

1 **Title:** Sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA)
2 for spatial imaging of glycoRNAs in single cells

3 **Author:** Weijie Guo^{1,2,†}, Yuan Ma^{3,†}, Quanbing Mou³, Xiangli Shao³, Mingkuan Lyu³, Valeria
4 Garcia^{1,2}, Linggen Kong^{1,2}, Whitney Lewis³, Zhenglin Yang³, Shuya Lu³, Yi Lu^{2,3,*}

5 **Affiliation:**

1. Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
2. Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin,
Austin, TX, USA
3. Department of Chemistry, The University of Texas at Austin, Austin, TX, USA

10 # These authors contributed equally to this work.

11 * Corresponding author contact: yi.lu@utexas.edu

12 **Key Reference:**

13 Ma, Y., Guo, W., Mou, Q. *et al.* Spatial imaging of glycoRNA in single cells with ARPLA. *Nat
14 Biotechnol* 42, 608–616 (2024). <https://doi.org/10.1038/s41587-023-01801-z>

15

16 **[H1] Abstract:**

17 Glycosylated RNAs (glycoRNAs) have recently emerged as a new class of molecules of
18 significant interest due to their potential roles in cellular processes and diseases. However,
19 studying glycoRNAs is challenging due to the lack of effective research tools, including but not
20 limited to imaging techniques to study the spatial distribution of glycoRNAs. Recently, we reported
21 the development of the first glycoRNA imaging technique, called sialic acid Aptamer and RNA in
22 situ hybridization-mediated Proximity Ligation Assay (ARPLA), to visualize sialic acid-containing
23 glycoRNAs (sialoglycoRNAs) with high sensitivity and specificity. Here, we describe the
24 experimental design principles and detailed step-by-step procedures for ARPLA-assisted
25 glycoRNA imaging across multiple cell types. The procedure includes details for target selection,
26 oligo design and preparation, optimized steps for RNA in situ hybridization (RISH), glycan
27 recognition, proximity ligation, rolling circle amplification (RCA), and a guideline for image
28 acquisition and analysis. With properly designed probe sets and cells prepared, ARPLA-based
29 glycoRNA imaging can typically be completed within 1 day, by users with expertise in biochemistry
30 and fluorescence microscopy. The ARPLA approach enables researchers to explore the spatial
31 distribution, trafficking, and functional contributions of glycoRNAs in various cellular processes.

32 **[H1] Introduction:**

33 Post-transcriptional modifications of RNA molecules have been shown to significantly alter their
34 structural and functional properties, and contribute to diverse cellular processes, including tRNA-
35 mediated translation¹, RNA epigenetics², chromatin structure modulation², and RNA maturation³.
36 The glycosylation of RNAs has recently been characterized as a new form of RNA modifications⁴.
37 This discovery is exciting because cellular glycans play important roles by regulating many
38 essential functions, including cell communications, homeostasis, immunomodulation, and
39 organism development⁵. When RNA undergoes glycosylation, it becomes linked with a diverse
40 array of glycans and is translocated to the external surface of living cells^{4, 6, 7}. Interestingly, once

41 localized on the cell membrane, glycosylated RNAs (glycoRNAs) have been demonstrated to
42 interact with cell surface proteins, including human Siglec receptors^{4, 8}, P-selectin⁷, and many
43 other cell surface RNA-binding proteins⁹. These interactions between glycoRNAs and proteins
44 suggest a potential new dimension of surface RNA-mediated signaling pathways, promising to
45 reveal novel functional roles for RNA molecules.

46 Despite the growing interest and potential significance of the glycoRNAs^{4, 10}, the tools available
47 for their study remain notably limited. To address the limitations, several methodologies have been
48 developed to identify and characterize glycoRNAs *in vitro* (Table 1). For example, metabolic
49 chemical reporters (MCRs) can be used to label and enrich glycoRNAs, followed by gel blot
50 quantification and next-generation sequencing (NGS)⁴. Alternatively, a solid-phase
51 chemoenzymatic method (SPCgRNA) was developed for oxidization-based native glycoRNA
52 enrichment and sequencing¹¹. Meanwhile, a periodate oxidation and aldehyde ligation method
53 (rPAL) was developed for native glycoRNA labeling, detection, and enrichment¹². Focusing on the
54 glycan moieties in glycoRNAs, mass spectrometry-based technologies were widely applied. For
55 example, high-performance liquid chromatography and mass spectrometry (PGC-LC-MS) was
56 employed on PNGase-F (a glycosidase cleaves intact N-glycan from glycoproteins and
57 glycoRNAs) treated glycoRNA samples, identifying 260 unique glycans from 293T, H9, and HeLa
58 cell lines⁴. Reversed Phase Liquid Chromatography coupled with Tandem Mass Spectrometry
59 (RPLC-MS/MS) strategy was used to investigate glycoRNAs from 12 human organs, discovering
60 236 unique glycans and revealing the glycan composition heterogeneity among different human
61 organs¹³. The combination of rPAL and MS/MS has been instrumental in identifying the detailed
62 molecular structure of glycan and RNA linkages in glycoRNAs^{14, 15}. A Data-Independent
63 Acquisition-based Glycomic Workflow (GlycanDIA) was developed for glycomic analysis and
64 identified the abundance of more than 200 N-Glycans on glycoRNAs from different mouse tissues,
65 which were different from the glycan profiles of glycoprotein samples¹⁵.

66 Despite these advancements, most existing methods focus on isolated glycoRNAs or separate
67 analyses of RNA and glycans, and lack the ability to provide spatial information within cells. The
68 visualization of RNA modifications through imaging remains challenging, particularly for spatially
69 resolving glycoRNAs within their native cellular environments. To address this issue, we
70 developed ARPLA for spatial imaging of glycoRNAs *in situ* at single cells (Fig. 1)⁶. ARPLA enables
71 the visualization of glycoRNAs within their native cellular contexts, providing critical spatial
72 information and offering insights into their subcellular distributions, changes, and interactions.
73 This method provides unique spatial information in cells and may therefore be useful for
74 researchers who are interested in investigating glycoRNAs in their systems.

75 **Table 1. A summary of methodologies for glycoRNA research *in vitro*.**

Methodology	Sample Type	Chemical Moiety to Detect	Detection method	Acquisition Information	References
MCR-based glycoRNA sequencing	Isolated RNA	Sialic acid	NGS	RNA sequences	4
SPCgRNA	Isolated RNA	Galactose	NGS	RNA sequences	11
rPAL	Isolated RNA	Sialic acid	Gel blot	GlycoRNA quantities	12, 14

PGC-LC-MS	Isolated RNA	Glycans	MS/MS	Glycan profiles	4
RPLC-MS/MS	Isolated RNA	Glycans	MS/MS	Glycan profiles	13
GlycanDIA	Isolated RNA	Glycans	HCD-MS/MS	Glycan profiles	15
ARPLA	Fixed cells	Sialic acid and RNA sequences	Imaging	<i>In situ</i> spatial distribution	6
HieCo 2	Fixed or live cells	Sialic acid and RNA sequences	Imaging	<i>In situ</i> spatial distribution	8

76

77 **[H2] Principles of ARPLA**

78 To visualize glycoRNAs, we need to develop imaging probes that can simultaneously recognize
 79 both glycan and RNA on the glycoRNAs. To recognize the glycan, we utilize an aptamer that can
 80 bind glycans⁶. Aptamers are single-stranded nucleic acids that can fold into unique tertiary
 81 structures and bind to their targets with high selectivity and affinity¹⁶⁻¹⁸. Aptamers have been
 82 utilized for detecting various targets, including metal ions¹⁹, small metabolites²⁰⁻²², proteins^{23, 24},
 83 viruses²⁵, and cells^{26,27}. Many aptamers have been developed for the recognition of either
 84 monosaccharides in glycans (galactose²⁸, glucose^{28, 29}, β -N-acetylglucosamine³⁰, sialic acid³¹⁻³³),
 85 or certain specific forms of the glycans (glycans of RNase b³⁴, prostate-specific antigen³⁵,
 86 fibrinogen³⁶, and of other proteins³⁷⁻³⁹). To demonstrate the design of ARPLA, we chose an
 87 aptamer that is specific for sialic acid³¹ because glycoRNAs have been shown to be highly
 88 sialylated, and sialic acid is the terminal sugar moiety of most glycans of glycoRNAs^{4, 13, 15}. While
 89 a sialic acid-binding aptamer is currently utilized due to the terminal exposure of sialic acid in
 90 glycan structures, ARPLA is not inherently restricted to this specific aptamer. The method can be
 91 adapted for use with other glycan-binding aptamers²⁸⁻³⁹, small molecules like phenylboronic acid⁴⁰,
 92 ⁴¹, proteins (e.g. lectins and antibodies)^{42, 43}, and metabolic chemical reporters^{4, 44} to enable the
 93 detection of various glycoRNAs. New aptamers that are specific for different types of glycans can
 94 also be selected using Systematic evolution of ligands by exponential enrichment (SELEX)^{45, 46}.
 95 These adaptations will allow researchers to explore glycoRNAs with different glycan components,
 96 providing a comprehensive understanding of glycoRNA biology.

97 To recognize the RNA moiety of the glycoRNAs, we used a DNA probe similar to those in RNA *in*
 98 *situ* hybridization (RISH) to specifically hybridize to the RNA component of the glycoRNAs. The
 99 dual recognition of the glycan and RNA moieties on the glycoRNAs is achieved by employing both
 100 aptamer and RISH through a proximity ligation assay (PLA) so that only specific glycoRNAs are
 101 recognized by our probes. Since the glycoRNAs are often very low in abundance, we amplified
 102 them by rolling circle amplification (RCA). The amplified glycoRNA sequences can then be imaged
 103 by a fluorophore-labeled oligonucleotide that can hybridize with the glycoRNA (Fig. 1).

104 **[H2] Overview of the procedure**

105 An overview of the ARPLA approach is shown (Fig. 1). The workflow involves: a) designing and
 106 preparing glycan probe and RISH probe; b) preparing cells for imaging; c) RNA *in* situ

107 hybridization; d) aptamer-assisted glycan recognition and proximity ligation; e) rolling circle
108 amplification and fluorescent probe staining; f) fluorescence images acquisition; and g) data
109 analysis.

