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ABSTRACT

The CO Mapping Array Project (COMAP) Pathfinder is performing line intensity mapping of CO emission to trace the distribution
of unresolved galaxies at redshift z ⇠ 3. We present an improved version of the COMAP data processing pipeline and apply it to
the first two Seasons of observations. This analysis improves on the COMAP Early Science (ES) results in several key aspects. On
the observational side, all second season scans were made in constant-elevation mode, after noting that the previous Lissajous scans
were associated with increased systematic errors; those scans accounted for 50% of the total Season 1 data volume. In addition, all
new observations were restricted to an elevation range of 35–65 degrees to minimize sidelobe ground pickup. On the data processing
side, more e↵ective data cleaning in both the time and map domain allowed us to eliminate all data-driven power spectrum-based
cuts. This increases the overall data retention and reduces the risk of signal subtraction bias. However, due to the increased sensitivity,
two new pointing-correlated systematic errors have emerged, and we introduced a new map-domain PCA filter to suppress these
errors. Subtracting only five out of 256 PCA modes, we find that the standard deviation of the cleaned maps decreases by 67%
on large angular scales, and after applying this filter, the maps appear consistent with instrumental noise. Combining all of these
improvements, we find that each hour of raw Season 2 observations yields on average 3.2 times more cleaned data compared to the ES
analysis. Combining this with the increase in raw observational hours, the e↵ective amount of data available for high-level analysis is
a factor of eight higher than in the ES analysis. The resulting maps have reached an uncertainty of 25–50 µK per voxel, providing by
far the strongest constraints on cosmological CO line emission published to date.

Key words. methods: data analysis – methods: observational – galaxies: high-redshift – di↵use radiation –
radio lines: galaxies

1. Introduction

Line intensity mapping (LIM) is an emerging observational tech-
nique in which the integrated spectral line emission from many

? Corresponding author; j.g.s.lunde@astro.uio.no

unresolved galaxies is mapped in 3D as a tracer of the cosmolog-
ical large-scale structure (e.g., Kovetz et al. 2017, 2019). It rep-
resents a promising and complementary cosmological probe to,
say, galaxy surveys and cosmic microwave background (CMB)
observations. In particular, LIM o↵ers the potential to survey
vast cosmological volumes at high redshift in a manner that is
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sensitive to emission from the entire galaxy population, not just
the brightest objects, as is the case for high-redshift galaxy sur-
veys (Bernal & Kovetz 2022). The most widely studied emis-
sion line for LIM purposes is the 21-cm line of neutral hydrogen
(Loeb & Zaldarriaga 2004; Bandura et al. 2014; Santos et al.
2017), which is the most abundant element in the universe,
but other high-frequency emission lines also appear promis-
ing (Korngut et al. 2018; Pullen et al. 2023; Akeson et al. 2019;
Crites et al. 2014; CCAT-Prime Collaboration 2022; Vieira et al.
2020; Karkare et al. 2022; Ade et al. 2020), in particular due to
their di↵erent and complementary physical origin as well as
lower levels of astrophysical confusion, Galactic foregrounds,
and radio frequency interference.

The CO Mapping Array Project (COMAP) represents one
example of such an alternative approach and uses CO as the
tracer species (see, e.g., Lidz et al. 2011; Pullen et al. 2013;
Breysse et al. 2014). The COMAP Pathfinder instrument con-
sists of a 19-feed1 focal plane array observing at 26–34 GHz
(Lamb et al. 2022) deployed on a 10.4 m Cassegrain telescope.
This frequency range corresponds to a redshift of z ⇠ 2.4–
3.4 for the CO(1–0) line, a period during the Epoch of Galaxy
Assembly (Li et al. 2016). The Pathfinder instrument started
observing in 2019, and COMAP has previously published results
from the first year of data, named Season 1, in the COMAP
Early Science (ES) publications (Cleary et al. 2022; Lamb et al.
2022; Foss et al. 2022; Ihle et al. 2022; Chung et al. 2022;
Rennie et al. 2022; Breysse et al. 2022; Dunne et al. 2024).
These ES results provided the tightest constraints on the CO
power spectrum in the clustering regime published to date. Since
the release of the ES results, the COMAP Pathfinder instrument
has continued to observe while also implementing many impor-
tant lessons learned from Season 1, both in terms of observing
strategy and data processing methodology. Combining the obser-
vations from both Seasons 1 and 2 and improving the data anal-
ysis procedure, the new results improve upon the ES analysis
by almost an order of magnitude in terms of power spectrum
sensitivity.

This paper is the first of the COMAP Season 2 paper series,
and here we present the low-level data analysis pipeline and
map-level results derived from the full COMAP dataset as of
the end of Season 2 (November 2023). This work builds on
the corresponding Season 1 e↵ort as summarized by Ihle et al.
(2022). The Season 2 power spectrum and null-test results are
presented by Stutzer et al. (2024), while Chung et al. (2024) dis-
cuss their cosmological implications in terms of structure forma-
tion constraints. In parallel with the Season 2 CO observations,
the COMAP Pathfinder continues to survey the Galactic plane,
with the latest results focusing on the Lambda Orionis region
(Harper et al. 2024).

The remainder of this paper is structured as follows: In
Sect. 2 we summarize the changes made to the observational
strategy in Season 2 and provide an overview of the current sta-
tus of data collection and accumulated volume. In Sect. 3 we
summarize our time-ordered data (TOD) pipeline with a focus
on the changes since the ES analysis. In Sect. 4 we study the sta-
tistical properties of the spectral maps produced by this pipeline
while paying particular attention to our new map-domain princi-
pal component analysis (PCA) filtering and the systematic errors
that this filter is designed to mitigate. In Sect. 5 we present
the current data selection methodology and discuss the resulting
improvements in terms of data retention in the time, map, and
power spectrum domains. In Sect. 6 we present updated trans-

1 We refer to a full detector chain as a “feed.”

fer function estimates and discuss their generality with respect
to non-linear filtering. Finally, we summarize and conclude in
Sect. 7.

2. Data collection and observing strategy

This section first briefly summarizes the COMAP instrument
and low-level data collection, which is extensively explored in
Lamb et al. (2022), before exploring the changes made to the
telescope and observing strategy between Seasons 1 and 2.

2.1. Instrument overview

The COMAP Pathfinder consists of a 19-feed 26–34 GHz spec-
trometer focal plane array fielded on a 10.4 m Cassegrain tele-
scope located at the Owens Valley Radio Observatory (OVRO).
At the central observing frequency of 30 GHz, the telescope has
a beam full width at half maximum (FWHM) of 4.50. The 8 GHz-
wide RF signal is shifted to 2–10 GHz, and then split into two
4 GHz bands. The signals from each band are passed on to a sep-
arate “ROACH-2” field-programmable gate array spectrometer,
which further separates the 4 GHz-wide bands into 2 GHz-wide
sidebands. The spectrometer outputs 1024 frequency channels
for each of the four sidebands, for a spectral resolution of
⇠2 MHz.

The telescope is also equipped with a vane of microwave-
absorbing material, which is temporarily moved into the field of
view of the entire feed array before and after each hour-long
“observation” to provide absolute calibration of the observed
signal in temperature units. Each observation is stored in a single
HDF5 file containing both the spectrometer output and various
housekeeping data, and these files are referred to as “Level 1”
data. Each observation of one of the three target fields is divided
into ten to fifteen numbered “scans,” during which the telescope
oscillates in azimuth at constant elevation, repointing ahead of
the field to start a new scan each time the field has drifted through
the scanning pattern.

2.2. Status of observations

Table 1 shows the raw on-sky integration time per season.
COMAP Season 1 included 5200 on-sky observation hours col-
lected from May 2019 to August 2020, while the second sea-
son included 12 300 hours collected between November 2020
and November 2023. In these publications, we present results
based on a total on-sky integration time of 17 500 hours, a 3.4-
fold increase compared to the ES publications.

Several changes were made to the data collection and observ-
ing strategy before and during Season 2. Most of these changes
came as direct responses to important lessons learned during
the Season 1 data analysis and the aim was to increase the net
mapping speed, although one was necessary due to mechanical
telescope issues during Season 2. Overall, these changes were
highly successful, and Season 2 has a much higher data retention
than Season 1, which we discuss in Sect. 5. The most important
changes in the Season 2 observing strategy are the following:
1. Observations were restricted to an elevation range of 35�–65�

in order to reduce the impact of ground pick-up via the tele-
scope’s sidelobe response. As discussed by Ihle et al. (2022),
the gradient of the ground pickup changes quickly at both
lower and higher elevations, and the corresponding observa-
tions were therefore discarded in the Season 1 analysis; in Sea-
son 2 we avoid these problematic elevations altogether.
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Table 1. Overview of COMAP observation season definitions.

Name Dates Observing hours Notes

Season 1 05/2019–08/2020 5200 Data published in Early Science. Contains 50% Lissajous, 50% CES
Season 2a 11/2020–04/2022 7900 100% CES from this point forward
Season 2b 05/2022–11/2023 4400 After azimuth drive slowdown and sampler frequency change

Notes. Season 2 was split into two sub-seasons, respectively denoted 2a and 2b, as the telescope scanning speed was significantly reduced in May
2022 for mechanical reasons.

2. Similarly, Lissajous scans were abandoned in favor of solely
using constant elevation scans (CES), since Foss et al. (2022)
found elevation-dependent systematic errors associated with
the former.

3. The two frequency detector sub-bands, that previously
covered disjoint ranges of 26–30 GHz and 30–34 GHz
(Lamb et al. 2022), were widened slightly, such that they
now overlap; this mitigates data loss due to aliasing near the
band edges.

4. The acceleration of the azimuth drive was halved to increase
the longevity of the drive mechanism, which started to show
evidence of mechanical wear.

The latter two changes were only implemented in the second half
of Season 2, and they mark the beginning of what we refer to as
Season 2b. These changes are now discussed in greater detail.

2.3. Restricting the elevation range

Sidelobe pickup of the ground is a potentially worrisome sys-
tematic error for COMAP, especially since it is likely to be
pointing-correlated. Even though ground pickup is primarily
correlated with pointing in alt-azimuthal coordinates, the daily
repeating pointing pattern of COMAP means there will still be
a strong correlation in equatorial coordinates. Analysis of Sea-
son 1 observations (Foss et al. 2022), that ranged from ⇠30� to
⇠75� elevation, showed pointing-correlated systematic errors at
the highest and lowest elevations.

To study this e↵ect in greater detail, we developed a set
of antenna beam pattern simulations using GRASP2 for the
COMAP telescope (Lamb et al. 2022), and these showed the
presence of four sidelobes resulting from the four secondary
support legs (SSL), with each sidelobe o↵set by ⇠65� from
the pointing center. These simulations were convolved with the
horizon elevation profile at the telescope site, and the results
from these calculations are shown in Fig. 1. This figure clearly
shows that Fields 2 and 3 experience a sharp change in ground
pickup around 65�–70� elevation, as one SSL sidelobe transi-
tions between ground and sky. At very low elevations the ground
contribution also varies rapidly for all fields as two of the other
SSL sidelobes approach the horizon. While the low-level TOD
pipeline removes the absolute signal o↵set per scan, gradients
in the sidelobe pickup over the duration of a scan still lead to
signal contamination. We have therefore restricted our observa-
tions to the elevation range of 35�–65�, where one SSL sidelobe
remains pointed at the ground, and the other three SSL side-
lobes are safely pointing at the sky, leaving us with a nearly
constant ground pickup. This change incurred little loss in obser-
vational e�ciency, as almost all allocated observational time
outside the new range could be reallocated to other fields within
the range.

2 https://www.ticra.com/software/grasp/

2.4. Abandoning Lissajous scans

The first season of observations contained an even distribu-
tion of Lissajous and constant elevation scans (CES), with the
aim of exploring the strengths and weaknesses of each. The
main strength of the Lissajous scanning technique is that it
provides excellent cross-linking by observing each pixel from
many angles, which is useful for suppressing correlated noise
with a destriper or maximum likelihood mapmaker. The main
drawback of this observing mode is that the telescope elevation
varies during a single scan, resulting in varying atmosphere and
ground pick-up contributions. In contrast, the telescope elevation
remains fixed during a CES, producing a simpler pick-up contri-
bution although with somewhat worse cross-linking properties.

