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ABSTRACT

We present updated constraints on the cosmological 3D power spectrum of carbon monoxide CO(1–0) emission in the redshift range
2.4–3.4. The constraints are derived from the two first seasons of Carbon monOxide Mapping Array Project (COMAP) Pathfinder line
intensity mapping observations aiming to trace star formation during the epoch of galaxy assembly. These results improve on the pre-
vious Early Science results through both increased data volume and an improved data processing methodology. On the methodological
side, we now perform cross-correlations between groups of detectors (“feed groups”), as opposed to cross-correlations between single
feeds, and this new feed group pseudo power spectrum (FGPXS) is constructed to be more robust against systematic effects. In terms
of data volume, the effective mapping speed is significantly increased due to an improved observational strategy as well as a better data
selection methodology. The updated spherically and field-averaged FGPXS, C̃(k), is consistent with zero, at a probability-to-exceed
of around 34%, with an excess of 2.7ε in the most sensitive bin. Our power spectrum estimate is about an order of magnitude more
sensitive in our six deepest bins across 0.09 Mpc→1 < k < 0.73 Mpc→1, compared to the feed-feed pseudo power spectrum (FPXS) of
COMAP ES. Each of these bins individually constrains the CO power spectrum to kPCO(k) < 2400–4900µK2 Mpc2 at 95% confi-
dence. To monitor potential contamination from residual systematic effects, we analyzed a set of 312 difference-map null tests and
found that these are consistent with the instrumental noise prediction. In sum, these results provide the strongest direct constraints on
the cosmological 3D CO(1–0) power spectrum published to date.
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1. Introduction

By collecting the combined redshift-dependent line emission
from all sources, both diffusely emitting gas and all galaxies,

ω Corresponding author; n.o.stutzer@astro.uio.no

bright and faint, line intensity mapping (LIM) aims to map the
Universe from large to small scales in three dimensions (see
Madau et al. 1997; Battye et al. 2004; Peterson et al. 2006; Loeb
& Wyithe 2008; Kovetz et al. 2017, 2019, and references therein
for details on LIM). Several emission lines of interest have been
proposed, among them 21 cm, carbon monoxide (CO), ionized
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carbon ([C II]), Lyϑ, and Hϑ, each with different astrophysi-
cal and cosmological goals (Kovetz et al. 2017, 2019; Bernal &
Kovetz 2022).

At the forefront of CO LIM is the CO Mapping Array Project
(COMAP), currently in its Pathfinder phase, which aims to mea-
sure the large-scale CO(1–0) line emission at redshifts of z ↑
2.4–3.4, tracing the star-forming galaxies around the epoch of
galaxy assembly (Cleary et al. 2022). The COMAP Pathfinder
instrument is a focal plane array of 19 detectors (which we refer
to as “feeds”), each with independent receiver electronics, fielded
on a 10.4 m Leighton telescope at the Owens Valley Radio
Observatory. It observes in a frequency range of 26–34 GHz and
is sensitive to 115.27 GHz CO(1–0) rotational line emission at
redshifts of z ↑ 2.4–3.4. Based on the first year of observations
(“Season 1”), COMAP obtained the first direct limits on the 3D
CO(1–0) clustering power spectrum, already ruling out several
models from the literature. These results were published in a
series of eight Early Science (ES) papers, along with a preview
of our ongoing continuum survey of the Galaxy, a look at the
prospects for CO LIM at the epoch of reionization, and a cross-
correlation of ES data with an overlapping galaxy survey (Cleary
et al. 2022; Lamb et al. 2022; Foss et al. 2022; Ihle et al. 2022;
Chung et al. 2022; Rennie et al. 2022; Breysse et al. 2022; Dunne
et al. 2024).

In this paper, the second in a series of three, we update our
power spectrum results based on observations taken in our first
and second seasons (S2), following Ihle et al. (2022). We build
on the filtered and calibrated low-level COMAP data products
described in detail by Lunde et al. (2024). Implications for astro-
physical constraints and modeling are explored by Chung et al.
(2024a).

As is discussed by Lunde et al. (2024), the current exper-
imental design is overall very similar to ES, but takes into
account a few important lessons learned. For example, COMAP
Season 2 uses only constant elevation scans (CES), not Lis-
sajous scans, because one of the main conclusions of Ihle et al.
(2022) was that changes in elevation within a scan result in
significant residual systematic effects from changes in the atmo-
spheric and or ground pickup signals. We also avoid elevations
that are strongly contaminated by ground radiation received
in the sidelobes. In addition, the instrument drive speed was
decreased around May 2022 in order to reduce the stress on
the telescope (Lunde et al. 2024), and the effective instrumen-
tal properties therefore changed notably about halfway through
the second season. We denote periods before and after the speed
change the “fast-” and “slow-moving azimuth scans” respec-
tively (these are equivalent to the naming convention “Season
1+Season 2a” and “Season 2b” used by Lunde et al. (2024),
where “a” and “b” denote the period before and after the drive
changes).

For consistency with previous COMAP publications, we
adopt the same ΛCDM cosmological model as Chung et al.
(2022) and Li et al. (2016) when converting distances in our
map cubes from angular and spectral frequency units into phys-
ical units. Explicitly we set Ωm = 0.286, ΩΛ = 0.714, Ωb =
0.047, H0 = 100 h km s→1 Mpc→1, h = 0.7, ε8 = 0.82, and ns =
0.96, which is roughly consistent with WMAP (Hinshaw et al.
2013). Unless otherwise stated all distances and distance-derived
quantities in megaparsecs carry an implicit h

→1.
This paper is structured as follows, the power spectrum

methodology and updated null test framework are presented in
Sect. 2 and 3 respectively. In Sect. 4, we present the power
spectrum transfer function used to account for signal loss from
low-level filtering and instrumental effects. Sections 5 and 6

show the power spectrum results and the outcome of our null
tests. Our conclusions are presented in Sect. 7.

2. Power spectrum methodology

The power spectrum fully characterizes the information con-
tained in a Gaussian random field and so is one of the most
powerful statistics for cosmological density fields. While the
non-linear physics of galactic emissions to which COMAP is
sensitive is not fully Gaussian, the power spectrum is still a
useful statistic, and complementary to other summary statistics
such as the Voxel Intensity Distribution (VID); (Breysse et al.
2017; Ihle et al. 2019) or the Deconvolved Distribution Estimator
(DDE); (Breysse et al. 2023; Chung et al. 2023).

The COMAP Pathfinder uses three-dimensional maps of the
CO(1–0) emission to constrain models of star formation during
the epoch of galaxy assembly. While the maps already represent
the compression of hundreds of terabytes of raw time-ordered
data (TOD) into only a few gigabytes, it is possible to encode
and compress much of the relevant astrophysical and cosmo-
logical information contained within the maps even more by
using summary statistics like the power spectrum. As such the
power spectra are easier and more computationally efficient to
work with when constraining astrophysical and cosmological
information of the mapped emission field.

In the COMAP ES paper series, Ihle et al. (2022) devised a
novel cross-power spectrum methodology, the feed-feed pseudo-
cross-power spectrum (FPXS), constructed to be robust against
systematic errors. This work largely builds on the methodology
developed by Ihle et al. (2022) and lessons learned since the
ES data processing to improve the power spectrum constraints
of COMAP even further. In the following we summarize the
FPXS methodology used and outline what has changed from the
methodology developed by Ihle et al. (2022).

2.1. The feed group pseudo-cross-power spectrum

We begin by defining the general concepts of an auto- and cross-
power spectrum. The auto-power spectrum can simply be defined
as the variance of Fourier modes of a map. It can be written as

P(k) =
Vvox

Nvox
↓|F {mi}|2↔ =

Vvox

Nvox
↓| fi(k)|2↔, (1)

where Vvox is the volume of a voxel (i.e., three-dimensional
pixel) in units Mpc3, Nvox is the number of voxels and fi(k) are
the Fourier coefficients of the map mi at wavenumber k. The
units of fi(k) and k are, respectively, the same as the map’s
mi and Mpc→1. For the Fourier transform F {mi} of the map
mi we use the same convention previously used in ES (Ihle
et al. 2022; Harris et al. 2020). We can safely use the regular
Fourier basis in the case of COMAP, instead of the more gen-
eral spherical harmonics, as the fields are only ↑2↗ in diameter
and the flat-sky approximation is sufficient. Since our maps are
three-dimensional, so is the power spectrum derived from those
maps.

The auto-power spectrum will pick up all components that
contribute to the variance in the map: signal, noise, and system-
atic effects. It can thus be decomposed into

P(k) = PCO(k) + Pnoise(k) + Psyst(k), (2)
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Table 1. Feed groups used in the feed group pseudo-cross-power
spectrum.

DCM1 (feed group) Feeds

1 1, 4, 5, 12, 13
2 6, 14, 15, 16
3 2, 7, 18, 19
4 3, 8, 9, 10, 11

Notes. “Feed groups” and their associated first down-conversion
(DCM1) electronics.

showing contributions from CO signal1, noise and systematic
effects, respectively. To obtain an unbiased estimate of the sig-
nal power spectrum, the systematic effects and noise properties
of the map have to be understood and modeled.