110 **[H2] Applications**

111 ARPLA has proven effective in imaging multiple glycoRNAs across diverse cell models⁶ (Fig. 2a,b).
112 To validate the specificity of ARPLA for glycoRNAs, we have carried out a number of controls,
113 including treatments with RNases, glycosidases, and glycosylation inhibitors, which resulted in no
114 observable fluorescent signal⁶. To rule out artifacts of detecting glycans and RNAs on a separate
115 molecule, we designed a DNA probe (anti-Y5 probe) to cover all putative glycosylation sites of Y5
116 glycoRNA⁴⁷ and employed RNase H to digest the RNA section of the DNA/RNA hybrid while
117 keeping the RISH binding sites (Fig. 2c). Additionally, we used poly T oligo as a control probe to
118 ensure that the signals observed were due to specific interactions with glycoRNAs. We then
119 performed RISH-RCA control to detect the RISH binding sites (see Experimental design section)
120 and ARPLA to image Y5 glycoRNAs. As shown in Fig. 2d, after RNase H and anti-Y5 probe
121 incubation, the RISH signals were retained, but ARPLA signals were not generated. These results
122 confirm that the observed ARPLA signals are from intact Y5 glycoRNA and verify the sequence
123 and glycan specificities of ARPLA for glycoRNAs.

124 When examining the subcellular distributions of glycoRNA, ARPLA showed that glycoRNAs are
125 colocalized with lipid rafts on the cell membrane and are present within lipid vesicles during
126 intracellular trafficking⁶ (Fig. 3). This technique has also been applied to investigate glycoRNA
127 abundance variations among different biological models. In a breast cancer model, sialoglycoRNA
128 intensities decreased in the breast cancer cell line (MCF-7) and further in the metastatic cancer
129 cells (MDA-MB-231) compared to healthy breast cells (MCF-10A) (Fig. 4). This result highlighted
130 a unique glycosylation regulatory process of glycoRNA, distinct from other glycoconjugates,
131 where hyper sialylation is known as a hallmark of cancer progression⁴⁸. In an immune cell model,
132 ARPLA revealed reduced surficial sialoglycoRNA intensities during monocyte THP-1
133 differentiation into macrophages. Conversely, *Escherichia coli*-derived lipopolysaccharide (LPS)
134 stimulation significantly increased glycoRNA signals. In summary, ARPLA is adaptable for a
135 diverse glycoRNA imaging application across various cell models.

136 **[H2] Limitations of ARPLA**

137 The current version of ARPLA has some limitations that can be improved through further
138 optimization. 1) As glycoRNA is typically present in low abundance, the RCA is required to amplify
139 the signal, but the RCA may potentially lead to false positive signals. Carefully design and
140 optimization of the ARPLA probes, including probes for control experiments, as outlined in our
141 experimental design, should be implemented to avoid the false positive signals. 2) While RCA
142 enables signal amplification, it sacrifices resolution. The estimated resolution of ARPLA is ~300
143 nm using a Zeiss 710 confocal microscopy⁶. When quantifying the RCA amplicon numbers in
144 relatively small cells (such as THP-1 and HL-60), it is difficult to separate individual particles due
145 to the resolution limitation (Fig. 3). 3) ARPLA can provide only a semi-quantitative analysis of
146 glycoRNAs abundance. To improve the resolution and obtain a more quantitative analysis, super-
147 resolution imaging techniques like super-resolution microscopy^{49, 50}, DNA-based points
148 accumulation for imaging in nanoscale topography (DNA-PAINT)⁵¹, and expansion microscopy⁵²
149 can be employed in conjunction with ARPLA staining. 4) ARPLA relies on the sequence
150 information of glycoRNAs, limiting its application for investigating glycoRNAs with unknown

151 sequences. To address this issue, general RNA labeling strategies like anti-RNA antibodies⁴ or
152 metabolic chemical reporters⁷ for RNA can be introduced to ARPLA for sequence-independent
153 glycoRNA detection. 5) Fixed Cell Limitation: ARPLA is currently optimized for fixed cells to ensure
154 high sensitivity and specificity. The buffer conditions required for RNA *in situ* hybridization and
155 removal of unbound probes are not suitable for live cell imaging. This limits the ability to study
156 dynamic processes involving glycoRNAs in live cells. Additionally, the fixation process itself may
157 potentially alter the native distribution of glycoRNAs, introducing artifacts or causing the
158 redistribution of molecules. Future work could focus on adapting ARPLA for live cell applications,
159 potentially through the development of milder buffer conditions and real-time imaging techniques.
160 6) Proximity Limitation: One concern with ARPLA is the potential for false positives arising from
161 the binding of aptamers to glycoproteins in close proximity to glycoRNAs. To minimize the
162 influence of false-positive induced misinterpretation of ARPLA, control experiments (see
163 Experimental Design section) are necessary. Future improvements in glycoRNA-specific
164 recognition strategy could enhance the specificity and overcome the proximity limitations.

165 **[H2] Comparison of ARPLA with other glycoRNA imaging methods**

166 To image glycoRNAs on the surface of cells, several methods have been reported. Initially, a
167 double-stranded RNA (dsRNA) antibody was used to verify the existence of membrane-localized
168 RNAs⁵³. Later, a 5'-bromouridine (BrU) was then employed as an MCR for RNAs and achieved
169 cell surface RNA imaging with an anti-BrU antibody⁷. However, neither method can detect glycans.
170 As a result, they cannot differentiate glycoRNAs from other RNAs on the cell surface. In addition,
171 both methods lack sequence specificity and thus cannot distinguish one glycoRNA from another
172 that has a different sequence. To address these issues, we reported ARPLA that provides dual
173 recognition of glycan and RNA as well as glycoRNA with different sequences⁶. Since our report,
174 HieCo 2⁸ was also developed to address the same issue (Table 1). Both methods employ RISH
175 to identify glycoRNA sequences, but they differ in their approaches to glycan recognition and
176 signal amplification. ARPLA leverages a sialic acid-specific aptamer to bind glycans, followed by
177 proximity ligation and RCA for signal enhancement. In comparison, HieCo 2 employs metabolic
178 labeling with azido sugars to tag the sialic acids of glycoRNAs, followed by click chemistry to
179 attach DNA probes that can trigger a hybridization chain reaction (HCR) for signal amplification,
180 together with the RISH probes. ARPLA allows for higher spatial resolution in glycoRNA imaging
181 and is applicable to native samples without the need for MCR incubation. On the other hand,
182 HieCo 2 is capable of live-cell imaging without the requirement for cell fixation. Overall, while both
183 methods provide specificity and sensitivity in glycoRNA detection, the choice between ARPLA and
184 HieCo 2 depends on the specific requirements of the study.

185 **[H2] Experimental design**

186 **[H3] Oligo design**

187 ARPLA for a specific glycoRNA employs the following three probes and two connectors
188 (Fig. 1, Fig. 5):

189 1) The glycan probe comprises an aptamer that binds sialic acid specifically, a DNA linker
190 that is complementary to Connectors 1 and 2 as shown in Fig. 1 and a spacer to
191 prevent steric hindrance during hybridization. The spacer length needs to be optimized
192 due to the differences of the space between glycan modification and RNA hybridization
193 site. Generally speaking, a spacer ranging from 8-15 nucleotides allows for flexibility.

194 The DNA linker should have a melting temperature (Tm) below 28 °C before ligation
195 and over 50 °C after ligation. Adding 3 rU bases at the end of the glycan probe can
196 prevent RCA from this strand ensuring that amplification occurs only from the intended
197 RNA strand.

198 2) The RISH probe includes an antisense region to the targeted glycoRNA, a DNA linker
199 for connectors 1 and 2 that is complementary to Connectors 1 and 2 as shown in Fig.
200 1, and another spacer to prevent steric hindrance during hybridization. The binding
201 properties, especially the specificity and stability of the antisense probe, should be
202 verified via software, such as NUPACK⁵⁴, UNAFold⁵⁵, and BLAST^{56, 57}. In the current
203 protocol, we use a hybridization buffer containing 250 mM NaCl and 50 mM MgCl₂
204 (see Reagent setup). So, when using the software to calculate the binding properties
205 like the melting temperature, the parameter should be set with the ionic strength as
206 mentioned. The probes should be designed following general RISH probe designing
207 principles⁵⁸: a) 18–25 nucleotide length; b) melting temperature 55–75 °C; c) minimal
208 self-complementarity; d) 40-60 % GC content; e) (optional) modifications that stabilize
209 hybridization and lessen degradation (e.g., locked nucleic acid (LNA) and 2'-O-methyl
210 RNA). The spacer and linker designs should follow the guidelines described in 1)
211 above.

212 3) Two connectors enable circular DNA formation upon proximity ligation. The ligated
213 product should include two hybridization regions complementary with the two linkers
214 of the glycan probe and the RISH probe. The suggested length for each hybridization
215 region in the circular DNA is 22-28 nucleotides to ensure minimal binding before
216 ligation and strong binding after ligation, while other regions can be customizable with
217 complementary regions for the imager probe.

218 4) The imager probe, a short oligonucleotide with a fluorophore at either end, should be
219 complementary to a region in the proximity ligation product and not bind to other cell
220 surface RNAs. This design can be verified by performing BLAST with GSE150237⁵³.

221 [H3] RNA hybridization

222 Given that we designed our RISH probes targeting glycoRNAs at their loop or terminal
223 single-stranded regions, we conducted RNA hybridization at 37 °C. To increase the
224 specificity against RNA, hybridization conditions can be optimized by adding formamide
225 (to ~10%) and raising the hybridization melting temperature to 42-50 °C, guided by the
226 melting temperature of potential bindings. The use of modified nucleotides like LNAs or 2'-
227 O-methyl RNAs in the antisense region of the RISH probe can enhance stability and
228 specificity, especially for complex RNA structures, reducing the risk of off-target bindings.

