Ω|/γ)r2 and total per-node communication complexity is T ·nr = Cκ2 log(1/ε) ·nr.

Remark 2.2. We state Theorem 2.1 for one value of the step size η because this makes some of our proof arguments cleaner
notation-wise. However, our proof will go through for any step size η = cη/(pσ

∗
max

2) for a constant cη < c1 < 1. We can
actually show the following. If at each iteration, nq ·p > Cκ4μ2nmxr

2 log nmx., then with probability (w.p.) at least 1−4t/n3
mn,

at iteration t ≥ 0,

SDF (U
(t),U�) ≤

(
1− ccη

κ2

)t c0
κ2

Proof. In our proofs, instead of using nmx, nmn, we just assume n ≤ q for simplicity. The proof is given in Sec. IV and V.

Before this, we discuss this result. We describe the novel ideas used in our proof in Sec. III.

Treating κ, μ as numerical constants, the above result says the following. As long as we observe order qr2 log q log(1/ε)
matrix entries, and we set the GD step size, η, and the total number of iterations, T , as stated, then, with high probability

(w.h.p.), we can fill in the rest of the entries accurately: the normalized Frobenius norm of the error in this estimation is at

most ε. Also, we can estimate the column span of X� with ε accuracy. The number of iterations needed is order κ2 log(1/ε).
Recall from (2) that our cost function f(U ,B) := ‖(Y −UB)Ω‖2F . Thus, E[f(U ,B)] = p‖X� −UB‖2F . To keep notation

cleaner, we do not use a 1/p factor in the cost function. Consequently, it does not appear in the gradient expression either. This

is why the step-size η contains a factor of 1/p.

1) Parameter Setting: AltGDmin needs to set three parameters: the rank r, the GD step size η and the total number of

iterations T . The rank can be set by computing the approximate rank of the initialization matrix Y , while also ensuring that

r is sufficiently smaller than the the number of samples per column, so that the LS step estimate of bk can be accurately

computed. As an example, we could use the heuristic introduced in [30]. This sets r as the smallest integer r̂ for which the sum

of squares of the first r̂ singular values is more than 85% of the sum of squares of the first mink mk/10 singular values with

mk being the number of observed samples for column k. We have E[mk] = np. The step size can be set as η = c/(pσ∗
max

2)
with a c < 1. Practically, σ∗

max will not be known. It can be replaced by ‖Y ‖/p since E[Y] = pX�. The total number of

iterations T should be replaced by the commonly used stopping criterion for GD: use a very large value of T but exit the

iterations loop if the norm of the gradient becomes small enough.

E. Discussion

In this discussion, we treat κ, μ and γ as numerical constants (as is commonly done in many past works, e.g., [4]), and we

assume that = ε < exp(−r) or equivalently r < log(1/ε). The average (expected value of) the required sample complexity is

nqp · T where T is the iteration complexity. Our guarantee given in Theorem 2.1 shows that the AltGDmin sample complexity

is κ6μ2nmxr
2 log nmx log(1/ε). This is worse than that of FactGD by a factor of κ2 log(1/ε). The reason that AltGDmin needs

a factor of log(1/ε) in its sample complexity is because its proof uses sample-splitting. To our best knowledge, all guarantees

for all solutions for LRMC or LRCS that factor X as X = UB, and in which one (or both) of the two alternating steps is

a minimization step, need to use sample-splitting [4, 12, 13, 14, 20, 31] 1. Both problems involve recovery from non-global

measurements (no scalar measurement depends on the entire X�).

The iteration complexity of AltGDmin is T = κ2 log(1/ε) while that of FactGD is T = κμr log(1/ε), which is r times

larger. Per iteration, both have the same communication cost. Consequently, the total communication cost of AltGDmin is

lower than that of FactGD by a factor of r. Consider the computation cost. Per iteration, the FactGD cost is lower than that of

AltGDmin by a factor of r. Since the FactGD iteration complexity is larger by a factor of r, thus, the total computation cost of

both algorithms is comparable. AltGDmin is private and FactGD can be made private with two data exchanges per iteration (as

explained in [1]).

Consider AltMin. AltMin can be made private by implementing the minimization step for U using multiple GD iterations

to solve the LS problem (details in [1]). The total computation cost of AltMin (private) is higher than that of AltGDmin by

a factor of (log(1/ε))/r. Its total communication cost is also higher by a factor of log(1/ε). Consider AltMin (Not-Private),

this requires sharing all the observed data with the center first and then implementing LS using the closed form expression.

Its communication cost is much higher, it is higher than that of AltGDmin by a factor of |Ω|/(γnr). Its computation cost is

comparable to that of AltGDmin though. The original sample complexity of AltMin proved in [4] is also much higher than

1Some of this cited work provides guarantees for LR phase retrieval (LRPR) which is a phaseless measurements’ generalization of LRCS; and hence any
LRPR solution automatically solves LRCS.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

8

that of AltGDmin or FactGD (see Table II). However, the corollary that we prove for AltMin later in Sec VII shows that the

AltMin sample complexity is κ4μ2nr2 log n log(1/ε) and its iteration complexity is log(1/ε). This is comparable to that of

AltGDmin. The same is true for the comparison with Smooth AltMin as well [14]. Its original sample complexity is higher by

a factor of r but our guarantee for it given in Sec VII reduces it to Cκ2μ2qr2(log(n/ε) log2 n).
The ProjGD sample complexity is worse than that of AltGDmin by a factor of log n log(1/ε). Moreover, the ProjGD

communication cost per iteration is much higher than that of AltGDmin and FactGD. The same is true for its computation cost

making it one of the slowest and most communication inefficient.

Finally, notice that we have specified the computation cost per node and the communication cost per node. Communication

cost per node is relevant because in practical distributed settings, the node data can be transmitted to the center in parallel

using well known schemes such as frequency division multiplexing or code division multiple access.

The above discussion is summarized in Table II.

Comparisons for Centralized LRMC. In the centralized setting, there is no communication cost and no notion of privacy.

The computation cost is as given in Table II with γ = 1. The sample cost is as given there too. In a centralized setting,

clearly, all of AltMin, AltGDmin and FactGD have similar computation cost. If we also consider κ, μ dependence, then AltMin

(AltMin-Not-Private from the table) is the fastest

A not-typical heterogenous federated setting. Our federated setting is a heterogeneous one because the data sub-matrix at

node � depends on Y� = (X�
�)Ω(�)

= (U�B�
�)Ω(�)

and B�
� is a different column sub-matrix of B�. The unknowns in our

case are U� and {B�
�, � ∈ [γ]}. The unknown U� is common across all nodes. However, the unknown B�

� is different for

each node. If we increase the total number of nodes γ, the number of unknowns in B� = [B�
1,B

�
2, . . . ,B

�
γ] increases. Our

federated setting is different from the homogenous one, studied in [32, 33] and other works, which involves learning from

data that is identically distributed at different nodes. In this case, increasing γ implies that the total amount of available data

increases, while the size of the unknown quantity to be estimated remains fixed. It is also different from a typical heterogenous

setting which involves estimating a common set of unknowns from data that is not identically distributed across nodes, e.g., the

data variance (or other distributional parameters) are different across different nodes. In both these cases, one would expect

improvement in algorithm convergence speed and noise robustness with increasing γ. In our case, we cannot make a clear

claim since the number of unknowns also increases.

III. PROOF NOVELTY

The overall structure of our proof is similar to that developed in [20] for providing a simple correctness proof for AltGDmin

for the LR columnwise sensing problem. However there are important differences that we describe next. The discussion below

treats κ, μ as numerical constants and assumes n ≤ q so that nmx = q.

1) The most important difference between LRCS and LRMC is that the LRMC proofs require incoherence of each updated

estimate U and B. When analyzing AltGDmin for LRCS in [13, 20], this was needed only for B because LRCS

measurements are column-wise global (matrix Ak is dense and so each entry of yk depends on the entire column x�
k).

Our proof of incoherence of each updated U needs a different approach than that used in all past work on LRMC. The

details of this approach are in the proof of Lemma 4.6 and in its use in proving Theorem 2.1.

The reason that a new approach is needed is because AltGDmin is a different algorithm. (i) ProjGD [6] does not use a

factorized representation for X and hence the gradient w.r.t. U does not exist for it. (ii) We do not update U by LS and

hence we cannot use the approach used for AltMin or Smooth AltMin [4, 14]. (iii) FactGD [10] uses row norm clipping

at each iteration to ensure incoherence by construction. AltGDmin uses row norm clipping only for the initialization step

and for the iterations. If we used row norm colipping for the iterations, it would not be possible to borrow the overall

proof structure for bounding SDF (U
+,U�) in terms of SDF (U ,U�) from [20].

2) We use SDF as the subspace distance measure (instead of SD2 that was used in the LRCS work [20] (whose proof

approach we partly borrow). With our proof approach, use of SDF allows us to show convergence under a sample

complexity lower bound of order qr2 per iteration. By using SD2, we would need order qr3.

The reason for this is as follows. (i) The analysis of row norm clipping for the initialization step relies on the fact that this

operation is a projection (in Frobenius norm) onto a convex set. To efficiently use this fact, we need to use SDF to bound

initialization error. With it, we show that SDF (U
(0),U�) ≤ δ0 w.h.p. if nqp � nr2/δ20 . If SD2 was used, it would need

an extra factor of r. (ii) At iteration t, we show that ‖B −UᵀX�‖F ≤ ε1SDF (U
�,U)σ∗

max ≤ ε1
√
rSD2(U

�,U)σ∗
max

w.h.p. if nqp � qr2/ε21. This bound is used to lower bound σmin(B). To get the lower bound to be at least a constant,

say 0.9, we need ‖B−UᵀX�‖F ≤ cσ∗
min for a constant c ≤ 0.8. This can be guaranteed by setting ε1 = c and requiring

SDF (U
�,U) ≤ 1/κ for all iterations t including t = 0 (initialization). This requires setting δ0 = 1/κ. With ε1 = c and

δ0 = 1/κ, the sample complexity per iteration remains order qr2 (treating κ as a numerical constant). If we use SD2,

we would need ε1
√
rSD2(U

�,U) ≤ c/κ. If we set ε1 = c, this would require SD2(U
�,U) ≤ 1/κ

√
r for all iterations t

including t = 0 (initialization). Since we can only bound SD2 ≤ SDF (there is no factor of
√
r in this upper bound),

this would mean that we would now need δ0 = 1/κ
√
r. This then implies that the initialization step would require qr3

samples. Alternatively, we could move the
√
r factor into ε1, but then each iteration would need qr3 sample complexity.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

9

3) We need to use the matrix Bernstein inequality [34] for bounding all of terms, instead of the concentration bounds used

in [20] (sub-Gausian Hoeffding or sub-exponential Bernstein inequality followed by an epsilon-net argument).

