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Abstract—Accurately estimating streamflow quantity within
a watershed is essential for anticipating potential severe drought
conditions in the future. This paper introduces a hybrid model
that combines Convolutional Neural Networks and Recurrent
Neural Networks (CNN-RNN) to predict streamflow discharge
using historical data from the Potomac River Basin. The
experimental outcomes showcase the model's proficiency in
successfully predicting streamflow discharge values for the
upcoming month. Additionally, a new sequence, derived from a
one-step-ahead approach, is constructed to forecast streamflow
discharge values beyond the testing data horizon. Notably, the
CNN-RNN model demonstrates superior performance with a
lower Symmetric Mean Absolute Percentage Error (SMAPE) at
0.048592 compared to the RNN method at 0.067662. Moreover,
the prediction accuracy of the CNN-RNN model surpasses that of
the RNN model. The correlation between the test sequence and
the CNN-RNN prediction is notably high at 0.97753, while the
RNN correlation lags slightly at 0.96694. Furthermore, the
results affirm the CNN-RNN model's potential capability to
forecast unobserved values beyond the time series horizon when
observed data is unavailable.

Index Terms—Time series prediction, water quantity
prediction, machine learning, deep learning, convolutional
neural networks (CNNs), recurrent neural networks (RNNs),
long short-term memory Networks (LSTM).

I. INTRODUCTION

The streamflows within a river basin can hover around or dip
below normal levels, influenced by below-average
precipitation and significantly reduced soil moisture content.
If the trend of below-average rainfall persists, further
deterioration is anticipated. Regular monthly monitoring of
the river basin is crucial to anticipate the potential
development of severe drought conditions in the future [1].

As the challenges posed by drought and streamflow
quantity intensify, establishing an effective early warning
system becomes imperative. This system should utilize
historical data to predict the likelihood of flow dropping
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below drought trigger levels. Precisely gauging streamflow
poses a notable challenge for professionals in water resources
and water management districts. However, it is indispensable
for the effective management of water supply, flood control,
and drought mitigation. The characteristics of streamflow are
chiefly shaped by climatic conditions and features within the
watershed.

Precise estimation of streamflow quantity from a watershed
is crucial for informing urban watershed modeling, water
quantity management, legislative development, and water
supply strategies. Additionally, drought prediction stands out as
one of the most intricate hydrological challenges due to the
random and unpredictable nature of drought variables and the
complexity of underlying physical processes. The intricacy is
further heightened by a constrained understanding of
influencing factors and their effects on streamflow, coupled
with a deficiency in reliable prediction and design
methodologies. Consequently, precise drought prediction,
encompassing predictions for streamflow quantity, becomes
imperative to improve water resource management plans and
operational performance assessments.

In recent developments, several deep learning algorithms
have found success in addressing water quantity prediction
and drought prediction challenges. Recurrent Neural
Networks (RNNs) offer several advantages for time series
prediction tasks. They can handle sequential data of varying
lengths, capturing long-term dependencies and temporal
patterns effectively. RNNs accommodate irregularly spaced
time intervals and adapt to different forecasting tasks with
input and output sequences of varying lengths.

However, RNNs have limitations like the vanishing or
exploding gradient problem, which affects their ability to
capture long-term dependencies because RNNs may be
unrolled very far back in this Memory constraints may also
limit their performance with very long sequences. The
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vanishing gradient problem is a challenge that affects the
training of deep neural networks, including Recurrent Neural
Networks (RNNs). It occurs when gradients, which indicate
the direction and magnitude of updates to network weights
during training, become very small as they propagate
backward through layers. The vanishing gradient problem is
particularly problematic in sequences where information
needs to be remembered or propagated over a long span of
time, affecting the network's ability to capture important
patterns. This phenomenon hinders the ability of RNNs to
learn long-range dependencies and can lead to slow or
ineffective training.