229 [H3] Aptamer-assisted glycan recognition

230 The aptamer in glycan probe was initially selected for N-acetylneurameric acid (Neu5Ac)³¹.
231 The binding affinity (K_d) is 91 nM based on our measurement using isothermal titration
232 calorimetry (ITC)⁶. The aptamer binding is buffer-sensitive; thus, the glycan recognition
233 should occur under the same buffer conditions as their Systematic Evolution of Ligands
234 by Exponential Enrichment (SELEX) (50 mM Tris-HCl, 5 mM KCl, 100 mM NaCl, and 1
235 mM MgCl₂ at pH 7.4)³¹ as it was characterized. Substituting the sialic acid aptamer with
236 other aptamers that target different sugars or glycoforms is possible, and it requires
237 thorough validation to ensure the aptamer maintains the necessary affinity and specificity

238 for the target glycan after completing the glycan probe through ITC or other biophysical
239 approaches.

240 **[H3] Proximity ligation and RCA**

241 The proximity ligation and RCA are two critical steps in ARPLA for specific and sensitive
242 glycoRNA detection. The simultaneous binding of the glycan and RNA hybridization
243 promotes the connector hybridization, enabling DNA ligation and circular DNA creation. A
244 successful ligation is crucial for amplification and signal enhancement through RCA. RCA
245 uses circular DNA products as templates for DNA polymerase (Phi 29 polymerase),
246 producing long single-stranded DNA with target sequence repeats. Phi 29 polymerase
247 was chosen for the RCA step due to its high processivity, strong strand displacement
248 activity, and ability to amplify circular DNA templates with high fidelity, generating long
249 concatemeric products. An amplified signal is then generated using a fluorophore-
250 conjugated imager probe.

251 Successful proximity ligation and RCA depend on the efficiency of DNA connector
252 hybridization, accurate DNA ligation, and the enzymatic activity of DNA polymerase.
253 Optimizing these steps, along with control experiments, is critical for reliable and specific
254 glycoRNA detection with ARPLA.

255 **[H3] Controls**

256 Whenever applicable, use the following general controls:

- 257 1) A negative control with an inactivated aptamer sequence, achieved with DNA oligo
258 having a scrambled sequence matching the aptamer's composition.
- 259 2) A negative control involving a mutated RNA antisense region of RISH probe that will
260 not bind to the target.
261 Both controls 1) and 2) are crucial for assessing background signals from either
262 autofluorescence or nonspecific binding-induced proximity ligation and RCA
263 amplification.
- 264 3) A positive control featuring a linear proximity connector with a nick at the RISH probe
265 linker region. This serves as an RCA-RISH to evaluate the presence of surface RNAs
266 with the target sequence and the enzymatic activities of proximity ligation and RCA
267 enzymes (Fig. 2 c,d).

268 **[H3] Imaging**

269 For imaging, various microscopes such as wide-field epi-fluorescent microscopes (e.g.,
270 Zeiss Observer 7) or confocal microscopes are suitable. For glycoRNAs with unknown or
271 low abundances, start with wide-field epi-fluorescent microscopy with high-sensitivity
272 cameras or confocal microscopes.

273 Capture 2D images at the focus of the strongest fluorescence or clearest nuclei signal,
274 taking at least 5, usually 10 frames per sample, either randomly or at pre-set x, y positions.
275 Acquire 3D image stacks with z-slices at 0.3 or 0.5 μ m steps, then use maximum-intensity
276 projection for 2D images or orthographic projection to display z-scale spatial glycoRNA
277 distributions (Fig. 3).

279 **[H3] Image analysis**

280 To analyze images, we usually perform cell segmentation by using CellPose 2.0 with bright
281 field images to generate ROIs for each individual cell^{59, 60}. An enhanced cell segmentation
282 can be achieved by staining the cells with Hoechst and cell indicators such as CellMask.
283 The raw images are then imported into ImageJ (FIJI) to measure mean fluorescence
284 intensity per cell, RCA amplicon quantity and size, and fluorescence intensity of each RCA
285 amplicon using ROIs and particle measurement functions (Fig. 4). Descriptive statistics
286 are obtained using Origin or GraphPad Prism.

287

288

289 **[H1] Materials:**

290 **[H2] Cell lines**

291 ARPLA is applicable to a variety of cell lines. Cell types we used to produce the data in the current
292 protocol include:

- 293 • HeLa (ATCC, Cat. CCL-2)
- 294 • HL-60 (ATCC, Cat. CCL-240)
- 295 • MCF-7 (ATCC, Cat. HTB-22)
- 296 • HEK-293T (ATCC, Cat. CRL-3216)
- 297 • THP-1 (obtained from Cancer Center at Illinois; identical cell line can also be purchased
298 from ATCC, Cat. TIB-202)

299 **CAUTION** Perform STR analysis to prevent misidentification and cross-contamination of
300 cell lines.

301 **CAUTION** Additionally, routinely use a mycoplasma testing kit for potential issues arising
302 from bacterial infection.

303 **[H2] Reagents**

- 304 • Deionized water
- 305 • Nuclease-free water (Invitrogen, Cat. AM9932 or similar)
- 306 • Sodium chloride (NaCl) (Fisher Scientific, Cat. S271-1)
- 307 • Tris base (Millipore Sigma, Cat. 64-831-0500)
- 308 • Hydrochloric acid (HCl) (Millipore Sigma, Cat. HX060375)
- 309 • Magnesium chloride hexahydrate, MgCl₂·6H₂O (Fisher Scientific, Cat. M35-212)
- 310 • Potassium chloride, KCl (Fisher Scientific, Cat. P330-3)
- 311 • Tri-sodium citrate dihydrate (Fisher Scientific, Cat. S466-3)

312 **[H2] Oligonucleotides**

313 All the oligonucleotide sequences were purchased from Integrated DNA Technologies (IDT) and
314 purified by high-performance liquid chromatography (HPLC). The sequences can be found in
315 Supplementary Table 1.

316 **[H2] Cell culture**

- 317 • RPMI-1640 cell culture medium (Cytiva HyClone, Cat. SH30255.FS)

- 318 • IMDM cell culture medium (Cytiva HyClone, Cat. SH30228.02)
- 319 • DMEM cell culture medium (Corning, Cat. 10-013-CM)
- 320 • Phorbol 12-myristate 13-acetate (PMA) (CAS: 16561-29-8; Cayman Chem, Cat.
- 321 10008014 or similar)
- 322 • Fetal bovine serum (FBS; GeminiBio, Cat. 100-106)
- 323 • Penicillin-Streptomycin (5,000 U ml⁻¹; Gibco, Cat. 15070063 or similar)
- 324 • 100x non-essential amino acids (NEAA; Gibco, Cat. 11140050)
- 325 • Trypsin-EDTA (0.05%) (Gibco, Cat. 25300062)
- 326 • TrypLE Express Enzyme (Gibco, Cat. 12605010)
- 327 • L-Glutamine (200 mM) (Gibco, Cat. A2916801)
- 328 • Lipopolysaccharide (LPS) Solution (500X) (eBioscience, Cat. 00-4976-03)

330 [H2] ARPLA materials

- 331 • 35-mm glass bottom dishes, poly-D-Lysine coated (MatTek, Cat. P35GC-1.5-14-C)
- 332 • 4% paraformaldehyde (PFA) solution (ThermoScientific, Cat. AAJ19943K2 or similar)
CAUTION PFA is toxic through skin contact and inhalation. Handle the PFA solution carefully in a chemical hood.
- 333 • **CAUTION** The shelf life of PFA solution is less than 1 month in the fridge once opened.
- 334 • 10x Phosphate-Buffered Saline (PBS), pH 7.4, RNase-free (Invitrogen, Cat. AM9624 or similar)
- 335 • RNase-free BSA (50 mg ml⁻¹, Invitrogen, Cat. AM2616 or similar)
- 336 • ATP solution (10 mM) (NEB, Cat. P0756S)
- 337 • T4 DNA ligase (400 U μ l⁻¹) (NEB, Cat. M0202S)
- 338 • 10x T4 ligation buffer (NEB, Cat. B0202S)
- 339 • Phi 29 polymerase (10 U μ l⁻¹) (NEB, Cat. M0269S)
- 340 • dNTP solution (10 mM) (NEB, Cat. N0447L)
- 341 • 10x phi29 DNA polymerase buffer (NEB, Cat. B0269S)
- 342 • Poly T oligonucleotides (d(T)₂₀) (IDT)
- 343 • T-25 cell culture flask (Thermo Fisher, Cat. 130189)
- 344 • RNase H (NEB, Cat. M0297S)
- 345 • Formamide (Fisher Scientific, Cat. 014835.D6)
CAUTION Handle formamide solution in a chemical hood.

350 [H2] Equipment

- 351 • Fridge and freezers (4°C, -20°C, and -80 °C)
- 352 • Nanodrop (Fisher Scientific, Cat. 13-400-518 or similar)
- 353 • 1.5 ml microcentrifuge tube (Fisher Scientific, Cat. 05-408-129)
- 354 • 15 ml centrifuge tube, RNase free (Corning, Cat. 430790)
- 355 • 50 ml centrifuge tube, RNase free (Corning, Cat. 352070)
- 356 • 5 ml serological pipette, RNase free (Fisher Scientific, Cat. 02-923-203)
- 357 • 10 ml serological pipette, RNase free (Fisher Scientific, Cat. 02-923-204)
- 358 • 10 μ l filter tips, RNase free (FroggaBio, Cat. L10F)
- 359 • 20 μ l filter tips, RNase free (FroggaBio, Cat. L20F)
- 360 • 200 μ l filter tips, RNase free (FroggaBio, Cat. L200F)

- 1000 ul filter tips, RNase free (Corning, Cat. MRF-1000XT-L-R-S)
- Parafilm (Fisher Scientific, Cat. 1337416)
- Cover glass (Cardinal Health, Cat. M6045-1A)
- Kimwipe (Millipore sigma, Cat. Z671584)
- Benchtop centrifuge (Thermo Fisher Scientific, Cat. 75007200 or similar)
- Tissue culture flask (VWR, Cat. 10062-872)
- Cell culture humidified incubator, 37 °C and 5% CO₂ (Fisher Scientific, Cat. 51030414 or similar)
- Cell counter (Thermo Fisher Scientific, Cat. C10283)
- Basic Inverted Microscope (VWR, Cat. 76317-470 or similar)
- Confocal microscope (Nikon W1 spinning disk confocal microscope and ZEISS 710 laser scanning microscope, or similar)
- 0.22-micron acetate filter, 47 mm (Millipore sigma, Cat. GPWP04700)
- 0.22-micron acetate filter, 25 mm (Millipore sigma, Cat. SLMP025SS)
- pH meter (e.g., Fisher Scientific, Cat. AB315ACERT)

376 [H2] Software

- UNAfold: <http://www.unafold.org/>
- NUPACK: <https://nupack.org/>
- IDT oligo analyzer: <https://www.idtdna.com/pages/tools/oligoanalyzer>
- BLAST: <https://blast.ncbi.nlm.nih.gov/blast/Blast.cgi>
- CellPose 2.0: <https://cellpose.readthedocs.io/en/latest/#>
- Image J (Fiji): <https://imagej.net/software/fiji/>
- ZEN lite 3.8: <https://www.zeiss.com/microscopy/en/products/software/zeiss-zen-lite.html>
- Nikon NIS Element Viewer: <https://www.microscope.healthcare.nikon.com/products/software/nis-elements/viewer>
- OriginLab: <https://www.originlab.com/Origin>
- GraphPad Prism: <https://www.graphpad.com/>
- ox DNA: https://dna.physics.ox.ac.uk/index.php/Main_Page

389 [H2] Reagent setup (buffer preparation)

390 • 1M Tris-HCl solution (pH 7.5)

391 Weight 121.14 g of Tris base and add approximately 800 ml nuclease free water. Carefully
392 add concentrated HCl to adjust pH to 7.4 by monitoring with a pH meter. Adjust the volume to
393 1 L with nuclease free water and mix thoroughly. Filter-sterilize the solution using a 0.22 µm
394 filter. Store the 1M Tris-HCl solution at room temperature for up to one year. For longer storage,
395 keep it at 4°C.