4) Unlike LRCS, LRMC measurements are both row-wise and column-wise local. Consequently, it is not possible to get

a tight column-wise bound (bound on ‖bk −Uᵀx�
k‖, and hence on ‖xk − x�

k‖, for each k) under the desired sample

complexity. We can only bound ‖B −UᵀX�‖F and ‖X −X�‖F . The bound on ‖B −UᵀX�‖F that we prove needs

only roughly qr2 samples and is better than the one proved in [4] which needs more samples.

5) Also, our initialization guarantee is better than that of AltMin and Smooth AltMin [4, 14] by a factor of r3 and r
respectively, and comparable to that of FactGD. Using it and using our ‖B −UᵀX�‖F bound, we are able to provide

significantly improved, roughly qr2 sample complexity bound for AltMin. Using our initialization guarantee we can also

provide a similar sample complexity guarantee for Smoothed AltMin [4, 14].

IV. PROVING THEOREM 2.1

Some readers find it easier to directly read the proof than the outline. We thus provide an outline in Appendix A.
In the proof below, we assume n ≤ q for simplicity. This allows us to bound 1/q by 1/n and 1/

√
nq < 1/n, etc, at various

places.

A. Definitions and Expressions

Let U ≡ U (t−1), B ≡ B(t), and X ≡ X(t) = U (t−1)B(t). Also let U+ ≡ U (t), B+ ≡ B(t+1). Define

G := UᵀX� = [g1, g2, . . . , gq] with gk := UᵀU�b�k,

P∗,⊥ := I −U�U�ᵀ,

and

δ(t) := SDF (U
(t),U∗) = SDF (U

+,U∗) = ‖P∗,⊥U+‖F
Thus, δ(t−1) = SDF (U ,U�), δ(t) = SDF (U

+,U�) = ‖P∗,⊥U+‖F , and P∗,⊥X� = 0.

Let μu := 20κ2μ. All our proofs use c, C to denote different numerical constants in each use. The numerical values in our

intermediate steps are often loose bounds to make the analysis simpler.

Recall that Uk := SkU . Let U�
k := SkU

�. Since

Sᵀ
kSk = SkSk = Sk = diag(ξjk, j ∈ [n])

Uk = SkU =

n∑
j=1

ξjkeju
jᵀ,

U�
k := SkU

� =

n∑
j=1

ξjkeju
∗jᵀ,

and

Uᵀ
kU

�
k = UᵀSkU

� =

n∑
j=1

ξjku
ju∗jᵀ

Using this,

bk = U †
kyk = (UᵀSkU)−1UᵀSkU

�b�k

Thus, bk − gk = bk −UᵀU�b�k simplifies to

bk − gk = (UᵀSkU)−1[UᵀSkU
�b�k − (UᵀSkU)UᵀU�b�k] = (UᵀSkU︸ ︷︷ ︸

Fk

)−1 UᵀSk[I −UUᵀ]U�b�k︸ ︷︷ ︸
dk

(5)

Defining

F := blockdiag(Fk, k ∈ [q]) with Fk := UᵀSkU ,

D := [d1,d2, . . .dq] =
∑
k

dke
ᵀ
k, with dk := UᵀSk[I −UUᵀ]U�b�k,

we have

vec(B −G) = F−1vec(D),

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

10

In the above F ∈ R
rq×rq and D ∈ R

r×q . Using this,

‖B −G‖F = ‖vec(B −G)‖ = ‖F−1vec(D)‖ ≤ ‖F−1‖ ‖D‖F
≤

√
r‖D‖

mink σmin(Fk)
.

Since Sk is a diagonal matrix with each diagonal entry being a Bernoulli(p) r.v., thus,

E[Sk] = pI

and so,

E[dk] = pUᵀ[I −UUᵀ]U�b�k = 0, and E[D] = 0

Finally, define

GradU := ∇Uf(U ,B) = 2(XΩ − Y)Bᵀ = 2

q∑
k=1

Sk(xk − x�
k)b

ᵀ
k = 2

q∑
k=1

n∑
j=1

ξjkej(xjk − x�
jk)b

ᵀ
k (6)

where xjk = ujᵀbk and x�
jk = u∗jᵀb�k. Also,

GradUj := eᵀj∇Uf(U ,B) = 2

q∑
k=1

ξjk(xjk − x�
jk)b

ᵀ
k,

Observe that

E[GradU] = p(X −X�)Bᵀ and E[GradUj] = peᵀj (X −X�)Bᵀ

B. Lemmas for proving Theorem 2.1

All lemmas below assume Assumption 1.1 (singular vectors’ incoherence) holds. Also, everywhere ε < 1.

Lemma 4.1 (Initialization). Pick a δ ≤ 0.2. Assume p ≥ Cκ2r2μ log q/(nδ2). Then, w.p. at least 1− n−10.
1) SDF (U

(0),U∗) ≤ δ.
2) U (0) is 1.5μ row-incoherent, i.e., ‖uj(0)‖ ≤ 1.5μ

√
r/n for all j ∈ [n].

Lemma 4.2 (LS step analysis: error bound for B). Let μu := 20κ2μ. Recall that δ(t−1) = SDF (U ,U�). Assume that
‖uj‖ ≤ μu

√
r/n. Then, w.p. at least 1− exp(log q − c ε2pn

μ2
ur

2),

‖B −G‖F ≤ εδ(t−1)σ∗
max

Lemma 4.3 (Implications of error bound for B). Assume ‖B −G‖F ≤ δ(t−1)σ∗
max. Then,

1) ‖X −X�‖F ≤ 2δ(t−1)σ∗
max.

2) σmax(B) ≤ (1 + δ(t−1))σ∗
max and σmin(B) ≥

√
1− δ(t−1)2σ∗

min − δ(t−1)σ∗
max.

3) Thus, if δ(t−1) ≤ c/κ, then σmin(B) ≥ 0.9σ∗
min and σmax(B) ≤ 1.1σ∗

max.

Lemma 4.4 (Incoherence of B). Let μu := 20κ2μ. Assume that ‖uj‖ ≤ μu

√
r/n. Then, w.p. greater than 1−exp(log q−c np

μ2
ur
),

‖bk‖ ≤ 1.1σ∗
maxμ

√
r/q for all k ∈ [q].

Lemma 4.5 (Gradient expression and bounds). Let μu := 20κ2μ. Recall that δ(t−1) = SDF (U ,U�). Assume that ‖B−G‖F ≤
δ(t−1)σ∗

max with δ(t−1) ≤ c/κ, ‖uj‖ ≤ μu

√
r/n, ‖bk‖ ≤ σ∗

maxμ
√
r/q. Then,

1) ‖E[GradU]‖ ≤ ‖E[GradU]‖F ≤ 2.5pδ(t−1)σ∗2
max.

2) ‖GradU− E[GradU]‖ ≤ εpδ(t−1)σ∗2
min, w.p. at least 1− exp(log q − c ε2pn

max(κ4μ2,κ2μuμ)r
)

3) ‖GradU− E[GradU]‖F ≤ εpδ(t−1)σ∗2
min, w.p. at least 1− exp(log q − c ε2pn

max(κ4μ2,κ2μuμ)r2
)

Lemma 4.6 (Incoherence of U). Recall that δ(t−1) = SDF (U ,U�). Assume that ‖bk‖ ≤ 1.1σ∗
maxμ

√
r/q. Then, w.p. greater

than 1− exp(log q − cε2pn/κ4μ2r2)

1) ‖Graduj − E[Graduj]‖ ≤ εpmax(‖uj‖, ‖u∗j‖)σ∗2
min

2) Further, if ‖B −G‖F ≤ δ(t−1)σ∗
max with δ(t−1) < c/κ, and GD step size η ≤ 0.5/(pσ∗

max
2), then

‖uj+‖ ≤ (1− 0.15/κ2)‖uj‖+ 2‖u∗j‖.
Proof. All these lemmas are proved in Sec V.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

11

C. Proof of Theorem 2.1

Proof of Theorem 2.1. Theorem 2.1 follows from claim (i) of Claim 4.7 stated below along with using the following:

• To ensure δ(T) ≤ ε, we need (1− c/κ2)T · (c/κ2) ≤ ε or that T = Cκ2 log(1/ε).
• Since we use sample splitting, the total number of samples needed for all T iterations is 2T · npq ≥ Cκ4μ2qr2 log q ·

κ2 log(1/ε).

Claim 4.7. Assume everything stated in Theorem 2.1 and np ≥ Cκ4μ2r2 log q. For all times τ ≥ 0, the following hold w.p. at
least 1− τ/n3: (i) δ(τ) ≤ (1− c/κ2)τ · (c/κ2); and (ii) ‖uj(τ)‖ ≤ (1− 0.15

κ2)τ1.5μ
√
r/n+

(∑τ−1
τ ′=0(1− 0.15

κ2)τ
′
)
2‖u∗j‖

We prove this claim next using an induction argument and the lemmas from Sec. IV-B.

Base case: Lemma 4.1 shows that δ(0) ≤ δ = 0.1/κ2 and ‖uj(0)‖ ≤ 1.5μ
√
r/n. This proves (i) and (ii) for τ = 0.

Induction assumption: Assume that the claim holds for τ = t− 1.

Induction step: Consider τ = t. Recall from Algorithm that Ũ+ = U−ηGradU, and U+ = Ũ+R+−1 where Ũ+ QR
= U+R+.

Recall from Sec. IV-A that P∗,⊥X� = 0, E[GradU] = p(UB −X�)Bᵀ, ‖P∗,⊥U‖F = δ(t−1). Also, using Weyl’s inequality,

σmin(R
+) = σmin(Ũ

+) ≥ σmin(U)− η‖GradU‖ = 1− η‖GradU‖. Using these,

δ(t) = SDF (U
+,U�) = ‖P∗,⊥U+‖F

≤ ‖P∗,⊥Ũ+‖F · ‖(R+)−1‖ = ‖P∗,⊥Ũ+‖F /σmin(Ũ
+)

≤ ‖P∗,⊥(U − ηE[GradU] + ηE[GradU]− ηGradU)‖F
(1− η‖GradU‖)

≤ ‖P∗,⊥(U − ηp(UB −X�)Bᵀ)‖F + η‖E[GradU]−GradU)‖F
(1− η‖E[GradU]‖ − η‖E[GradU]−GradU‖)

≤ δ(t−1) · ‖I − ηpBBᵀ‖+ η‖E[GradU]−GradU)‖F
(1− η‖E[GradU]‖ − η‖E[GradU]−GradU‖) . (7)

By the induction assumption, δ(t−1) ≤ (1− c/κ2)t−1 · (c/κ2) ≤ (c/κ2) and

‖uj‖ = ‖uj(t−1)‖
≤ (1− 0.15

κ2
)t−1‖uj(0)‖+ [1 + (1− 0.15

κ2
) + · · ·+ (1− 0.15

κ2
)t−2]2‖u∗j‖

≤ ‖uj(0)‖+ κ2

0.15
2‖u∗j‖ ≤ (1.5μ+ 14κ2μ)

√
r/n ≤ μu

√
r/n (8)

The last inequality above used the infinite geometric series bound. This shows that U is μu-row-incoherent.