However, this challenge is elegantly addressed by LSTM
which is a specific kind of RNN, as it incorporates specialized
memory cells and gating mechanisms that preserve and control
the flow of gradients over extended sequences [2]. This enables
the network to capture long-term dependencies more effectively
and significantly enhances its ability to learn from sequential
data. LSTM has three gates (input, forget, and output) and
excels at capturing long-term dependencies. In addition, Gated
Recurrent Unit (GRU), a simplified version of LSTM with two
gates (reset and update), maintains efficiency and performance
similar to LSTM, making it widely used in time series tasks.

Nevertheless, it shows that in some specific applications, the
combination of convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), often referred to as CNN-
RNN, can offer certain advantages over Long Short-Term
Memory Recurrent Neural Networks (LSTM)-RNN [3]-[5].
There are some known advantages of CNN-RNN over LSTM-
RNN: (1) Spatial Hierarchies in Data: CNNs are well-suited for
capturing spatial hierarchies and patterns in data. If the time
series data has inherent spatial structures or patterns, a CNN can
efficiently capture these features, providing an advantage over
LSTM, which primarily focuses on temporal dependencies; (2)
Feature Extraction: CNNs excel at feature extraction from input
data. They can automatically learn relevant spatial features,
reducing the need for manual feature engineering. When
working with time series data, especially in applications such as
video analysis or sensor data, a CNN's ability to automatically

extract spatial features can be beneficial; (3) Parallel Processing:

CNNs can process input data in parallel, which is particularly
advantageous for large-scale data. In scenarios where parallel
processing is crucial, such as processing multiple time series
simultaneously, CNN-RNN architectures may be more efficient
compared to the sequential processing of LSTM-RNNS.

The combination of CNNs and RNNs for water quantity
prediction is a relatively less explored area in the field of
hydroinformatics and environmental modeling [6]. No
detailed work has been found on CNN-RNN. Since both
CNNs and RNNs have their unique strengths, and their
combination can be powerful for handling spatial and
temporal dependencies in water quantity data [7]. Therefore,
it’s imperative to investigate the performance of CNN-RNN
on streamflow prediction and compare its performance with
other models, such as LSTM-RNN. We will utilize diverse
data sources, including historical water quantity measurements to

enhance the model's ability to generalize across different
environmental conditions.

The remainder of the paper is organized as follows:
Section II details the methodology, encompassing the LSTM-
RNN and CNN-RNN. Section III delves into time series
prediction using the LSTM network. Section IV provides the
experimental results. Section V concludes the paper.

II.  PROPOSED METHODS

A. LSTM-RNN Model for Time Series Prediction

The depicted diagram Fig. 1 showcases the data flow within
an LSTM layer, with input denoted as x and output as y across
T time steps. Here, hy signifies the output, also referred to as

the hidden state, while ¢ represents the cell state at each time
step, t.

When the layer produces the entire sequence, it yields
Yi» ---» ¥y equivalent to hy, ..., h, However, if the layer
outputs solely the last time step, it generates y;, matching h;.
The output's channel count aligns with the number of hidden
units within the LSTM layer.

Y1 ¥y2

t 1
("LSTM Layer
hy —
cy
I I
X1 X
Fig. 1. Unfolded single layer of LSTM network.

The initial LSTM operation utilizes the RNN's initial state
alongside the sequence's first time step to calculate the initial
output and update the cell state [8]. As for time step ¢, the
operation employs the current RNN state (¢,_;,/,_;) and the

subsequent time step of the sequence to compute both the
output and the updated cell state, c,.

The layer's state encompasses both the hidden state, also
referred to as the output state, and the cell state. At time step ¢,
the hidden state holds the LSTM layer's output for that
specific step, while the cell state retains knowledge acquired
from preceding steps. With each time step, the layer either
adds or removes information from the cell state, a process
regulated by gates.

In contrast to the conventional RNN, the LSTM
distinguishes itself as a recurrent neural network equipped
with built-in gates. At each time step, the LSTM layer has the
capability to selectively incorporate or discard information
from the cell state, with these actions governed by gates. The
gated circuit within the LSTM is intentionally crafted to
regulate the flow of data at time step ¢, as depicted in Fig. 2.
The introduction of self-loops in the LSTM creates pathways
that allow gradients to endure for extended periods, enhancing
the model's capability to effectively learn long-term
dependencies.