396 • 0.5M MgCl₂ solution

397 Dissolve 10.165 g of magnesium chloride hexahydrate (MgCl₂·6H₂O) with 100 ml nuclease
398 free water. Filter-sterilize the solution using a 0.22 µm filter. Store the 0.5 M MgCl₂ solution at
399 room temperature for less than 6 months. For longer storage, keep it at 4°C.

400 • 1M NaCl solution

401 Dissolve 58.44 g of sodium chloride (NaCl) in 1 L of deionized water. Filter-sterilize the solution
402 using a 0.22 µm filter. Store the 1 M NaCl solution at room temperature for up to one year.

403 • 3M KCl solution

404 Dissolve 223.8 g of potassium chloride (KCl) in 1 L of nuclease free water. Filter-sterilize the
405 solution using a 0.22 μ m filter. Store the 3 M KCl solution at room temperature for up to one
406 year.

- 407 • **BSA solution (10 μ g μ l $^{-1}$)**

408 Dilute RNase-free BSA stock solution (50 mg ml $^{-1}$) with nuclease free water to make it to 10
409 μ g μ l $^{-1}$ by mixing 1 volume of BSA stock solution with 4 volumes of nuclease free water. Aliquot
410 and store it in the freezer (-20 °C) for 1 year. Avoid repeated freeze-thaw cycles.

- 411 • **20x saline-sodium citrate (SSC) buffer**

412 Dissolve 175.3 g NaCl and 88.3 g tri-sodium citrate to a final volume of 1 L with nuclease free
413 water. Filter-sterilize the solution using a 0.22 μ m filter. It can be stored at room temperature
414 for up to 1 year.

- 415 • **2x SSC buffer**

416 Dilute 20x SSC buffer to 2x SSC buffer with nuclease free water, 1 volume 20x SSC with 9
417 volume nuclease free water. Filter-sterilize the solution using a 0.22 μ m filter.

- 418 • **1x PBS**

419 Dilute 1 volume of RNase-free 10x PBS with 9 volumes of nuclease free water to make 1x
420 PBS solution.

- 421 • **10x hybridization buffer**

422 Add 0.4 ml MgCl $_2$ solution (0.5 M) and 0.6 ml nuclease free water to 1 ml Tris-HCl solution
423 (1M, pH 7.5). The final concentrations are 500 mM Tris-HCl and 100 mM MgCl $_2$. Store in
424 aliquots at -20 °C; the shelf life is around 3 months. Avoid repeated freeze-thaw cycles.

- 425 • **2x glycan binding buffer**

426 Add 5 ml Tris-HCl solution (1 M, pH 7.5), 0.2 ml MgCl $_2$ solution (0.5 M), 10 ml NaCl solution
427 (1 M), and 0.167 ml KCl solution (3 M) to 34.633 ml nuclease free water to make 50 ml 2x
428 glycan binding buffer. The final concentrations are 100 mM Tris-HCl, 10 mM KCl, 200 mM
429 NaCl, and 2 mM MgCl $_2$ at pH 7.4. Store in the fridge (4-8 °C) for up to 6 months.

- 430 • **Blocking buffer**

431 For each imaging dish, prepare 100 μ l blocking buffer, which contains 10 μ l 10x hybridization
432 buffer, 2.5 μ l BSA solution (10 μ g μ l $^{-1}$), 2 μ l poly T oligo (stock in 20 μ M) into 85.5 μ l nuclease
433 free water. Prepare the blocking buffer freshly every time before the experiment.

- 434 • **1x RNA hybridization buffer**

435 RNA hybridization buffer contains 1.5 μ M RISH probe, 0.25 μ g μ l $^{-1}$ BSA, and 250 mM NaCl in
436 1x hybridization buffer. For each imaging dish, prepare 100 μ l 1x RNA hybridization buffer by
437 adding 2.5 μ l BSA solution (10 μ g μ l $^{-1}$), 25 μ l NaCl solution (1 M), 10 μ l 10x hybridization buffer,
438 and 3 μ l RISH probe (50 μ M) to 59.5 μ l nuclease free water. Prepare freshly every time before
439 use.

- 440 • **Hybridization washing buffer.**

441 Mix 10% (v/v) formamide solution in 2X SSC. Exercise caution when handling formamide.
442 Prepare it fresh before use.

- 443 • **1x glycan and connector solution**

444 Glycan and connector solution containing 100 nM glycan probe, 0.25 μ g μ l $^{-1}$ BSA, 100 nM poly
445 T oligo, 125 nM connector 1, 125 nM connector 2 in 1x glycan binding buffer. For each imaging
446 dish, prepare 100 μ l 1x glycan and connector solution by adding 50 μ l 2x glycan binding buffer,
447 1 μ l glycan probe, 1.25 μ l Connector1, 1.25 μ l Connector2, 2.5 μ l BSA solution (10 μ g μ l $^{-1}$),
448 and 2 μ l poly T oligo (stock in 20 μ M) to 42 μ l nuclease free water. Prepare fresh every time
449 before use.

450 • **T4 ligase solution**

451 For each imaging dish, prepare T4 ligation solution by adding 0.25 μ l T4 DNA ligase (400 U μ l $^{-1}$), 1 μ l ATP solution (100 mM), and 10 μ l 10x T4 ligation buffer into 90 μ l 1x glycan binding buffer. Prepare fresh on ice every time before use.

454 • **RCA working solution**

455 RCA working solution contains 2.5 U μ l $^{-1}$ phi29 DNA polymerase, 0.25 mM dNTP, 0.2 μ g μ l $^{-1}$ BSA, 5% (vol/vol) glycerol, and 1 \times phi29 DNA polymerase reaction buffer. For each imaging dish, prepare 100 μ l RCA working solution by mixing 2.5 μ l Phi 29 polymerase (10 U μ l $^{-1}$), 2.5 μ l dNTP solution (10 mM), 2.5 μ l BSA solution (10 μ g μ l $^{-1}$), 10 μ l Glycerol (50%, vol/vol), 10 μ l 10x RCA buffer, and 73 μ l nuclease free water.

460 • **Probe hybridization buffer**

461 The probe hybridization buffer contains 100 nM of imager probe, 0.2 μ g μ l $^{-1}$ BSA, 100 nM poly T oligo in 2x SSC buffer. For each imaging dish, prepare 100 μ l to use. Add 1 μ l imager probe (10 μ M), 10 μ l 20x SSC buffer, 2 μ l 10x blocking reagent, and 84.5 μ l nuclease free water.

465 **[H1] Procedure:**

466 **[H2] Target selection and oligo preparation Timing:** several days to a few weeks, depending on the experimental design.

- 468 1. Verify the target glycoRNA by referring to the glycoRNA sequencing database (e.g., GSE136967 and SPCgRNA-seq¹¹) to confirm the exact sequences.
- 469 2. Use UNAFold or NUPACK or find literatures to understand the secondary structures of the RNA target. Design a RISH probe with an antisense sequence that targets regions of the RNA expected to be single-stranded or become single-stranded under mild denaturing conditions.
- 470 3. Analyze hybridization properties of the designed probe with glycoRNA using UNAFold, NUPACK, or IDT oligo analyzer.
- 471 4. Design the RISH probe for ARPLA by combining the antisense probe designed in steps 1-3, a spacer DNA (see Supplementary Table 1), and a linker DNA to bridge connector gaps between connector 1 and connector 2 (see Supplement Table 1). Check the full RISH probe with UNAFold or NUPACK to avoid self-hybridization.
- 472 5. Design the glycan probe, including the sialic acid aptamer, a spacer, and a complementary DNA linker to bridge connector gaps (see Supplement Table 1).
- 473 6. Design connector 1 and connector 2 to hybridize with linkers in the RISH probe and glycan probe, enabling *in situ* ligation for circular DNA generation.
- 474 7. Design a reporter probe complementary to the RCA product, conjugated with a fluorophore (e.g., Alexa 647) for glycoRNA visualization.
- 475 8. Order the DNA oligos designed in steps 1-7 from IDT with HPLC purification.
- 476 9. Dissolve the DNA oligos in nuclease free water at 150 μ M (per the manufacturer's information), check concentration with nanodrop, and adjust to 100 μ M with nuclease free water.

477 **PAUSE POINT** Oligo orders may take several days to weeks for synthesis and can be stored at -20 °C for years.

478 **? Troubleshooting**

479 **[H2] Cell culture, plating, and fixation Timing:** ~ 1 to 3 d, depending on the cell types and experiment aims.

495 **CRITICAL** This protocol focuses on performing ARPLA on fixed cells.

496 **CRITICAL** To avoid RNase contamination, after cell fixation, all the materials should be
497 prepared with RNase-free water.