Using (8) and δ(t−1) ≤ (c/κ2) , Lemmas 4.2 and 4.4 hold, i.e. the bound on ‖B −G‖F and ‖bk‖ holds. This then implies

that all claims of Lemma 4.3 hold too. This then implies that Lemmas 4.5 and 4.6 hold. All the lemmas hold with probability

at least 1 − 1/n3 if p is such that all the probabilities stated in all the lemmas are lower bounded by 1 − 0.1/n3. Using

μu = 8κ2μ, clearly, this is true if

np ≥ Cκ4μ2r2 log q

By Lemmas 4.2 and 4.3, σmin(B) ≥ 0.9σ∗
min and ‖B‖ ≤ 1.1σ∗

max. Using these, if η ≤ 0.5/(pσ∗2
max), then I − ηpBBᵀ

is positive semi-definite (psd) and hence ‖I − ηpBBᵀ‖ = λmax(I − ηpBBᵀ) ≤ 1 − 0.8ηpσ∗2
min. Using Lemma 4.4, B is

1.1μ-column-incoherent. Using Lemma 4.5, ‖E[GradU]‖ ≤ 2.5pδ(t−1)σ∗2
max and ‖GradU − E[GradU]‖F ≤ εpδ(t−1)σ∗2

min.

Substituting these into (7) with ε = 0.01,

δ(t) ≤ δ(t−1)
(
1− 0.8ηpσ∗2

min + 0.01ηpσ∗2
min

)
1− δ(t−1)

(
2.55ηpσ∗2

max

) .

≤ δ(t−1)(1− 0.79ηpσ∗2
min)(1 + 2δ(t−1)(2.55ηpσ∗2

max))

≤ δ(t−1)(1− (0.79− δ(t−1)5.1κ2)ηpσ∗2
min) ≤ δ(t−1)(1− ηpσ∗2

min(0.79− 0.051)) ≤ δ(t−1)(1− 0.3ηpσ∗2
min)

In the above, for the denominator term we used 1/(1−x) ≤ 1+2x for x < 0.5 and δ(t−1) ≤ 0.01/κ2. Setting η = 0.5/(pσ∗2
max)

in the final expression given above, we can conclude that

δ(t) ≤ (1− 0.15/κ2)δ(t−1) ≤ (1− 0.15/κ2)t · (0.1/κ2).

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

12

Thus claim (i) holds for τ = t. Next we prove claim (ii) for τ = t. By Lemma 4.6 and the induction assumption,

‖uj(t)‖ = ‖uj+‖ ≤ (1− 0.15/κ2)‖uj‖+ 2‖u∗j‖
≤ (1− 0.15/κ2)t1.5μ

√
r/n+ (1− 0.15/κ2)[1 + (1− 0.15

κ2
) + · · ·+ (1− 0.15

κ2
)t−2]2‖u∗j‖+ 2‖u∗j‖

= (1− 0.15/κ2)t1.5μ
√
r/n+ [1 + (1− 0.15

κ2
) + · · ·+ (1− 0.15

κ2
)t−1]2‖u∗j‖

V. PROOFS OF THE LEMMAS

All the proofs below use the matrix Bernstein inequality [34, 35].

Proposition 5.1 (Matrix Bernstein). Let X1,X2, . . .Xm be independent, zero-mean, d1 × d2 matrices with ‖Xi‖ ≤ L for all
i = 1, 2, ...m. Define the “variance parameter” of the sum

σ2 := max

(
‖
∑
i

E[XiX
�
i]‖, ‖

∑
i

E[X�
i Xi]‖

)
.

Pr

(
‖

m∑
i=1

Xi‖ ≥ t

)
≤ (d1 + d2) exp

(
−c

t2

σ2 + Lt/3

)
≤ 2 exp

(
logmax(d1, d2)− cmin

(
t2

σ2
,
t

L

))
.

Consider matrices Zi that are not zero mean but otherwise satisfy everything above. We would then apply the above result

with Xi = Zi − E[Zi].

A. Proof of Lemma 4.1

By Lemmas 2.5 and 2.6 of [36], for two n× r matrices with orthonormal columns, U1,U2,

SDF (U1,U2) ≤ min
Q∈Rr×r,QᵀQ=QQᵀ=I

‖U1 −U2Q‖F ≤
√
2SDF (U1,U2) (9)

and a similar bound holds for SD2 as well. We use this fact frequently below.

Recall from the Algorithm that Y
SVD
= U (00)Σ(00)V (00), and ΠU (U (00))

QR
= U (0)R(0). By Theorem 3.22 of [36] along

with using (9) and SD2(U1,U2) ≤
√
rSDF (U1,U2), we have: with probability at least 1− Cq−10,

SDF (U
(00),U�) ≤ C

√
κ2μr2 log q

np

Let Q∗,00 = argminQ∈Rr×r,QᵀQ=QQᵀ=I ‖U (00) −U�Q‖F . By (9),

‖U (00) −U�Q∗,00‖F ≤
√
2SDF (U

(00),U�)

Recall that the set U is defined in (3). Next we use the above two bounds and the fact that U is a convex set2 to bound

‖ΠU (U (00))−U�Q∗,00‖F as follows.

‖ΠU (U (00))−U�Q∗,00‖F = ‖ΠU (U (00))−ΠU (U�Q∗,00)‖F ≤ ‖U (00) −U�Q∗,00‖F ≤
√
2SDF (U

(00),U�) ≤ C

√
κ2μr2 log q

np

with probability at least 1− Cq−10. The first equality above uses the fact that, for any unitary Q, U�Q belongs to U . This

holds since ‖(U�Q)j‖ = ‖eᵀjU�Q‖ ≤ ‖u∗j‖ ≤ μ
√
r/n (using ‖Q‖ = 1 and the incoherence Assumption 1.1). The second

one uses the facts that projection onto U , which is a convex set, is non-expansive [37, eq. (9),(10)], [38, eq. (1.5)]). The

projection ΠU (M) := minU∈U ‖U −M‖F is non-expansive means that ‖ΠU (M)−ΠU (M2)‖F ≤ ‖M −M2‖F .

2To see that U is a convex set, let matrices M1,M2 ∈ U . Let mj
1 and mj

2 denote the rows of M1 and M2, respectively. For any 0 < θ < 1,

‖θmj
1 + (1− θ)mj

2‖ ≤ θ‖mj
1‖+ (1− θ)‖mj

2‖ ≤ θμ
√

r/n+ (1− θ)μ
√

r/n = μ
√

r/n.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

13

Finally, we use the above to bound SDF (U
(0),U�) = ‖P∗,⊥U (0)‖F = ‖P∗,⊥ΠU (U (00))R(0)−1‖F . Using P∗,⊥U�Q∗,00 =

0, and x/(1− x) < 1.5x for any 0 ≤ x ≤ 0.3, we have: if C
√

κ2μr2 log q
np < 0.3, then

SDF (U
(0),U�) = ‖P∗,⊥U (0)‖F ≤ ‖P∗,⊥ΠU (U (00))‖F ‖R(0)−1‖

≤ ‖P∗,⊥U�Q∗,00‖F + ‖P∗,⊥(ΠU (U (00))−U�Q∗,00)‖F
σmin(ΠU (U (00))

≤ ‖ΠU (U (00))−U�Q∗,00‖F
1− ‖ΠU (U (00))−U�Q∗,00‖F

≤
C
√

κ2μr2 log q
np

1− C
√

κ2μr2 log q
np

≤ 1.5C

√
κ2μr2 log q

np

The denominator bound follows by Weyl’s inequality, σmin(U
�Q∗,00) = 1, and x/(1− x) < 1.5x for 0 < x < 0.3. Thus, for a

δ < 0.3, w.p. at least 1− q−10, SDF (U
(0),U�) ≤ δ if p ≥ Cκ2μr2 log q/nδ2.

1) Proof of μ-incoherence: We have uj(0) = (ΠU (U (00)))jR(0)−1. Thus, using the denominator bound from above,

‖uj(0)‖ ≤ ‖(ΠU (U (00)))j‖‖R(0)−1‖ =
‖(ΠU (U (00)))j‖
σmin(ΠU (U (00))

≤ μ
√

r/n

1− C
√

κ2μr2 log q
np

Our assumed bound on p implies that the denominator is at least 1− δ for a δ < 0.3. This then implies the above is upper

bounded by 1.5μ
√
r/n.

B. Proof of Lemma 4.2
Let δ = δ(t−1). Recall from Sec. IV-A that vec(B − G) = F−1vec(D) with F ,D defined there. Here F ∈ R

rq×rq and

D ∈ R
r×q . Thus,

‖B −G‖F = ‖vec(B −G)‖ = ‖F−1vec(D)‖ ≤ ‖F−1‖ · ‖vec(D)‖ = ‖F−1‖ · ‖D‖F ≤ ‖F−1‖ · √r‖D‖, (10)

We first bound ‖D‖ = ‖D − E[D]‖ using the matrix Bernstein inequality [34]. We summarize it above in Proposition 5.1. Let

M := [(I −UUᵀ)U�]

Recall from Sec. IV-A that

D =
∑
k

dke
ᵀ
k = UᵀSkMb�ke

ᵀ
k =

∑
k

∑
j

ξjku
jM jᵀb�ke

ᵀ
k︸ ︷︷ ︸

Zjk

and E[D] = 0 (11)

Using n ≤ q,

L = max
jk

‖ξjkujM
jᵀb�ke

ᵀ
k‖ ≤ max

jk
‖M j‖‖uj‖‖b�k‖ ≤ δσ∗

maxμμur/n

where we used ‖M j‖ ≤ ‖M‖ ≤ δ. Also, using E[ξjk] = E[ξ2jk] = p,

σ2
1 = ‖E[

∑
jk

Zᵀ
jkZjk]‖ = p‖

∑
jk

(M jᵀb�k)
2‖uj‖2ekeᵀk‖

≤ pμ2
u

r

n
‖MB∗‖2F ≤ 2pμ2

u

r

n
‖M‖2F ‖B∗‖2 ≤ 2pμ2

u

r

n
δ2σ∗2

max.

and, proceeding in a very similar fashion,

σ2
2 = ‖E[

∑
jk

ZjkZ
ᵀ
jk]‖ = p‖

∑
jk

(M jᵀb�k)
2uju

ᵀ
j ‖

≤ pμ2
u

r

n
‖MB∗‖2F ≤ 2pμ2

u

r

n
‖M‖2F ‖B∗‖2 ≤ 2pμ2

u

r

n
δ2σ∗2

max.