122
Authorized licensed use limited to: Univ of the District of Columbia. Downloaded on June 04,2025 at 13:18:03 UTC from IEEE Xplore. Restrictions apply.



Sigmoid

+ o]

Fig. 2. Block diagram illustrating LSTM operations applied to a time
series sequence.

The trainable parameters of an LSTM layer encompass the
input weights W (Input Weights), the recurrent weights R
(Recurrent Weights), and the bias b (Bias). Matrices W, R,
and b are constructed by amalgamating the input weights, the
recurrent weights, and the bias of each component,
respectively. The layer merges these matrices based on the
following equations:

VVi Ri bi
W = Wf R= Rf b= bf
VVg Rg bg
WD RD bD

where i, f, g, and o denote the input gate, forget gate, cell
candidate, and output gate, respectively.

The equations describing the operations are listed below.

Ji=o,Wx +Rih +b)) (1
i =0,(Wx,+Rh_ +b) )
0,=0, Wx,+Rh_ +b,)) (3)
g =0.Wyx,+Rh_ +b,) 4)

O, denotes the sigmoid function

O, denotes the hyperbolic tangent function

The cell state at time step t is given by
¢ =Jfoctiog, 5)
Where , denotes the element-wise multiplication of vectors.

The hidden state at time step ¢ is given by
h,=o0,00,c,) (6)

B. CNN-RNN Model for Time Series Prediction

A hybrid CNN-RNN model will be developed to address
the water quantity prediction. This model complements the
advantages of both CNNs and RNNs. On one hand, CNNs are
well-suited for extracting spatial features from input data. In
the context of water quantity prediction, satellite imagery or
sensor data from various geographical locations can be fed
into the CNN layers. These layers can capture spatial patterns,
such as land cover, terrain characteristics, and other relevant

features. RNNs, on the other hand, are effective in capturing
temporal dependencies in sequential data. Time-series data
related to water quantity, such as streamflow measurements,
precipitation, and temperature, can be input into the RNN
layers. The RNN component helps in modeling the dynamic
behavior and dependencies over time.

In the new hybrid CNN-RNN architecture, the CNN and
RNN layers can be integrated in a hybrid architecture. The
output from the CNN layers capturing spatial features can be
fed into the RNN layers to model temporal dependencies. This
combination allows the model to learn both spatial and
temporal patterns simultaneously. The hybrid CNN-RNN
architecture is shown in Fig. 3.

Fig. 3. The hybrid CNN-RNN architecture.

The CNN excels in extracting features, making it a strong
neural network for this purpose, while the RNN has
demonstrated its proficiency in predicting values within
sequence-to-sequence series. In each time step, the CNN
extracts key features from the sequence, whereas the RNN
focuses on learning to predict the next value in the sequence.
The input size of the sequence is lagged by n-months,
consequently, the RNN anticipates an input size of n-months
cases to generate the prediction for the subsequent month,
specifically one step ahead.

In the performance evaluation, one of the most common
evaluation metrics for water quantity prediction problem is the
symmetric mean absolute percentage error (SMAPE). sMAPE,
commonly employed to evaluate forecasting model
performance, measures accuracy, with lower values indicating
higher accuracy. This measure of accuracy relies on
percentage (or relative) errors and is defined as follows:

(M

where A, represents the actual value and F; represents the
forecast value. The absolute difference between A, and F; is
divided by half the sum of the absolute values of the actual
value A; and the forecast value F;. The result is then summed
for each fitted point ¢ and further divided by the total number
of fitted points n. The result is a percentage, and the goal is to
minimize this percentage.