498 10. Cells are cultured at 37 °C in a humidified incubator with 5% CO₂. HeLa and HEK293T are
499 cultured in DMEM cell culture medium supplemented with 10% FBS and 100 U ml⁻¹
500 penicillin-streptomycin. MCF-7 is cultured in DMEM with 10% FBS, 100 U ml⁻¹ penicillin-
501 streptomycin, and 1x NEAA. HL-60 is cultured in IMDM medium supplemented with 20%
502 FBS, 1x GlutaMAX, and 1x MEM NEAA. THP-1 is cultured in RPMI-1640 medium
503 supplemented with 2.5 mM glutamine, 1x MEM NEAA, and 10% heat-inactivated FBS. To
504 differentiate THP-1 cells into macrophage-like cells (M0), THP-1 is treated with 250 nM
505 PMA in its culture medium for 24-48 h until its attachment to the dish and then rest in
506 RPMI-1640 medium containing 5% FBS for another 2 d. To activate M0 macrophages,
507 macrophages were incubated in the serum-free RPMI-1640 medium supplemented with
508 12.5 µg ml⁻¹ LPS overnight.

509 11. For imaging, we recommend using glass bottom imaging dishes or plates to have a better
510 imaging quality. Here, we use poly-D-lysine coated 35-mm glass-bottom imaging dishes
511 (MatTek) as an example. For attached growing cells, such as HeLa, MCF-7, and HEK293T,
512 use 0.05% trypsin or TrypLE to detach the cells. Then, seed 0.4 x 10⁶ cells per dish in 2
513 ml complete culture medium (around 30% confluent).

514 **CRITICAL** Trypsin may contain RNases. After trypsin digestion, it is advisable to
515 culture the cells for longer than 12 h to allow for recovery of surface glycoRNA.

516 12. Allow the cells to grow to the desired imaging confluence in the incubator, normally around
517 60%. This may take 1-2 days.

518 **CRITICAL STEP** Avoid seeding the cells and growing the cells into a high confluent
519 (>70%). High density of cells would make it hard to image the cell edges.

520 13. For floating cells like THP-1 and HL-60:

521 a. plate the cells on the imaging dishes:

- 522 i) Pellet the cells by centrifuge at 500 g for 5 min, wash with 1x PBS twice, and
523 spin at 500 g for 5 min again. Resuspend the cells in serum-free RPMI at the
524 density of 0.4 x 10⁶ cells per ml.
- 525 ii) Add 2 ml (0.8 x 10⁶ cells) THP-1 or HL-60 cell suspension to each imaging dish.
- 526 iii) Allow the cells to attach for 1-2 h in the incubator.
- 527 iv) Wash with 1x PBS once to remove unbounded cells.

528 14. (optional) RNase treatment: incubate live cells with 0.02 µg µl⁻¹ RNase A or 1 U µl⁻¹ RNase
529 T₁, in 100 µl of HBSS at 37 °C for 20 min. Wash twice with PBS.

530 15. Prepare a 4% PFA solution (vol/vol). Commercial PFA solution can be stored in the fridge
531 (4 °C) for more than 1 year before opening. However, after opening, its shelf life would be
532 around 1 month when stored in the fridge.

533 **CAUTION** Handle PFA solution carefully, wear appropriate personal protective
534 equipment (PPE), and work under a hood.

535 **CRITICAL STEP** The shelf life of the PFA solution is short (~1 month at 4°C) after
536 opening. We recommend checking the pH of the PFA solution before use, if the pH is
537 out of the range of 6.9-7.4, a new PFA solution should be used.

538 16. For all the cells, wash the cells with 2 ml 1x PBS once and replace PBS with 2 ml 4% PFA
539 solution.

540 17. Incubate cells with 4% PFA solution for 15 min at room temperature.

541 **CRITICAL STEP** Inadequate incubation of the PFA solution can result in insufficient
542 fixation and RNase inactivation. Conversely, extensive incubation can lead to
543 membrane permeabilization.

544 18. Aspirate PFA solution and wash the cells 3 times with 2 ml 1x PBS.

545 **CRITICAL STEP** Starting from this step, make sure to use RNase-free 1x PBS to avoid
546 RNA degradation or add SUPERase inhibitor at 0.1 U μ l⁻¹.

547 **? Troubleshooting**

548 **[H2] In situ hybridization Timing:** ~3 h

549 **CRITICAL** When using 35-mm glass bottom dishes, apply 100 μ l of the solution for each
550 incubation to cover the inner well only.

551 **CRITICAL** Assigning specific dishes as negative and positive controls is essential, and the
552 recommended control types can be found in the experimental design section.

553 **CRITICAL** The design of RISH probe would significantly influence the in-situ hybridization
554 conditions, for those antisense probes that have other potential unwanted targets, the
555 optimization of hybridization conditions is needed.

556

557 19. Prepare 100 μ l blocking buffer for each imaging dish. (see Reagent setup)

558 20. Add 100 μ l blocking buffer to each well and incubate at 37 °C for 30-60 min.

559 21. Aspirate the blocking buffer and wash once with 1 ml 1x PBS.

560 22. Prepare 100 μ l per dish RNA hybridization buffer which contains RISH probe. (see
561 Reagent setup)

562 23. Add 100 μ l RNA hybridization buffer to each well and incubate at 37 °C for 60 min.

563 **CRITICAL** RNA hybridization conditions differ depending on the target transcript
564 secondary structures and antisense region of RISH probe designs. Optimizations of
565 hybridization temperatures ranging from 37-50 °C and formamide concentrations
566 ranging from 0-40 % are recommended.

567 24. Wash the cells with 2 ml hybridization washing buffer, which contains 2x SSC solution and
568 10 % formamide, by incubating the cells with the washing buffer for 20 min with slow
569 shaking. Repeat this washing step 3 times.

570 **CRITICAL STEP** Avoid drying the cells during buffer exchanges, which will cause false
571 positive signals.

572 **CAUTION** Formamide is dangerous. Handle and prepare formamide solutions under
573 a chemical hood.

574 25. Aspirate the hybridization washing buffer and wash quickly with 1x PBS 3 times to remove
575 residual formamide.

576 **[H2] Glycan recognition and proximity-assisted *in situ* ligation Timing:** ~1.5 h.

577 **CRITICAL** It is important to check the quality of the glycan probe after receiving it from IDT.
578 We recommend running a denaturing PAGE gel to check the purity and synthesized length. If
579 the purity of the glycan probe is a concern, we recommend doing PAGE purification.

580 **CRITICAL** The secondary structure of aptamer in the glycan probe is essential. To avoid
581 unwanted structures, it is ideal to incubate the glycan probe at 85 °C for 5 min and transfer it
582 to ice immediately.

583 26. Prepare 100 μ l 1x glycan and connector solution for each imaging dish, which contains
584 100 nM glycan probe. (see Reagent setup)

585 27. Incubate the cells with 100 μ l per well 1x glycan and connector solution for 30 min at 30 °C.
586 28. Aspirate the glycan and connector solution and add in 2 ml 1x glycan binding buffer for
587 washing once to remove unbound glycan probes and connectors.
588 **CRITICAL STEP** The binding between the glycan probe and glycan is dynamic. To
589 avoid disrupting this equilibrium, we recommend limiting washing to no more than once.
590 29. Add 100 μ l T4 ligase solution to each well and incubate at 30 °C for 30 min.
591 **CRITICAL STEP** Check all the components of the T4 ligation buffers. Make the
592 solution fresh before use. Pipette carefully and change tips when adding the buffer to
593 different wells.
594 30. Wash twice with 1x PBS after incubation.

595 **? Troubleshooting**

596

597 **[H2] Rolling Circle Amplification and labeling Timing:** ~ 3.5 h.

598 31. Prepare 100 μ l RCA working solution, which contains 2.5 U μ l⁻¹ Phi 29 DNA polymerase
599 for each well. (See Reagent setup)
600 32. Incubate the cells with 100 μ l per well RCA working solution at 37 °C for 90 min.
601 **CRITICAL STEP** For semi-quantitative comparison among groups, ensure that the
602 RCA reaction time is consistent across all groups.
603 **CRITICAL STEP** RCA reaction time could be extended to overnight incubation.
604 **CRITICAL STEP** For long-time RCA reaction, to avoid volume loss, wrap the dishes
605 with parafilm.
606 33. Wash the wells with 2 ml PBS 3 times.

607 **? Troubleshooting**

608 34. Prepare probe hybridization buffer, which contains 100 nM imager probes, 100 μ l for each
609 well.
610 35. Add probe hybridization buffer to each well and incubate at 37 °C for 30 min.
611 36. Aspirate probe hybridization buffer and wash with 2 ml 2x SSC buffer twice, 5 min each
612 time, at room temperature with slow shaking.
613 37. Wash once with 2 ml 1x PBS for 5 min, at room temperature with slow shaking.
614 38. (optional) Stain the cells with Hoechst solution for 10 min at room temperature, and then
615 wash twice with 2ml 1x PBS.
616 39. Replace the PBS with the mounting medium progressively.
617 40. Store the dishes at 4 °C and keep the dishes away from the light.
618 **PAUSE POINT** The sample is stable for several days at 4 °C in a mounting medium.

619 **[H2] Imaging Timing:** ~2 to 6 h, depending on the experiment designs

620 **CRITICAL** The image details are highly dependent on the microscope such as the sensitivity,
621 the image quality, and the resolution. Therefore, choose a microscope based on your
622 experimental aims. We recommend using a laser-scanning confocal microscope or a spinning
623 disk confocal microscope for both highly sensitive and high-resolution imaging.

624 41. Use a confocal microscope (e.g., Nikon W1 spinning-disk microscope or ZEISS 710 laser-
625 scanning microscope) with a 60x water immersion objective or a 63x oil immersion

objective for imaging cells to ensure a high resolution of subcellular distributions of glycoRNAs on the membrane.

42. Image the glycoRNAs with the filter sets correlated with the fluorophore conjugated to the probe (e.g., 640-nm laser and Cy5 filter for Alexas 647-conjugated probe) and acquire bright field image with DIC. Take single-layer images with a 1024 x 1024-pixel size or 512 x 512 region-of-interest (ROI) for data analysis.

? Troubleshooting

43. Take at least 5 frames randomly in each dish.
44. (optional) Acquire nuclei image with a 408 nm laser and BFP filter or similar.
45. (optional) Acquire z-stack images for single cells with a 512 x 512-pixel size area (x, y) and 0.3 μ m z-axis steps for around 35 slices.