When analyzing the Season 1 power spectra resulting from
each of the two observing modes, Ihle et al. (2022) find that the
Lissajous data both produce a highly significant power spec-
trum, especially on larger scales and fail key null tests. The
CES scans, on the other hand, produce a power spectrum con-
sistent with zero, and pass the same null tests. We therefore con-
clude that the significance in the Lissajous power spectrum is
due to residual systematic errors. Additionally, the main advan-
tage of Lissajous scanning, namely better cross-linking, prove
virtually irrelevant because of a particular feature of the COMAP
instrument: because all frequency channels in a single COMAP
sideband are processed through the same backend, the instru-
mental 1/ f gain fluctuations are extremely tightly correlated
across each sideband. As a result, the low-level TOD pipeline
is capable of simultaneously removing virtually all correlated
noise from both gain and atmosphere by common-mode subtrac-
tion (see Sect. 3.5). At our current sensitivity levels, we therefore
find no need to employ a complex mapmaking algorithm that
fully exploits cross-linking observations, but we can rather use
a computationally faster binned mapmaker (Foss et al. 2022).
After Season 1 we therefore concluded that there was no strong
motivation to continue with Lissajous scans, and in Season 2 we
employ solely CES.

2.5. Widening of frequency bands for aliasing mitigation

As discussed in detail by Lamb et al. (2022), the COMAP instru-
ment exhibits a small but non-negligible level of signal aliasing
near the edge of each sideband. In the Season 1 analysis, this
was accounted for simply by excluding the channels with alias-
ing power from other channels suppressed by less than 15 dB.
In total, 8% of the total COMAP bandwidth is lost due to this
e↵ect, and this leads to gaps in the middle of the COMAP fre-
quency range. Both the origin of the problem and its ultimate
solution were known before the Season 1 observations started
(Lamb et al. 2022), but this took time to implement.

Band-pass filters applied after the first downconversion and
low-pass filters applied after the second downconversion allow
significant power above the Nyquist frequency into the sampler.
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Fig. 1. Approximate sidelobe ground pickup as a function of az and el
pointing, simulated by convolving a beam (simulated using GRASP)
with the horizon profile (shown in gray) at the telescope site. The paths
of the three fields across the sky, in half-hour intervals, are shown, as
well as the Season 2 elevation limits at 35�–65�. These limits ensure
minimal ground pickup gradient across the field paths.

This is then aliased into the 0–2.0 GHz observing baseband,
requiring the contaminated channels to be excised. By increas-
ing the sampling frequency from 4.000 GHz to 4.250 GHz, the
Nyquist frequency is raised to 2.125 GHz, closer to the filter
edges. Not only is the amount of aliased power reduced, it is also
folded into frequencies above the nominal width of each 2 GHz
observing band. The existing samplers were able to accommo-
date the higher clock speed, but the field-programmable gate
array (FPGA) code had to be carefully tuned to reliably process
the data. This was finally implemented from the start of Sea-
son 2b, and the aliased power is now shifted outside the nom-
inal range of each band, such that the a↵ected channels can be
discarded without any loss in frequency coverage. The number
of channels across the total frequency range is still 4096, so
the “native” Season 2b channels are 2.075 MHz wide, up from
1.953 MHz.

2.6. Azimuth drive slowdown

It became clear during Season 2 that the performance of the tele-
scope’s azimuth drives had degraded, owing to wear and tear
on the drive mechanisms caused by the telescope’s high accel-
erations. In order to protect the drives from damage, the analog
acceleration limit was reduced until the stress was judged by its
audible signature to be acceptable. Though not carefully quanti-
fied, this was about an order of magnitude change, and the min-
imum time for a scan is therefore about a factor of three less.
Additionally, the maximum velocity was reduced by a factor of
two in the drive software.

Figure 2 illustrates the old (Season 2a) and new (Season 2b)
pointing patterns, with the new pattern being slightly wider and
around four times slower. The new realized pointing pattern is
now also closer to sinusoidal since the drives are better able to
’keep up’ with the sinusoidal pattern of the commanded position,
due to the slower velocity.

With the new actually sinusoidal scanning pattern, the inte-
gration time is less uniform across each field in each observa-
tion, as the telescope spends more time pointing near the edges
of the field than it previously did. However, co-adding across the
observing season does smooth out the uneven integration time,
based on the receiver field of view (each of the 19 feeds observes
the sky at a position that is o↵set from the others) and field rota-
tion (the telescope observes the fields at di↵erent angles as they
move across the sky).

Fig. 2. Comparison of the faster pointing pattern from a Season 2a scan,
and the slower pointing pattern of a Season 2b scan. Both patterns show
a 5.5-minute constant elevation scan, as the field drifts across.

2.7. Data storage

With 19 feeds, 4096 native frequency channels, and a sampling
rate of about 50 samples/s, COMAP collects 56 GB/hour of raw
24-bit integer data, stored losslessly as 32-bit floats. The full
set of these raw data (combined with telescope housekeeping),
named “Level 1”, currently span about 800 TB. These data are
then filtered by our TOD pipeline into the so-called Level 2 data
(Foss et al. 2022), in which a key step is to co-add the native
frequency channels to 31.125 MHz width. These downsampled
channels form the basis of the higher-level map-making and
power spectrum algorithms. The total amount of Level 2 data is
about 50 TB. Both Level 1 and Level 2 files are now losslessly
compressed using the GZIP algorithm (Gailly & Adler 2023),
that achieves average compression factors of 2.4 and 1.4, respec-
tively, reducing the e↵ective sizes of the two datasets to 330 TB
and 35 TB. The lower compression factor of the filtered data
is expected because the filtering leaves the data much closer to
white noise, and therefore with a much higher entropy.

The files are stored in the HDF5 format (Koranne 2011),
which allows seamless integration of compression. Both com-
pression and decompression happen automatically when writing
to and reading from each file. GZIP is also a relatively fast com-
pression algorithm, taking roughly one hour to compress each
hour of COMAP data on a typical single CPU core. Decompres-
sion takes a few minutes per hour of data, which is an insignifi-
cant proportion of the total pipeline runtime. HDF5 also allows
for arbitrary chunking of datasets before compression. Chunking
aids in optimizing performance since the Level 1 files consist of
entire observations (1 hour), but the current TOD pipeline imple-
mentation (see Sect. 3.9) reads only individual scans of 5 min-
utes each. We partition the data into chunks of 1-minute inter-
vals to minimize redundant decompression when accessing sin-
gle scans. Other compression algorithms have been tested, and
some, such as lzma3, achieve up to a 20% higher compression
factor on our data. They are, however, also much slower at both
compression and decompression, and they interface less easily
with HDF5.

3. The COMAP TOD pipeline

This section lays out the COMAP time-domain pipeline, named
l2gen, focusing on the changes from the first generation

3 https://tukaani.org/xz/
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level2
datal2gen

accept_mod

tod2comap maps comap2fpsxmapPCA power
spectra

level1
data

cleaned
maps

Fig. 3. Flowchart of the COMAP pipeline, from raw Level1 data to final power spectra. Data products are shown as darker boxes and pipeline code
as lighter arrows. l2gen performs the time-domain filtering, turning raw data into cleaned Level 2 files. accept_mod performs scan-level data
selection on cleaned data. tod2comap is a simple binned mapmaker. mapPCA performs a map-level PCA filtering. Finally, comap2fpsx calculates
power spectra as described by Stutzer et al. (2024).

pipeline, which is described in detail by Foss et al. (2022). The
pipeline has been entirely re-implemented (see Sect. 3.9) for per-
formance and maintainability reasons but remains mathemati-
cally similar. Figure 3 shows a flowchart of the entire COMAP
pipeline, of which l2gen is the first step.

The purpose of the TOD pipeline is to convert raw detec-
tor readout (Level 1 files) into calibrated time-domain data
(Level 2 files) while performing two key operations: sub-
stantially reducing correlated noise and systematic errors, and
calibrating to brightness temperature units. COMAP uses a filter-
and-bin pipeline, meaning that we perform as much data clean-
ing as possible in the time domain, before binning the data into
maps with naïve noise-weighting. This leaves us with a biased
pseudo-power spectrum, that can be corrected by estimating the
pipeline transfer function (Sect. 6).

The following sections explain the main filters in the TOD
pipeline. The normalization (Sec. 3.3), 1/ f filter (Sec. 3.5), cal-
ibration and downsampling (Sect. 3.8) steps remain unchanged
from the ES pipeline, and are briefly summarized for complete-
ness. We denote the data at di↵erent stages of the pipeline as
d

name
⌫,t , where the ⌫, t subscript indicates data with both frequency

and time dependence.

3.1. System temperature calculation

The first step of the pipeline is to calculate the system temper-
ature T

sys
⌫ of each channel in the TOD. At the beginning and

end of each observation, a calibration vane of known tempera-
ture is moved into the field of view of all feeds. The measured
power from this “hot load”, P

hot
⌫ , and the temperature of the vane,

T
hot, are interpolated between calibrations to the center of each

scan. Power from a “cold load”, P
cold
⌫ , is calculated as the aver-

age power of individual sky scans. The system temperature is
then calculated as (see Foss et al. 2022 for details)

T
sys
⌫ =

T
hot � T

CMB

P
hot
⌫ /P

cold
⌫ � 1

(1)

under the approximation that the ground, sky, and telescope
share the same temperature.

3.2. Pre-pipeline masking

In ES, l2gen performed all frequency channel masking toward
the end of the pipeline. While some masks are data-driven
(specifically driven by the filtered data), others are not. We now
apply the latter category of masks prior to the filters, to improve
the filtering e↵ectiveness. These are

– masking of channels that have consistently been found to be
correlated with systematic errors, and have been manually
flagged to always be masked;

– for data gathered before May 2022, masking of channels
with significant aliased power, as outlined in Sect. 2.5;

Fig. 4. Example of T
sys spike masking by running median. The system

temperature is shown in blue, the running median in orange, and the 5 K
cut above the running median in red. The T

sys values which are cut are
shown as a dashed instead of solid line.

– masking of channels with system temperature spikes, as out-
lined below.

The system noise temperature, T
sys
⌫ , for each feed’s receiver

chain has a series of spikes at specific frequencies, believed to
result from an interaction between the polarizers and the corru-
gated feed horn (Lamb et al. 2022). The spikes are known to be
associated with certain systematic errors, and the a↵ected fre-
quency channels are therefore masked out. The ES analysis used
a static system temperature threshold of 85 K for masking, but
the new version of l2gen applies a 400 channel-wide running
median kernel to the data and masks all frequencies with a noise
temperature of more than 5 K above the median. We repeat the
running median fit and threshold operation once on the masked
data, to reduce the impact of the spikes on the fit. The second
iteration uses a kernel width of 150 channels. The final running
median and threshold are illustrated in Fig. 4. As the system tem-
perature can vary quite a lot across the 4 GHz range, this method
fits the spikes themselves more tightly, while avoiding cutting
away regions of elevated but spike-free system temperature.

The spike frequencies vary from feed to feed, and we are
therefore not left with gaps in the redshift coverage of the final
3D maps. On average, we mask 6% of all frequency channels this
way. However, because the a↵ected channels are, by definition,
more noisy, this only results in a loss of 3% of the sensitivity.

3.3. Normalization

The first filtering step in the TOD pipeline is to normalize the
Level 1 data by dividing by a low-pass filtered version of the
data and subtracting 1. The filter can be written as

d
norm
⌫,t =

d
raw
⌫,t

hdrawi⌫
� 1, hdrawi⌫ = F �1{W · F {draw

⌫,t }},

W =

 
1 +

 
f

fknee

!↵!�1

, (2)

where F is the Fourier transform and F �1 is the inverse Fourier
transform, both performed on the time-dimension of the data,
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Fig. 5. Illustration of the e↵ect of TOD normalization and 1/ f filtering for a single feed and scan. The raw Level 1 data (left) are dominated
by frequency-dependent gain variations, that correspond to the instrumental bandpass. After normalization (middle), the signal is dominated by
common-mode gain fluctuations. Finally, after the 1/ f filter is applied (right), the common-mode 1/ f contribution has been suppressed, and the
data are dominated by white noise. The horizontal gray stripes indicate channels that were masked by the pipeline. All three stages happen before
absolute calibration, and the amplitudes are therefore given in arbitrary units.

and W is a low pass filter in the Fourier domain, with a spectral
slope ↵ = �4, and a knee frequency fknee = 0.01 Hz. This has the
e↵ect of removing all modes on 100 s timescales and longer. As
the COMAP telescope crosses the entire field in 5–20 seconds,
the normalization has minimal impact on the sky signal in the
scanning direction, but heavily suppresses the signal perpendic-
ular to the scanning direction, as the fields take 5–7 minutes to
drift across.