100 |Fe—A¢|
MAPE = 120ymn __IFzAd
S n SR+ |AD) 2

III. EXPERIMENTAL RESULTS

In this section, we will perform a one-step ahead forecast,
where we predict the next time point based on historical data.
In addition, we will compare the forecast performance of
CNN-RNN and RNN.
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A. Study Area and Streamflow Data

Since we focus on Potomac River Basin, i.e. the Four Mile
Run stream station at Alexandria, VA 1is selected to retrieve
real-time streamflow water data from the U.S. Geological
Survey (USGS)’s national water information system. Four
Mile Run is a tributary of the Potomac River and is located in
the Potomac River basin. It flows through the Washington,
D.C. metropolitan area and into the Potomac River in northern
Virginia. The Potomac River basin encompasses a large area,
and many smaller rivers and streams, including Four Mile Run,
contribute to the overall drainage system that feeds into the
Potomac River.

The dataset comprises streamflow discharge values
(measured in cubic feet per second) recorded from July 31,
2010, to November 20, 2010. The time series data are
organized with timestamps and corresponding values., as
illustrated in Fig. 4.

Historical Dally Dischargo
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Fig. 4. Discharge information, measured in cubic feet per second,
gathered at the Four Mile Run site in Alexandria, VA, spanning from July 31,
2010, to November 20, 2010.

Real-time time series data is typically logged at intervals of
15 to 60 minutes. Consequently, each graph displays 34,721
data points collected over the 120-day period. The input data is
represented by a 34,721x1 matrix, capturing dynamic data
across 34,721 time steps, each consisting of a single element.

Then the time series data will be split into training and
testing sets. The training set will be used to train the model,
and the testing set will be used to evaluate its performance.
Thus, the data is randomly split into 34,721 time steps, with 90%
allocated for training, contributing 31,249 target time steps.
These are presented to the network during training, and
adjustments are made based on the network's error. The
remaining 10% of the data, consisting of 3,472 target time
steps, is utilized for testing.

B. Feature Engineering

To improve the convergence process, the data is
standardized. The most important task in feature engineering
is to create lag features by shifting the target variable (the
variable we want to predict) by a certain number of time steps
to create lagged values. This represents the "look-back" effect.
We have monthly data, so we create a lag feature with a lag of
15 month, which means using the value of the previous 15
months as a feature. In addition, hyperparameter tuning and
optimization are also important to achieve the best results.
The input parameters are specified as follows: Learning rate is
set to 0.006. Moreover, we use the adaptive moment

estimation, a.k.a. Adam optimization algorithm to train both
CNN-RNN and RNN. It is an extension of the stochastic
gradient descent (SGD) optimization method and is known for
being computationally efficient. One of the main features of
Adam is its adaptive learning rate. Furthermore, the Bayesian
regularization backpropagation algorithm is used for training
feedforward neural networks. This algorithm combines the
advantages of both Bayesian regularization and Levenberg-
Marquardt backpropagation. Bayesian regularization is used
to prevent overfitting by adding a penalty term to the error
function, while the Levenberg-Marquardt algorithm is
employed for backpropagation to update updates the weight
and bias values.

C. Model Training of CNN-RNN and RNN

For the proposed CNN-RNN time series forecasting model,
the maximum number of epochs for training is set to 600. The
learning rate is reduced by a factor of 0.25 every 96 epochs. A
mini-batch size with 64 observations is used at each iteration.
On the other hand, RNN time series forcasting model uses the
same setting. We train the two models on the training set
using the lagged features as input and the target variable as
output.

D. Forecasting the Testing Data

We forecast the streamflow discharge value for the next
month (next step). The network is expecting a sequence of
Lag values roll back window to predict the streamflow
discharge value for the next month. The trained network still
"remember" the training time sequence and it expects a new
sequence to predict one step ahead. The training time series
and the forecasted values for CNN-RNN and RNN are plotted
in Fig. 5 (a) and (b), respectively.

As we can observe from Fig. 5, the sMAPE for CNN-RNN
in (a) is lower, which is 0.048592, while the sSMAPE for RNN
in (b) is higher, which is 0.067662. A lower sSMAPE indicates
that the forecasted values are closer to the actual values,
reflecting better accuracy in the forecasting model.

(@) (b)
Fig. 5. The forecasted values are show in red, while the observed values

(targets) are shown in blue. (a) CNN-RNN (b) RNN.