Thus, σ2 = max(σ2
1 , σ

2
2) = σ2

2 , for r < q. Setting t = εpδσ∗
max, we have

t

L
=

εpn

rμμu
,

t2

σ2
=

ε2pn

2rμ2
u

. (12)

Thus, by the Matrix-Bernstein inequality, and using μ ≤ μu,

‖D‖ = ‖D − E[D]‖ ≤ εpδσ∗
max,w.p. greater than 1− exp(log q − c

ε2pn

rμ2
u

). (13)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

14

1) Final bound: The bounding of ‖F−1‖ = 1/mink σmin(Fk) is similar to that in [4]. By using the matrix-Bernstein

inequality, ‖Uᵀ
kUk−pI‖ ≤ εp, w.p. greater than 1− exp(log 2r − c ε

2pn
μ2
ur

). Applying a union bound over all q diagonal blocks,

and using the fact that σmin(F) = mink σmin(U
ᵀ
kUk)) (since F is block diagonal),

‖F−1‖ ≤ 1

(1− ε)p
, w.p. greater than 1− exp(log q + log 2r − c

ε2pn

μ2
ur

). (14)

(the above also follows by Lemma C.7 of [4]).

Using the above bound and the bound on ‖D‖ from above

‖B −G‖F ≤ √
r‖F−1‖‖D‖ ≤ 2ε

√
rδσ∗

max, w.p. greater than 1− exp(log q − ε2pn

rμ2
u

). (15)

Let ε = ε1/2
√
r. Then,

‖B −G‖F ≤ ‖F−1‖ · √r‖D‖ ≤ ε1δσ
∗
max, w.p. greater than 1− exp(log q − ε21pn

r2μ2
u

). (16)

C. Proof of Lemma 4.3

Let δ = δ(t−1). Writing X� = UG + (I − UUᵀ)X�, and X = UB, we have ‖X� − X‖F ≤ ‖B − G‖F + ‖(I −
UUᵀ)U∗B∗‖F ≤ ‖B−G‖F + ‖(I −UUᵀ)U∗‖F ‖B∗‖ ≤ cδσ∗

max+ δσ∗
max. For ii), using the bound on ‖B−G‖F , ‖B‖ =

‖B−G+G‖ ≤ ‖B−G‖+‖G‖ ≤ δσ∗
max+σ∗

max. For iii), σmin(B) ≥ σmin(G)−σmax(B−G) ≥ √
1− δ2σ∗

min−δ
√
rσ∗

max.

Here we used σmin(G) = σmin(U
ᵀU�B�) ≥ σmin(U

ᵀU∗)σ∗
min ≥ √

1− δ2σ∗
min.

D. Proof of Lemma 4.4

Since bk = (Uᵀ
kUk)

−1Uᵀ
kU

�
kb

�
k,

‖bk‖ ≤ ‖(Uᵀ
kUk)

−1‖ · ‖Uᵀ
kU

�
k‖ · ‖b�k‖

By Lemma C.6 of [4]:

‖(Uᵀ
kUk)

−1‖ ≤ 1

(1− ε)p
w.p. at least 1− exp(log r − ε2pn/μ2

ur) (17)

To bound ‖Uᵀ
kU

�
k‖, first note that

E[Uᵀ
kU

�
k] = pUᵀU�.

We bound ‖Uᵀ
kU

�
k − pUᵀU�‖ using matrix Bernstein inequality [34]. We summarize it above in Proposition 5.1. Recall the

expression for Uᵀ
kU

�
k from Sec. IV-A. Let Zj = (ξjk − p)uju∗jᵀ. As done in earlier proofs, we can show that

L = max
j

‖Zj‖ ≤ μμu

√
r/n, and

σ2 = max(‖
∑
j

E[ZjZ
ᵀ
j]‖, ‖

∑
j

E[Zᵀ
jZj]‖) ≤ 2pμ2

u

r

n
.

For this, we used the fact that E[(ξjk − p)2] = 2p(1 − p) ≤ 2p, ‖∑j ‖u∗
j‖2uju

ᵀ
j ‖ ≤ μ2(r/n)‖U‖ = μ2(r/n) and

‖∑j ‖uj‖2u∗
ju

∗
j
ᵀ‖ ≤ μ2

u(r/n)‖U�‖ = μ2
u(r/n) and μ ≤ μu.

Thus, by matrix Bernstein, ‖Uᵀ
kU

�
k − pUᵀU∗‖ ≤ εp w.p. at least 1− exp(log r− ε2pn/μ2

ur). Hence, with this probability,

‖Uᵀ
kU

�
k‖ ≤ ‖Uᵀ

kU
�
k −UᵀU�‖+ p‖UᵀU�‖ ≤ εp+ p = (1 + ε)p. (18)

Thus, letting ε = 0.1, w.p. at least 1− exp(log r − cpn/μ2
ur), ‖bk‖ ≤ 1.1‖b�k‖ ≤ 1.1μ

√
r/qσ∗

max. Here we obtained a bound

on ‖bk‖ for a given k. By union bound, the above bound holds for all k ∈ [q] w.p. at least 1 − q exp(log r − cpn/μ2
ur) =

1− exp(log q + log r − cpn/μ2
ur).

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

15

E. Proof of Lemma 4.5

Let δ = δ(t−1). Recall that GradU =
∑

jk ξjkej(xjk − x∗
jk)b

ᵀ
k. Using the lemma assumption, ‖B −G‖F ≤ δσ∗

max. Using

this and Lemma 4.3, ‖X −X�‖F ≤ 2δσ∗
max, ‖B‖ ≤ 1.1σ∗

max, We use these bounds in the proof below.

Observe that

E[GradU] = p(X −X�)Bᵀ,

Thus, using the assumed B −G bound,

‖E[GradU]‖F ≤ p‖X −X�‖F ‖B‖ ≤ 2.2pδσ∗2
max

Next we bound the deviation using matrix Bernstein inequality. Writing X = UB, X� = UG+ (I −UUᵀ)X�, and using

n ≤ q

max
jk

|xjk − x∗
jk| = |eᵀj (X −X�)ek|

≤ ‖eᵀjU‖‖B −G‖+ ‖(I −UUᵀ)U�‖‖B�ek‖
≤ μu

√
r/nδσ∗

max + μ
√
r/qδσ∗

max ≤ 2μu

√
r/nδσ∗

max

Using this,

L = max
jk

‖(xjk − x�
jk)b

ᵀ
k‖ ≤ max

jk
‖(xjk − x�

jk)‖max
k

‖bk‖ ≤ 2μu

√
r/nδσ∗

max · μ
√
r/qσ∗

max ≤ 2μuμ(r/n)δσ
∗2
max,

To bound σ2
1 = ‖∑jk E[ZjkZ

ᵀ
jk]‖ and σ2

2 = ‖∑jk E[Z
ᵀ
jkZjk]‖, where Zjk = ξjkej(xjk − x∗

jk)b
ᵀ
k , using E[(ξjk − p)2] =

2p(1− p) ≤ 2p we have

σ2
1 = 2p‖

∑
jk

(xjk − x�
jk)

2ejb
ᵀ
kbke

ᵀ
j ‖ ≤ 2p‖bk‖2‖X −X�‖2F ≤ 2pμ2(r/q)σ∗2

max · (δσ∗
max)

2 = 2pμ2(r/q)δ2σ∗4
max.

σ2
2 = 2p‖

∑
jk

(xjk − x�
jk)

2eᵀj ejbkb
ᵀ
k‖ ≤ 2p‖bk‖2‖X −X�‖2F = σ2

1 .

Setting t = εpδσ∗2
min, we have

t2

σ2
= c

ε2p2δ2σ∗
min

4

pμ2(r/q)δ2σ∗4
max

=
ε2pq

κ4μ2r
,

t

L
= c

εpδσ∗2
min

μuμ(r/n)δσ∗2
max

=
εpn

κ2μuμr
.

Thus,

min

(
t2

σ2
,
t

L

)
= c

ε2pn

max(κ4μ2, κ2μuμ)r

and so, by matrix Bernstein, w.p. at least 1− exp(log q − c ε2pn
max(κ4μ2,κ2μuμ)r

), ‖GradU− E[GradU]‖ ≤ εpδσ∗2
min.

By setting ε = ε1/
√
r, ‖GradU − E[GradU]‖F ≤ √

r‖GradU − E[GradU]‖ ≤ ε1pδσ
∗2
min w.p. at least 1 − exp(log q −

ε21pn
max(κ4μ2,κ2μuμ)r2

).

F. Proof of Lemma 4.6

Let δ = δ(t−1). This is used only for proving the second part.

Recall from Sec. IV-A that

Graduj =
∑
k

ξjk(xjk − x�
jk)b

ᵀ
k,

To apply matrix Bernstein, we need to bound σ2
1 ≡ ‖E[∑k ξ

2
jk(xjk − x∗

jk)
2bᵀkbk]‖, σ2

2 ≡ ‖E[∑k ξ
2
jk(xjk − x∗

jk)
2bkb

ᵀ
k]‖, and

L = maxk ‖(xjk − x�
jk)bk‖. Using

|xjk − x�
jk| ≤ 2max(|xjk|, |x�

jk|) ≤ 2max(‖uj‖‖bk‖, ‖u∗j‖‖b�k‖) ≤ 2max(‖uj‖, ‖u∗j‖)max(‖bk‖, ‖b�k‖).
and max(‖b�k‖, ‖bk‖) ≤ 1.1μ

√
r/qσ∗

max,

L ≤ max
k

|xjk − x�
jk|max

k
‖bk‖ ≤ 2max(‖uj‖, ‖u∗j‖)max

k
max(‖bk‖, ‖b�k‖)max

k
‖bk‖

≤ 2max(‖uj‖, ‖u∗j‖)μ2(r/q)σ∗2
max. (19)

We use the above seemingly loose bound because we do not need δ(t−1) in this bound. Instead we need to the bound to be of

the form max(‖uj‖, ‖u∗
j‖) times a factor of

√
r/qσ∗

max

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

16

The variance σ2
1 = ‖E[∑k ξjk(xjk − x∗

jk)
2bᵀkbk]‖ can be bounded using similar ideas as follows.