The filter is performed per frequency channel, and the pri-
mary purpose of the normalization is to remove the channel-
to-channel variations in the gain, making channels more
comparable. After applying this filter, the white noise level in
each channel becomes the same, and common-mode 1/ f gain
fluctuations become flat across frequency. As a secondary con-
sideration, the normalization also removes the most slowly vary-
ing atmospheric and gain fluctuations, on timescales greater than
100 s.

The implications of the filter become more obvious by stat-
ing an explicit data model. The raw detector signal can be
modeled by the radiometer equation as a product of gain and
brightness temperature, d

raw = g⌫,tT⌫,t, where both terms can in
theory vary freely. In practice, the LNA gain can be decomposed
into a mean time-independent part, and a multiplicative fluctua-
tion around this mean, such that we get g⌫,t = g⌫(1 + �gt), where
�gt is a small, frequency-independent term (often referred to as
1/ f gain noise). Because all frequencies are processed by the
same LNAs, these fluctuations become common-mode.

We can similarly decompose the brightness temperature into
a mean and fluctuation part. However, we can make no assump-
tion about the frequency-dependence of the fluctuation term, and
therefore simply write T⌫,t = T⌫ + �T⌫,t. Here, T⌫ is now the sys-
tem temperature, as described in Eq. (1), and �T⌫,t are compara-
tively small fluctuations around this temperature. Putting this all
together we get the data model

d
raw = g⌫,tT⌫,t = g⌫(1 + �gt)(T⌫ + �Tt)

= g⌫T⌫(1 + �gt + �Tnu,t/T⌫ + �gt�T⌫,t/T⌫) (3)
⇡ g⌫T⌫(1 + �gt + �T⌫,t/T⌫),

where we have used the assumption that both fluctuations terms
are small to approximate �gt�T⌫,t/T⌫ ⇡ 0.

Under this data model, the low-pass filtered data is assumed
to take the form hdrawi⌫ = g⌫T⌫, such that the normalization filter
has the e↵ect of transforming the data into normalized fluctua-
tions in gain and temperature around zero. Inserting Eq. (3) into

the filter as defined by Eq. (2), we get the normalized data

d
norm
⌫,t =

g⌫T⌫(1 + �gt + �T⌫,t/T⌫)
g⌫T⌫,t

� 1 = �gt + �T⌫,t/T⌫. (4)

Technically, we defined T⌫ and g⌫ to have no time-dependence,
but in the context of this filter, it makes sense to consider them
the temperature and gain terms that fluctuate more slowly than
⇠100 s timescales, as these are the timescales subtracted by this
filter.

The e↵ect of the filter can be seen in the first two panels of
Fig. 5, which shows the TOD of a single scan in 2D before and
after the normalization. Before the normalization, the frequency-
dependent gain dominates, and the time variations are invisible.
After normalization, the data in each channel fluctuates around
zero.

3.4. Azimuth filter

Next, we fit and subtract a linear function in azimuth, to reduce
the impact of pointing-correlated systematic errors, first and
foremost being ground pickup by the telescope sidelobes. This
filter can be written as

d
az
⌫,t = d

norm
⌫,t � a⌫ · azt, (5)

where a⌫ is fitted to the data per frequency, and azt is the azimuth
pointing of the telescope. Unlike in the ES pipeline, this filter
is now fitted independently for when the telescope is moving
eastward and westward, to mitigate some directional systematic
e↵ects we have seen.

In Season 1, we also employed Lissajous scans, meaning that
an elevation term was also present in this equation. As we now
only observe in constant elevation mode, this term falls away.

3.5. 1/ f gain fluctuation filter

After normalization, the data are dominated primarily by gain,
and secondarily by atmospheric fluctuations, and both are
strongly correlated on longer timescales. Although the normal-
ization suppresses power on all timescales longer than 100 sec-
onds, we observe that common-mode noise still dominates the
total noise budget down to ⇠1 s timescales.

To suppress this correlated noise, we apply a specific 1/ f

filter4 by exploiting the simple frequency behavior of the gain
4 The filter is referred to as the polynomial filter in our ES publications.
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and atmosphere fluctuations. After we have normalized the data,
the amplitude of the gain fluctuations is the same across all fre-
quency channels, although fluctuating in time, as we see from the
term �gt in Eq. (4). The atmospheric fluctuations will enter the
�T⌫,t term of Eq. (4). To model the atmosphere, we approximate
both the atmosphere and the system temperature T⌫ as linear
functions of frequency, such that the combined term �T⌫,t/T⌫ is
itself linear. To jointly remove the gain and atmosphere fluctua-
tions, we therefore fitted and subtracted a first-order polynomial
across frequency for every time step:

d
1/f
⌫,t = d

point
⌫,t � (c0

t + c
1
t · ⌫), (6)

where c
0
t and c

1
t are coe�cients fitted to the data each time step.

To ensure that both the atmosphere and the system temperature
are reasonably well approximated as linear in frequency, we fit
a separate linear polynomial to the 1024 channels of each of the
four 2 GHz sidebands.

This simple technique is remarkably e�cient at removing
1/ f noise, and we observe that the correlated noise is suppressed
by several orders of magnitude, after which white noise domi-
nates the uncertainty budget. This is illustrated in the last two
panels of Fig. 5. After the normalization, the signal is completely
dominated by common-mode 1/ f noise. After the 1/ f filter, the
correlated noise is e↵ectively suppressed, and we are left with
almost pure white noise, as can be seen in the right panel, and
further discussed in Sect. 3.10.

3.6. PCA filtering

Principal component analysis (PCA) is a common and powerful
technique for dimensionality reduction (Pearson 1901). Given
a data matrix m⌫,t, PCA produces an ordered basis w

k

t for the
columns of m⌫,t, called the principal components of m⌫,t. The
component amplitude can then be calculated by re-projecting the
components into the matrix, as a

k

⌫ = m⌫,t · wk

t . For our purposes,
m⌫,t is the TOD, with frequencies as rows, and time-samples as
columns. The ordering of the principal components w

k

t is such
that the earlier components capture as much of the variance in
the columns of m⌫,t as possible, and for any selected number of
components Ncomp, the following expression is minimized:

X

⌫,t

 
m⌫,t �

NcompX

k=1

a
k

⌫w
k

t

!2

. (7)

In other words, PCA provides a compressed version of m⌫,t,
that approximates m⌫,t as the sum of an ordered set of outer
products5

m⌫,t ⇡
NcompX

k=1

a
k

⌫w
k

t . (8)

PCA is often employed on a dataset where the rows are inter-
preted as di↵erent observations, and the columns are the multi-
dimensional features of these data. However, this is not a natural
interpretation for our purposes, and it makes more sense to sim-
ply look at PCA as a way of compressing a 2D matrix as a sum of

5 PCA has several equivalent interpretations and ways of solving for
the principal components. The principal components are, among other
things, the eigenvectors of the covariance matrix of m⌫,t. This is how we
introduced the PCA in our ES publications. It is, however, both a slow
way of solving for the PCA components in practice and not the best
interpretation for our purposes.

Fig. 6. Most significant component and amplitude of the all-feed PCA
filter applied on scan 3354205. The bottom plot shows the first PCA
component w

0
t , which is common to all feeds. The right plot shows the

corresponding amplitude a
0
⌫ for feed 6. The outer product of these two

plots is shown in the central image and is the quantity subtracted from
the TOD by the filter. As the filter is applied on normalized data, the
amplitudes are all unitless, and the colorbar limits are ±5 ⇥ 10�4, half
the range of those in Fig. 5.

outer products – we have no special distinction between columns
and rows, and could equivalently have solved for the PCA of the
transpose of m⌫,t, which would swap a⌫ and wt.

A PCA is often performed because one is interested in
keeping the leading components, as these contain much of
the information in the data. However, we subtract the leading
components, because many systematic errors naturally decom-
pose well into an outer product of a frequency vector and a time
vector, while the CO signal does not (and is very weak in a single
scan).

In practice, we solve for the leading principal components
using a singular value decomposition algorithm (Halko et al.
2011), and then calculate the amplitudes as stated above. The
Ncomp leading components are then subtracted from the TODs,
leaving us with the filtered data

d
PCA
⌫,t = m⌫,t �

NcompX

k=1

a
k

⌫w
k

t . (9)

The Season 2 COMAP pipeline employs two time-domain PCA
filters, one of which was present in ES. In the following subsec-
tion, we introduce both filters and then explain how to decide the
number of leading components, Ncomp, to subtract from the data.

Figure 6 shows an example of a strong component wt picked
up by this filter in the bottom panel, and the corresponding com-
ponent amplitude a⌫ for feed 6 in the right panel. The center
image shows the resulting full frequency- and time-dependent
outer product between the two functions, which is the quantity
subtracted from the TOD. The time-dependent component is in
this example strongly temporally correlated, and could be resid-
ual atmospheric fluctuations, that typically have 1/ f -behavior
with a steep frequency slope.

The process of calculating the principal components and sub-
tracting them from the data constitutes a non-linear operation on
the data. This has the advantage of being much more versatile
against systematic errors that are di�cult to model using linear
filters, but the disadvantage is a more complicated impact on the
CO signal itself. This is further discussed in Sect. 6.4, where our
analysis shows that the PCA filter behaves linearly with respect
to any su�ciently weak signal, and that, at the scan-level, all
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Fig. 7. Most significant component and amplitude of the per-feed PCA
filter applied on scan 3354205. The bottom plot shows the first PCA
component w

0
i

for feed 14, while the right plot shows the corresponding
amplitude a

0
i

for feed 14. The other product of the two quantities are
shown in the center plot, with colorbar limits of ±5 ⇥ 10�4.

plausible CO models (Chung et al. 2021) are su�ciently weak
by several orders of magnitude.

3.6.1. The all-feed PCA filter

The all-feed PCA filter, which was also present in the ES
pipeline, collapses the 19 feeds onto the frequency axis of the
matrix, producing a data matrix m⌫,t of the 1/ f -filtered data with
a shape of (Nfeed Nfreq,NTOD) = (19 ⇥ 4096, ⇠20 000) for a
scan with Nfeed feeds, Nfreq frequency channels, and NTOD time
samples. The PCA algorithm outlined above is then performed
on this matrix. Combining the feed and frequency dimensions
means that a feature in the data will primarily only be picked up
by the filter if it is common (in the TOD) across all 19 feeds.
This is primarily the case for any atmospheric contributions, and
potentially standing waves that originate from the optics com-
mon to all feeds. It is, however, certainly not the case for the CO
signal, which will be virtually una↵ected by this filter.

3.6.2. The per-feed PCA filter

The new per-feed PCA filter has been implemented to combat
systematic errors that vary from feed to feed. This filter employs
the PCA algorithm outlined above on each individual feed and is
performed on the output of the all-feed PCA filter. Additionally,
we found that downsampling the data matrix (using inverse vari-
ance noise weighing) by a factor of 16 in the frequency direction
before performing the PCA increased its ability to pick up struc-
tures in the data. The resulting data matrix m⌫,t gets the shape
(Nfreq/16,NTOD) = (256, ⇠ 20 000) for each feed. The down-
sampling is only used when solving for the time-domain com-
ponents wt, and the full data matrix is used when calculating the
frequency amplitudes, a⌫.

Targeting each feed individually makes us more susceptible
to CO signal loss, but the low signal-to-noise ratio (S/N), com-
bined with the fact that the CO signal cannot be naturally decom-
posed into an outer product, makes the impact on the CO signal
itself minimal. This filter appears to primarily remove compo-
nents consistent with standing waves from the individual optics
and electronics of each feed.