Similarly to the auto-power spectrum, we can define a cross-
power spectrum between two maps to be the covariance of
Fourier coefficients of the two. It can be written as

Ci j(k) =
Vvox

Nvox

〈
Re{ f ↘

i
(k) f j(k)}

〉
, (3)

where fi and f j represent Fourier coefficients of two different
maps i and j. The cross-power spectrum reduces to the auto-
power spectrum if the two maps i and j are chosen to be identical.

As opposed to the auto-power spectrum, a cross-power spec-
trum will only be sensitive to correlated common modes between
the two maps. Independent noise and independent systematic
effects will therefore be canceled out and we can decompose the
cross-spectrum as

Cij(k) = PCO(k) +Ci j,common(k), (4)

where Ci j,common(k) represents the cross-spectrum contribution
from some common systematic effect between the two maps.

We can now see a powerful property of the cross-spectrum: if
we can choose two maps with independent noise properties and
statistically unique systematic effects, giving Ci j,common(k) = 0,
the cross-power spectrum will yield an unbiased estimator for
the signal power spectrum PCO(k).

This is the main property that the FPXS developed by Ihle
et al. (2022) is built to exploit. Because the COMAP Pathfinder
measures the sky with 19 feeds, each with its own receiver
signal chain, the maps from different detectors will have inde-
pendent noise properties. Additionally, several systematic effects
are believed to be unique to each feed, or specific group of
feeds. Therefore, a cross-spectrum between two detector maps
will not be biased by the noise contribution of the detectors or
feed-specific systematic contamination.

In this work, rather than cross-correlating individual feeds,
we instead cross-correlate groups of feeds. In particular, we
group feeds by their shared first down-conversion (DCM1) local

1 We note that technically PCO(k) in this notation would include con-
tributions from both cosmic CO and all other astrophysical components
with non-trivial frequency structure that are not subtracted out by the
low-level data analysis steps, e.g., potential interloper line emission.
However, for CO(1–0) at z = 2–3 there are very few, if any, inter-
loper lines, apart from a ↑10% contamination from CO(2–1) at z = 6–8
(Breysse et al. 2022; Chung et al. 2024b) that could be picked up, and
we therefore use a CO-only notation.

oscillator (Lamb et al. 2022). Table 1 shows the feeds that are
grouped together in a given “feed group”.

The reason for this change is that some of the systematic
effects uncovered with the improved sensitivity of the current
data volume are correlated with the DCM1 feed groups as
has been shown by Lunde et al. (2024). Applying the origi-
nal FPXS, involving cross-correlation of feeds from the same
feed group, would not have been effective in canceling such sys-
tematic effects since they are common-mode for a given feed
group.

Instead, by grouping all feeds in a given feed group together,
detectors from the same feed group are never cross-correlated
when computing the average feed group pseudo-cross-power
spectra (FGPXS). This effectively cancels the systematic effects
that are common to each feed group, while retaining the CO
signal. Additionally, grouping together detectors in this way pro-
duces effective detector maps that have more sky overlap. Thus,
when cross-correlating these maps we obtain better constraints
on large-scale power spectrum modes and less mode-mixing
due to a larger cross-map footprint. The result from a lower
degree of mode mixing is also a lower amount of large-scale
systematic effects that can leak into the small- and intermediate-
scale power. This is especially important, as we know from
Lunde et al. (2024) that our most dominant systematic effects
are large-scale modes in the maps.

After splitting the data into feeds or feed groups, we split
the data additionally into halves, each with independent sys-
tematic effect contributions, such as high or low elevation, as
was done by Ihle et al. (2022). This further eliminates unwanted
contributions to the cross-spectrum.

However, even though the FGPXS is slightly more robust to
systematic effects, this comes at the price of a slight decrease in
sensitivity. The expected loss in sensitivity when using FGPXS
as opposed to FPXS should in theory follow the upper limit
found by Ihle et al. (2022):

ε
Nsplit,Nfeed

C(k) ≃
√

1
1 → 1

Nsplit

√
1

1 → 1
Nfeed

εP(k) (5)

Nsplit=2
=

√
2

1 → 1
Nfeed

εP(k), (6)

where the uncertainty of a cross-spectrum, εNsplit,Nfeed

C(k) , is given
by the number of cross-correlated data splits and feeds, Nsplit
and Nfeed, compared to the optimal sensitivity, εP(k), one can
obtain when using all available data in an auto-power spectrum.
To incorporate the effects of both cross-correlating feeds and an
additional cross-variable on the total sensitivity we have gener-
alized Eq. (14) of Ihle et al. (2022) to obtain Eq. (5). Because
we use the same elevation split as Ihle et al. (2022), splitting the
data into high or low elevation, the Nsplit dependency of Eq. (5)
reduces to the

⇐
2 loss in sensitivity in Eq. (6).

To give some intuition on Eq. (5), we show a grid of pos-
sible feed group and elevation split combinations in Fig. 1.
Equation (6) can be obtained by using a grid like the one seen
in Fig. 1 from the ratio between the total number of split combi-
nations (i.e. the optimal auto-spectrum sensitivity εP) and the
number of all cross-combinations that do not constitute auto-
combinations between feeds or elevations (respectively dark and
light gray shading). From this we should expect there to be a loss
in sensitivity in the FGPXS compared to FPXS of ↑12% – that
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Fig. 1. Example grid of possible feed group (FG1–4) and elevation
(high and low) split combinations. Combinations with dark and light
gray shading, respectively, represent auto-feed group and auto-elevation
combinations that are not used in the final averaged FGPXS. The cross-
combinations containing examples of a 2D cross-spectrum contribute
to the final average FGPXS as neither identical feed groups, nor eleva-
tions, are crossed.

is by, respectively, inserting values for the number Nfeed of feed
groups, Nfeed = 4, and all individual feeds, Nfeed = 19, in Eq. (6)
and comparing the results2.

Nevertheless, we conservatively cluster feeds into the afore-
mentioned feed groups to avoid systematic effect contamination,
at the price of a minor loss in sensitivity. Apart from the rea-
sons stated above, there is in principle no difference between
the FPXS and FGPXS algorithmically; for instance, it would be
trivial to group the feeds in a different configuration if that were
found to be advantageous in the future for some reason. We can
thus describe the two methods using the same algorithmic rep-
resentation shown in the following. We can write the main steps
of the FGPXS algorithmically as follows:
1. Split the data into two halves A and B. As was done by

Ihle et al. (2022), we chose elevation as the main cross-
correlation variable to eliminate potential sidelobe pickup
from the ground.

2. For parts A and B respectively make maps of each feed group
i. We denote these by, for example, mA2 for a map of part A

with feed group 2.
3. For each combination of feed groups i and j, and data splits

A and B, compute cross-power spectra.
4. Compute a noise-weighted average FGPXS of all the result-

ing Nfeedgroup⇒ (Nfeedgroup→1) (with Nfeedgroup = 4 when using
feed groups and Nfeedgroup = 19 if computing the ES FPXS)
individual FGPXS that do not involve the same detector or

2 We note that this number in practice tends to be a little larger because
we exclude auto-combinations between feed(-groups) and these contain
the largest fraction of the optimal total auto-spectrum sensitivity due to
better overlapping cross-sky maps.

elevation:

C(k) =

∑
Ai!Bj

CAi B j
(k)

ε2
CAi B j

(k)

∑
Ai!Bj

1
ε2

CAi B j

(k)

, (7)

with a corresponding uncertainty of

εC(k) =
1

√∑
Ai!Bj

1
ε2

CAi B j

(k)

. (8)

This is what we refer to as the mean feed group pseudo-
cross-power spectrum (FGPXS) or feed-feed pseudo-cross-
power spectrum (FPXS), if (respectively) feed groups or
feeds are used as effective detectors.

In Fig. 1, we illustrate a grid of possible feed group and elevation
combinations used for an average FGPXS. Those shaded dark
and light gray represent auto-feed and auto-elevation combina-
tions (respectively). The combinations that cross neither feed
groups nor elevations, indicated with examples of 2D FGPXS
combinations, are used in the final average FGPXS in Eq. (7).

Due to the non-uniform coverage of our sky fields, as well as
a non-trivial survey footprint (see Lunde et al. 2024, for exam-
ples of maps), the maps are weighted prior to computing their
Fourier coefficients. We use the same weighting scheme as Ihle
et al. (2022), given for a cross-power spectrum by

wAiBj
⇑ 1
ωAi
ωBj

, (9)

where ωYx
represents the uncertainty estimate in each voxel of a

feed group and elevation split map, mYx
. These weights are then

applied to the map, m̃i = wimi, before power spectrum estimation
with the Fourier coefficients f̃i(k) = F {wimi} in Eq. (3). Regions
outside the map footprints are assigned zero weights. The power
spectra of these weighted maps are commonly referred to as
pseudo power spectra (Hivon et al. 2002). The pseudo power
spectra are a biased power spectrum estimator because differ-
ent Fourier modes become coupled via the applied weights (see
Hivon et al. 2002; Leung et al. 2022, for details on mode mix-
ing). It should be noted that we use P̃(k) to denote pseudo spectra
in the later results sections, but we use the notation P(k) (without
the tilde) in the methods sections as most of the methodology is
equivalently written for unbiased and pseudo spectra. A detailed
discussion of the COMAP-specific mode mixing can be found in
Fig. 1 and Appendix D of Ihle et al. (2022), which shows that
the effect is ⇓20% over our k-range. Reversing the mode-mixing
will thus be left as a future exercise and is beyond the scope of
this work.