σ2
1 = ‖

∑
k

p(xjk − x�
jk)

2bᵀkbk‖ ≤ 2pmax(‖uj‖2, ‖u∗j‖2)2 max
k

(‖bk‖, ‖b∗k‖)2
∑
k

‖bk‖22

≤ 2pmax (‖uj‖2, ‖u∗j‖2)2μ2(r2/q)σ∗4
max. (20)

Similarly, σ2
2 ≤ 2pmax (‖uj‖2, ‖u∗j‖2)2μ2(r2/q)σ∗4

max. By the matrix Bernstein inequality with t = εpmax(‖uj‖, ‖u∗j‖)σ∗2
min,

and noting that σ2 = max(σ2
1 , σ

2
2) = σ2

1 , we have w.p. at least 1− exp(log q − ε2pn/μ2κ4r2),

‖E[Graduj]−Graduj‖ ≤ εpmax(‖uj‖, ‖u∗j‖)σ∗2
min. (21)

This completes the proof for the first part of the lemma.
1) Proof of second part: In line 7 of Algorithm 1, adding/subtracting E[Graduj] = p(ujBBᵀ − u∗jB�Bᵀ),

ũj+ = uj − ηGraduj = uj(I − ηpBBᵀ) + ηpu∗jB�Bᵀ + η(E[Graduj]−Graduj), (22)

Since we assumed δ ≤ c/κ, by Lemma 4.3, σmin(B) ≥ 0.9σ∗
min and σmax(B) ≤ 1.1σ∗

max. Thus, if η < 0.5/pσ∗2
max then,

I − ηpBBᵀ is positive semi-definite (psd) and so ‖I − ηpBBᵀ‖ = λmax(I − ηpBBᵀ) = 1− ηpσ2
min(B) ≤ 1− 0.9ηpσ∗

min
2.

Thus, using the above bound on ‖E[Graduj]−Graduj‖, if η < 0.5/pσ∗2
max,

‖ũj+‖ ≤ ‖uj‖(1− 0.9ηpσ∗2
min) + ηp‖u∗j‖σ∗2

max + εηpσ∗2
min max(‖uj‖, ‖u∗j‖)

≤ (1− (0.9− ε)ηpσ∗2
min)max(‖uj‖, ‖u∗j‖) + ηpσ∗2

max‖u∗j‖, (23)

w.p. at least 1− exp(log q − ε2pn/μ2κ4r2). We bound ‖uj(t+1)‖ ≤ ‖(R+)−1‖ · ‖ũj(t+1)‖, where Ũ+ QR
= U+R+ next. Using

Lemma 4.5,

‖(R+)−1‖ =
1

σmin(U − η‖GradU‖) ≤ 1

1− η2.1pδσ∗2
max

≤ 1

1− 0.25ηpσ∗2
max

≤ 1 + 0.5ηpσ∗2
max. (24)

w.p. given in Lemma 4.5. Thus, using (23) and (24) in ‖uj+‖ ≤ ‖(R+)−1‖ · ‖ũj(t+1)‖,

‖uj+‖ ≤ (1 + 0.5ηpσ∗2
max)(1− (0.9− ε)ηpσ∗2

min)max(‖uj‖‖u∗j‖) + (1 + 0.5ηpσ∗2
min)ηpσ

∗2
max‖u∗j‖

≤ (1− (0.4− ε)ηpσ∗2
min)max(‖uj‖, ‖u∗j‖) + · · ·

· · · (1 + 0.5ηpσ∗2
max)ηpσ

∗2
max‖u∗j‖

≤ (1− (0.4− ε)ηpσ∗2
min)max(‖uj‖, ‖u∗j‖) + (1 + 0.25/κ2)0.5‖u∗j‖

≤ (1− 0.15

κ2
)max(‖uj‖, ‖u∗j‖) + 0.7‖u∗j‖

where the last bound follows by setting η = 0.5/pσ∗2
max and setting ε = 0.1 in (21). Thus, we have shown that if η = 0.5/pσ∗2

max,

and if δ ≤ c/κ2, with probability exceeding 1− 4/n3,

‖uj+‖ ≤ (1− 0.15

κ2
)max(‖uj‖, ‖u∗j‖) + 0.7‖u∗j‖

≤ (1− 0.15

κ2
)‖uj‖+ 2‖u∗j‖.

VI. GUARANTEE FOR NOISY LRMC

Consider the noisy LRMC problem defined as follows. We observe

Y := X�
Ω +WΩ

We do not make any assumption on the noise W (deterministic W). Unlike the standard Gaussian assumption, this assumption

is weaker: it allows the noise entries to be anything, all entries could be positive too for example.

We can show the following by borrowing the overall proof approach for modifying a noise-free case guarantee for an iterative

algorithm from past works [12, 39]; the latter used a similar approach for analyzing the AltMin algorithm for LR phase retrieval.

Corollary 6.1. Let

εnoise := max
jk

|wjk|
|x∗

jk|
In the setting of Theorem 2.1, if εnoise ≤ c√

rκ3 , then, by setting T = Cκ2 log(1/εnoise), we can guarantee that

SDF (U
(T),U�) ≤ κ2

√
rεnoise

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

17

and ‖X(T) −X�‖F ≤ SDF (U
(T),U�)σ∗

max. In general, for any ε, by setting T = Cκ2 log(1/ε), we can ensure that

SDF (U
(T),U�) ≤ max(ε, κ2

√
rεnoise)

and ‖X −X�‖F ≤ SDF (U
(T),U�)σ∗

max.

Proof. Corollary 6.1 extends our noise-free case proof to the noisy case using the following simple ideas. First we assume that

the noise level is small enough so that accurate initialization is possible; this requires noise level, εnoise
√
r, to be of order

cδ(0)σ∗
min for our required value of δ(0) = c/κ2. This helps ensure that the initialization error is bounded by δ(0).

Next, at each iteration, we attempt to bound terms and prove incoherence for the updated U ,B, in order to guarantee error

decay similar to the noise-free case. For this, we need the noise level to be such that (i) the error in recovering B� is of the

same order as in the noise-free case; and (ii) the same is true for the bounds on the gradient norm. Both of these are ensured if

εnoiseκ
2
√
r ≤ cδ(t−1) for a c < 1, e.g., c = 0.1. Details are given in Appendix B.

An entry-wise noise bound is assumed also in all other works that study iterative algorithms for noisy LRMC. The

work on Smooth AltMin [14] considers the noisy case under a similar assumption to ours. It replaces the noise N by

W := (I −U�U�ᵀ)N and then requires the following bounds on it:

max
j

‖eᵀjW ‖2 ≤ μσ∗
min

2/q, max
jk

|Wjk| ≤ μ‖X�‖F /q

In addition, it needs a sample complexity of order nmxr
3. Notice that the second bound above is on the maximum entry

magnitude maxjk |Wjk| similar to ours. Also note that the right hand side of the bound contains 1/q and not 1/
√
q, making it

a strong assumption. A similar result is proved in [8] as well. We note that the works on AltMin [4], FactGD [10] and ProjGD

[6] do not provide noisy case bounds. The latter two do consider sparse outliers which are handled differently; the magnitude

of any entry of a sparse outlier is not bounded, but the number of nonzero entries is bounded. On the other hand, noise means

a small and bounded disturbance in all observed entries.

The above guarantee shows how the noise-free case proof approach can be directly extended to also handle the noisy case.

Notice from Theorem 6.1 that the sample complexity requirement does not depend on the noise level. This is why our result

can only tolerate small noise levels. A guarantee that holds for any value of noise would require the sample complexity to grow

with NSR/ε2 where NSR is the noise to signal ratio (can be defined as (qσ2
w)/σ

∗
min

2). It should be possible to obtain such a

result, and one that assumes Gaussian noise instead of bounded noise, by adapting ideas from [40].

VII. IMPROVED GUARANTEES FOR ALTMIN AND SMOOTH-ALTMIN

Using the same lemmas used to prove the AltGDmin guarantee, we are also able to improve the guarantee for AltMin and

Smooth-AltMin [14], as long as both are initialized as given in Algorithm 1: the initial estimate of U is clipped using row-wise

clipping. We borrow this clipping idea from [10].

A. Improving the result for AltMin

Corollary 7.1 (Improved AltMin [4] Guarantee). Consider the AltMin algorithm initialized using our initialization (lines 2-4)
of Algorithm 1. Assume that Assumption 1.1 holds and that, at each iteration t, entries of X� are observed independently with
probability p satisfying

np > Cκ4μ2r2 log q. (25)

Then, w.p. at least 1− 3/n3, the iterates U (t) of AltMin [4] satisfy SDF (U
(t+1),U�) ≤ 0.25SDF (U

(t),U∗).
Consequently, if the expected number of samples observed across all iterations satisfies E[|Ω|] = T · nqp >

Cκ4μ2r2 log q
n log(1/ε), then, after T = C log(1/ε) iterations, SDF (U

(T),U�) ≤ ε.

We prove this in Appendix C. The proof is an easy corollary of Lemmas 4.1, 4.2, 4.3 and 4.4. Comparing (25) to Theorem

2.5 of [4], we observe that the sample complexity for AltMinComplete has reduced in r from r4.5 log r to r2.

B. Improved Guarantee for Smooth AltMin [14]

Consider Smooth AltMin given in Fig 1 of [14]. By replacing its initialization by ours or that from [10], we can improve its

sample complexity guarantee by a factor of r. We summarize this next.

Corollary 7.2. Let ε > 0. Consider the output of Smooth AltMin given in Fig 1 of [14] with its Initialization procedure replaced
by lines 2-4 of AltGDmin given in our Algorithm 1. Let X� be a symmetric n×n matrix. Set T = O(log(n/ε)). The algorithm
output satisfies SDF (U ,U∗) ≤ ε with probability 9/10, provided that sampling probability p ≥ p0 + pLS , where

p0 ≥ Cκ2r2μ(log n)/n pLS ≥ Cκ2μ2r2(log(n/ε) log2 n)/n. (26)

Thus, its sample complexity is nqp · T ≥ Cκ2μ2qr2(log(n/ε) log2 n).

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

18

0 5 10 15
10-15

10-10

10-5

100

(a) Federated setting: Error against time-taken, r = 10

0 2 4 6 8 10 12 14 16 18 20
10-15

10-10

10-5

100

(b) Federated setting: Error against time-taken, r = 10

Fig. 1: Comparing federated implementations of AltGDmin (proposed), FactGD and AltMin. For AltMin we compare two versions - the private
one (which uses multiple GD iterations to solve the minimization step for updating U) and the not private one. The results match what our
theory (sufficient conditions) predicts. AltGDmin is the fastest due to its lowest communication-efficiency and due to all three having comparable
computation cost. In (a), we also compare FactGD with three choices of step size. See experiments’ description for details.