Figure 7 shows a typical strong component picked up by the
per-feed PCA filter for feed 14, similar to what was shown for

Fig. 8. Top: largest singular values of the all-feed and per-feed PCA
filters, divided by �, for a random selection of ten scans. PCA com-
ponents with relative values above one are removed from the data and
are marked with crosses in this plot. Bottom: number of PCA compo-
nents subtracted across all scans. At least two components are always
subtracted by the all-feed PCA filter.

the all-feed PCA filter in Fig. 6. The per-feed PCA filter typically
picks up somewhat weaker features than the all-feed PCA filter,
as it is applied after the all-feed PCA filter. The time-dependent
component in Figure 7 is noticably noisier than the equivalent
component Fig. 6, also owing to the fact that it is fit with the
data from 1 feed, as opposed to 19 for the all-feed filter. The
physical origin of the feature shown is unknown.

3.6.3. Number of components

In the ES pipeline, the number of PCA components was fixed at
four for the all-feed filter, and the per-feed filter did not exist. We
now dynamically determine the required number of components
for each filter, per scan. This allows us to use more components
when needed, removing more systematic errors, and fewer when
not needed, incurring a smaller loss of CO signal.

We subtract principal components until the components are
indistinguishable from white noise, that can be inferred from
the singular values of each component. Let � be the expectation
value of the largest singular value of a (N, P) Gaussian noise
matrix (see Appendix A for how this value is derived). We sub-
tract principal components until we reach a singular value below
�. However, for safe measure, we always subtract a minimum of
2 components for the all-feed PCA filter, as the signal impact of
this filter is minimal.

Figure 8 shows typical singular values, relative to �, for a
random selection of scans, and a histogram of the number of
components employed across all scans. The average number of
PCA components subtracted is 2.3 and 0.5 for the all-feed and
per-feed PCA, respectively; the most common number of com-
ponents subtracted is the minimum allowed in each case: two and
zero. The top part of the figure also demonstrates that there is a
sharp transition between the singular values of the components
that actually pick up meaningful features from the signal, and the
remaining noise components. For reference, the quite significant
components shown in Fig. 6 and Fig. 7 had singular value to �
ratios of 2.9 and 1.6, respectively.
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3.7. Data-inferred frequency masking

After the PCA filters, we perform dynamic masking of frequency
channels identified from the filtered TOD. This mainly consists
of masking groups of channels that have substantially higher cor-
relations between each other than expected from white noise,
explained in more detail in Foss et al. (2022). This is assumed to
be caused by substantial residuals of gain fluctuations or atmo-
spheric signal. We did this by calculating the correlation matrix
between the frequency channels and perform �2 tests on the
white noise consistency of boxes and stripes of various sizes
across this matrix. We also mask individual channels with a
standard deviation significantly higher than expected from the
radiometer equation.

After the frequency masking, the 1/ f filter and PCA filters
are reapplied to the data, to ensure that their performance was
not degraded by misbehaving channels. The normalization and
pointing filters do not need to be reapplied, as they work inde-
pendently on each frequency channel.

3.8. Calibration and downsampling

The final step of the pipeline is to calibrate the data to tempera-
ture units and decrease the frequency resolution. After the nor-
malization step, the data are in arbitrary normalized units. Using
the system temperature calculated in Sect. 3.1 we calibrate each
channel of the data,

d
cal
⌫,t = T

sys
⌫ d

PCA
⌫,t . (10)

Finally, we downsample the frequency channels from 4096
native channels to 256 science channels. The Seasons 1 and
2a frequency channels are 1.953 MHz wide, while they are
2.075 MHz wide in Season 2b, after the change in sampling fre-
quency (Sect. 2.5). In both cases, the channels are downsampled
to a grid of 31.25 MHz, that exactly corresponds to a factor 16
downsampling for the older data. For the newer data, either 15
or 16 native channels will contribute to each science channel,
decided by their center frequency. The downsampling is per-
formed with inverse-variance weighting, using the system tem-
perature as uncertainty.

3.9. Implementation and performance

While the ES pipeline was written in Fortran, the Season 2
pipeline has been rewritten from scratch to run in Python.
Performance-critical sections are either written in C++ and exe-
cuted using the Ctypes package or employ optimized Python
packages such as SciPy. Overall, the serial performance is simi-
lar to the ES pipeline, but the Season 2 pipeline employs a more
fine-grained and optimal MPI+OpenMP parallelization, making
it much faster on systems without a very large memory-to-core
ratio.

The pipeline is run on a small local cluster of 16 E7-8870v3
CPUs, with a total of 288 cores, in about a week of wall time,
totaling around 40 000 CPU hours for the full COMAP dataset.
The time-domain processing dominates this runtime, with a typi-
cal scan taking around 20–25 minutes to process on a single CPU
core.

3.10. Time-domain results

The Level 2 TODs outputted by l2gen are assumed to be almost
completely uncorrelated in both time and frequency dimensions,
such that the TOD are well approximated as white noise. To

Fig. 9. Average temporal power spectrum of unfiltered (green) and fil-
tered scans (blue), compared to correspondingly filtered white noise
simulations (red). The y-axis is broken at 1.06 and is logarithmic above
this. The data are averaged over scans, feeds, and frequencies, and are
normalized with respect to the highest k-bin. For context, the old and
new scanning frequencies (once across the field) are shown as vertical
lines (dot-dashed and dashed, respectively).

quantify the correlations in the time domain we calculate the
temporal power spectrum of each individual channel for all
scans. Figure 9 shows this power spectrum averaged over both
scans and frequencies, compared both to the equivalent power
spectrum of un-filtered Level 1 data, and to that of a TOD
obtained by injecting pure white noise in place of our real data
into the TOD pipeline.

Since the pipeline filtering removes more data on longer
timescales, the white noise simulation (red) gradually devi-
ates from a flat power spectrum on longer timescales, until it
falls rapidly at timescales below ⇠0.03 Hz due to the high-pass
normalization performed in the pipeline. The power spectrum
for the filtered real data (blue) also follows the same trend
on short timescales, but then increases on timescales around
k = 0.2 Hz, due to small residual 1/ f gain fluctuations and
atmosphere remaining after the processing. Below ⇠0.03 Hz,
this power spectrum again falls rapidly due to the high-pass
filter. The power spectrum obtained from raw data that have
not gone through any filtering (green), simply increases on
longer timescales as expected, due to 1/ f gain and atmospheric
fluctuations.

The di↵erence between the blue and red spectra shows the
residual correlated noise left in the data. While there is some
residual correlated noise, it is an insignificant fraction of our final
noise budget. We find that our real filtered data have a standard
deviation only 1.7% higher than that of the filtered white noise.
Compared to the amount of power we see in the unfiltered data,
we see that our pipeline is very e�cient at suppressing correlated
noise.

4. Mapmaking and map domain filtering

4.1. The COMAP mapmaker

COMAP employs a simple binned inverse-variance noise-
weighted mapmaker, identical to the one in ES (Foss et al. 2022).
This can be written as

m⌫,p =

P
t2p d⌫,p/�2

⌫,tP
t2p 1/�2

⌫,t
, (11)
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where m⌫,p is an individual map voxel6, d⌫,t represents the time-
domain data over time samples, �2

⌫,t is the time-domain white
noise uncertainty, and t 2 p means all time-samples t that
observes pixel p. We assume that the white noise uncertainty �⌫,t
is constant (for a single feed and frequency) over the duration of
a scan, and calculate it per scan as

�⌫ =

r
Var(d⌫,t � d⌫,t�1)

2
, (12)

then let �⌫,t = �⌫ for all time-samples within the scan. This value
is also binned into maps, and is used as the uncertainty estimate
of the maps throughout the rest of the analysis:

�2
⌫,p =

1
P

t2p 1/�2
t
. (13)

In practice, we calculate per-feed maps, both because the map-
PCA filter (introduced in the next section) is performed on per-
feed maps, and because the cross-spectrum algorithm utilizes
groups of feed-maps.

The reason for not using more sophisticated mapmaking
schemes, such as destriping (Keihänen et al. 2010) or maximum
likelihood mapmaking (Tegmark 1997), is partially of necessity
– the COMAP TOD dataset is many hundreds of TB, making
iterative algorithms di�cult. However, the TOD pipeline has
also proven remarkably capable of cleaning most unwanted sys-
tematic errors from the data, especially correlated 1/ f noise,
as we saw from Fig. 9. As the main purpose of more sophis-
ticated mapmaking techniques is dealing with correlated noise,
COMAP is served well with a simple binned mapmaker.

The mapmaking algorithm is identical to the one used for
the ES analysis. However, as with l2gen the actual implementa-
tion has been rewritten from scratch in Python and C++, with a
focus on optimal parallelization and utilization of both MPI and
OpenMP.

4.2. Map-domain PCA filtering

The pipeline now employs a PCA filtering step also in the map
domain, in addition to the one we apply at the TOD level.
This technique is almost entirely analogous to the PCA fore-
ground subtraction often employed in 21 cm LIM experiments
(Chang et al. 2010; Masui et al. 2013; Anderson et al. 2018),
although we did not employ it to subtract foregrounds. The pri-
mary purpose of this filter is to mitigate a couple of pointing-
correlated systematic errors (see the next subsection) which
proved challenging to remove entirely in the time domain. The
method is similar to the TOD PCA algorithm from Sect. 3.6,
but instead of having the TOD data matrix d⌫,t, we have a map
m⌫,p with one frequency and one (flattened) pixel dimension. The
data matrix then gets the shape (N⌫,Np) = (256, 14 400), with
N⌫ = 256 being the number of frequency channels in the map
and Np = 120 · 120 = 14 400 the number of pixels in each
frequency slice (although many of the pixels in each individual
feed-map are never observed).

The technique we employ here is technically a slight gen-
eralization of the PCA problem, as we want to weigh individ-
ual voxels by their uncertainty when solving for the components
and amplitudes7. This is not possible in the regular PCA frame-
6 A voxel here is the 3D equivalent of a pixel, with two angular dimen-
sions and a redshift (frequency) dimension. Here we separate the voxel
dimensions into frequencies ⌫ and pixels p.
7 For the time-domain PCA, it was enough to weight individual chan-
nels, with all time-samples in that channel sharing the same weight.
This can be done with a normal PCA, as we show in Appendix B.

work without also morphing the modes one is trying to fit, as we
explain in Appendix B. As shown in Sect. 3.6, the first principal
component w

0
p and its amplitude a

0
⌫ are the vectors that minimize

the value of the expression
X

⌫,p

(m⌫,p � a
0
⌫w

0
p)2. (14)

In other words, they are the two vectors such that their outer
product explains as much of the variance in m⌫,p as possible.
This formulation of the PCA makes it obvious how to generalize
the problem to include weighting for individual matrix elements:
we can simply minimize the following sum,

X

⌫,p

(m⌫,p � a
0
⌫w

0
p)2

�2
⌫,p

, (15)

where �⌫,p is the uncertainty in each voxel. Minimizing Eq. (15)
gives us the vectors a

0
⌫ and w

0
p for which the outer product a

0
⌫w

0
p

explains as much of the variance in d⌫,p as possible, weighted by
�⌫,p. The resulting map d⌫,p � a

0
⌫w

0
p represents the filtered map.

The process can then be repeated any number of times, solv-
ing for and subtracting a new set of vectors. We minimize the
expression in Eq. (15) iteratively with an algorithm outlined in
Appendix B, where we also explain why this is not equivalent to
simply performing the PCA on a noise-weighted map d⌫,p/�⌫,p.
Due to the large similarity of our technique to a regular PCA, we
simply refer to this filter as a PCA filter.

As for the TOD PCA filter, a selected number of components
are subtracted from the data maps

m
mPCA
⌫,p = m⌫,p �

NcompX

i=1

a
k

⌫v
k

p, (16)

This filtering is performed per feed, as the systematic errors
outlined in the next subsection manifest di↵erently in di↵erent
feeds. We have chosen Ncomp = 5, which is further explained in
Sect. 4.3.3. Because the COMAP scanning strategy stayed the
same throughout Seasons 1 and 2a but changed with the azimuth
slowdown of Season 2b, we apply the map-PCA separately to
the former and latter, as the pointing-correlated e↵ects we are
trying to remove might also be di↵erent.