2.2. The binned power spectrum estimator

As COMAP produces line intensity maps spanning three-
dimensional redshift-space volumes, the resulting power spectra
also span three-dimensional Fourier-space volumes. It can, how-
ever, be easier to work with a power spectrum spherically
averaged down to one dimension. For the spherically averaged
power spectrum to contain all relevant information in the full
three-dimensional power spectrum, the emission field is tech-
nically required to remain statistically isotropic on large scales
and stationary across the mapped redshift range. This is not
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strictly known to be true for the CO emission field. Cosmic
star-formation, especially dust-obscured star-formation history
traced in the infrared, is poorly constrained in our targeted red-
shift range of z = 2.4–3.4 (see Madau & Dickinson 2014, for a
review of cosmic star-formation history). As a consequence, the
extent to which the mapped CO emission field is stationary is
largely unknown. The spherically averaged power spectrum of a
dynamic field will not be sensitive to changes in the CO emis-
sion across cosmic time, but it will measure the time-averaged
properties of the targeted CO structures. However, the distinc-
tion is moot for the current COMAP signal-to-noise ratio (S/N),
as no clear CO excess is observed in the power spectra. Thus we
present the spherically averaged, 1D power spectrum as our main
science product.

Additionally, in practice, the angular and the redshift axes
are observed in fundamentally different ways, and the low-level
filtering applied to the data (Lunde et al. 2024) as well as red-
shift space distortions and line-broadening (Chung et al. 2021)
can affect the signal and sensitivity differently along each axis.
Therefore, the angular and line-of-sight dimensions are conve-
nient to separate, and we bin the 3D power spectrum C(k), with
k = (kx, ky, kz), into both a cylindrical and spherically averaged
power spectrum. The former of these conserves the structures
perpendicular and parallel to the line-of-sight by only merging
the two angular axes

ki = (k⇔, k↖) =
(√

k2
x
+ k2
y, kz

)
. (10)

Meanwhile, the latter will average the 3D power spectrum into
1D bins of the form

ki =
√

k2
x
+ k2
y + k2

z
. (11)

The binned cylindrically averaged power spectrum estimator
will then become

C(k) ↙ Cki
=

Vvox

NvoxNmodes

∑

k∝ki

〈
Re{ f ↘1 (k) f2(k)}〉 , (12)

where the number of Fourier modes in bin ki is given as Nmodes.
The equation is completely analogous when binning to the spher-
ically averaged power spectrum. We henceforth refer to the
cylindrically and spherically averaged power spectrum estima-
tors as “2D” and “1D” due to the number of axes needed to
display them, but note that they still represent averages of a 3D
density field.

The bin edges are chosen to cover the scales to which
COMAP is most sensitive and correspond to those used in the
COMAP ES power spectra (Ihle et al. 2022), but due to our large
increase in sensitivity and better understanding of the origin of
correlations on large angular scales we conservatively excise all
perpendicular scales k⇔ ↭ 0.1 Mpc→1 for this publication. On
these scales, we are dominated by sub-optimal cross-map over-
lap that results in poor constraining power of the large-scale
structure as well as the possibility of large-scale residual sys-
tematic effect leakage through mode mixing into the small-scale
power spectrum modes (see Lunde et al. 2024, for examples of
our map-domain systematic effects). In the future, we aim to
recover the large scales at k⇔ ↭ 0.1 Mpc→1. Lastly, we also mask
the bins corresponding to the highest k⇔ and k↖ used by Ihle
et al. (2022) to prevent issues with aliasing near the Nyquist fre-
quency of the two respective dimensions: k

Nyquist
⇔ ↙ 1.22 Mpc→1

and k
Nyquist
↖ ↙ 0.74 Mpc→1.

2.3. Uncertainty estimation from randomized null maps

In order to compute the mean FGPXS and its errors, as is shown
in Eqs. (7) and (8), we need the power spectrum uncertainties
for each feed group and elevation cross-combination, ε2

CAi B j

(k).
This can be done via two basic approaches: simulations and
data-driven methods. Here, we first detail some problems with
a simulation-based approach used previously in COMAP ES
(Ihle et al. 2022) and subsequently argue for why a data-driven
approach was chosen in this work.

In COMAP ES, Ihle et al. (2022) chose a simple simu-
lation approach where the power spectrum uncertainties were
computed from an ensemble of simple white noise maps,
mnoise,i ↑ N(0,ω), drawn from a zero-mean Gaussian distribu-
tion N with the voxel uncertainties ω. These were then propa-
gated to the power spectrum level. The main advantage of this
approach is its computational efficiency. However, it can only
reflect the white noise level within the map, while residual cor-
related noise and the effect of the pipeline filters on the noise will
not be contained in the uncertainty from these simple white noise
maps (see, for instance, the power spectral density (PSD) of TOD
in Fig. 9 of Lunde et al. 2024, for an illustration of the noise
properties of the filtered data). The simplified simulations proved
an adequate method given the sensitivity of our ES data. With
the increased sensitivity achieved at the end of S2, obtaining
suitable power spectrum errors, εCk , through simulations would
require the sampling of noise from the TOD domain (ideally
with additional ground-up modeling of all contributing system-
atic effects), propagating it all the way through the low-level
pipeline (Lunde et al. 2024) up to the power spectrum. However,
this would be computationally expensive because the low-level
pipeline filters would have to be re-run for each ensemble, and
require significant additional data modeling.

Given the drawbacks of both the white noise and a poten-
tial TOD-level simulation-based approach, a data-driven method
was instead chosen for this work as it represents a relatively
computationally inexpensive method of estimating the power
spectrum uncertainties that automatically reflects all the prop-
erties of the data. In particular, we draw from the simple idea
that we can cancel the signal and systematic effects in a sub-
traction between data-half maps while leaving the correct noise
properties. In our case, we estimate εCk by what we refer to as
an ensemble of randomized null difference (RND) maps.

The first step in the RND calculation is to divide the set of
all scans in the data into two randomized halves, A and B, from
which we subsequently make maps mRND

A,i and mRND
B,i . This is done

for all random split realizations i. Both mRND
A,i and mRND

B,i should
contain the same signal, and due to the randomization of the
splits also the same systematic effects. Hence we can cancel both
the signal and systematic effects by computing the difference
between the two maps;

∆mRND
i
=

mRND
A,i → mRND

B,i

2
. (13)

The difference maps ∆mRND
i

now optimally capture the white
and correlated noise properties and biases (from low-level filters,
the instrumental beam, etc.) of the real maps, but are without any
of the signal or systematic effects. As such they reflect the true
properties of the data to a high degree.

Finally, to obtain the uncertainty of the power spectrum εCk

we need to compute the FGPXS of each difference map ∆mRND
i

.
From the resulting ensemble of such feed group cross-spectra,
C

RND
∆mi

(k), we can compute the uncertainties εRND(k) by taking

A336, page 5 of 19



Stutzer, N.-O., et al.: A&A, 691, A336 (2024)

the standard deviation over the ensemble. These can then be used
when co-adding together feed group spectra to obtain the final
mean FGPXS as is explained in Eqs. (7) and (8).

3. Power spectrum null tests

With the increased effective COMAP data volume and the result-
ing increased sensitivity comes the need for more effective null
tests to ensure the data quality of our final power spectra.

As we explain in this section, the null tests devised in this
work are based on difference maps in a similar way to the
RND method used for uncertainty estimation described earlier
in Sect. 2.3, except we are now splitting the maps on meaningful
parameters instead of randomly. The goal then becomes finding
null variables (e.g. high or low humidity or left or right moving
scans; see Table C.2 for a list of all chosen variables) that cor-
relate to systematic effects in one of the null variable halves by
which we split the data.

We can write the difference map of some null variable j as

∆mnull
j
=

mA, j → mB, j

2
, (14)

where the maps mA, j and mB, j represent the maps of the two
halves of the data respectively. If the chosen null variable cor-
relates to a systematic effect, the difference map ∆mnull

j
will

contain the systematic effect but cancel the signal. The differ-
ence maps can then be used to perform a null test, with the
null hypothesis being that the null maps are consistent with
the general noise properties of the maps. The associated voxel
uncertainty of the null map is then given by

ωnull
∆mj
=

√
ω2

mA, j
+ ω2

mB, j

2
, (15)

for uncertainties ωmA, j and ωmB, j of the maps mA, j and mB, j

respectively.
For each of the null variables j we then take the difference

between the two maps as is described by Eqs. (14) and (15).
As we use a cross-elevation FGPXS we must compute a differ-
ence map for both high and low elevation. The data are therefore
split into four parts, two elevation ranges and two null variables
halves, where we subtract across the latter in the map domain and
cross-correlate the resulting null maps across the former using
the FGPXS method described earlier. With the set of resulting
null test FGPXS C

ki

∆mj

we can perform a ϖ2-test, with a null
hypothesis that the difference maps are consistent with noise,
by first computing

ϖ2
null, j =

∑

ki



C

ki

∆mj

→ µki

∆m j

ε
C

ki

∆m j




2

=
∑

ki




C
ki

∆mj

ε
C

ki

∆m j




2

, (16)

with the expectation value of the null FGPXS µki

∆mj

= 0 under the
null hypothesis. Here ε

C
ki

∆m j

is the uncertainty of the null FGPXS

C
ki

∆mj

in bin ki for null variable j that is estimated using the RND
method described earlier in Sect. 2.3.