0 10 20 30 40 50 60 70 80
10-15

10-10

10-5

100

(a) Error against iterations, r = 10.

0 10 20 30 40 50 60 70 80 90 100
10-15

10-10

10-5

100

(b) Error against iterations, r = 20.

Fig. 2: Iteration complexity comparisons: We plot the numerically computed subspace recovery error against iteration count for the same two
cases as those in Fig 2. This remains the same whether the implementation is centralized or federated. The results match theory once again.
AltMin iteration complexity is order log(1/ε), AltGDmin is κ2 log(1/ε) and FactGD is κμr log(1/ε).

This is a direct corollary of Theorem 6.1 of [14] combined with our initialization lemma, Lemma 4.1. The only thing we

change for Smooth AltMin is its initialization step. For the proof also we replace use of the initialization guarantee given in

Theorem 7.1 of [14] by our Lemma 4.1.

VIII. SIMULATION RESULTS

1) Experimental Setup: We plot averaged subspace distance at the iteration t against the average time taken until iteration t,
with the averages being computed over 100 Monte Carlo runs. The averaging is over the observed entries which are generated

uniformly at random. The matrix X� = U�B� was generated once: we let U� be an orthonormalized n× r random Gaussian

matrix and B� an r × q random Gaussian matrix. We used the ‘parfor’ loop in MATLAB to distribute the computation across

10 workers, with each worker being an individual core of a multi-core CPU (13-th Gen. Intel Core i7 with 32GB RAM and 16

cores). To compute the left-singular vectors needed for the initialization of federated algorithms, we used the federated power

method and performed 15 power iterations. Also, our experiments we do not sample-split, i.e., we run each iteration of the

algorithms on all observed entries.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

19

For federated versions of all algorithms, we plot recovery error at iteration t against total time taken until iteration t in Fig.

1. In Fig. 2 we numerically compare the iteration complexity of all three algorithms. This plot is just error versus iteration t
and will look the same regardless of which machine it is run on.

2) Step-size and other parameters: For FactGD (Centralized), we used the code provided by the authors of that work [10].

The step size was set ηFactGD = pc/‖Y ‖, as also done in the authors’ own implementation of their algorithm. Setting c = 0.75
showed the fastest convergence for our simulations (see Fig. 1a). For AltMin (Fed./NotPrvt.) and AltMin(Fed./Prvt.), we wrote

our own MATLAB implementation; the latter uses GD to solve the LS problem for updating U . We set the number of GD

iterations for solving each LS problem to 10 with step size η = p/‖Y ‖2, which showed the fastest convergence. Note that the

U -update least-squares problem is convex, and the chosen step-size is an upper bound on the Lipschitz constant of the expected

gradient of the objective function at t = 0 [41]. AltGDMin is also implemented with step-size η = p/‖Y ‖2, which approximates

the step size choice suggested by Theorem 2.1, since ||E[Y]||2 = p2σ∗2
max. AltMin and AltGDMin were both initialized by

lines 2-4 of Algorithm 1. The incoherence parameter μ was estimated as μ̂ = argminμ‖u(0)j‖ ≤ μ
√
r/n for all j ∈ [n].

3) Observations: The proposed algorithm AltGDMin (Fed.) is faster than all benchmark methods, especially at the higher

value of r = 20. Specifically, AltGDMin (Fed.) converges to U� in approximately 12 seconds, compared to nearly 20 seconds
for the second fastest AltMin (Fed. NotPrvt.). We interpret/explain these observations and the benchmark methods below.

4) AltGDMin: AltGDMin (Fed.) has faster convergence because of low communication complexity and low time complexity

at the center. The upstream communication complexity, min(
∑

k∈S�
∇Uf(U , bk), nr) = nr, is low because the nodes sum the

column-wise gradients

5) FactGD: ∇Uf = ∇XBᵀ ∈ R
n×r and BBᵀ ∈ R

r×r are computed at the nodes and transmitted upstream. The total

upstream communication cost is nr + r2, higher than the nr communication cost of AltGDMin. B is updated locally (GD

iteration and normalizing) at the nodes but this requires two data exchanges with the center. This is because the gradient of B,

(BBᵀ −UᵀU)B, with respect to the norm balancing term, ‖UᵀU −BBᵀ‖2F , cannot be computed at the nodes. The nodes

compute and transmit
∑

k∈S�
bkb

ᵀ
k , which are summed at the center to form BBᵀ, and transmitted back to the nodes. The

center also computes and transmits UᵀU . Then, at the nodes, the partial gradient (BBᵀ −UᵀU)
∑

k∈S�
bkb

ᵀ
k is computed,

followed by column-normalizing. The federated and centralized implementations of FactGD do not use ‘for’ loops at all,

either at the nodes or at the center. But, FactGD is slower than AltMin and AltGDMin because of its higher communication

complexity, O(nr + r2) and 2 data exchanges, compared to 1 data exchange and O(nr), O(qr) communication complexity for

AltGDMin and AltMin (Fed.NotPrvt.), respectively.

6) AltMin: AltMin (Fed./NotPrvt.) is slower than AltGDMin (Fed.) because the n U -update LS problems are solved

sequentially at the center with complexity |Ω|r2, compared to the nr2 complexity of computing the QR decomposition for

AltGDMin. Also, AltMin (Fed./NotPrvt.) is not private because the nodes communicate the updated b
(t+1)
k to the center. For

AltMin(Fed./Prvt.), the U -update LS problems are solved by multiple gradient descent iterations at the node. While private, the

GD version of AltMin is slow because of the communication overhead of transmitting/receiving the gradients several times

(log(1/ε) times for ε-accuracy) in each iteration. AltMin (Cntrl.) is slower than federated methods because both U , B LS

problems are solved sequentially by the closed form solution at the center, but it is still the fastest centralized algorithm overall,

possibly because of log(1/ε) iteration complexity, which is lower than that of other methods.

7) Simulations for Noisy LRMC: In Figure 3, we show simulation results for noisy LRMC. X� and the set of observed

entries Ω were generated as in earlier experiments. We simulated Y = X�
Ω +WΩ, with W

i.i.d.∼ N (0, σ2) and three choices of

σ2. Notice that all algorithms converge to a final error value that is proportional to the noise level σ2/(σ∗
min

2/q). For σ = 0.001,

the algorithm converges to error level 0.003. For σ = 0.00001, it converges to error level 0.00005 and so on.

IX. CONCLUSIONS

In this work we developed and analyzed the Alternating GD and Minimization (AltGDmin) algorithm for solving the LRMC

problem. The design of AltGDmin is motivated by a federated setting. Using our results (sample and iteration complexity

bounds) we argued that, in a federated setting, AltGDmin is the most communication-efficient solution. It is also one of the

two fastest private solutions and has the second smallest sample complexity. In addition, we were able to use our lemmas to

prove an improved sample complexity guarantee for AltMin, which is the fastest centralized solution for LRMC.

APPENDIX A

PROOF OUTLINE

1) Proof outline of Theorem 2.1: Let U = U (t−1), G := UᵀX� and U+ = U (t). To prove Theorem 2.1, (i) we obtain a

bound on δ(t) := SDF (U
+,U�) in terms of δ(t−1) = SDF (U ,U�) that can be used to show exponential error decay, w.h.p.,

under the desired sample complexity. (ii) This bound requires the initialization error δ(0) to be small enough. Hence we also

need to analyze the initialization step to show that this is true w.h.p.. Initialization is analyzed in Lemma 4.1 (proof outline

given below). The overall idea for (i) is borrowed from [20] but there are differences because we need each new U to be

incoherent. We use induction. The induction step assumes a certain bound on δ(t−1) and on the row norms of U and proves

the same for its updated version, U+. To do this, we first use the induction assumption (which implies κ2μ row-incoherence of

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

20

0 5 10 15 20 25

10-2

10-1

100

(a) Noise variance σ2 = 10−6

0 5 10 15 20 25
10-5

10-4

10-3

10-2

10-1

100

(b) Noise variance σ2 = 10−10

Fig. 3: Noisy LRMC: All results are averages over 25 MC runs. Notice that all algorithms converge to the noise level. The error value to which
they converge decreases as the amount of noise decreases.

U) and the fact that E[∇Uf(U ,B)] = p(X −X�)Bᵀ to get a deterministic bound on δ(t). Next, we get high probability

bounds on the terms of this bound using matrix Bernstein and appropriate linear algebra. These are obtained in the lemmas

given in Sec. IV-B. The last step is to use the induction assumption and Lemma 4.6 to bound the row norms of U+.

Finally, we simplify the bounds in order to show that, w.h.p., δ(t) decays exponentially with t as long as η is at most

0.5/(pσ∗
max

2) and δ(0) ≤ c/κ2. The proof is in Sec. IV-C and it relies on the six lemmas stated in Sec. IV-B.
2) Proof outlines of the lemmas used to prove Theorem 2.1: Initialization Lemma 4.1 uses the following ideas, many of

which are borrowed from initialization step analysis of FactGD [10] (with filling in the missing details from there). (i) Using

the results of [36] (Lemma 3.21, Theorem 3.22), we can bound SDF (U
(00),U�). (ii) The row norm clipping step can be

interpreted as projecting its input onto a convex set3, U := {U : ‖uj‖ ≤ μ
√
r/n}, with the projection being in Frobenius

norm. Projection onto convex sets is non-expansive, i.e., ‖ΠU (U1)−ΠU (U2)‖F ≤ ‖U1 −U2‖F [37, eq (9),(10)],[10]. Also,

ΠU (U�Q) = U�Q for any r × r unitary matrix Q (since U� as well as U� times any unitary matrix belong to U).

(iii) Let Q∗,00 := argminQ unitary ‖U (00) − U�Q‖F . By Lemmas 2.5 and 2.6 of [36], SDF (U
(00),U�) ≈ ‖U (00) −

U�Q∗,00‖F (upper and lower bounded by RHS with a factor of
√
2 for upper bound). (iv) The above ideas help bound

‖ΠU (U (00))−U�Q∗,00‖F . In the last step, we use this bound and ΠU (U (00))
QR
= U (0)R(0) to bound SDF (U

(0),U�). The

proof is in Sec. V-A.