4.3. Newly discovered systematic effects

The two most prominent new systematic errors discovered in
the second season of observations have been dubbed the “turn-
around” and “start-of-scan” e↵ects. They have in common that
they are di�cult to model in the time domain, subtle in individ-
ual scans, but strongly pointing-correlated, and they therefore
show up as large-scale features in the final maps. Additionally,
they are present to varying extents in all feeds, have similar quan-
titative behavior in the map-domain, and can both be removed
e↵ectively with the map-PCA. The e↵ects are discussed in the
subsections below, with further analysis shown in Appendix C.

4.3.1. The turn-around effect

The so-called “turn-around” e↵ect can be observed as strongly
coherent excess power near the edges of the scan pattern, where
the telescope reverses direction in azimuth. Illustrations of this
e↵ect can be seen in the first row, and partially in the third row,
of Fig. 10. The feature manifests at the top and bottom of the
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Fig. 10. Selection of individual frequency maps from Field 2 before
(left) and after (right) the map-domain PCA filter. Because of the
uneven sensitivity among the pixels, and to emphasize the relevant sys-
tematic e↵ects, all maps have been divided by their white noise uncer-
tainty. From top to bottom, each row shows maps that are dominated by
(1) the turn-around e↵ect; (2) the start-of-scan e↵ect; (3) both e↵ects
simultaneously; and (4) neither e↵ect. Both e↵ects appear to manifest
twice, on two slightly o↵set maps. This o↵set e↵ect originates from the
physical placement of the feeds, as they observe the fields as they are
both rising and setting on the sky. In the equatorial coordinate system of
these maps, the telescope scans vertically, and the field drifts from left
to right.

maps, as this is where the telescope turn-around happens for
Field 2 in equatorial coordinates. The feature oscillates slowly
across the frequency domain, and the leading theory of its origin
is some standing wave oscillation induced by mechanical vibra-
tions. The e↵ect is somewhat less pronounced in Season 2b, after
the reduction in telescope pointing speed and acceleration, but it
is still present.

4.3.2. The start-of-scan effect

A related e↵ect is called the “start-of-scan” e↵ect, that is a wave-
like feature in frequency that occurs at the beginning of every
scan and decays exponentially with a mean lifetime of around
19 s. As the telescope always starts each scan at the same side of
each sky field, this systematic e↵ect shows up in the map domain

Fig. 11. Leading PCA components vk (left) and their respective fre-
quency amplitudes a

k (right) for Field 2 as observed by feed 6 prior to
the map-PCA filter; this feed is the most sensitive to pointing-correlated
systematics. All maps are divided by their respective uncertainties to
highlight the key morphology. All rows share the same color range and
y-axis scale, but the specific values have been omitted as they are not
easily interpretable.

as a strong feature on the Eastern edge of the map, as can be
seen in the second and third rows of Fig. 10. Next to the strong
positive or negative signal (this varies by frequency) at the very
edge of the map, the opposite power, at lower amplitude, can be
observed as we move Westward across the map. This opposite
power is simply a ringing feature from the normalization per-
formed during the pipeline (see Appendix C for details).

The exact origins of the “start-of-scan” e↵ect are unknown,
but the fact that it only happens at the beginning of scans (that are
separated by a repointing to catch up with the field), and disap-
pears during constant elevation scanning, suggests that a poten-
tial candidate is mechanical vibrations induced by the repointing.
We also observe the e↵ect to be mostly associated with one of the
four DCM1s (first downconversion module), namely DCM1-2,
relating to feeds 6, 14, 15, 16, and 17. The e↵ect’s strong corre-
lation with DCM1-2 points to a possible source in the local oscil-
lator cable, shared by the channels in a DCM1 module; imper-
fect isolation of the mixer would cause a weak common-mode
resonance to manifest.

An important detail in this analysis is that, because of the
normalization and 1/ f filter in the TOD pipeline, any stand-
ing wave signal with a constant resonant cavity wavelength over
time will be filtered away. For a standing wave to survive the fil-
tering, it must have a changing wavelength. Prime suspects for
the origin of this e↵ect are therefore optical cavities that could
expand or contract in size, or cables that could be stretched.
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Fig. 12. Histogram of all map pixel temperature values across all feeds
and frequencies, divided by their white noise uncertainty. The three
fields are shown separately, before and after application of the map
PCA filter. A normal distribution is shown in black; a completely white
noise map will trace this distribution. All three fields show excess high-
significance pixels before the map PCA. After the filter, all three fields
fall slightly below the normal distribution on the wings, because of the
slight over-subtraction of noise at various stages in the pipeline.

4.3.3. Effects of map-domain filtering

The map-domain PCA filtering was implemented in an attempt
to mitigate these systematic e↵ects and it has proved to be e↵ec-
tive at this task. The first PCA component alone subtracts both
e↵ects to a level where they are not visible in the maps by eye.
This shows that both e↵ects are well modeled as the outer prod-
uct of a pixel vector and a frequency vector.

Visually inspecting the PCA components, we usually see
some structure for the first 3–5 modes. Figure 11 shows an exam-
ple of the five leading PCA components and their amplitudes.
Here we can see that the first component has very clear structure
in both the map and frequency domain. The remaining modes
seem to absorb some residuals after this first mode, especially
on specific channels close to the edges of each of the two Bands
that divide the frequency range in two.

We have chosen to remove just five out of 256 PCA com-
ponents in the map-PCA filter, as no structure was visible by
eye in the worst-a↵ected cases after this number of components
was removed, and the removal of more components did not sig-
nificantly a↵ect the results of any subsequent analysis (such as
the power spectrum). With only five components being removed,
we also limit the potential for CO signal loss. We could have
employed a similar approach to the TOD PCA, with a dynamic
amount of components, but the noise properties of the maps are
more complicated than the TODs, and we have chosen to keep
a static number of components, postponing more fine-tuning to
future analysis. The filter is applied to the individual feed maps,
and to individual splits – both the elevation split used for the
cross power spectrum, and the individual map splits for the null
tests.

With the application of the map-PCA filter, we observe that
the start-of-scan and turn-around e↵ects are suppressed well
below the white noise of the maps, as can be seen in Fig. 10.
We have also designed a null test to specifically target the
turn-around systematic e↵ect, by splitting the maps at the TOD
level into east- and west-moving azimuthal directions. The turn-
around e↵ect manifests very di↵erently in each half of this split,
making it the basis for a sensitive null test. We find that the Sea-
son 2 data passes this test after the map-PCA filter has been
applied (Stutzer et al. 2024).

The standard deviation of the maps only falls by 2% after
applying the filter, as the noise still dominates the overall
amplitude. However, smoothing the maps slightly will enhance
large-scale correlations, while suppressing uncorrelated noise.
Smoothing both the filtered and unfiltered 3D maps using a
Gaussian with � = 3 voxels, the standard deviation is 67%
lower in the map-PCA filtered map. We can similarly observe
that the average correlation between neighboring pixels (of
the unsmoothed map), a good indication of the level of larger
scale structure, falls from 6.3% to �0.4% after applying the
map-PCA.

The magnitude of these systematic e↵ects is di↵erent
between feeds and frequencies, as seen in Figure 10. Perform-
ing a �2 white noise consistency test on the individual frequency
channel maps of each feed, we find that for the worst feeds,
namely those associated with DCM1-2 (feeds 6, 14, 15, 16 and
17), around 50% of their channels fail this test at >5�. The best-
behaving feeds are 4, 5, 10, and 12, all with fewer than 5% of
channels failing at >3�. However, we want to emphasize both
that no feed is completely without these e↵ects before the map-
PCA, and that after the map-PCA, there is no longer a quanti-
tative di↵erence between the “good” and “bad” feeds, with all
feeds passing �2-tests at expected levels.

The PCA filtering (both in the time and map domain) consti-
tutes the only non-linear processing in the pipeline. Non-linear
filtering makes it more di�cult to estimate the resulting sig-
nal bias and transfer function. In Sect. 6.4 we demonstrate that
a PCA filter applied on a noisy matrix behaves linearly with
respect to a very weak signal, and we find that any CO signal
in the data is well within this safe regime.

4.4. Final maps

Figure 12 shows the distribution of map voxel values for all three
fields, in units of significance, before and after the map-PCA.
Before the map-PCA, the distribution shows a clear excess on
the tails, while the cleaned maps are very consistent with white
noise. This is expected and desired, as the CO signal is so weak
that individual frequency maps are still very much dominated
by the system temperature. The noise level in the maps is, actu-
ally, about 2.5% lower than expected from the white noise uncer-
tainty, due to the filtering in the pipeline. This e↵ect can be seen
in Fig. 12, with the histograms falling slightly below the normal
distribution.

Figure 13 shows the distribution of voxel uncertainties over
the three fields for this work and our ES maps. Each voxel has
an approximate size of 2 ⇥ 2 arcmin, that, together with the fre-
quency direction, corresponds to a comoving cosmological vol-
ume of ⇠3.7 ⇥ 3.7 ⇥ 4.1 Mpc3. For Fields 2 and 3, the high sen-
sitivity <50 µK region corresponds to a comoving cosmological
cube of around 150 ⇥ 150 ⇥ 1000 Mpc3 per field. Combining all
three fields, Season 2 has one million voxels with an uncertainty
<50 µK, compared to one million voxels below <125µK for Sea-
son 1. The footprint of the final maps have increased slightly in
size because of the wider scan pattern of Season 2b.

The sensitivity increase per field over Season 1 is 2.0, 2.6,
and 2.7, for Fields 1, 2, and 3, respectively. Fields 2 and 3 are
now the highest sensitivity fields, while Field 1 is noticeably
worse, from larger losses to data selection, especially Moon
and Sun sidelobe pickup. The uncertainties are estimated from
Eq. (13), and correspond well to the noise level observed in the
map, as we saw from Fig. 12. A figure showing the uncertainties
across the fields on the sky can be found in Appendix E, together
with a subset of the final maps.
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Fig. 13. Histograms comparing the map voxel uncertainties of this work
(Season 2), and the ES publications (Season 1). The voxel values are for
feed-coadded maps.

5. Data selection

In addition to a three-fold increase in observational hours, the
second season also features a similar increase in data retention
compared to the ES results. Table 2 compares the data loss in
the ES results and this work. The table is split into three parts,
namely 1) observational losses, 2) time- and map-domain losses,
and 3) power spectrum domain losses. The Season 2 column
only relates to data taken during Season 2, but we have also
reprocessed Season 1 data with the new pipeline for the final
results.

5.1. Observational data retention

The first three rows of Table 2 are observational ine�ciencies
that have been corrected since the first season. Escan constitutes
the fraction of scans that were performed in constant elevation
mode, as opposed to Lissajous scans that were cut due to large
systematic e↵ects (see Sect. 2.4). Efeed is the fraction of func-
tioning feeds, and Eel is the fraction of data taken at elevation
35�–65� (see Sect. 2.3). Since Season 1, we no longer observe in
Lissajous mode, all feeds are functional and the observing strat-
egy has been optimized to maximize Eel. As a result, the total
data retention from these three cuts, which was 32% in the first
season, is now 100%.

5.2. Time and map domain data selection

In the next section in Table 2, Efreq refers to the frequency chan-
nel masking performed in l2gen, as discussed in Sect. 3.7. The
masking algorithm itself is virtually identical to in ES, with a few
changes. The shifting of aliased power into channels outside the
nominal frequency range (Sect. 2.5) means that, from Season 2b
onward, we recover the 8% of channels masked in Season 1 and
2a. The inclusion of the new per-feed PCA filter in l2gen results
in slightly fewer data being masked by data-driven tests. How-
ever, we have also increased the number of manually flagged
channels that seem to be performing sub-optimally, leaving us
with a Efreq data retention only slightly higher than for ES.