Thereafter we can compute the probability-to-exceed (PTE)
that quantifies the probability of obtaining a value ϖ2

null, j or
higher. The PTE is defined as

PTE(ϖ2) = 1 → CDF(ϖ2), (17)

where for a given probability distribution function P(ϖ2) of the
ϖ2

null, j values the corresponding cumulative distribution function
is denoted as CDF(ϖ2).

In our case, P(ϖ2) does not follow the usual analytical ϖ2-
distribution because the noise properties of the FGPXS are not
completely known analytically (see Watts et al. 2020; Nadarajah
& Pogány 2016; Gaunt 2019, for some examples of how cross-
spectrum noise properties can look). We thus compute the PTEs
numerically by using an ensemble of RND maps equivalent to
those we already use for estimating uncertainties as these will
perfectly reflect the noise properties and biases in the data, as
well as obey the null hypothesis. For each separate processing
run – over fields, fast- and slow-moving azimuth data – we com-
pute 244 RND maps, of which we use 61 for power spectrum
uncertainty estimation and the remaining 183 for measuring the
numerical ϖ2-distribution.

4. Transfer functions

As is described by Foss et al. (2022) and Ihle et al. (2022) the
COMAP maps are not unbiased as the low-level filtering of the
data, the binning of the data into voxels, and the finite resolution
of the telescope beam will attenuate the signal in the maps. In
this section, we explain how we de-bias our power spectrum esti-
mates using transfer functions for each of the main effects that
result in signal loss. The beam and voxel window smoothing of
the signal is corrected using analytically computed transfer func-
tions, while the low-level filtering attenuation is quantified using
simulations. Details on how each transfer function is estimated
are discussed by Lunde et al. (2024).

When performing a power spectrum analysis of our maps, as
is described in Sect. 2, we obtain an estimate of the signal that
is biased by several different effects. To see how the signal is
biased we can write the FGPXS signal estimator as

Ck = T (k)PCO
k = T f (k)Tb(k⇔)Tp(k⇔)Tϱ(k↖)PCO

k , (18)

where the transfer function T (k) is the product of the filter trans-
fer function T f (k), the beam smoothing transfer function Tb(k⇔)
as well as the pixel and spectral channel windows, Tp(k⇔) and
Tϱ(k↖). The transfer function can be written in this multiplicative
form in the Fourier domain because the low-level filtering and
the smoothing of small-scale structures due to the instrumental
beam and voxel window of the map grid can all (approximately)
be expressed as a convolution in map domain. In Fig. 2 we
show the full transfer function product T (k), while the individ-
ual transfer function elements are shown in detail in Sect. 6. of
Lunde et al. (2024).

Using our transfer function estimate we can de-bias the
FGPXS by deconvolution;

P
CO
k =

Ck

T (k)
, (19)

with the uncertainties of the signal estimator being affected in a
similar manner,

εCO
Pk
=
εCk

T (k)
, (20)

becoming large whenever the transfer function T (k) becomes
small.
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Fig. 2. Full power spectrum transfer function used to account for the sig-
nal losses due to the low-level filtering pipeline, the instrumental beam
smoothing, and the voxel window of the maps (see Lunde et al. 2024,
for details on each individual transfer function). Thin green contours
indicate the bin edges of the (1D) spherically averaged FGPXS.

5. Power spectrum results

In this section, we present the main power spectrum results of
this paper. The raw data going into the power spectra are filtered,
calibrated, and binned into maps after a set of data selection steps
that remove scans that are likely contaminated by systematic
effects. This is described in detail by Lunde et al. (2024).

As one of the main lessons learned from COMAP ES was
to employ only CES scans, and no longer use a Lissajous scan-
ning strategy, the data presented here consist only of CES data
(Foss et al. 2022; Ihle et al. 2022). Specifically, we include all
data obtained up to November 2023, both the ES (Season 1) CES
data as well as all data gathered in S2. The data volume obtained
in S2 is, as has been explained by Lunde et al. (2024), effectively
around eight times larger than the Season 1 CES data after data
selection. In addition, the ES analysis of Season 1 data excluded
several detectors that were either offline or excluded due to clear
signs of systematic excess in reduced ϖ2-tests or in visual inspec-
tions of feed cross-spectra. We are able to include these in the
S2 analysis because all feeds were functioning during S2 and
the map-domain PCA described in Lunde et al. (2024) strongly
suppresses detector-specific systematic effects.

We note that in the ES analysis Ihle et al. (2022) removed
feed-feed cross-spectra both through a reduced ϖ2-test, and man-
ual inspection of misbehaving feed combinations. Due to better
low-level data processing, we were able to remove all data-driven
cuts in the power spectrum domain, with the increased set of
null tests since ES working as an additional safeguard against
systematic effects (see Sect. 6 for discussion of null test results).

Lastly, in Appendix D, we show a simple end-to-end sig-
nal injection test as a qualitative test of our pipeline’s ability
to recover a known signal’s amplitude within the estimated
experimental errors and power spectrum transfer function.

5.1. The cylindrically averaged power spectrum result

In Fig. 3, we show the cylindrically averaged (2D) mean FGPXS
for all three fields separately, as well as in combination. The
figure also shows the sensitivity per (k⇔, k↖)-bin as well as the
FGPXS in units of the sensitivity.

When looking at the 2D FGPXS in Fig. 3 we note that the
noise blows up on small scales, particularly so in the angular
direction, due to the COMAP transfer function seen in Fig. 2
(Lunde et al. 2024). However, we see no obvious patterns in the
2D FGPXS that would indicate a systematic effect. In fact, the
spectra resemble white noise.

As was mentioned earlier, in Sect. 2.2, we want to avoid
issues with poorly constrained large-scale modes, strong mode
mixing, and possible residual large-scale systematic effects. We
mitigate these issues by excluding 2D bins at k⇔ < 0.1 Mpc→1.
An example of spurious fluctuations induced by poor overlap
can be seen in the COMAP ES cylindrically averaged FPXS of
Field 1 (see Ihle et al. 2022, noting that Field 1 is especially
susceptible to poor detector overlap due to its position at decli-
nation zero) as correlated structures along constant k⇔ at scales
k⇔ < 0.1 Mpc→1. These correlations have since been understood
to originate from sub-optimal detector overlap, and are pushed
to larger scales due to a larger sky overlap when computing
cross-spectra between feed groups instead of individual feeds.
In interim estimates we found the average of the maximum cor-
relations between a bin and all the others to be around 15% at
scales k⇔ ≃ 0.1 Mpc→1, while the correlations at k⇔ ⇓ 0.1 Mpc→1

are somewhere in the 30–70% regime. Improved modeling of
these correlations will be the aim of future work.

5.2. The spherically averaged power spectrum result

As interpreting the 2D cylindrically averaged FGPXS can be
somewhat unintuitive we can bin the spectra into 1D by perform-
ing a full spherical averaging. This is done as is described in
Sect. 2.2, in which the 1D bin-edges are indicated as thin green
contours in Fig. 3. When doing so we obtain the spherically
averaged FGPXS for the three fields, as well as the combination
thereof, as is seen in Fig. 4.

As was discussed in Sect. 5.1, we excluded scales k⇔ <
0.1 Mpc→1 from the power spectrum analysis to avoid issues
with poor cross-map overlap, mode mixing and large correlations
between large scale bins. Therefore, Fig. 4 only shows FGPXS
data points on scales k > 0.1 Mpc→1. Similar to the discussion in
Sect. 5.1, we estimate the average of the maximum correlation
between a 1D bin and all the others, on scales k > 0.1 Mpc→1,
to be ↭ 10% after excluding the large k⇔ scales and performing
the spherical averaging. Given this ↭ 10% level, we shall assume
for Season 2 analyses downstream that the spherically averaged
1D FPGXS bins are approximately uncorrelated. As with the 2D
FGPXS discussed in Sect. 5.1, we intend to improve the exact
modeling of these correlations in future work.

When looking at Fig. 4 we note that Fields 2 and 3 have the
highest sensitivity, while Field 1 has around 50% larger errors
than the two other fields. This is because, of the three COMAP
fields, Field 1 is most affected by the low-level data cuts (see
Lunde et al. 2024), and due to its location at zero declination, is
particularly susceptible to poor detector overlap. In addition, by
rejecting poorly overlapping detector combinations, which are
also the least sensitive, we prevent the resulting strong mode
mixing and potential consequent leakage of systematic effects
into smaller scales at the cost of a relatively minimal loss in
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Fig. 3. Cylindrically averaged (2D) feed group pseudo-cross-spectra. Columns show, from left to right, the full spectra, the corresponding 1ε
uncertainty, and the ratio between the two. Rows show, from top to bottom, Fields 1, 2, 3, and all three combined. The approximate angular scale,
assuming the central COMAP redshift at z = 2.9, corresponding to each k⇔ is shown as a twin axis on the upper row of plots. Thin green contours
indicate the bin edges of the (1D) spherically averaged FGPXS.
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Fig. 4. Spherically averaged FGPXS with 1ε uncertainties for Fields 1,
2 and 3 (orange, red and blue respectively) as well as the combination
of the three (black) in units µK2 Mpc2 (upper panel) and in units of the
1ε power spectrum uncertainties (lower panel). The data points have
been slightly offset from their true k-position to increase readability
(see Table B.1 for an overview over bin centers, FGPXS values, and
uncertainties).

sensitivity. As a consequence, we keep 2/3 of the feed group
cross-spectra of Field 1 in the analysis.