E. Correlation between forecasted values and the testing data

In addition, we compare the forecasted values with the
testing data. The result is shown in Fig. 6. As we can see from
Fig. 6, the correlation of the test sequence and prediction for
CNN-RNN is higher, which is 0.97753, while the correlation
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of the test sequence and prediction for RNN is lower, which is
0.96694.

(@) (b)
Fig. 6. Comparison of the forecasted values with the testing data. (a)
CNN-RNN (b) RNN.

In order to better visualize the correlation, the correlation
between the forecasted values and the testing data for CNN-
RNN and RNN can be plotted in Fig. 7 (a) and (b). Fig. 7
shows that CNN-RNN has higher correlation, which is
0.97753, and RNN has lower correlation, which is 0.96694. In
time series prediction, the correlation between the forecasted
values and the testing data is an important measure of the
accuracy of the predictive model. A higher correlation
between the test sequence and the predictions is considered
better.

The correlation coefficient quantifies the strength and
direction of a linear relationship between two variables. In the
context of forecasting or prediction, a high positive correlation
suggests that the predicted values move in the same direction
as the actual values. For a perfect prediction model, all of the
correlations should be 1.

,,,,,,

Fig. 7. The correlation between the forecasted values and the testing data
for CNN-RNN and RNN. (a) CNN-RNN (b) RNN.

F. Forecasting Unobserved Values Beyond the Horizon

We also conduct some preliminary experiments on the
ability of the CNN-RNN to predict sequences extending beyond
the testing data. This experiment elucidates the approach for
approximately forecasting "future" streamflow discharge values
in the absence of observable data. The trained network retains
its memory, signifying its ability to recall the sequence from the
training data period. Specifically, the network retains
information from the last lag time step. Consequently, the
network anticipates a new sequence, enabling it to predict one
step ahead.

Initially, we establish a novel network and transfer its
knowledge and memory to a fresh variable. Subsequently, the
network is prepared to extend its prediction to the subsequent
step. However, generating a new sequence becomes
imperative, relying on the previous prediction. In this phase,
we aim to forecast a sequence matching the number of steps in
the testing data (horizon). The earlier predicted value is placed
at the beginning of the sequence, and the list is shifted
downward to maintain a consistent number of features. Fig. 8
illustrates the forecasted sequence derived from the testing
data (complete testing sequence) alongside the new prediction
based on a sequence constructed from the preceding
forecasted value.

Fig. 8. The forecasted sequence derived from the testing data (complete
testing sequence) alongside the new prediction based on a sequence
constructed from the preceding forecasted value for CNN-RNN.

From Fig. 8, we observe a decline in prediction accuracy as
we extend further away from the last known time step in the
sequence. The disparity between the aforementioned testing
prediction and this final prediction is contingent on the
sequence information. The testing prediction encompasses a
complete sequence of observable values, whereas this ultimate
prediction comprises only a limited set of observable values,
with the remainder being constructed or populated through
bootstrapping from the preceding predicted value.

IV. CONCLUSIONS

This paper proposes a hybrid convolutional neural
networks (CNNs) and recurrent neural networks (RNNs)
model, referred to as CNN-RNN model to forecast the
streamflow discharge values using the historical streamflow
discharge values for potomac river basin. The experimental
results demonstrated that the designed network successfully
predicts the streamflow discharge values for the next month. In
addition, a new sequence based on one-step ahead was built to
forecast streamflow discharge values beyond the horizon of the
testing data. Moreover, The CNN-RNN model demonstrates a
lower symmetric mean absolute percentage error (SMAPE) and
a higher correlation between the forecasted values and the
testing data than the RNN model, indicating higher prediction
accuracy.

V. FUTURE WORK

We will implement transfer learning utilizing ResNet50,
Xception, and a feedforward neural network to forecast
streamflow discharge beyond the horizon of the testing data.
Furthermore, we will fine-tune the parameters of the model
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based on its performance on the testing set in order to further
enhances the accuracy of the forecasts.
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