PAUSE POINT After imaging acquisition, the time is flexible for data analysis.

[H2] Image analysis Timing: ~6 h to 1 d, depending on the sample sizes.

CRITICAL There are many analysis pipelines available for detecting and quantifying RCA amplicons in various samples. Here, we introduced a straightforward and user-friendly analysis pipeline suitable for those with limited bioinformatics skills.

46. Import all the images to the software that can segment cells into single-cell ROIs (e.g., CellPose 2.0⁵⁹) to segment the images and generate a mask containing ROIs for each cell.

47. Import the cell masks to FIJI and record the ROI information to the ROI manager.

48. Import the raw images to FIJI. Measure the mean fluorescent intensity of individual cells using the segmented mask image-generated ROIs.

49. Change the image to 8-bit, adjust the threshold, and measure particles in FIJI to record the RCA particle counts and sizes.

50. Import the particle measurement data into the ROI manager. Measure the raw image to determine the fluorescent intensities of each RCA amplicon.

51. (optional) Import the z-stack image into ZEN lite or NIS Element Viewer, then create a maximum intensity projection.

[H1] Troubleshooting:

Troubleshooting information can be found in Table 2.

660 Table 2: Troubleshooting table

Step	Problem	Possible reason	Solution
9	The nanodrop curve is inaccurate.	Low quality of oligos	Check the MS spectrum from IDT and purchase a new batch of oligos or perform a PAGE purification in the lab as the protocol described elsewhere ⁶¹ .

18	Cells are washed away.	Fixation failed.	Check the pH of the 4% PFA solution, if the pH is out of the range of 6.9 – 7.4, buy a new batch of 4% PFA solution. Always keep 4% PFA solution at 4 °C and can be used for up to 1 month.
30	Ligation fails	The glycan probe is washed away at step 28.	Try without washing; directly add T4 ligase and T4 enzyme buffer to the glycan and connector solution
		High DNA concentration impairs DNA circulation	Optimize the connectors and probe concentrations.
		Low quality of T4 ligation buffer.	Check the ligation buffer to ensure the ATP and Mg ²⁺ are included in the buffer. The ATP in the buffer is easily degraded after long time storage or freeze-thaw cycles. Order new ligation buffer or supplement with ATP.
		High salt or EDTA may interfere with T4 DNA ligase.	The DNA should be cleaned up with PAGE purification and dissolved in nuclease free water.
		Connectors lack phosphates	Order DNA with phosphates or phosphorylate connectors with a PNK kit.
		The temperature is too high at 30°C.	Do ligation at 16 °C overnight.
		Ligase is inactive	Purchase a new ligase kit. Always keep the enzyme in -20 °C freezer and avoid freeze-thaw cycles.
33	RCA fails	The RCA reaction is not highly efficient.	Replace the current vial of Phi 29 DNA polymerase with a new one.
			Change a new vial of DNA polymerase buffer, the DTT may become bad after storage.
			The optimal reaction temperature range is 37 to 42 °C. Check the reaction temperature and run RCA at a higher temperature.
42	No or low fluorescence signals	Identification of the cause of no or low fluorescence signals.	<ol style="list-style-type: none"> 1. Test RCA steps by generating circular DNA with connectors and probes in a test tube. Apply circular DNA directly at step 26 without the addition of the glycan probe and skip to step 31 for RCA. If the RCA amplicons are not obtained, refer to the solution for RCA Fails above. 2. If RCA amplicons are detectable, then test proximity ligation by

			performing control 3), a positive control with only one nick site at the RNA hybridization probe linker region (see Experimental design section). If no fluorescence signal is observed, refer to the solution for Ligation Fails above. If the fluorescence signal is detectable, focus on the troubleshooting steps below.
		The Glycan probe is not pure.	The purity of aptamer affects the binding performance. Do a PAGE purification of the glycan probe to remove unpurified fragments.
		RNase contamination	Prepare new buffers with nuclease-free water and purchase new SUPERasein.
		Trypsin may be contaminated with RNase.	After trypsin treatment, recover the cells for longer than 24h to ensure the recovery of surface glycoRNAs. Or use TrypLE, which is a recombinant protein, to seed the cells.
		Not enough fixation	Check the pH of the 4% PFA solution, if the pH is out of the range of 6.9 – 7.4, buy a new batch of 4% PFA solution. Always keep 4% PFA solution at 4 °C and can be used for up to 1 month.
		RNA hybridization efficiency is low	Optimize RNA hybridization conditions, including temperature (37-50 °C), formamide concentration in the buffer (0-50 %), and incubation time (can be extended to overnight).
		Ligation fails	See the solution in Troubleshooting for step 30.
		Phi 29 DNA polymerase has lost activity	Purchase a new enzyme. Always keep the enzyme in -20 °C freezer and avoid freeze-thaw cycles.
42	High background	Samples have dried out during incubation	During long incubation steps, the reaction volume can decrease. Always perform the incubation steps in a humidified incubator, keep the dish caps closed, or use parafilm to seal the dish.
		Low blocking efficiency	Optimize the blocking conditions (e.g., longer blocking time, higher concentration of BSA and poly T oligo).
		Auto-fluorescent objectives in the sample	Check with other filter sets to see if there are also strong backgrounds, if

		yes, the sample may have strong autofluorescence. Add autofluorescence eliminator reagent (Millipore Sigma, Cat. 2160 or similar).
	Glycan probe concentration too high	Titrate the glycan probe concentration.

661

662

663 **Timing:**

664 Step 1-9, target selection and oligo preparation: several days to weeks, depending on the
665 experimental design.

666 Step 10-14, cell preparation: ~ 1d to 3d, depending on the cell types and experiment aims.

667 Step 15-18, cell fixation: ~30 min.

668 Step 19-25, *in situ* hybridization: ~3 h.

669 Step 26-30, glycan recognition and proximity ligation: ~1.5 h.

670 Step 31-40, rolling circle amplification and labeling: ~3.5 h.

671 Step 41-45, imaging: ~2 h to 6 h, depending on the experiment designs.

672 Step 46-51, image analysis: ~6h to 1d, depending on the sample sizes.

673

674 **Anticipated results:**

675 This protocol provides detailed steps for glycoRNA imaging, covering probe design and
676 purification, cell preparation, cell fixation, RNA targeting, proximity ligation, and rolling circle
677 amplification. Fluorescent signals are then observed in 2D or 3D images (Figure. 2,3,4). These
678 images enable analysis of glycoRNA subcellular localization, semi-quantitative assessment of
679 glycoRNA expression in single cells, exploration of glycoRNA heterogeneity during cellular
680 processes (e.g., THP-1 differentiation and activation), and comparison of glycoRNA abundance
681 across cell types.

682 ARPLA is compatible with imaging methods for other biomolecules using chemical stains or
683 antibody-based immunofluorescence. For example, we co-stained lipid raft with cholera toxin
684 subunit B (CT-B), demonstrating colocalization with U1 glycoRNA with lipid rafts on the cell
685 membrane⁶ (Fig. 3). Intracellular proteins can also be stained with antibodies alongside ARPLA.
686 We stained soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE)
687 proteins with antibodies and showed the distribution of glycoRNA intracellularly within SNARE
688 protein-wrapped lipid vesicles⁶. Combining ARPLA with other labeling methods expands its utility
689 for studying glycoRNA interactions with other biomolecules.

690

691 **Reporting summary:**

692 Further information on research design is available in the Nature Research Reporting Summary
693 linked to this article.

694 **Data availability:**

695 The data discussed in the present proposal was generated as part of the original research article.
696 More data can be accessed from the original research article. All the raw data and other example
697 images are available at:

698 https://figshare.com/projects/Spatial_Imaging_of_GlycoRNA_in_single_Cells_with_ARPLA/164113

700 **Code availability:**

701 The code generated and used for data analysis during the current study are available at
702 https://figshare.com/projects/Spatial_Imaging_of_GlycoRNA_in_single_Cells_with_ARPLA/164113

704

705 **References:**

706 1. Holoch, D.; Moazed, D., RNA-mediated epigenetic regulation of gene expression. *Nat. Rev. Genet.* **2015**,
707 *16* (2), 71-84.

708 2. Li, Y.; Xia, L.; Tan, K.; Ye, X.; Zuo, Z.; Li, M.; Xiao, R.; Wang, Z.; Liu, X.; Deng, M.; Cui, J.;
709 Yang, M.; Luo, Q.; Liu, S.; Cao, X.; Zhu, H.; Liu, T.; Hu, J.; Shi, J.; Xiao, S.; Xia, L., N(6)-
710 Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. *Nat. Genet.* **2020**, *52*
711 (9), 870-877.

712 3. Yu, S.; Kim, V. N., A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. *Nat.*
713 *Rev. Mol. Cell Biol.* **2020**, *21* (9), 542-556.

714 4. Flynn, R. A.; Pedram, K.; Malaker, S. A.; Batista, P. J.; Smith, B. A. H.; Johnson, A. G.; George, B.
715 M.; Majzoub, K.; Villalta, P. W.; Carette, J. E.; Bertozzi, C. R., Small RNAs are modified with N-glycans
716 and displayed on the surface of living cells. *Cell* **2021**, *184* (12), 3109-3124.e22.

717 5. Reily, C.; Stewart, T. J.; Renfrow, M. B.; Novak, J., Glycosylation in health and disease. *Nat Rev Nephrol*
718 **2019**, *15* (6), 346-366.

719 6. Ma, Y.; Guo, W.; Mou, Q.; Shao, X.; Lyu, M.; Garcia, V.; Kong, L.; Lewis, W.; Ward, C.; Yang, Z.;
720 Pan, X.; Yi, S. S.; Lu, Y., Spatial imaging of glycoRNA in single cells with ARPLA. *Nat. Biotechnol.* **2024**,
721 *42* (4), 608-616.

722 7. Zhang, N.; Tang, W.; Torres, L.; Wang, X.; Ajaj, Y.; Zhu, L.; Luan, Y.; Zhou, H.; Wang, Y.; Zhang,
723 D.; Kurbatov, V.; Khan, S. A.; Kumar, P.; Hidalgo, A.; Wu, D.; Lu, J., Cell surface RNAs control
724 neutrophil recruitment. *Cell* **2024**, *187* (4), 846-860 e17.