As we can see from Fig. 4, the cross-spectra are largely con-
sistent with zero to within 2ε in most bins. However, perhaps
the most notable feature is the high power in the second and
most sensitive k-bin, at 0.12 Mpc→1 < k < 0.18 Mpc→1, which
is respectively at around 2.3ε and 3ε significance above zero
for Fields 1 and 2. Meanwhile, for Field 3 the same bin is con-
sistent with zero power. When combining the three fields, the
co-added data point in the second k-bin has a value that is 2.7ε
away from zero. For each of the spherically averaged FGPXS
of the three fields, we compute their ϖ2 PTE to check their
constancy with zero power. In doing so, we obtain PTEs of,
respectively, 33.2%, 19.5%, and 82.7% for Fields 1–3. The field-
combined spherically averaged FGPXS results in a 34% PTE.
As for the null tests, the PTE is estimated from the numeri-
cal RND ϖ2 ensemble. While the combined 1D ↑2.7ε power
in 0.12 Mpc→1 < k < 0.18 Mpc→1 bin is interesting, we do not
consider it a statistically significant excess given the estimated
PTEs. Thus, we shall have to wait for future analyses, and more
data, to answer definitively whether this excess is simply noise
or not.

Although we do not consider the field-combined 2.7ε point
statistically significant, the agreement between two of the three
fields is interesting to note. As Fields 1 and 2 are quite different
in terms of their path across the sky as it is seen from the tele-
scope (Field 1 being a zero declination field while Field 2 is at
a declination of 52.30↗; see Foss et al. (2022) for details on the
fields) they also are expected to have some independent system-
atic effects. However, Fields 2 and 3 are more alike and would
be expected to share certain systematic effects.

5.3. Comparison to COMAP Early Science and COPSS

Having computed the spherically and field-averaged FGPXS
from the data we can compare it to the previous COMAP release

as well as the CO Power Spectrum Survey (COPSS), the only
other comparable CO(1–0) LIM survey in the literature with
published data (Keating et al. 2016; Kovetz et al. 2017, 2019;
Bernal & Kovetz 2022). This is illustrated in Fig. 5 where
the field-averaged FGPXS is plotted together with the COMAP
ES constant-elevation-scan FPXS of Ihle et al. (2022) and the
individual COPSS data points from Keating et al. (2016).

The first thing we notice when considering Fig. 5 is the dra-
matic reduction in the uncertainty of the current measurement
compared to that from our ES phase (Ihle et al. 2022). Compared
to the Ihle et al. (2022) FPXS the current level of sensitivity has
increased by a factor ↑6–8 across our six most sensitive bins
at 0.09 Mpc→1 < k < 0.73 Mpc→1. This illustrates the significant
increase in the effective data volume by around a factor of eight.
Even though the low-level data selection procedure detailed by
Lunde et al. (2024) is somewhat more strict than the one in
COMAP ES (Foss et al. 2022; Ihle et al. 2022), this is more
than compensated by the lack of data cuts in the power spectrum
domain, resulting in a significant increase in sensitivity overall.
In other words, we have demonstrated that uncertainties in the
power spectra integrate down in accordance with expectations
for noise-dominated data.

The two highest k-bins have somewhat larger errors in the
current result compared to the COMAP ES spectrum. This is due
to a combination of the analytical beam transfer function now
applied and a stricter 2D k-space mask. The beam transfer func-
tion now applied is somewhat more strict than the numerically
computed one of Ihle et al. (2022) on scales closer to the Nyquist
limit in the angular direction. Additionally, to avoid problems
with aliasing we have masked the outer-most bins in both k↖ and
k⇔. As a result, the outer-most 1D k-bins contain a lower number
of samples than they would have for the same 1D bins of Ihle
et al. (2022).

The COPSS power spectrum estimate (Keating et al. 2016)
primarily covers scales smaller than COMAP, but the two exper-
iments overlap at 0.3 Mpc→1 ↭ k ↭ 1.0 Mpc→1, where they are
largely consistent with each other. The only noteworthy disagree-
ment between COPSS and the field-combined FGPXS is a mild
↑2.5ε tension in terms of the combined error between the two
power spectrum estimates at k ↑ 0.6 Mpc→1. As we can see from
Fig. 5 this point of mild tension coincides with one of the two
COPSS points in which they reported a 2.5ε excess above zero.

Albeit with large uncertainties, we see that compared to
COPSS and COMAP ES the updated COMAP data points clus-
ter significantly closer to, and are consistent with, the two
brightest models that were not already excluded in ES (Chung
et al. 2022), namely the COMAP fiducial model3 and the Li-
Keating model of Keating et al. (2020). For more discussion
of the consistency of COPSS with the current COMAP result,
including modeling implications, we refer the interested reader
to Chung et al. (2024a).

When comparing the power spectrum sensitivity of COMAP
to that of COPSS, we must take into account the smaller k-bins
in the COPSS analysis. Although the two experiments have a
certain region of overlap in k-space, the different bin sizes of
COPSS and COMAP result in a different intrinsic within-bin
variance. To mitigate this effect we can define the normalized
sensitivity ςk = εk

⇐
∆Vk, where ∆Vk is the volume of a spher-

ical k-shell defined by the bin k in k-space. Two bins with the
same value for ςk would have the same sensitivity, εk, if they

3 A double power-law model relating halo masses in cosmological sim-
ulations to CO luminosities; see specifically “UM+COLDz+COPSS” in
Table 1 of Chung et al. (2022) for their fiducial model definition.
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Fig. 5. Detailed overview of our field-averaged FGPXS, as well as other datasets and some selected models from the literature. Upper panel:
spherically averaged FGPXS with 1ε uncertainties for the field-combined data presented in this paper (black), the COMAP ES field-averaged
FPXS (blue; Ihle et al. 2022), and the COPSS power spectrum (orange; Keating et al. 2016). Lower panel: Corresponding power spectra divided
by their respective 1ε uncertainty. Inset: zoom-in of the COMAP data points and two comparable models from the literature, namely the fiducial
second season COMAP model (Chung et al. 2022) and the Li-Keating model Li et al. (2016); Keating et al. (2020) model. None of the models
includes any line-broadening discussed by Chung et al. (2021). Our data points and those of COMAP ES have been slightly offset from their true
k-position to increase readability (see Table B.1 for an overview over bin centers, FGPXS values and uncertainties).

were binned to a standardized bin size. In other words, ςk traces
the underlying continuous sensitivity of each experiment and k-
scale, and as a result, the normalized sensitivity across k-bins
and surveys becomes comparable. We illustrate the normalized
sensitivity, ςk, in Fig. 6 for all data points shown in Fig. 5.
The figure nicely illustrates the scales to which COMAP and
COPSS are most sensitive. We see that COMAP is most sensi-
tive on large scales at 0.1 Mpc→1 < k < 0.3 Mpc→1, while COPSS
is most sensitive on small scales, 0.5 Mpc→1 < k < 1.0 Mpc→1,
where the COMAP beam starts to dominate. However, the cur-
rent FGPXS result has a peak sensitivity increase of around a
factor of eight and ten compared to COMAP ES and COPSS
respectively (see Table A.1 for a detailed list of exact normal-
ized sensitivity improvements). This improvement in relative
sensitivity compared to COPSS and COMAP ES is expected
to increase further as the COMAP instrument gathers more
data, and illustrates our ability to remove systematic effects to
below the noise level and integrate the noise of the incoming
data. In fact, as COPSS to-date remains the only comparable
CO(1–0) LIM experiment with published data, COMAP cur-
rently provides the most sensitive CO(1–0) LIM constraints in
the field.

5.4. Upper limits on the power spectrum

Given the factors of, respectively, eight and ten times the sen-
sitivity of our power spectrum result compared to the COMAP
ES and COPSS data, it is interesting to consider the upper limits
(UL) at 95% confidence on a non-zero CO(1–0) power spectrum

that can be derived from the data points. These are shown in
Fig. 7 for the spherically and field-averaged COMAP FGPXS,
the COMAP ES (Ihle et al. 2022) data points as well as the
COPSS (Keating et al. 2016) power spectrum estimate. As we
are at the level of sensitivity where it becomes more informative
to look at the ULs per k-bin we only consider the ULs derived per
k-bin in this work. We show only bin-wise derived ULs from the
COMAP ES (Ihle et al. 2022) and COPSS (Keating et al. 2016)
data to facilitate a direct comparison to our result. All ULs are
computed under the assumption that the astrophysical CO signal
must be positive. For comparison, two of the closest models from
the literature are included in the plot; the COMAP fiducial model
from Chung et al. (2022) and the Li-Keating model – a version
of the Li et al. (2016) model from Keating et al. (2020). While
the 0.12 Mpc→1 < k < 0.18 Mpc→1 FGPXS bin has a 2.7ε excess
above zero, we still present it as a 95% upper limit in Fig. 7 as
we do not consider the excess statistically significant.