Next, Estats constitutes the cuts performed in the
accept_mod script, that discards scans based on di↵erent
housekeeping data and summary statistics of the scans. There
are over 50 such cuts in total, most of them removing a small
number of outlier scans. Upon the completion of the Season 2
null test framework (Stutzer et al. 2024), null tests failed on five
scan-level parameters. Cuts on these parameters were tightened
or implemented in accept_mod, and the null tests now pass.
The five new or tightened cuts are: 1) any rain during the scan;
2) wind speeds above 9 m/s; 3) high average amplitude of the

Table 2. Data retention overview.

Season 1 Season 2 Explanation

Escan 50.0% 100.0% Retained scans (CESs)
Efeed 84.2% 100.0% Functional feeds
Eel 75.6% 100.0% Inside good elevation range
Eobs 31.8% 100.0% Observational data retention
Efreq 72.8% 74.3% Frequency masking in l2gen.
Estats 57.4% 33.6% Cuts on accept-mod statistics
E�2

P(k)
72.2% 100.0% Per-scan auto-PS �2-test

Ecuts 30.1% 24.9% Map-level data retention
E�2

C(k)
52.4% 100.0% Cross-spectrum �2-test

EC(k) 94.7% 75.0% Cross-spectrum auto combina-
tions

EPS 49.6% 75.0% Retained data at PS-level
Stot 6.8% 21.6% Final PS-domain sensitivity, cal-

culated as S tot =
q

E
2
obsE

2
cutsEPS

Notes. Surviving fraction of data for di↵erent filtering steps of the
pipeline. The left column shows the values used for the ES analysis,
and the right column shows this work. The first 3 rows show individual
data losses to observational constraints, that are combined in the gray
row below. The three next rows show data retention to time and map
domain cuts, again combined below. Finally, the next two rows show
the losses in the power spectrum domain, also combined. The last row,
S tot shows the final fraction of theoretical power spectrum sensitivity
from the combined data retention (see the text for details). The losses
are multiplicative, such that multiplying E for all the individual losses
gives the retained data fractions shown in gray.

fitted TOD PCA components; and 4–5) outliers in the fknee of the
0th and 1st order 1/ f filter components8. Additionally, all other
accept_mod cuts from ES are continued, and the surviving data
fraction has therefore fallen noticeably, from 57.4% to 33.6%.
No attempt has yet been made to tune these cuts, presenting us
with future potential for increased data retention.

Finally, E�2
P(k)

is the last scan-level cut. Each scan is binned
to a very low-resolution 3D map, and a series of �2-tests are per-
formed on di↵erent 2D and 3D auto power spectra calculated
from these maps. In the Season 2 pipeline, this cut is removed
entirely, for two reasons. Firstly, we found little evidence that it
helped us pass null tests or remove dangerous systematic errors
from the final data. Secondly, we found it di�cult to calcu-
late robust pipeline transfer functions for each individual power
spectrum, as individual scans might vary a lot in sky footprint
and pointing pattern. We therefore saw little reason to keep this
cut in the pipeline.

5.3. Power spectrum level data selection

The last section of Table 2 shows the fraction of data retained
after cuts in the power spectrum domain; details on the power
spectrum methodology are described by Stutzer et al. (2024). In
summary, we calculate pseudo cross spectra between di↵erent
groups of feeds and across pointing elevations and then average
these spectra to get the CO power spectrum. However, some of
the cross-spectra are discarded before averaging, and this is the
loss discussed in this section. This loss in the power spectrum
8 The 1/ f filter fits the time-dependent components c

0
t and c

1
t , primar-

ily picking up correlated noise and changes in the atmosphere. We per-
form a 1/ f fit to the components as functions of time, and cut when the
fknee falls outside the typical range of values
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domain has to be tracked separately from data loss in the map
and TOD domain, as the losses cannot naively be added together.
Since map values are squared when calculating the power spec-
trum, so is the map-domain data volume when calculating the
power spectrum sensitivity. The total power spectrum sensitivity
is therefore calculated as S tot =

q
E

2
obsE

2
cutsEPS.

In this table section, E�2
C(k)

constitutes a �2-test on the indi-
vidual feed-feed cross-spectra and cuts away any cross-spectrum
with an average significance above 5�. In ES, we lost around
half the data to this cut. The cut has now been entirely removed,
for several reasons. First of all, we now have a much more rig-
orous null test framework, and find that we pass all null tests
without these cuts. Secondly, we strongly prefer moving all data-
inferred cuts to a point as early in the pipeline as possible, to
reduce any potential biasing e↵ects. It is therefore a considerable
pipeline improvement over ES that we now perform no data-
inferred cuts in the power spectrum domain.

Finally, EC(k) is the fraction of the cross power spectra that
are not auto-combinations between the same feeds. In ES we per-
formed cross-spectra between all 19 feeds, which resulted in a
loss of 19 out of 19⇥19 cross-spectra, or 5.3%. We now calculate
cross-spectra between four groups of feeds, for better mitigation
of systematic e↵ects and improved overlap, resulting in a loss of
4 out of 4 ⇥ 4 feeds, or 25%. This is a theoretical approxima-
tion of the sensitivity, as the varying degrees of overlap between
di↵erent feeds will interplay with the sensitivity.

5.4. Future prospects for data selection

Combining the retained map-level data with the retained PS-
level data we keep 21.6% of the theoretical sensitivity, compared
to 6.8% for ES, a more than three-fold increase. Most of this
increase comes from much higher observational data retention
Eobs, and the removal of the �2

P(k) and �2
C(k) cuts. We now have

no data-driven cuts in the power spectrum domain, where the
signal is the strongest, leaving us less susceptible to signal bias.

In order to pass null tests and allow for the removal of
other cuts, the data retention after cuts on accept_mod statistics,
Estats, has decreased quite substantially. We erred on the side of
caution when introducing the new cuts, and once the data passed
all the null tests we made no attempt at reclaiming any data
from these cuts. In future analysis, we are therefore confident
that better tuning of these parameters, assisted by an even better
understanding and filtering of systematic e↵ects, will allow us to
substantially increase the amount of data retained at this step.

The numbers in Table 2 are averages across fields, feeds,
and scans, and the combined data retentions, Emap, EPS and S tot
are for simplicity calculated by naively multiplying together the
individual retentions. This ignores certain complications, such
as correlations between the cuts, and the actual sensitivity might
therefore di↵er slightly. It should also be noted that the right col-
umn constitutes the e�ciency of Season 2 data in combination
with the Season 2 pipeline, and re-analysis of Season 1 does not
reach a S tot of 21.6%, as the losses to Eobs will still apply even
with the improvements to the pipeline.

6. Pipeline signal impact and updated transfer

functions

The final maps are biased measurements of the CO signal, due to
signal loss incurred in observation and data processing, leading
to a biased power spectrum. This e↵ect can be reversed by esti-

mating a so-called transfer function T (kk, k?), that quantifies this
signal loss at di↵erent scales. We separate the angular modes k?
and the frequency (redshift) modes kk, as the impact on the CO
signal is usually very di↵erent in these two dimensions. In this
section, we present updated versions of the three relevant trans-
fer functions:

– The pipeline transfer function Tp(kk, k?): The time- and map-
domain processing will inevitably remove some CO signal.

– The beam transfer function Tb(k?): The size and shape of the
beam will suppress signal on smaller scales in the angular
dimensions.

– The voxel window transfer function Tv(kk, k?): The finite res-
olution of the voxels suppresses signal on both angular and
redshift scales close to the size of the voxels.

6.1. Updated beam and voxel window transfer functions

In the ES analysis, the beam and voxel window transfer func-
tions were estimated using simulations (Ihle et al. 2022). How-
ever, because the voxel grid and beam of the COMAP instrument
are well understood we can also compute Tb(k?) and Tv(kk, k?)
analytically. As the COMAP mapmaker simply uses nearest
neighbor binning of the TOD into equispaced voxels the map
is smoothed by a sinc2(x) function along each map axis. Specif-
ically, the voxel window can be expressed as9

Tv(kk, k?) = Tfreq(kk)Tpix(k?) = sinc2
 
�xkkk

2⇡

!
sinc2

 
�x?k?

2⇡

!
,

(17)

where �x? and �xk are the voxel sizes in angular and fre-
quency directions. Specifically, we have voxel resolutions of
�x? ⇡ 3.7 Mpc and �xk ⇡ 4.1 Mpc. We note that since the angu-
lar pixel window is approximately radially symmetric we have
approximated T?(k?) ⇡ TRA(kRA) ⇡ TDec(kDec). Both the per-
pendicular and parallel voxel transfer functions can be seen in
Figs. 14 and 15.

In principle, we could reduce the voxel window signal
impact on smaller scales in both the angular and frequency
dimensions by binning the maps into higher resolution voxels,
shifting the decline of Tfreq(kk) and Tpix(k?) to higher k-values.
In practice, however, the angular voxel window applies at a scale
where the beam transfer function already suppresses the sig-
nal beyond recovery. Similarly, line broadening is expected to
heavily attenuate the CO signal above ⇠1 Mpc�1 (Chung et al.
2021), although the exact extent of line-broadening depends on
galaxy properties that are not yet well constrained. Additionally,
it would be more computationally costly to perform the analysis
in higher resolution.

Next, given the radial beam profile B(r) (see Fig. 2 of
Ihle et al. 2022) and the convolution theorem we can obtain the
beam transfer function as

Tb(k?) = |F {B(r)}|2, (18)

where r is the radius from the beam center, and F is the (2D)
Fourier transform. As we assume the telescope beam to be radi-
ally symmetric the resulting beam smoothing transfer function
will be a function of just k? =

q
k

2
RA + k

2
Dec giving Tb(k?). The

main-beam e�ciency is taken into account in the same manner
as Ihle et al. (2022) prior to computing the Fourier transform of
the beam. As we can see in Figs. 14 and 15 the beam is by far the

9 We note that we use the convention where sinc(x) = sin(⇡x)
⇡x

.
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Fig. 14. E↵ective one-dimensional transfer functions for the instrumen-
tal beam (blue curve), pixel window (black curve), and frequency win-
dow (red curve) resulting from spherical averaging over the correspond-
ing two-dimensional transfer functions shown in Fig. 15.

most dominant e↵ect limiting our ability to recover the signal at
smaller scales.

6.2. The signal injection pipeline

The last transfer function is that of the pipeline, that will
inevitably remove some CO signal from the data. We estimate
this impact by a signal injection pipeline, similar to what was
done in ES (Foss et al. 2022).

We inject a simulated CO signal into the real Level 1 data
before any filtering. The data are then propagated through the
entire pipeline as usual, and the resulting mock observations are
then compared to the known, unfiltered input signal to estimate
the pipeline transfer function. We chose to inject the simulations
into the actual data, instead of simulating the entire observation,
in order to mimic the real systematic error and noise properties
as closely as possible.

For the simulations we use approximate cosmological
dark-matter-only simulations using the peak-patch method of
Bond & Myers (1996) with updates by Stein et al. (2019).
These are subsequently populated with CO emission using
the COMAP fiducial model derived in Chung et al. (2022)
(‘UM+COLDz+COPSS’), that describes CO luminosities as a
function of dark matter halo masses, LCO(Mhalo). These simu-
lated mock maps are then boosted by a factor of 20, to recover a
less noisy transfer function. This is counter-weighted by split-
ting the full dataset in 10 subsets, and passing each of these
separately though the pipeline. We denote the maps as smock

⌫,✓ ,
where ⌫ and ✓ are the frequency (redshift) and angular (pixel)
dimensions, respectively. The TOD pipeline is quantitatively
una↵ected by the injection of this weak CO signal – even after a
factor 20 boost, the brightest CO pixel in the simulation is still
more than four orders of magnitude below the system tempera-
ture. In the map-domain, the S/N is much higher, and the impli-
cations of injecting a boosted signal are discussed in Sect. 6.4,
where we conclude that the map-PCA filter also behaves pre-
dictably for our chosen boost strength.