725 8. Liu, H.; Li, X.; Ren, Y.; Yang, Y.; Chen, Y.; Ju, H., In Situ Visualization of RNA-Specific Sialylation
726 on Living Cell Membranes to Explore N-Glycosylation Sites. *Journal of the American Chemical Society*
727 **2024**, *146* (12), 8780-8786.

728 9. Perr, J.; Langen, A.; Almahayni, K.; Nestola, G.; Chai, P.; Lebedenko, C.; Volk, R.; Caldwell, R.;
729 Spiekermann, M.; Hemberger, H.; Bisaria, N.; Tzelepis, K.; Calo, E.; Mockl, L.; Zaro, B.; Flynn, R. A.,
730 RNA binding proteins and glycoRNAs form domains on the cell surface for cell penetrating peptide entry.
731 *bioRxiv* **2023**, 2023.09.04.556039.

732 10. Quinn, J. J.; Chang, H. Y., Unique features of long non-coding RNA biogenesis and function. *Nat. Rev.*
733 *Genet.* **2016**, *17* (1), 47-62.

734 11. Li, J.; Yue, S.; Gao, Z.; Hu, W.; Liu, Z.; Xu, G.; Wu, Z.; Zhang, X.; Zhang, G.; Qian, F.; Jiang, J.;
735 Yang, S., Novel Approach to Enriching Glycosylated RNAs: Specific Capture of GlycoRNAs via Solid-
736 Phase Chemistry. *Anal. Chem.* **2023**, *95* (32), 11969-11977.

737 12. Hemberger, H.; Chai, P.; Lebedenko, C. G.; Caldwell, R. M.; George, B. M.; Flynn, R. A., Rapid and
738 sensitive detection of native glycoRNAs. *bioRxiv* **2023**, 2023.02.26.530106.

739 13. Ming, B.; Zirui, Z.; Tao, W.; Hongwei, L.; Zhixin, T., A draft of human N-glycans of glycoRNA.
740 *bioRxiv* **2023**, 2023.09.18.558371.

741 14. Yixuan, X.; Helena, H.; Nicholas, A. T.; Peiyuan, C.; Christopher, W.; Charlotta, G. L.; Reese, M.
742 C.; Benson, G.; Carolyn, R. B.; Benjamin, A. G.; Ryan, A. F., The modified RNA base acp3U is an
743 attachment site for N-glycans in glycoRNA. *bioRxiv* **2023**, 2023.11.06.565735.

744 15. Yixuan, X.; Xingyu, L.; Chenfeng, Z.; Siyu, C.; Shunyang, W.; Zongtao, L.; Faith, M. R.; Benson,
745 M. G.; Ryan, A. F.; Carlito, B. L.; Benjamin, A. G., Development and application of GlycanDIA workflow
746 for glycomic analysis. *bioRxiv* **2024**, 2024.03.12.584702.

747 16. Ding, Y.; Liu, J., Pushing Adenosine and ATP SELEX for DNA Aptamers with Nanomolar Affinity.
748 *Journal of the American Chemical Society* **2023**, *145* (13), 7540-7547.

749 17. Keefe, A. D.; Pai, S.; Ellington, A., Aptamers as therapeutics. *Nature Reviews Drug Discovery* **2010**, *9*
750 (7), 537-550.

751 18. Liu, J.; Cao, Z.; Lu, Y., Functional Nucleic Acid Sensors. *Chem. Rev.* **2009**, *109* (5), 1948-1998.

752 19. Zhou, W.; Saran, R.; Liu, J., Metal Sensing by DNA. *Chem. Rev.* **2017**, *117* (12), 8272-8325.

753 20. Harada, K.; Frankel, A. D., Identification of two novel arginine binding DNAs. *The EMBO Journal*
754 **1995**, *14* (23), 5798-5811.

755 21. Huizenga, D. E.; Szostak, J. W., A DNA Aptamer That Binds Adenosine and ATP. *Biochemistry* **1995**,
756 34 (2), 656-665.

757 22. Hong, S.; Zhang, X.; Lake, R. J.; Pawel, G. T.; Guo, Z.; Pei, R.; Lu, Y., A photo-regulated aptamer
758 sensor for spatiotemporally controlled monitoring of ATP in the mitochondria of living cells. *Chemical
759 Science* **2020**, 11 (3), 713-720.

760 23. Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. J., Selection of single-stranded
761 DNA molecules that bind and inhibit human thrombin. *Nature* **1992**, 355 (6360), 564-566.

762 24. Lin, Y.; Padmapriya, A.; Morden, K. M.; Jayasena, S. D., Peptide conjugation to an in vitro-selected
763 DNA ligand improves enzyme inhibition. *Proceedings of the National Academy of Sciences* **1995**, 92 (24),
764 11044-11048.

765 25. Peinetti Ana, S.; Lake Ryan, J.; Cong, W.; Cooper, L.; Wu, Y.; Ma, Y.; Pawel Gregory, T.; Toimil-
766 Molares María, E.; Trautmann, C.; Rong, L.; Mariñas, B.; Azzaroni, O.; Lu, Y., Direct detection of human
767 adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors.
768 *Science Advances* **2021**, 7 (39), eabh2848.

769 26. Sefah, K.; Shangguan, D.; Xiong, X.; O'Donoghue, M. B.; Tan, W., Development of DNA aptamers
770 using Cell-SELEX. *Nat. Protoc.* **2010**, 5 (6), 1169-1185.

771 27. Xue, C.; Zhang, S.; Yu, X.; Hu, S.; Lu, Y.; Wu, Z.-S., Periodically Ordered, Nuclease-Resistant DNA
772 Nanowires Decorated with Cell-Specific Aptamers as Selective Theranostic Agents. *Angew. Chem. Int. Ed.*
773 **2020**, 59 (40), 17540-17547.

774 28. Yang, K.-A.; Barbu, M.; Halim, M.; Pallavi, P.; Kim, B.; Kolpashchikov, D. M.; Pecic, S.; Taylor,
775 S.; Worgall, T. S.; Stojanovic, M. N., Recognition and sensing of low-epitope targets via ternary complexes
776 with oligonucleotides and synthetic receptors. *Nat. Chem.* **2014**, 6 (11), 1003-1008.

777 29. Nakatsuka, N.; Yang, K.-A.; Abendroth, J. M.; Cheung, K. M.; Xu, X.; Yang, H.; Zhao, C.; Zhu,
778 B.; Rim, Y. S.; Yang, Y.; Weiss, P. S.; Stojanović, M. N.; Andrews, A. M., Aptamer-field-effect transistors
779 overcome Debye length limitations for small-molecule sensing. *Science* **2018**, 362 (6412), 319-324.

780 30. Zhu, Y.; Hart, G. W., Dual-specificity RNA aptamers enable manipulation of target-specific O-
781 GlcNAcylation and unveil functions of O-GlcNAc on beta-catenin. *Cell* **2023**, 186 (2), 428-445 e27.

782 31. Yue, H.; Chen, J.; Chen, X.; Wang, X.; Zhang, Y.; Zhou, N., Systematic screening and optimization
783 of single-stranded DNA aptamer specific for N-acetylneurameric acid: A comparative study. *Sensors
784 Actuators B: Chem.* **2021**, 344, 130270.

785 32. Gong, S.; Ren, H.-L.; Tian, R.-Y.; Lin, C.; Hu, P.; Li, Y.-S.; Liu, Z.-S.; Song, J.; Tang, F.; Zhou,
786 Y.; Li, Z.-H.; Zhang, Y.-Y.; Lu, S.-Y., A novel analytical probe binding to a potential carcinogenic factor
787 of N-glycolylneurameric acid by SELEX. *Biosens. Bioelectron.* **2013**, 49, 547-554.

788 33. Cho, S.; Lee, B.-R.; Cho, B.-K.; Kim, J.-H.; Kim, B.-G., In vitro selection of sialic acid specific RNA
789 aptamer and its application to the rapid sensing of sialic acid modified sugars. *Biotechnol. Bioeng.* **2013**,
790 110 (3), 905-913.

791 34. Yoshikawa, A. M.; Rangel, A.; Feagin, T.; Chun, E. M.; Wan, L.; Li, A.; Moeckl, L.; Wu, D.;
792 Eisenstein, M.; Pitteri, S.; Soh, H. T., Discovery of indole-modified aptamers for highly specific
793 recognition of protein glycoforms. *Nature Communications* **2021**, 12 (1), 7106.

794 35. Díaz-Fernández, A.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Rodríguez, E. F.; Lobo-Castañón,
795 M. J., Focusing aptamer selection on the glycan structure of prostate-specific antigen: Toward more specific
796 detection of prostate cancer. *Biosens. Bioelectron.* **2019**, 128, 83-90.

797 36. Li, M.; Lin, N.; Huang, Z.; Du, L.; Altier, C.; Fang, H.; Wang, B., Selecting Aptamers for a
798 Glycoprotein through the Incorporation of the Boronic Acid Moiety. *J. Am. Chem. Soc.* **2008**, 130 (38),
799 12636-12638.

800 37. Sun, X.; Pan, Q.; Yuan, C.; Wang, Q.; Tang, X.-L.; Ding, K.; Zhou, X.; Zhang, X.-L., A Single
801 ssDNA Aptamer Binding to Mannose-Capped Lipoarabinomannan of *Bacillus Calmette-Guérin* Enhances
802 Immunoprotective Effect against Tuberculosis. *J. Am. Chem. Soc.* **2016**, 138 (36), 11680-11689.

803 38. Li, W.; Xu, S.; Li, Y.; Chen, J.; Ma, Y.; Liu, Z., High Mannose-Specific Aptamers for Broad-Spectrum
804 Virus Inhibition and Cancer Targeting. *CCS Chemistry* **2023**, 5 (2), 497-509.

805 39. Wang, C.-Y.; Wu, C.-Y.; Hung, T.-C.; Wong, C.-H.; Chen, C.-H., Sequence-constructive SELEX: A
806 new strategy for screening DNA aptamer binding to Globo H. *Biochem. Biophys. Res. Commun.* **2014**, *452*
807 (3), 484-489.