As in Fig. 6, the ULs we present in Fig. 7 reflect k-
regions in which each survey is most sensitive. The 95%
ULs of this work and those derived from COMAP ES (Ihle
et al. 2022) are most constraining in the six most sensitive
COMAP bins at 0.09 Mpc→1 < k < 0.73 Mpc→1. Meanwhile the
COPSS Keating et al. (2016) ULs are at their lowest around
0.7 Mpc→1 < k < 1.6 Mpc→1, beyond where the COMAP beam
and voxel window dominate and blow up the noise. Compared
to COMAP ES, we see a significant improvement in the current
ULs per k-bin. Specifically, each of our six most sensitive k-
bins can individually constrain kPCO(k) < 2400–4900 µK2Mpc2

at 95% confidence. The maximum improvement between the

A336, page 10 of 19



Stutzer, N.-O., et al.: A&A, 691, A336 (2024)

Fig. 6. Comparison of volume-normalized sensitivity, ςk, for the new
COMAP FGPXS (black); the previous COMAP ES FPXS (blue; Ihle
et al. 2022), and COPSS (orange; Keating et al. 2016). The deepest
COMAP k-bin is roughly an order of magnitude more sensitive than
the deepest COMAP ES and COPSS bins; for tabulated values, see
Table A.1.

two COMAP releases is around a factor 9 in the k ↑ 0.4 Mpc→1

bin. The UL estimates are sensitive to both the uncertainty of
a data point and its value. As the field-averaged FGPXS in the
k ↑ 0.4 Mpc→1 bin is around →1.5ε below zero the resulting UL
becomes the deepest even though according to Fig. 6 it is not the
most sensitive k-bin.

When comparing COPSS to COMAP in Fig. 7 we see that
where COMAP and COPSS have overlapping areas of high sen-
sitivity, at k < 0.8 Mpc→1, our 95% ULs are significantly lower
than those derived from the COPSS data points. This reflects the
increased sensitivity of the COMAP FGPXS estimate already
observed in Fig. 6. While none of the updated 95% ULs are
touching any of the two included models, a significantly larger
region of the power spectrum space is excluded compared to
only using the COPSS and COMAP ES limits, and our 95%
ULs are starting to encroach on the models that are not already
excluded, including the fiducial model (Chung et al. 2022).
Given our demonstrated ability to control systematic effects, and
the constraints already achieved, detection of a CO power spec-
trum close to the fiducial model is within reach with further
observations.

To conclude the discussion of the power spectrum results,
the current COMAP power spectrum is the state-of-the-art CO
LIM power spectrum dataset with around an order of magnitude
more sensitivity and comparatively lower ULs at 95% confidence
than COPSS and COMAP ES, the only comparable CO(1–0) line
intensity mapping datasets in the literature. The presented power
spectrum data points and resulting 95% ULs further exclude a
significant portion of the parameter space of possible CO models
and provide the current best direct 3D constraints on the CO(1–
0) power spectrum in the literature (Kovetz et al. 2017, 2019;
Bernal & Kovetz 2022).

6. Null test results

As was described in Sect. 3, we performed a set of null tests by
computing the average cross-elevation FGPXS of a set of differ-
ence maps. All null tests were performed with the same pipeline

and data selection as the power spectrum data shown in Sect. 5.
The differencing variables chosen for the null tests were selected
to test for correlations owing to a variety of potential systematic
effects, for example, environmental effects like weather, side-
lobe pickup, and pipeline diagnostics. In Table C.2 we show an
overview of the selected null variables.

In total, 312 effective null tests were performed: 26 null test
variables across three fields, cylindrical- and spherical-averaged
FGPXS as well as separate tests for fast and slow azimuth data
respectively. All of these can have different associated systematic
effects. For instance, given that the telescope’s scanning speed
was changed to a lower azimuthal speed in May 2022, the fast
and slow azimuth data (May 2022–November 2023) may have
very different mechanical vibrations that could cause spurious
patterns in the maps (see Lunde et al. 2024, for examples).

For each of the effective null tests, we calculate correspond-
ing ϖ2 PTEs, as is described in Sect. 3. We provide a detailed list
of these in Appendix C (see Table C.1).

Of the 312 null tests that we performed, the two lowest PTEs
were found to be ↑0.6%, which amounts to a random bino-
mial probability of 27%. Two of the null test ϖ2-values were
slightly outside the RND simulated ϖ2-distribution and we there-
fore only have a lower limit of 99.5% on their PTEs (because
the numerical resolution of the simulation-based approach is
1/183 ↙ 0.5%); this could be improved somewhat by using more
RND realizations.

The PTEs are expected to follow a uniform distribution. As a
consistency check, we therefore consider the PTE distributions
of the performed null tests. In Fig. 8 we show the combined
PTE distribution for all separately performed null tests (the cor-
responding distributions for each separately performed category
of null tests can be seen in Fig. C.1). To further gauge the uni-
formity of the histograms a Kolmogorov-Smirnov (KS) test was
performed to see if the null test ϖ2 PTEs were consistent with the
null hypothesis of being drawn from a uniform distribution. The
KS-test PTE-values are found in Table 2 (and also in the bottom
row of Table C.1 of null test ϖ2 PTEs in Appendix C). The lowest
KS-test PTE of 5.5%, corresponds to a binomial probability of
around 35% for the 12 performed KS tests. The maximum KS-
test PTE is around 79%, and the uniformity of the entire set of
PTEs is at the 58.7% level.

We can therefore conclude that all the null tests and PTE
uniformity tests have been passed and are consistent with the
expected instrumental noise. As we do not claim any detection
at this stage, the number and type of null tests performed are
more than enough to ensure a sufficient data quality for our upper
limits.

7. Conclusion

We have presented updated constraints on the cosmological
CO(1–0) power spectrum at 2.4 < z < 3.4, derived from the lat-
est COMAP observations. These measurements are based on a
novel mean-averaged feed group pseudo-cross-power spectrum
(FGPXS) estimator that is a slight modification of the feed-
feed pseudo-cross-power spectrum (FPXS) estimator used in the
COMAP ES analysis (Ihle et al. 2022). The difference between
these two estimators is that while the previous estimator evalu-
ated cross-correlations between any two detector feeds, the new
estimator evaluates cross-correlations between groups of feeds
defined by common first downconversion (DCM1) local oscil-
lators. The motivation for this is that feeds in these groups
share some common instrumental systematic effects, and the
new estimator is therefore more robust against such effects.

A336, page 11 of 19



Stutzer, N.-O., et al.: A&A, 691, A336 (2024)

Fig. 7. Comparison of upper 95% confidence
limits (ULs) on the CO power spectrum as
derived from the new COMAP dataset (black),
the COMAP ES analysis (blue; Ihle et al. 2022),
and from COPSS (orange; Keating et al. 2016).
The corresponding data points for each bin are
shown in Fig. 5, and all ULs are derived using
a positivity prior. The theoretical model predic-
tions indicated by green and purple lines are the
same as in Fig. 5. We note that because the data
point of the FGPXS and COMAP ES centered at
k = 1.27 Mpc→1 in Figs. 4 and 5 have large uncer-
tainties the corresponding 95% UL are outside
y-range of the figure.

Table 2. Kolmogorov–Smirnov uniformity test PTEs on the null test ϖ2 PTEs.

Kolmogorov–Smirnov probabilities-to-exceed (KS PTEs) [%]

Spherically averaged (1D) Cylindrically averaged (2D)
Field 1 Field 2 Field 3 Field 1 Field 2 Field 3

Combined Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow

58.7 5.5 9.7 16.9 24.1 41.8 48.9 32.1 8.4 61.9 78.7 70.9 72.0

Notes. Probabilities-to-exceed of Kolmogorov–Smirnov (KS PTEs) uniformity test of the null tests ϖ2 PTEs (found in Table C.1) in units percent
of all three Fields, fast- and slow-moving azimuth scans (denoted as “Fast” and “Slow”) as well as the spherically and cylindrically averaged
FGPXS.

Fig. 8. Normalized distribution, P(PTE), of ϖ2 PTEs for all null tests
performed on Fields 1–3 combined. The PTE values corresponding to
this histogram are found in Table C.1. The Kolmogorov-Smirnov (KS)
uniformity test on the samples contained in the illustrated distribution
was found to yield a KS PTE of 58.7% (see Table 2).

Quantitatively, all power spectrum bins were consistent with
zero up to ↑2ε, except for k ↑ 0.15 Mpc→1, which showed a
2–3ε excess in Fields 1 and 2; averaging over all three fields
yields an excess of 2.7ε. Despite this single-bin excess, the total
PTEs with respect to a zero-signal model are 33.2%, 19.5% and
82.7% for Fields 1–3, respectively, and 34% when combining
the data across fields. The resulting FGPXS spectrum derived
from the latest COMAP data is thus statistically consistent with
instrumental noise, and a detailed suite of null tests shows no
signs of residual systematic effects. At the same time, the slight
excess at k ↑ 0.15 Mpc→1 is noteworthy; it could just be a regular
noise fluctuation or the signature of some yet-to-be-discovered
systematic effect. However, it could also be a small first hint
of true cosmological CO fluctuations. More data are needed to
determine its true nature.