Lemma 4.2 uses incoherence of U and δ(t−1) to bound ‖B − G‖F where G = UᵀX�. This is proved by writing

vec(B − G) = F−1vec(D), where F ∈ R
qr×qr and D ∈ R

r×q are defined below in Sec. IV-A, bounding ‖F−1‖ and

‖D‖ by the matrix Bernstein inequality, and using ‖B −G‖F = ‖vec(B −G)‖ ≤ ‖F−1‖ · ‖vec(D)‖ = ‖F−1‖ · ‖D‖F ≤
‖F−1‖ · √r‖D‖. The bound on ‖F−1‖ is borrowed from [4], while the rest of our bounding is different and simpler than the

approach used in [4]. We use matrix Bernstein which provides a much simpler proof and the resulting bound holds with a

smaller sample complexity (better dependence on r). The proof is in Sec. V-B. Lemma 4.3 uses the ‖B−G‖F bound to bound

‖X −X‖F , and the minimum and maximums singular values of B. The proof idea is similar to that in [13]. We provide the

proof in Sec. V-C anyway since it is very short.

Lemma 4.4 uses incoherence of U to show incoherence of B. It follows by writing bk = (Uᵀ
kUk)

−1(Uᵀ
kU

�
k)b

�
k, using the

fact that E[Uᵀ
kUk] = pUᵀU = pI , E[Uᵀ

kU
�
k] = pUᵀU�, ‖UᵀU�‖ ≤ 1, and using matrix Bernstein to bound deviations of

both matrices from their expected values. This proof is also much simpler than the one given in [4] and the result needs a

smaller sample complexity (better dependence on r). The proof is in Sec. V-D.

Lemma 4.5 uses the B − G bound and its implications, δ(t−1) < c/κ2, and incoherence of U and of B to bound the

gradient norm. Let GradU := ∇Uf(U ,B). It relies on the following ideas. E[GradU] = p(X −X�)Bᵀ. This holds since

the expectation is taken with respect to an independent set of samples at each iteration (possible because of sample splitting).

We bound the deviation from the expected value using matrix Bernstein inequality and the assumed bounds in the lemma

assumptions. The proof is in Sec. V-E.

Lemma 4.6 uses incoherence of B to show incoherence of U . (i) We first bound the deviation of the j-th row of GradU,

denoted GradUj , from its expected value in terms of max(‖uj‖, ‖u∗j‖). To get a high probability bound of this form, we use

3To see that U is a convex set, let matrices M1,M2 ∈ U . Let mj
1 and mj

2 denote the rows of M1 and M2, respectively. For any 0 < θ < 1,

‖θmj
1 + (1− θ)mj

2‖ ≤ θ‖mj
1‖+ (1− θ)‖mj

2‖ ≤ θμ
√

r/n+ (1− θ)μ
√

r/n = μ
√

r/n.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

21

matrix Bernstein inequality and the fact that, for showing incoherence, we do not need the bound to contain δ(t−1). Hence, we

can use a seemingly loose bound of the form |xjk − x�
jk| ≤ 2max(|xjk|, |x�

jk|) ≤ 2.2μ
√

r/qσ∗
max ·max(‖uj‖, ‖u∗j‖). This

bound is, in fact, tighter than a bound that contains δ(t−1) for the initial iterations when δ(t−1) is allowed to be larger than

order
√

r/q. (ii) Next we use ũj(t+1)

= uj(t) − ηGraduj ± E[Graduj], E[GradUj] = p(ujᵀBBᵀ − u∗jᵀB�Bᵀ), and an

upper bound on the GD step size η to show the second part of this lemma: ‖uj+‖ ≤ (1− c/κ2)‖uj‖+ 2‖u∗j‖. The proof is

provided in Sec. V-F.

APPENDIX B

PROOF OF THE COROLLARY 6.1 (NOISY LRMC)

We prove the following by directly modifying the noise-free case proof.

Claim B.1. Let the observed matrix Y = X∗
Ω + WΩ be corrupted by additive noise W such that |Wjk| ≤ εnoise|X∗

jk|.
Assuming also that p ≥ Cκ6r2μ log q log(1/ε)/n and εnoise ≤ 1/(

√
rκ3), then, after T = κ2 log(1/εnoise) iterations,

SDF (U
(T),U∗) ≤ κ2εnoise

√
r.

A. Proof

Restricting εnoise ≤ 1/(
√
rκ3) (as done in the statement of Theorem B.1) ensures that the initialization bound in Lemma 4.1

differs only by a constant factor (see Lemma B.2).

With noise WΩ, the Least-Squares update (5) changes to

bk − gk = F−1
k (dk +Uᵀ

kwk), for all k ∈ [q],

where wk is the k-th column of WΩ. Consequently, the bound in (10) changes to ‖B −G‖F ≤ ‖F−1‖(‖D‖F + ‖WB‖F),
where WB =

∑
k U

�
k wke

�
k . In Lemma B.3, we bound ‖WB‖F ≤ 2

√
rεnoisepσ

∗
max, ensuring that ‖B − G‖F ≤

max(δ(t−1), 2
√
rεnoise)σ

∗
max. Assuming 2

√
rεnoise ≤ δ(t−1), Lemmas 4.2 and 4.3 continue to hold. Because ‖Uᵀ

kwk‖ ≤
2εnoisep‖b∗k‖2 (Lemma B.3), ‖(Uᵀ

kUk)
−1Uᵀ

kwk‖2 ≤ 2εnoise‖b∗k‖2, which, together with ‖bk‖2 ≤ 1.1σ∗
maxμ

√
r/q (Lemma

4.4), bounds the noisy least-squares update ‖b̃k‖2 ≤ (1.1 + 2εnoise)μσ
∗
max

√
r/q, thereby proving μ-incoherence in the noisy

setting.

With noise, the gradient is
∼

GradU= GradU − WU , where WU = WΩB
ᵀ. We bound ‖WU‖F ≤ 2εnoise

√
rpσ∗2

max in

Lemma B.3, and assume εnoise ≤ δ(t−1)/
√
r so that the bound in Lemma 4.5 continues to hold. To prove row-incoherence in

the noisy setting, the proof of Lemma 4.6 needs to be only slightly modified. (21) still applies and (22) has the additional

row-vector term ηpwjB∗ᵀ, which can be bounded ‖wjB∗ᵀ‖2 ≤ ‖wj‖2‖B∗‖ ≤ εnoise‖x∗j‖2σ∗
max ≤ εnoise‖u∗j‖σ∗2

max. This

term contributes εnoise‖u∗j‖in the final bound, that is, ‖ũ+j‖2 ≤ (1−0.15/κ2)‖uj‖2+2‖u∗j‖2+ εnoise‖u∗j‖, which ensures

κ2μ incoherence for the noisy gradient update ũ+j , since εnoise ≤ 1.

The proof details are the same as those for proving Theorem 2.1 given earlier in Sec. IV-C.

B. Noisy case lemmas

Our assumption |Wjk| ≤ εnoise|X∗
jk| also implies that

max
(‖wk‖
‖x∗

k‖
,
‖wj‖
‖x∗j‖

) ≤ εnoise, |Wjk| ≤ εnoiseμ
2

√
r

q

√
r

n
σ∗
max (27)

This fact is used in proving both lemmas below.

Lemma B.2. Let the observed matrix Y = X∗
Ω +WΩ be corrupted by additive noise W such that |Wjk| ≤ εnoise|X∗

jk|.
Assuming also that p ≥ Cκ6r2μ log q/n and εnoise ≤ 1/

√
rκ3, then, SDF (U

(00),U∗) ≤ c/κ2, where U (00) ∈ R
n×r are the

left-singular vectors of Y .

Proof. By Wedin’s sin theta theorem (Frob norm version),

SDF (U
(00),U�) ≤ C

‖Y − pX�‖F
σ∗
min

≤ C
‖X�

Ω − pX�‖F + ‖WΩ‖F
pσ∗

min

≤ C

√
κ2μr2 log n

p
+

‖WΩ‖F
pσ∗

min

, (28)

where we have used Lemma 3.21 of [11], with p ≥ Cκ6r2μ log q/n, to bound (‖X∗
Ω − pX∗‖F /pσ∗

min) ≤ c/κ2. By using

matrix-Bernstein inequality, we can show that ‖WΩ‖F ≤ 2εnoise
√
rpσ∗

max w.h.p.. By the assumed upper bound on εnoise,

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

22

we can then argue that SDF (U
(00),U∗) ≤ c/κ2. The rest of the proof is exactly the same as in the noiseless case (Lemma

4.1).

Lemma B.3. Assume that the observed matrix Y = X∗
Ω+WΩ is corrupted by additive noise W such that |Wjk| ≤ εnoise|X∗

jk|.
Assuming also ‖uj‖ ≤ μu

√
r/n, where μu = κ2μ, ‖bk‖ ≤ σ∗

maxμ
√
r/q and σmax(B) ≤ Cσ∗

max. For εnoise ≤ 1/(
√
rκ3),

1) ‖WB − E[WB]‖F ≤ εnoise
√
rpσ∗

max, w.p. greater than 1− exp(log 2q − np/(μ2
ur

2))
2) ‖WB‖F ≤ 2

√
rεnoisepσ

∗
max, w.p. same as 1).

3) ‖Uᵀ
kwk‖2 ≤ 2εnoisep‖b∗k‖2, w.p. same as 1)

4) ‖WU − E[WU]‖F ≤ εnoise
√
rpσ∗2

max, w.p. greater than 1− exp(log 2q − np/(μ2r2))
5) ‖WU‖F ≤ 2εnoise

√
rpσ∗2

max, w.p. same as 4).

Proof. All terms are bounded using (27) and the matrix Bernstein inequality.

APPENDIX C

PROOF OF COROLLARY 7.1 (IMPROVED GUARANTEE FOR ALTMIN FOR LRMC)

In section 4.2 of [4], it is shown that the least-squares updates for U ∈ R
n×r and B ∈ R

r×q are equivalent to the following

QR-based updates:

B(t) = argmin
B

‖Y −U (t)B‖2F , B(t)ᵀ QR
= V (t)RB (29)

Ũ (t+1) = argmin
˜U

‖Y ᵀ −B(t)Ũ‖2F , Ũ (t+1)ᵀ QR
= U (t+1)RU . (30)

1) B-update (29) / SDF (V
(t),V∗) Bound: Note that the B-update in (29) is exactly the same as the B-update for AltGDMin.