Using the real telescope pointing P, and estimated gain G
and beam B, we get the signal-injected Level 1 data as

d
mock
t,⌫ = GPBs

mock
✓,⌫ + nt,⌫, (19)

where n⌫,t represents the actual Level 1 data, that acts as the noise
term with respect to the injected mock CO signal. In order to
mimic the observed CO signal as closely as possible, we also
beam-smooth the maps used for the signal injection. The mock

data d
mock
⌫,t are then filtered by the pipeline to produce a mock

map:

m
mock
✓,⌫ = fmap

h
M

⇣
fTOD

h
d

mock
⌫,t

i⌘i

= fmap
h
M

⇣
fTOD

h
GPBs

mock
⌫,t + n⌫,t

i⌘i
, (20)

where we let fTOD represent all time-domain filtering, M rep-
resents a noise-weighted binned map-maker, as described in
Sect. 4.1, and fmap represents the map-domain PCA filter. Exam-
ples of resulting maps are shown in Appendix D.

To make sure that the reference CO simulation smock
⌫,✓ is

directly comparable to the filtered maps, we also perform some
of the same treatment on it: we beam-smooth it, read it into a
TOD with the real telescope pointing, and bin the TOD back
into a map with the same resolution as the real maps. The di↵er-
ence, however, is that this is done completely without noise, and
we do not apply any of the filters. We can write this as

ŝ
mock
⌫,✓ = M

⇣
GPBs

mock
⌫,✓

⌘
. (21)

Doing it this way means that we isolate the filter transfer func-
tion, and the e↵ect of the beam and pixelation are not included.
This is intentional, as we already estimated these impacts ana-
lytically in Sect. 6.1.

From these maps, we can now write the filter transfer func-
tion as

T =
C(mmock, ŝmock)

P(ŝmock)
, (22)

where the cross-spectrum, C in the numerator between the fil-
tered mock data, mmock, and the unfiltered mock signal, ŝmock,
picks up all common signal modes after filtering while cancel-
ing residual systematic e↵ects and noise in the mock data. The
cross-spectrum is divided by the unfiltered signal auto spectrum,
Pk(ŝmock), to obtain a filter transfer function T .

Equation (22) represents a more robust estimator of the
transfer function than the one employed in ES (Foss et al. 2022
Eq. (34)), both because it does not require an accurate estima-
tion of the noise power spectrum, and because using the cross-
spectrum estimator as opposed to the auto-spectrum estimator
makes it less susceptible to picking up signal in the data that
does not originate from the injected CO (e.g. from systematic
e↵ects).

For the signal injection, we use all scans from Seasons 1 and
2a for Field 2. Preliminary analysis of the transfer functions of
Fields 1 and 3, and the slower pointing scans of Season 2b, show
that they are very similar, especially in the k-regime included
in this work. As mentioned in the beginning of the section, we
divide the scans into 10 random and equally large parts. Di↵erent
dark matter halo simulations are injected into each part. This
both reduces the impact of sample variance in the simulations
and allows us to boost the signal a bit more without having to
worry about PCA non-linearity (see the next section). We then
average over the 10 resulting transfer functions, to get the final
transfer function estimate.

6.3. Updated filter transfer function

The left-most panel of Fig. 15 shows the full COMAP pipeline
transfer function, as described in the previous section, in paral-
lel and perpendicular directions (i.e., redshift and angular scale,
respectively). The Season 2 publications (Stutzer et al. 2024;
Chung et al. 2024) exclude some of the larger angular scales
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Fig. 15. E↵ective transfer functions used in the COMAP pipeline. From left to right, the five panels show 1) the filter transfer function, Tf (k),
quantifying signal loss due to pipeline filters; 2) the pixel window transfer function Tpix(k) resulting from binning the TOD into a pixel grid; 3) the
frequency window transfer function, Tfreq(k), resulting from data down-sampling in frequency; 4) the beam smoothing transfer function, Tb(k);
and 5) the full combined transfer function, T (k), corresponding to the product of the four individual transfer functions. The striped region to the
left is not used for our final analysis but is shown for completeness. We note that the leftmost panel has a colorbar that saturates at 0.4, unlike the
other four.

accessible in the maps due to concerns about mode mixing and
unconstrained modes due to poor overlap. For reference, the cut-
o↵ value for k? at 0.93 MPc�1 corresponds to angular scales of
36.4 arcmin.

Figure 16 shows the individual contributions of each filter
to the full transfer function. We are somewhat limited on large
angular scales by the normalization and pointing filters, and very
limited on large redshift scales by the 1/ f filter. The right-most
column is noisy because the beam suppresses most of the signal
at these small scales.

We also note that a small issue was discovered with the
transfer function analysis published in Ihle et al. (2022), relat-
ing to how the mock signal was interpolated when injected
into the TOD. The e↵ect was that the transfer functions from
ES was slightly underestimated, and the transfer function from
Ihle et al. (2022) peaked at around 0.8. This issue has now
been solved, and the new transfer function peaks correctly at
almost 1.0.

6.4. Linearity of PCA filtering

All filters except the various PCAs constitute linear operations
on the data. Linearity makes transfer function estimation much
simpler, as neither the choice of CO signal model nor its level
with respect to the noise impacts the resulting transfer function.
For the PCA filters, both these factors could in principle impact
the shape of the transfer function.

To quantify the sensitivity of the transfer function to such
factors, we constructed a simplified version of the signal-
injection pipeline. In order to be able to run many simulations,
we made the following alterations to the pipeline:

– We bypass the time domain, and perform the signal injection
in the map domain. This is the domain where the CO S/N is
the strongest, and the map-domain processing is much more
computationally e�cient than that for the time-domain. The
map mocks are the same as in Sect. 6.2, with some boost
factor b.

– Instead of the real map, we use white noise simulations,
drawn from the white noise uncertainty of Field 2.

– The resulting transfer function is calculated using Eq. (22),
and then averaged across the simulations and feeds.

This process is repeated for 40 000 noise realizations for each
of the 19 feeds, with boosts between 0.3 and 300 relative to the
fiducial CO model of Chung et al. (2022). The variation of the
resulting average transfer functions with boost strength can be
seen in Fig. 17. The figure shows two distinct regimes. In the
low S/N regime to around S/N=0.02 (boost 10), the PCA filter
behaves linearly with respect to the CO signal. This is demon-
strated by the independence of the transfer function to the S/N in
this regime. Additionally, all the k-points lie on top of each other
around a value of 0.96, meaning that all scales are suppressed at
the same level because the PCA is simply fitting and subtract-
ing random white noise. In the second regime, at high S/N, the
transfer function is strongly scale-dependent but flattens out as
the signal dominates the noise.

In conclusion, for a noisy matrix with an accompanying sig-
nal, a PCA filter behaves linearly with respect to the signal for a
su�ciently weak signal. For us this means that when estimating
the transfer functions, we need to use a su�ciently low boost
value to avoid biasing our estimate of the transfer function. The
individual data chunks used to estimate the transfer function are
well within this linear regime, at an S/N of 0.004. The actual
CO signal is of course of unknown amplitude, but assuming
the fiducial model of Chung et al. (2022) results in an S/N of
0.002. If the CO signal were even close to the unsafe regime of
S/N > 0.02, we would already have made a strong detection of
it, as this would correspond to a 100 times brighter power spec-
trum than the fiducial model. We also note that in the future,
as the experiment’s sensitivity increases, we can simply perform
the map PCA on sub-divisions of the data to keep the S/N low,
as we already do on Season 1 + 2a and Season 2b, due to their
di↵ering pointing strategy.

This analysis was performed on the map-domain PCA filter,
as the map domain is where the CO S/N is the strongest. Equiva-
lent analysis has been performed for the TOD PCA filter, but the
CO signal is so weak at the per-scan level that a boost factor of
2000 or greater is required to make it behave non-linearly with
respect to the CO signal. The final transfer function is currently
estimated jointly for all filters, but in future work we intend to
estimate the transfer function for the mPCA separately from the
other filters, gaining higher sensitivity on the linear parts of the
pipeline that do not require as low a boost.
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Fig. 16. Transfer functions for each of the five individual filters used in the pipeline. The normalization and pointing filters suppress large angular
scales, while the 1/ f filter almost entirely eliminates parallel modes larger than k = 0.02 Mpc�1. The TOD PCA filter has almost no impact on the
signal, primarily because so few modes are subtracted. The map PCA has a more noticeable signal loss, but it remains relatively scale-independent
because the signal is still weak enough (see Sect. 6.4). The total pipeline transfer function shown in the leftmost panel of Fig. 15 is the product of
these. The striped region to the left is not used in Season 2 results.

Fig. 17. Map PCA transfer function T (k) as a function of the voxel S/N,
with the di↵erent k-scales shown as di↵erently colored lines. The equiv-
alent boost used to the fiducial CO model is shown as the top x-axis.
Modes with k-values that fall within the analysis bounds are shown as
solid, while modes outside the scope of COMAP Season 2 are shown as
striped. The horizontal green line shows the average transfer function in
the low-S/N regime, which is 0.96. The vertical blue line shows the S/N
that the maps would have if the fiducial model of Chung et al. (2022)
perfectly described the true CO signal.

7. Summary and conclusions

We have presented the improvements in data analysis, filtering,
and data selection that have enabled us to increase the power
spectrum sensitivity to 21.6% of the theoretical maximum, up
from 6.8% in the ES publications. Combined with an increased
integration time, the two most sensitive Season 2 fields both have
a voxel uncertainty of <50 µK across ⇠1.5� ⇥ 1.5� patches on
the sky. Across the three fields, this corresponds to a 2.5 times
decrease in the total map uncertainty.

The largest increase in data retention comes from improve-
ments in observational strategy. We now solely observe using
CES, whereas in Season 1 50% of observations used Lis-
sajous scans that proved prone to systematic e↵ects and were
not included in our ES analysis. Additionally, we now observe
within elevation boundaries of 35�–65�, a region with minimal
gradients in ground sidelobe pickup. In Season 1, 25% of scans
fell outside this range and were discarded.

Additional increases in data retention have come from the
removal of data cuts. In Season 1, power spectrum �2 tests

were performed both on individual scan maps and on individ-
ual feed-feed cross-spectra before averaging them. These cuts
removed (respectively) 28% of scans and 48% of cross-spectra,
and are now no longer applied. This also reduces the pos-
sibility of signal bias owing to data-inferred cuts late in the
pipeline.

In order to pass null tests and allow for the removal of other
cuts, scan-level data cuts were implemented on six new house-
keeping statistics, increasing the data lost to such cuts from 43%
to 66%. However, no attempt was made to reclaim data after the
null tests had passed, and the necessity of the cuts carried over
from the ES pipeline is largely untested. We are confident this
number can be greatly reduced in future work.

The removal of data cuts was also made possible by better
mitigation of systematic errors. The time-domain pipeline has
numerous smaller improvements, such as a new per-feed PCA
filter, dynamically determined number of PCA components, bet-
ter masking of the Tsys spikes, and more manual masking of con-
sistently problematic channels. Most impactful, however, was
the introduction of a map-level PCA filter, that proved essen-
tial to dealing with a couple of pointing-correlated systematic
errors that emerged due to increased sensitivity. We show that
the map PCA filter suppresses these e↵ects to below the noise
level, and decreases the standard deviation of slightly smoothed
maps by 67%, to a level consistent with the expected white
noise.

Although the PCA filters constitute non-linear filtering, we
have shown that the PCA filters behave linearly with respect to
any su�ciently weak signal. We find that the expected CO sig-
nal falls well within this regime, substantially simplifying trans-
fer function estimation. We repeat the signal-injection pipeline
transfer function estimation of the ES publications and ensure
that the injected signal is also weak enough to maintain the PCA
filters in their linear range. We have also replaced the simulation-
based estimates of the beam and voxel windows transfer func-
tions with more robust analytic expressions, improving their reli-
ability at small scales.

COMAP has thus greatly increased its integration speed
both through observational improvements, better processing, and
reduced data cuts. Our final sensitivity retention of 21.6% of the
theoretical maximum still leaves significant room for improve-
ment, and we aim to increase this further as the Pathfinder con-
tinues to observe.
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Appendix A: Dynamic PCA threshold

It is known that the largest singular value of a Gaussian
P ⇥ N matrix with variance �2 can be approximated as
� ⇡ C(P,N) · �(

p
P +
p

N) for large matrices (Geman 1980;
Rudelson & Vershynin 2010; Vershynin et al. 2012), where
C(P,N) ⇡ 1 is some correction-factor for which no reliable
theoretical model exists. We, therefore, simulated 50,000 noise
matrices and empirically solved for C(P,N) within the relevant
regime of N from 5,000 to 30,000, and P from 100 to 80,000, that
captures all matrix sizes our pipeline will encounter. We find that
the correction factor can, in our size range, be well-modeled as

C(P,N) = 1.00476 � 0.00396 · log(P) · log(N)

+ 0.0000876 · log(P)2 · log(N)2. (A.1)

We have no doubt that this factor is unlikely to extrapolate sen-
sibly beyond the range we tested it in, but that is of no concern.
The relative error to the mean of our 50,000 simulations is less
than 0.1% within our defined bounds.