Comparing with previous results, we find that the new
COMAP power constraints are almost an order of magnitude
stronger than the previous ES results (Ihle et al. 2022). In addi-
tion, when considering the power spectrum data points alone,
the COPSS power spectrum (Keating et al. 2016) was found to
be mostly consistent with the COMAP FGPXS, with only a mild
↑2.5ε tension in one of the bins. The volume-normalized sensi-
tivity of the COMAP FGPXS was found to be around ten times
that of the COPSS power spectrum estimate when comparing the
respective most sensitive bins of the two experiments.

We developed a null test framework involving the difference
between half-data maps that are split under variables believed to
be associated with systematic effects. With the 26 split variables,
three fields, the cylindrically and spherically averaged FGPXS
as well as the fast- and slow-moving scans a total of 312 effec-
tive null tests were performed. Of these all passed within the
expected instrumental uncertainties, ensuring the quality of our
final data products.

To conclude, our power spectrum estimates and the resulting
95% upper limits provide the most sensitive constraints on cos-
mic CO emission at z ↑ 2–3 published to date and significantly
reduce the allowed parameter space of possible CO emission
models, the implications of which we explore further in the com-
panion work of Chung et al. (2024a). These results are a strong
demonstration of COMAP’s powerful capabilities and perfor-
mance in terms of systematic effect mitigation, and the filtered
data are still dominated by white noise even after three years
of integration. Regular operations are still ongoing, and the data
currently being gathered will put further pressure on possible CO
emission models.
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Appendix A: Normalized CO power spectrum

sensitivity

Table A.1 provides a comparison of the volume-normalized CO
power spectrum sensitivity for the new COMAP dataset with
those power spectra derived from COMAP ES and COPSS; these
are visualized in Fig. 6. The volume-normalized sensitivity is
defined as

ςk = εk


∆Vk, (A.1)

where εk is the uncertainty of a spherically averaged power
spectrum bin k with shell volume ∆Vk. This definition elimi-
nates the effect of within-bin variance at each k-bin and provides
a volume-independent measure that may be used to compare
sensitivities between non-overlapping power spectrum bins and
surveys. We see that the current COMAP power spectrum con-
straints reach a maximum sensitivity of one order of magnitude
higher than the most sensitive COPSS (Keating et al. 2016) and
COMAP ES (Ihle et al. 2022) bins. In addition, it is important
to note that the regimes of maximum sensitivity differ between
COMAP and COPSS, and this is due to their different instrumen-
tal designs and effective angular resolutions; COMAP is more
sensitive in the large-scale clustering regime, while COPSS is
more sensitive in the small-scale shot-noise regime.
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Table A.1. Normalized sensitivity in each COMAP and COPSS bin.

Survey
k-center

[Mpc→1
]

k-min

[Mpc→1
]

k-max

[Mpc→1
]

normalized sensitivity

ςk [103µK2Mpc3/2
]

ςmin
COPSS/ςk

This work

0.1 0.09 0.12 1.25 7.3
0.15 0.12 0.18 0.89 10.2
0.21 0.18 0.25 1.24 7.3
0.3 0.25 0.36 1.47 6.2
0.44 0.36 0.51 2.6 3.5
0.62 0.51 0.73 5.42 1.7
0.89 0.73 1.05 181.92 0.0499
1.27 1.05 1.5 9.3 ⇒ 106 9.7 ⇒ 10→7

COMAP ES

0.1 0.09 0.12 6.47 1.4
0.15 0.12 0.18 7.32 1.2
0.21 0.18 0.25 9.16 1.0
0.3 0.25 0.36 12.41 0.7
0.44 0.36 0.51 21.28 0.4
0.62 0.51 0.73 39.6 0.2
0.89 0.73 1.05 91.5 0.0993
1.27 1.05 1.5 28000 0.0003

COPSS bins

0.4 0.36 0.45 23.27 0.39
0.5 0.45 0.57 12.04 0.754
0.64 0.57 0.71 9.08 1.0
0.8 0.71 0.9 9.16 0.991
1.01 0.9 1.13 12.66 0.718
1.27 1.13 1.42 23.16 0.392
1.61 1.42 1.79 51.08 0.178
2.02 1.79 2.84 277.81 0.033
3.2 2.84 3.57 2060.78 0.004

Notes. Volume-normalized sensitivity, ςk, of each of our field-averaged power spectrum bins as well as the COPSS measurement (Keating et al.
2016). The normalized sensitivity ratio of COMAP (i.e., this work), COMAP ES (Ihle et al. 2022) and the individual COPSS bins relative to the
most sensitive COPSS bin (Keating et al. 2016) is given by ςmin

COPSS/ςk.

Appendix B: Power spectrum data point values

For the interested reader, we provide a list of power spectrum
values and uncertainties, kC̃(k) and kε

C̃(k) respectively, of the
spherically and field-averaged FGPXS data points seen in Fig. 5.
These can be found in Table B.1.

Table B.1. Overview of FGPXS bin values and uncertainties.

k-center
[Mpc→1]

kC̃(k)
[103µK2Mpc2]

kε
C̃(k)

[103µK2Mpc2]
0.1 . . . . . . . . . . . . 0.36 1.82
0.15 . . . . . . . . . . 2.9 1.09
0.21 . . . . . . . . . . 0.59 1.27
0.3 . . . . . . . . . . . . 1.19 1.26
0.44 . . . . . . . . . . →2.37 1.86
0.62 . . . . . . . . . . →2.48 3.24
0.89 . . . . . . . . . . 101.5 90.9
1.27 . . . . . . . . . . →5.05 ⇒ 105 3.9 ⇒ 106

Notes. Bin values and uncertainties (respectively in the last two
columns) of the spherically and field-averaged FGPXS corresponding
to our data points seen in Fig. 5.

Appendix C: Null test probabilities-to-exceed

In the following, we present a summary of the ϖ2 PTEs for
each of our effective 312 null tests performed. The PTEs are
found in Table C.1 and each null variable, and the corresponding
acronyms are explained in detail in Table C.2.

Table C.1 is structured as follows: each row shows a different
null variable in which the data was split in two, such as ambi-
ent temperature (ambt) or right- and left-moving azimuth sweeps
(azdr). The columns are grouped into a hierarchical structure,
as we performed null tests separately on spherically and cylin-
drically averaged FGPXS, for each field (Fields 1-3) as well as
for data that were gathered before and after May 2022 when the
scanning speed of the telescope was reduced. That is, because the
fast- and slow-moving azimuth scans may have different associ-
ated systematic effects from, for example, mechanical vibrations
in the telescope.

We present the distributions of PTEs of each separately
performed null test in Fig. C.1 (see Fig. 8 in Sect. 6 for
distribution of all null test PTEs considered jointly). As the dis-
tribution of PTEs is expected to be uniform we also performed
a Kolmogorov-Smirnov (KS) test to find how probable it is that
the PTE samples are drawn from a uniform distribution. These
are shown for each separate null test category in the very last row
of Table C.1 (and also in Table 2 in Sect. 6). For a discussion on
the null test results see Sect. 6.
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Table C.1. Detailed overview of null test ϖ2 PTEs.

ϖ2
probabilities-to-exceed [%]

Spherically averaged (1D) Cylindrically averaged (2D)

Field 1 Field 2 Field 3 Field 1 Field 2 Field 3

Null variable Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow Fast Slow

ambt . . . . . . . . 57 33 8 13 76 22 77 45 49 26 70 74
wind . . . . . . . . 43 17 46 29 83 40 77 7 45 26 17 87
wint . . . . . . . . 41 49 64 93 17 62 7 24 90 91 47 76
half . . . . . . . . . 86 16 21 6 14 43 49 3 87 39 25 68
odde . . . . . . . . 86 48 38 91 38 66 54 14 9 91 95 43
dayn . . . . . . . . 61 87 86 77 29 11 73 7 76 79 3 79

dtmp . . . . . . . . 25 19 38 49 92
≃
99.5 (a) 14 27 36 83 27 42

hmty . . . . . . . . 95 52 98 70 51 17 90 41 81 79 29 44
pres . . . . . . . . . 52 92 32 23 35 76 9 43 2 99 61 20
wthr . . . . . . . . 69 79 67 37 38 28 37 15 45 62 63 68
sune . . . . . . . . 89 58 95 27 96 28 40 78 79 8 7 42
modi . . . . . . . . 34 46 16 27 72 48 83 51 88 42 90 37
sudi . . . . . . . . . 91 55 16 27 97 94 26 24 20 96 44 80
tsys . . . . . . . . . 26 42 33 93 17 28 9 88 61 44 54 93
fpoO . . . . . . . . 44 97 11 3 64 62 60 56 62 83 74 52
fpoI . . . . . . . . . 39 45 44 73 49 3 62 74 44 89 53 25
apoO. . . . . . . . 50 72 42 92 86 44 60 98 73 27 17 0.6

apoI . . . . . . . . 68 58 87 71 67 25
≃
99.5 (a) 18 1 8 76 21

spoO. . . . . . . . 74 17 95 76 24 61 81 38 92 57 97 69
spoI . . . . . . . . . 51 9 37 27 70 37 96 58 57 13 11 11
npca . . . . . . . . 89 51 19 80 86 98 92 49 16 45 74 55
pcaa . . . . . . . . 58 30 64 60 97 19 35 67 27 42 32 24
s01f . . . . . . . . . 61 42 33 16 44 37 88 3 89 24 60 80
fk1f . . . . . . . . . 85 16 1 20 36 49 78 56 1 68 11 17
al1f . . . . . . . . . 30 14 50 16 83 62 81 48 90 67 49 39
azdr . . . . . . . . . 43 42 34 98 93 71 0.6 27 18 20 11 3
KS-test . . . . . 5.5 9.7 16.9 24.1 41.8 48.9 32.1 8.4 61.9 78.7 70.9 72.0

Notes. Null test ϖ2 PTEs in units percent. All tabulated PTE values, for all three Fields, fast- and slow-moving azimuth scans (denoted as “Fast”
and “Slow”), are numerically computed from the RND ensemble. The last row indicates the Kolmogorov-Smirnov (KS) uniformity test PTE. The
KS uniformity PTE of the entire table of PTEs is 58.7%.
(a) The ϖ2-value of this null test was slightly outside the simulated RND ϖ2-distribution and we hence only have a lower limit of 99.5% on the
numerical PTE as the numerical resolution of the simulated distribution is roughly 1/183 ↑ 0.5% from the RND ensemble size.
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Table C.2. Detailed overview and explanation of null test variables.