Therefore, we use Lemma 4.2 to bound SDF (V
(t),V ∗). Let P∗,⊥ :− I− V ∗V ∗ᵀ. Then,

SDF (V
(t),V ∗) = ‖P∗,⊥V (t)‖F = ‖P∗,⊥BᵀR−1

B ‖F
≤ ‖P∗,⊥Bᵀ‖F ‖R−1

B ‖
≤ ‖(B −G)ᵀ‖F /σmin(B), (31)

where P∗,⊥Bᵀ = P∗,⊥(Gᵀ+(B−G)ᵀ) = P∗,⊥(B−G)ᵀ, because Gᵀ = X∗ᵀUᵀ and the column-span of X∗ᵀ is orthogonal

to the span of P∗,⊥. By Lemma 4.2, ‖B−G‖F ≤ σ∗
minδ

(t−1)/4. By Lemma 4.3, assuming δ(t−1) ≤ 1/(4κ), σmin(B) ≥ σ∗
min/2.

Substituting these bounds in (31) and recalling that δ(t−1) :− SDF (U
(t),U∗), w.p. greater than 1− exp(log q− pn/(r2μ2κ4)),

SDF (V
(t),V ∗) ≤ 1

2
SDF (U

(t),U∗). (32)

2) Incoherence of V(t): Recall that B̃ᵀ QR
= V R. Then, the k-th row, ‖vk‖2 ≤ ‖bk‖2/σ∗

min(B) ≤ Cκμ
√

r/q, where the

last inequality follows from Lemmas 4.3 and 4.4. Thus, V is κμ-incoherent.

3) U-Update (30) / SDF (U
(t+1),U∗) Bound and Incoherence of U(t+1): The two AltMin steps are symmetric, so arguments

analogous to the above help show that

SDF (U
(t+1),U∗) ≤ 1

2
SDF (V

(t),U∗). (33)

Combining (32) and (33), we have SDF (U
(t+1),U∗) ≤ SDF (U

(t),U∗)/4. For initialization we use the few lines of our

Algorithm 1 and Lemma 4.1. Consequently, AltMinComplete [4] initialized as given in the first few lines of our Algorithm 1

needs T = log(1/ε) iterations for SDF (U
(t),U∗) ≤ ε.

REFERENCES

[1] A. A. Abbasi, S. Moothedath, and N. Vaswani, “Fast federated low rank matrix completion,” in 2023 59th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, 2023, pp. 1–6.

[2] E. J. Candes and B. Recht, “Exact matrix completion via convex optimization,” Found. of Comput. Math, no. 9, pp.

717–772, 2008.

[3] R. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a few entries,” IEEE Trans. Info. Th., vol. 56, no. 6, pp.

2980–2998, 2010.

[4] P. Netrapalli, P. Jain, and S. Sanghavi, “Low-rank matrix completion using alternating minimization,” in Annual ACM
Symp. on Th. of Comp. (STOC), 2013.

[5] R. Sun and Z.-Q. Luo, “Guaranteed matrix completion via non-convex factorization,” IEEE Trans. Info. Th., vol. 62,

no. 11, pp. 6535–6579, 2016.

[6] Y. Cherapanamjeri, K. Gupta, and P. Jain, “Nearly-optimal robust matrix completion,” ICML, 2016.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

23

[7] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit regularization in nonconvex statistical estimation: Gradient descent

converges linearly for phase retrieval, matrix completion and blind deconvolution,” in Intl. Conf. Machine Learning (ICML),
2018.

[8] M. Hardt and M. Wootters, “Fast matrix completion without the condition number,” in Conf. on Learning Theory, 2014.

[9] Q. Zheng and J. Lafferty, “Convergence analysis for rectangular matrix completion using burer-monteiro factorization and

gradient descent,” arXiv preprint arXiv:1605.07051, 2016.

[10] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust pca via gradient descent,” in Neur. Info. Proc. Sys.
(NeurIPS), 2016.

[11] Y. Chen, Y. Chi, J. Fan, and C. Ma, “Spectral methods for data science: A statistical perspective,” arXiv preprint
arXiv:2012.08496, 2020.

[12] S. Nayer and N. Vaswani, “Sample-efficient low rank phase retrieval,” IEEE Trans. Info. Th., Dec. 2021.

[13] ——, “Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections,”

IEEE Trans. Info. Th., February 2023 (on arXiv:2102.10217 since Feb. 2021).

[14] M. Hardt, “Understanding alternating minimization for matrix completion,” in 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science. IEEE, 2014, pp. 651–660.

[15] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff, “Fast approximation of matrix coherence and

statistical leverage,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 3475–3506, 2012.

[16] S. Ubaru, A. Mazumdar, and Y. Saad, “Low rank approximation using error correcting coding matrices,” in International
Conference on Machine Learning. PMLR, 2015, pp. 702–710.

[17] Z. Li, B. Ding, C. Zhang, N. Li, and J. Zhou, “Federated matrix factorization with privacy guarantee,” Proceedings of the
VLDB Endowment, vol. 15, no. 4, 2021.

[18] P. Jain and P. Netrapalli, “Fast exact matrix completion with finite samples,” in Conf. on Learning Theory, 2015, pp.

1007–1034.

[19] M. Fazel, “Matrix rank minimization with applications,” PhD thesis, Stanford Univ, 2002.

[20] N. Vaswani, “Efficient federated low rank matrix recovery via alternating gd and minimization: A simple proof,” IEEE
Trans. Info. Th., pp. 5162 – 5167, July 2024.

[21] L. W. Mackey, A. Talwalkar, and M. I. Jordan, “Distributed matrix completion and robust factorization,” J. Mach. Learn.
Res., vol. 16, no. 1, pp. 913–960, 2015.

[22] C. Teflioudi, F. Makari, and R. Gemulla, “Distributed matrix completion,” in 2012 ieee 12th international conference on
data mining. IEEE, 2012, pp. 655–664.

[23] V. W. Anelli, Y. Deldjoo, T. Di Noia, A. Ferrara, and F. Narducci, “User-controlled federated matrix factorization for

recommender systems,” Journal of Intelligent Information Systems, vol. 58, no. 2, pp. 287–309, 2022.

[24] X. He, Q. Ling, and T. Chen, “Byzantine-robust stochastic gradient descent for distributed low-rank matrix completion,”

in 2019 IEEE Data Science Workshop (DSW). IEEE, 2019, pp. 322–326.

[25] M. Pilanci, “Information-theoretic bounds on sketching,” Information-Theoretic Methods in Data Science, p. 104, 2021.

[26] A. Ghosh, R. K. Maity, and A. Mazumdar, “Distributed newton can communicate less and resist byzantine workers,”

Advances in Neural Information Processing Systems, vol. 33, pp. 18 028–18 038, 2020.

[27] S. Wang, F. Roosta, P. Xu, and M. W. Mahoney, “Giant: Globally improved approximate newton method for distributed

optimization,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[28] R. Ward and T. Kolda, “Convergence of alternating gradient descent for matrix factorization,” Advances in Neural
Information Processing Systems, vol. 36, pp. 22 369–22 382, 2023.

[29] M. Hardt and E. Price, “The noisy power method: A meta algorithm with applications,” in Neur. Info. Proc. Sys. (NeurIPS),
2014, pp. 2861–2869.

[30] S. Babu, S. G. Lingala, and N. Vaswani, “Fast low rank compressive sensing for accelerated dynamic MRI,” IEEE Trans.
Comput. Imag, 2023.

[31] S. Nayer, P. Narayanamurthy, and N. Vaswani, “Provable low rank phase retrieval,” IEEE Trans. Info. Th., March 2020.

[32] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local sgd on identical and heterogeneous data,” in

International Conference on Artificial Intelligence and Statistics. PMLR, 2020, pp. 4519–4529.

[33] S. U. Stich, “Local SGD converges fast and communicates little,” in International Conference on Learning Representations,

2019. [Online]. Available: https://openreview.net/forum?id=S1g2JnRcFX

[34] R. Vershynin, High-dimensional probability: An introduction with applications in data science. Cambridge University

Press, 2018, vol. 47.

[35] J. A. Tropp, “Just relax: Convex programming methods for identifying sparse signals,” IEEE Trans. Info. Th., pp. 1030–1051,

March 2006.

[36] Y. Chen, Y. Chi, J. Fan, and C. Ma, “Spectral methods for data science: A statistical perspective,” Foundations and
Trends® in Machine Learning, vol. 14, no. 5, p. 566–806, 2021. [Online]. Available: http://dx.doi.org/10.1561/2200000079

[37] M. Nashed, “A decomposition relative to convex sets,” Proceedings of the American Mathematical Society, vol. 19, no. 4,

pp. 782–786, 1968.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

24

[38] E. H. Zarantonello, “Projections on convex sets in hilbert space and spectral theory: Part i. projections on convex sets:

Part ii. spectral theory,” in Contributions to nonlinear functional analysis. Elsevier, 1971, pp. 237–424.

[39] Y. Chen and E. Candes, “Solving random quadratic systems of equations is nearly as easy as solving linear systems,” in

Neur. Info. Proc. Sys. (NeurIPS), 2015, pp. 739–747.

[40] A. P. Singh and N. Vaswani, “Noisy low rank column-wise sensing,” arXiv preprint arXiv:2409.08384, 2024.

[41] A. A. Abbasi, S. Moothedath, and N. Vaswani, “Fast federated low rank matrix completion,” in 2023 59th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, 2023, pp. 1–6.

Ahmed Ali Abbasi received the B.E. degree in electrical engineering from the National University of Sciences and Technology, Islamabad, Pakistan in 2017
and an M.S. degree in electrical engineering from Tufts University in 2022. At Tufts, he was awarded the Greenough Graduate Fellowship in 2018 for standing
first in the PhD qualification exam, and was also one of three inaugural recipients of the Tufts Tripods Fellowship in 2019. He is currently Professor Namrata
Vaswani’s PhD student at Iowa State University Ames, IA, USA.

Namrata Vaswani (Email: namrata@iastate.edu) is a Professor of Electrical and Computer Engineering, and the Anderlik Professor of Engineering at Iowa
State University. She received a Ph.D. in 2004 from the University of Maryland, College Park and a B.Tech. from Indian Institute of Technology (IIT-Delhi) in
India in 1999. Her research interests lie in statistical machine learning and signal processing, and their applications in medical imaging and video. Vaswani is
also the founder and director of the CyMath K-12 (school) math tutoring and mentoring program at Iowa State. Vaswani has served as an Area Editor for IEEE
Signal Processing Magazine, and an Associate Editor for the IEEE Transactions on Information Theory and the IEEE Transactions on Signal Processing, and
has guest-edited a special issue for the Proceedings of the IEEE. She is a recipient of the IEEE Signal Processing Society (SPS) Best Paper Award (2014), the
University of Maryland ECE Distinguished Alumni Award (2019) and the Iowa State Mid-Career Achievement in Research Award (2019). Vaswani is Fellow
of the AAAS (2023) and a Fellow of the IEEE (2019).

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3563450

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on June 04,2025 at 03:44:56 UTC from IEEE Xplore. Restrictions apply.