Appendix B: The map-domain PCA filter

B.1. The effect of noise-weighting on PCA

This section expands on the PCA discussion of Sect. 4.2, and we
keep the same variable and index names, for easier comparison.
The first principal componentw1 and its amplitude a1 of a PCA10

for a data-matrix m are the vectors that minimize

f (a, u) =
X

⌫

X

p

(m⌫,p � a⌫wp)2. (B.1)

We might, however, want to find these vectors while weighting
the elements of m, for example, if it is non-uniformly noisy.
If the weights themselves can be separated into an outer prod-
uct, such that we have row and column uncertainties �row and
�col, this can trivially be done by inverse-variance weighting the
matrix elements of the expression above. We now minimize

f (a,w) =
X

⌫

X

p

(m⌫,p � a⌫wp)2

�row
⌫ �

col
p

, (B.2)

which can be expanded to

f (a,w) =
X

⌫

X

p

 
m⌫,pq
�row
⌫ �

col
p

� a⌫q
�row
⌫

vpq
�col

p

!2

. (B.3)

This is still a valid PCA problem, on the same form as Eq. (B.1),
with a0 = a/�row and w0 = w/�col now being the amplitude
and component we fit for. If m contains a feature that can be
decomposed into an outer product, this will be recovered by w =
w0�row and a = a0�col.

However, if we want to weight every element of m with arbi-
trary uncertainty �⌫,p, this no longer holds. We can still write the
problem simply as

f (a,w) =
X

⌫

X

p

(m⌫,p � a⌫wp)2

�2
⌫,p

, (B.4)

10 In the regular PCA formalism, the eigenvectors w are typically unit
vectors of length 1, which is not automatically the case throughout this
section. However, w can be normalized to 1 at any point by inversely
adjusting a. In a regular PCA, a (scalar) singular value is present in the
solution. In the formalism presented here, there is no explicit singular
value, and it can be absorbed into the amplitudes a.

which can be expanded to

f (a,w) =
X

⌫

X

p

(
m⌫,p

�⌫,p
� a⌫p
�⌫,p

wpp
�⌫,p

)2, (B.5)

but because a⌫/�⌫,p and wp/�⌫,p are now matrices and not vec-
tors, this minimization problem is no longer a PCA. We therefore
have no way of recovering the desired a and w corresponding to
the matrix m if we perform the regular PCA algorithm on the
matrix m⌫,p/�⌫,p, for a general �⌫,p. We must therefore find a
di↵erent way of minimizing B.4, which is discussed in the fol-
lowing section.

B.2. Generalization of the PCA algorithm

With the generalization of Eq. (B.4), we can no longer utilize
the usual methods of solving a PCA problem, such as the SVD.
Instead we employ the technique suggested by Tamuz et al.
(2005) and Gabriel & Zamir (1979), where we iteratively make
improved guesses at w and a:
1. Make an initial guess at a and w, either completely random

or informed by some knowledge of the data.
2. Solve for the optimal a while holding the current w constant

by di↵erentiating Eq. (B.4), holding d(a,w)
da = 0, and solving

for a as

a⌫ =

P
p

m⌫,pwp

�2
⌫,p

P
p

w2
p

�2
⌫,p

. (B.6)

3. Given the new a, calculate d f (a,w)
dw = 0, and solve for the new

optimal wp as

wp =

P
⌫

m⌫,pa⌫

�2
⌫,p

P
⌫

a
2
⌫

�2
⌫,p

. (B.7)

4. Repeat 2. and 3. until the incremental changes in a and w are
below some chosen threshold ✏.

Although we cannot prove that this is a convex problem and that
the optimal solution is guaranteed, we have never seen it con-
verge to an unreasonable solution. Additional robustness can be
achieved by repeating the fit with di↵erent initial guesses, and
confirming that they converge to the same solution. The algo-
rithm will converge on the same solution as the regular PCA
in the case of uniform weights �⌫,p = 1, or where the weights
can be perfectly decomposed into an outer product of weights in
rows and columns, as in Eq. (B.2).

B.2.1. Multiple components

Using this decomposition, we can fit multiple components, sim-
ilar to the ordered set of principal components in the PCA, by
simply subtracting the previous components from the data. We
then simply define a

(1)
i

and m
(1)
j

as the results from the previous
section, and let

m
(1)
⌫,p = m⌫,p � a

1
⌫w

1
p
. (B.8)

We can then find a
(2)
⌫ and w(2)

p by performing the procedure from
the previous section on m

(1)
⌫,p. This is again, in the case of�⌫,p = 1,

entirely equivalent to finding the largest principal components of
m⌫,p.
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Fig. C.1. Filtered time-domain data stacked on the turn-around of the telescope, to emphasize the turn-around systematic e↵ect, for four selected
feeds. The data is an average across all turn-arounds of all available Level 2 scans. The data is divided by the system temperature of the data in
each channel, and the values therefore represent the signal strength of the e↵ect relative to the average white noise level in the scans.

Appendix C: Start-of-scan and turn-around effects

As outlined in Sect. 4.3, our increased sensitivity has revealed
two systematic e↵ects in our maps that were not discovered in
our ES publications. We here explore these e↵ects in more detail,
especially in the time-domain, where these e↵ects are easier to
understand than in the map-domain. We note that the data shown
in this section has not been filtered by the map-PCA filter, and
the systematic e↵ects demonstrated are (to the best of our anal-
ysis) not present in our final maps.

C.1. The turn-around effect

The turn-around e↵ect is a sharp feature located around the
azimuth edges of the scanning pattern, where the telescope turns.
In Fields 2 and 3, which rise and set almost vertically across the
sky (see Figure 1) and are therefore observed at almost the same
angle at all times, this e↵ect manifests as sharp edges on the
top and bottom (i.e., the highest and lowest declinations) of the
equatorial coordinate maps. This can be seen in the first and third
rows of Fig. 10.

To better understand this systematic e↵ect, we have extracted
the data around the telescope turn-arounds for all our scans, and
stacked the result on the turn-around time. Figure C.1 shows the
result for four selected feeds. For all four feeds, we see a fea-
ture that peaks around the turn but is also present both leading
up to and after the turn. In the frequency direction the feature
has a slow wave-like feature. The feature manifests di↵erently
in di↵erent feeds and frequencies but has in common that it is
wave-like both in frequency and time and peaks in power around
the turn-around. As the telescope turn-arounds are the regions
with the highest acceleration, a likely origin of this e↵ect is
some standing wave induced by the mechanical vibrations of the
azimuth drive. Some feeds show significantly stronger manifes-
tations of the turn-around e↵ect than others, but all feeds are
a↵ected to some extent, and no explanation has yet been found
as to why feeds are a↵ected di↵erently.

Attempts have been made to model this e↵ect in the time-
domain. This has proven di�cult, among other reasons because
the e↵ect is actually very weak compared to the noise level
in a single scan. As seen from Fig. C.1, the e↵ect peaks at
more than four orders of magnitude below the noise tempera-
ture of the telescope. The e↵ect is only visible in the final maps
because it seems strongly coherent across di↵erent scans. How-
ever, because we have to combine thousands of scans in order
to observe the e↵ect, it is also di�cult to assess if the e↵ect is
indeed perfectly coherent across all scans, or if we are simply
observing the average impact of this e↵ect. The e↵orts of model-

Fig. C.2. Same setup as Figure C.1, but stacked on the beginning of
each scan, to emphasize the start-of-scan systematic e↵ect. Notice the
di↵erence in the colorbar limits.

ing the e↵ect in the time domain was also made somewhat moot
by how e↵ective the map-PCA was at removing the e↵ect in the
map-domain.

C.2. The start-of-scan effect

The start-of-scan e↵ect is similar to the turn-around e↵ect in that
it is also weak in individual scans, but coherently adds as we add
scans. Figure C.2 shows a plot similar to what was presented in
the previous section, but that stacks all available Level 2 scans
on the beginning of each scan. For Feed 15, we see a very strong
wave across frequency, that falls to zero around 17 seconds after
the start of the scan, and then switches from negative to positive,
or positive to negative power. This is simply an artifact of the
low-pass normalization we perform during TOD processing, and
the strong wave at the very beginning of each scan is the real
start-of-scan feature. This artifact explains why we, in the second
and third rows of Figure 10 (where the start-of-scan e↵ect can be
seen), observe a similar switching of power as we move from the
right edge of the map and toward the center.

Looking at Feed 11 in Figure C.2 a much weaker, but similar,
start-of-scan feature can be seen. Generally, all feeds show very
similar behavior to either Feed 11 or 15: all Feeds associated
with DCM1-2 (Feeds 6, 14, 15, 16, and 17) have very similar
behavior, and all remaining Feeds show only a weak start-of-
scan e↵ect, as appears in Feed 11. It is unclear why this clear
divide exists, and how it relates to DCM1-2.

The exact origin of the start-of-scan e↵ect is unknown, but a
standing wave induced by mechanical vibration is also a strong
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candidate for this systematic e↵ect. The re-pointing that is per-
formed in between scans is currently the only time in the scan-
ning strategy the elevation drive is utilized, as our scans are per-
formed in constant elevation mode.

As with the turn-around e↵ect, some e↵ort was made to
model the start-of-scan e↵ect in the time domain. This was fairly
successful, and fitting a decaying exponential function to the
beginning of each scan appeared to remove more than 90% of
the signal induced by this e↵ect. However, the map-PCA proved
much more e↵ective than the time-domain e↵orts, and they are
therefore not employed.

Appendix D: Signal injection example maps

Figure D.1 illustrates the signal injection pipeline. The first
figure shows the CO simulation itself, while the subsequent three
panels show the results of injecting this simulation into the real
data with di↵erent boost strengths. We note that the simulation
is injected into the TOD of the Level 1 data, and the maps shown
have gone through the entire pipeline.

Fig. D.1. Illustration of the signal-injection method for transfer function
analysis for di↵erent signal boost strengths. The top left plot shows the
signal-only CO simulation over the relevant patch. The remaining plots
show the resulting maps of the simulation injected into the real TOD
with di↵erent boost strengths and passed through the entire COMAP
pipeline. The boost is relative to the fiducial model of Chung et al.
(2022), used in the simulations. All four plots show the same frequency
slice centered at 26.953GHz.

Appendix E: Uncertainty and frequency maps

Figure E.1 compares the uncertainties of the Season 2 maps to
the Season 1 maps. The values are averages across all frequen-
cies, calculated by inverse-variance co-addition of the uncertain-

Fig. E.1. Uncertainties across the three fields for Season 2 (S2) maps
published in this work (left), and the Season 1 (S1) maps published in
ES (right).

ties, as

�mean =

s
1

h1/�2
⌫i
. (E.1)

All frequencies have relatively similar uncertainties, with some
exceptions close to the Band edges. The center of the maps
have a uncertainties of around 25µK, while the high-sensitivity
⇠1.5� ⇥ 1.5� regions have an uncertainty of < 50muK for Fields
2 and 3, with the Field 1 region being slightly smaller.

Figure E.2 shows feed-coadded individual frequency maps
for Field 2 across 32GHz� 34GHz (1/4th of all channels) for all
the data of Season 1 and 2 combined, processed with the Sea-
son 2 pipeline. All maps are noise dominated after the map-level
PCA filtering. The noise increases toward the highest frequen-
cies because of aliasing cuts on older data (see Sect. 2.5).
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Fig. E.2. Final 31.25MHz wide frequency maps for sideband A:USB and Field 2. The titles of each sub-plot indicate the center frequencies of
each frequency map. The maps are shown for completeness, and no interesting features beyond the noise can be seen in the maps.
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