Null variable Explanation

ambt . . . . . . . . . . . . . . . . . . . . . Ambient temperature at telescope site, as recorded by a nearby weather station.
wind . . . . . . . . . . . . . . . . . . . . . Wind speed, as recorded by a nearby weather station.
wint . . . . . . . . . . . . . . . . . . . . . Winter/summer split, the time difference to the middle of winter (15th of January).
half . . . . . . . . . . . . . . . . . . . . . . Half-mission split, early versus late scans.
odde . . . . . . . . . . . . . . . . . . . . . Odd versus even scans.
dayn . . . . . . . . . . . . . . . . . . . . . Day/night split, time difference to 2 AM.
dtmp . . . . . . . . . . . . . . . . . . . . . Dew temperature, as recorded by a nearby weather station.
hmty . . . . . . . . . . . . . . . . . . . . . Humidity, as recorded by a nearby weather station.
pres . . . . . . . . . . . . . . . . . . . . . . Air pressure, as recorded by a nearby weather station.
wthr . . . . . . . . . . . . . . . . . . . . . Bad weather and cloud coverage, predicted by a neural network trained on the raw data.
sune . . . . . . . . . . . . . . . . . . . . . Sun elevation.
modi . . . . . . . . . . . . . . . . . . . . . Average angular distance from the center of the field to the moon during the scan.
sudi . . . . . . . . . . . . . . . . . . . . . . Average angular distance from the center of the field to the sun during the scan.
tsys . . . . . . . . . . . . . . . . . . . . . . Average system temperature, as measured by the vane calibration, during the scan.
fpo0 . . . . . . . . . . . . . . . . . . . . . fknee value of a 1/ f fit on the 0th-order 1/ f gain fluctuation filter coefficient. (a)

fpo1 . . . . . . . . . . . . . . . . . . . . . fknee value of a 1/ f fit on the 1st-order 1/ f gain fluctuation filter coefficient. (a)

apo0 . . . . . . . . . . . . . . . . . . . . . ϑ value of a 1/ f fit on the 0th-order 1/ f gain fluctuation filter coefficient. (a)

apo1 . . . . . . . . . . . . . . . . . . . . . ϑ value of a 1/ f fit on the 1st-order 1/ f gain fluctuation filter coefficient. (a)

spo0 . . . . . . . . . . . . . . . . . . . . . ε0 value of a 1/ f fit on the 0th-order 1/ f gain fluctuation filter coefficient. (a)

spo1 . . . . . . . . . . . . . . . . . . . . . ε0 value of a 1/ f fit on the 1th-order 1/ f gain fluctuation filter coefficient. (a)

npca . . . . . . . . . . . . . . . . . . . . . Number of PCA components subtracted in the TOD filtering pipeline.
pcaa . . . . . . . . . . . . . . . . . . . . . Average amplitude of the fitted PCA components in the TOD filtering pipeline.
s01f . . . . . . . . . . . . . . . . . . . . . . ε0 value of a 1/ f fit on the sideband-averaged time-domain data.
fk1f . . . . . . . . . . . . . . . . . . . . . . fknee value of a 1/ f fit on the sideband-averaged time-domain data.
al1f . . . . . . . . . . . . . . . . . . . . . . ϑ value of a 1/ f fit on the sideband-averaged time-domain data.
azdr . . . . . . . . . . . . . . . . . . . . . Scans split internally in left- vs right-moving pointing, in azimuth.

Notes. Explanation of the null test split variables. For all variables, we show the abbreviation used in Table C.1 and a more detailed explanation
of the null test variable (a)As part of the TOD filtering a first order polynomial is fitted across the frequency bands for each time-sample. The 0th-
and 1st-order polynomial components (as functions of time) tend to follow a 1/ f spectrum, and a fit is performed on their TOD power spectra. See
Lunde et al. (2024); Foss et al. (2022) for details.
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Fig. C.1. Normalized distribution, P(PTE), of ϖ2 PTEs separately for
all null tests performed on Field 1-3. The PTE values corresponding to
this histogram are found in Table C.1. The Kolmogorov-Smirnov (KS)
uniformity test results for the ϖ2-samples of each of the separate PTE
distributions can be found in Table 2 or the bottom row of Table C.1. The
individual histograms are slightly offset w.r.t. each other for increased
readability.
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Appendix D: A simple end-to-end signal injection

test

The same type of simulations used to estimate the filter transfer
function (see Sect. 4) can also be used to perform a rudimentary
end-to-end signal injection test to confirm the detectability of
signal given our transfer function estimate. The signal injection
pipeline is explained in more detail in Sect. 6.1 of Lunde et al.
(2024), and we here limit the scope to the application thereof.

As the signal and noise in the raw data are affected by
both the low-level analysis and instrumental effects described by
Lunde et al. (2024), an important question to answer is whether
we would be able to reconstruct the amplitude of an amplified
CO signal within the estimated uncertainties using the earlier
described FGPXS method. For instance, we know that several of
the PCA filters in the low-level pipeline detailed by Lunde et al.
(2024) can in principle act non-linearly if the CO S/N becomes
too high. One therefore has to verify that the filters remove equal
amounts of signal at any given k-mode of the map in the filter
transfer function estimation and for the actual signal estimation
from the data. Otherwise, the final signal estimate computed
obtained from the data would be biased.

We generate mock signal maps to use in this injection mech-
anism by applying the fiducial halo model to dark matter halos
simulated with the peak-patch technique (Bond & Myers 1996;
Stein et al. 2019). Furthermore, we use a raw COMAP data vol-
ume corresponding to all the fast-moving azimuth scans of Field
3. This roughly corresponds to the largest independently filtered
data volume or, in other words, the highest possible CO S/N. We
then boost the injected signal by a factor of three before inject-
ing it into the raw time stream to ensure the signal is detectable
above the instrumental noise. Subsequently, the TOD are filtered
and binned into maps using the pipeline described by Lunde
et al. (2024), before we compute the FGPXS signal estimate to
see whether the injected signal was successfully recovered. We
note that only one signal realization is used because these high-
realism mocks are expensive to produce. However, the test still
functions as a simple qualitative “sanity check” that the pipeline
works as intended. Future work will expand on this modest check
by including further signal realizations and COMAP fields.

The resulting mock FGPXS data points as well as the auto-
power spectrum of the input simulation can be seen in Fig. D.1.
We can clearly see a high-significance excess that appears con-
sistent with the power spectrum of the input signal within
the estimated error bars (which are estimated using the RND
methodology described in Sec. 2.3). The excess is large enough
to place the computed ϖ2-value of the mock data far outside the
computed RND ϖ2-distribution. Therefore, to assign a quantita-
tive value to the significance of this mock detection, we instead
use the simplified assumptions of approximately Gaussian uncer-
tainties. When doing so, we obtain an estimated ↙ 6ε detection
of non-zero power. Meanwhile, testing against the input signal
we get a 1.5ε significance away from the model, meaning we
recover the input signal within at most mild tension.

This exercise demonstrates that we can recover the input sig-
nal within the experimental errors, indicating that our pipeline,
the full transfer function, and error bar estimation work as
expected.

Fig. D.1. Example of the spherically averaged FGPXS (black points)
resulting from injecting a mock CO signal realization (blue input power
spectrum) of the (line-broadened) COMAP fiducial model (Chung et al.
2021, 2022) with a boost factor of three into all fast-moving azimuth
data of Field 3.

A336, page 19 of 19


	COMAP Pathfinder – Season 2 results
	1 Introduction
	2 Power spectrum methodology
	2.1 The feed group pseudo-cross-power spectrum
	2.2 The binned power spectrum estimator
	2.3 Uncertainty estimation from randomized null maps

	3 Power spectrum null tests
	4 Transfer functions
	5 Power spectrum results
	5.1 The cylindrically averaged power spectrum result
	5.2 The spherically averaged power spectrum result
	5.3 Comparison to COMAP Early Science and COPSS
	5.4 Upper limits on the power spectrum

	6 Null test results
	7 Conclusion
	Acknowledgements
	References
	Appendix A: Normalized CO power spectrum sensitivity
	Appendix B: Power spectrum data point values
	Appendix C: Null test probabilities-to-exceed
	Appendix D: A simple end-to-end signal injection test