808 40. Melavanki, R.; Kusanur, R.; Sadasivuni, K. K.; Singh, D.; Patil, N. R., Investigation of interaction
809 between boronic acids and sugar: effect of structural change of sugars on binding affinity using steady state
810 and time resolved fluorescence spectroscopy and molecular docking. *Helijon* **2020**, *6* (10), e05081.

811 41. Brooks, W. L. A.; Deng, C. C.; Sumerlin, B. S., Structure-Reactivity Relationships in Boronic Acid-
812 Diol Complexation. *ACS Omega* **2018**, *3* (12), 17863-17870.

813 42. Cummings, R. D.; Etzler, M.; Hahn, M. G.; Darvill, A.; Godula, K.; Woods, R. J.; Mahal, L. K.,
814 Glycan-recognizing probes as tools. In *Essentials of Glycobiology, 4th edition*, Cold Spring Harbor (NY),
815 2022.

816 43. Lundquist, J. J.; Toone, E. J., The Cluster Glycoside Effect. *Chem. Rev.* **2002**, *102* (2), 555-578.

817 44. Palaniappan, K. K.; Bertozzi, C. R., Chemical Glycoproteomics. *Chem. Rev.* **2016**, *116* (23), 14277-
818 14306.

819 45. Ellington, A. D.; Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands. *Nature*
820 **1990**, *346* (6287), 818-822.

821 46. Tuerk, C.; Gold, L., Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to
822 Bacteriophage T4 DNA Polymerase. *Science* **1990**, *249* (4968), 505-510.

823 47. Flynn, R. A.; Smith, B. A. H.; Johnson, A. G.; Pedram, K.; George, B. M.; Malaker, S. A.; Majzoub,
824 K.; Carette, J. E.; Bertozzi, C. R., Mammalian Y RNAs are modified at discrete guanosine residues with
825 N-glycans. *bioRxiv* **2019**, 787614.

826 48. Munkley, J.; Elliott, D. J., Hallmarks of glycosylation in cancer. *Oncotarget* **2016**, *7* (23), 35478-89.

827 49. Rust, M. J.; Bates, M.; Zhuang, X., Sub-diffraction-limit imaging by stochastic optical reconstruction
828 microscopy (STORM). *Nat. Methods* **2006**, *3* (10), 793-796.

829 50. Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G. P. C.,
830 Super-resolution microscopy demystified. *Nat. Cell Biol.* **2019**, *21* (1), 72-84.

831 51. Jungmann, R.; Avendaño, M. S.; Woehrstein, J. B.; Dai, M.; Shih, W. M.; Yin, P., Multiplexed 3D
832 cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. *Nat. Methods* **2014**, *11* (3), 313-
833 318.

834 52. Wassie, A. T.; Zhao, Y.; Boyden, E. S., Expansion microscopy: principles and uses in biological research.
835 *Nat. Methods* **2019**, *16* (1), 33-41.

836 53. Huang, N.; Fan, X.; Zaleta-Rivera, K.; Nguyen, T. C.; Zhou, J.; Luo, Y.; Gao, J.; Fang, R. H.; Yan,
837 Z.; Chen, Z. B.; Zhang, L.; Zhong, S., Natural display of nuclear-encoded RNA on the cell surface and its
838 impact on cell interaction. *Genome Biol.* **2020**, *21* (1), 225.

839 54. Zadeh, J. N.; Steenberg, C. D.; Bois, J. S.; Wolfe, B. R.; Pierce, M. B.; Khan, A. R.; Dirks, R. M.;
840 Pierce, N. A., NUPACK: Analysis and design of nucleic acid systems. *J. Comput. Chem.* **2011**, *32* (1), 170-
841 173.

842 55. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res.*
843 **2003**, *31* (13), 3406-3415.

844 56. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. L.,
845 BLAST+: architecture and applications. *BMC Bioinformatics* **2009**, *10* (1), 421.

846 57. Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J.,
847 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids
848 Res.* **1997**, *25* (17), 3389-3402.

849 58. Raj, A.; van den Bogaard, P.; Rifkin, S. A.; van Oudenaarden, A.; Tyagi, S., Imaging individual mRNA
850 molecules using multiple singly labeled probes. *Nat. Methods* **2008**, *5* (10), 877-879.

851 59. Pachitariu, M.; Stringer, C., Cellpose 2.0: how to train your own model. *Nat. Methods* **2022**, *19* (12),
852 1634-1641.

853 60. Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M., Cellpose: a generalist algorithm for cellular
854 segmentation. *Nat. Methods* **2021**, *18* (1), 100-106.

855 61. Lopez-Gomollon, S.; Nicolas, F. E., Chapter Six - Purification of DNA Oligos by Denaturing
856 Polyacrylamide Gel Electrophoresis (PAGE). In *Methods Enzymol.*, Lorsch, J., Ed. Academic Press: 2013;
857 Vol. 529, pp 65-83.

858

859 **Acknowledgement:**

860 The development of ARPLA was supported by the US National Institutes of Health (GM141931)
861 and the Robert A. Welch Foundation (grant F-0020). We especially thank A. Ellington and B.
862 Xhemalce at the Department of Molecular Biosciences at The University of Texas at Austin for
863 their invaluable suggestions on the design of ARPLA. Confocal imaging was performed at the
864 Center for Biomedical Research Support Microscopy and Imaging Facility at The University of
865 Texas at Austin (RRID: SCR_021756). We thank A. Webb and P. Oliiphint at The University of
866 Texas at Austin for providing advice on confocal imaging.

867 **Author information:**

868 These authors contributed equally: Weijie Guo, Yuan Ma.

869 **Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA**

870 Weijie Guo, Valeria Garcia, Linggen Kong

871 **Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin,
872 Austin, TX, USA**

873 Weijie Guo, Valeria Garcia, Linggen Kong, Yi Lu

874 **Department of Chemistry, The University of Texas at Austin, Austin, TX, USA**

875 Yuan Ma, Quanbing Mou, Xiangli Shao, Mingkuan Lyu, Whitney Lewis, Zhenglin Yang, Shuya Lu,
876 and Yi Lu

877

878 **Contributions:**

879 W.G., Y.M. and Y.L. conceived and designed the study. W.G., Y.M. and Q.M. designed the method.
880 L.K. performed the MD simulation of ARPLA. W.G. and Y.M. performed the experiments and
881 analyzed the data. X.S., V.G., W.L., and Z.Y. assisted in cell experiments. X.S. and M.L. assisted
882 in data analysis. S.L. assisted in manuscript preparation. The manuscript was written by W.G.,
883 Y.M. and Y.L.. Y.L. supervised the project.

884 **Ethics declarations:**

885 Competing interests

886 The authors declare no competing interests.

887 **Additional information:**

888

889 **Figure legends:**

890

891 Fig. 1: ARPLA Procedure Overview. The workflow begins with probe design and preparation for
892 the target glycoRNA. Subsequent steps include cell culture and preparation, RNA hybridization,
893 aptamer-assisted glycan recognition, proximity ligation, RCA, RCA labeling with an imager probe,
894 image acquisition, and data analysis. This depiction is a simplified schematic representation for
895 illustrating the ARPLA protocol and does not represent the real structure of glycoRNA. The figure
896 was created with BioRender.com.

897

898 Fig. 2: GlycoRNA imaging in a variety of cell lines. a) A schematic representation of the U1 RNA
899 structure (predicted by UNAFold) and the design of the RISH binding site for ARPLA (shown in
900 blue). b) Imaging of U1 glycoRNA with ARPLA, illustrating the subcellular localization of U1
901 glycoRNA in HeLa, SH-SY5Y, PANC-1, HEK293T, HL-60, and THP-1 cell lines. c) A scheme to
902 show the Y5 RNA structure (predicted by UNAFold) and the design of RNase H targeting site
903 (shown in red) and RISH binding site (shown in blue); d) cell surface Y5 RNA imaging with RISH-
904 RCA and Y5 glycoRNA imaging with ARPLA with the treatment of RNase H to remove
905 glycosylation sites, scale bar: 20 μ m. Panel b adapted with permission from ref.⁶.

906

907 Fig. 3: ARPLA images highlighting the spatial subcellular locations of U1 glycoRNA in single HL-
908 60 cells. Z-stack images were collected with the staining of U1 glycoRNA by ARPLA (green) and
909 lipid raft (stained by CT-B, red). The spatial distributions of both U1 glycoRNA and lipid rafts were
910 shown in z-slices format (a), orthographic projection (b), and maximum intensity projection (c).
911 The Pearson's coefficient for the colocalization images shown in Fig. 3 is 0.74 ± 0.11 , indicating
912 the colocalization between glycoRNA and lipid rafts. Scale bar: 2 μ m. 3D images were processed
913 by using ZEN 3.8. The figures adapted with permission from ref.⁶.

914

915 Fig. 4: Image analysis of ARPLA in breast cell lines. (a) representative ARPLA images of U1
916 glycoRNA in MCF-10A, MCF-7, and MDA-MB-231 cells. In the analysis of ARPLA images, the
917 following features can be obtained: Mean fluorescence intensity of individual cells (b) (each signal
918 dot indicates the average mean intensity in each frame, $n = 6$ frames); RCA amplicon amounts in
919 each cell ($n = 20$ cells) (c); the sizes of each RCA amplicons ($n = 2000$ amplicons) (d); and mean
920 fluorescent intensity of each RCA amplicons ($n = 2000$ amplicons) (e). Bar graph (b) and dot plot
921 (c) are presented as mean values \pm SD. The statistical significance are determined by unpaired
922 two-tailed t test (b) as * $p = 0.0344$, *** $p < 0.001$, and by one-way ANOVA (c) as n.s. $p=0.8913$.
923 Violin plots lines at the median (dotted line) and quartiles (dashed lines). Statistic assays are
924 performed with the two-tailed unpaired t-test. In (b), * $p=0.0106$, *** $p<0.0001$; In (c), both
925 $p<0.0001$.

926

927 Fig. 5 Molecular dynamic (MD) simulation of the ARPLA design. a) The general design of
928 ARPLA, with different sites (sites 1-6), was chosen to analyze the distances; b) MD simulation
929 of the structure of ARPLA with oxDNA, including 4 oligos: the glycan probe, the RISH probe, the
930 connector 1, and the connector 2. c) the distances between different sites indicated in a) and b).
931 The figures are from ref.⁶ adapted with permission.