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Abstract—Accurately estimating streamflow quantity within 
a watershed is essential for anticipating potential severe drought 
conditions in the future. This paper introduces a hybrid model 
that combines Convolutional Neural Networks and Recurrent 
Neural Networks (CNN-RNN) to predict streamflow discharge 
using historical data from the Potomac River Basin. The 
experimental outcomes showcase the model's proficiency in 
successfully predicting streamflow discharge values for the 
upcoming month. Additionally, a new sequence, derived from a 
one-step-ahead approach, is constructed to forecast streamflow 
discharge values beyond the testing data horizon. Notably, the 
CNN-RNN model demonstrates superior performance with a 
lower Symmetric Mean Absolute Percentage Error (sMAPE) at 
0.048592 compared to the RNN method at 0.067662. Moreover, 
the prediction accuracy of the CNN-RNN model surpasses that of 
the RNN model. The correlation between the test sequence and 
the CNN-RNN prediction is notably high at 0.97753, while the 
RNN correlation lags slightly at 0.96694. Furthermore, the 
results affirm the CNN-RNN model's potential capability to 
forecast unobserved values beyond the time series horizon when 
observed data is unavailable. 

Index Terms—Time series prediction, water quantity 
prediction, machine learning, deep learning, convolutional 
neural networks (CNNs), recurrent neural networks (RNNs), 
long short-term memory Networks (LSTM). 

I. INTRODUCTION

The streamflows within a river basin can hover around or dip 
below normal levels, influenced by below-average 
precipitation and significantly reduced soil moisture content. 
If the trend of below-average rainfall persists, further 
deterioration is anticipated. Regular monthly monitoring of 
the river basin is crucial to anticipate the potential 
development of severe drought conditions in the future [1]. 

As the challenges posed by drought and streamflow 
quantity intensify, establishing an effective early warning 
system becomes imperative. This system should utilize 
historical data to predict the likelihood of flow dropping 

below drought trigger levels. Precisely gauging streamflow 
poses a notable challenge for professionals in water resources 
and water management districts. However, it is indispensable 
for the effective management of water supply, flood control, 
and drought mitigation. The characteristics of streamflow are 
chiefly shaped by climatic conditions and features within the 
watershed. 

Precise estimation of streamflow quantity from a watershed 
is crucial for informing urban watershed modeling, water 
quantity management, legislative development, and water 
supply strategies. Additionally, drought prediction stands out as 
one of the most intricate hydrological challenges due to the 
random and unpredictable nature of drought variables and the 
complexity of underlying physical processes. The intricacy is 
further heightened by a constrained understanding of 
influencing factors and their effects on streamflow, coupled 
with a deficiency in reliable prediction and design 
methodologies. Consequently, precise drought prediction, 
encompassing predictions for streamflow quantity, becomes 
imperative to improve water resource management plans and 
operational performance assessments. 

In recent developments, several deep learning algorithms 
have found success in addressing water quantity prediction 
and drought prediction challenges. Recurrent Neural 
Networks (RNNs) offer several advantages for time series 
prediction tasks. They can handle sequential data of varying 
lengths, capturing long-term dependencies and temporal 
patterns effectively. RNNs accommodate irregularly spaced 
time intervals and adapt to different forecasting tasks with 
input and output sequences of varying lengths. 

However, RNNs have limitations like the vanishing or 
exploding gradient problem, which affects their ability to 
capture long-term dependencies because RNNs may be 
unrolled very far back in this Memory constraints may also 
limit their performance with very long sequences. The 
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vanishing gradient problem is a challenge that affects the 
training of deep neural networks, including Recurrent Neural 
Networks (RNNs). It occurs when gradients, which indicate 
the direction and magnitude of updates to network weights 
during training, become very small as they propagate 
backward through layers. The vanishing gradient problem is 
particularly problematic in sequences where information 
needs to be remembered or propagated over a long span of 
time, affecting the network's ability to capture important 
patterns. This phenomenon hinders the ability of RNNs to 
learn long-range dependencies and can lead to slow or 
ineffective training.   

However, this challenge is elegantly addressed by LSTM 
which is a specific kind of RNN, as it incorporates specialized 
memory cells and gating mechanisms that preserve and control 
the flow of gradients over extended sequences [2]. This enables 
the network to capture long-term dependencies more effectively 
and significantly enhances its ability to learn from sequential 
data. LSTM has three gates (input, forget, and output) and 
excels at capturing long-term dependencies. In addition, Gated 
Recurrent Unit (GRU), a simplified version of LSTM with two 
gates (reset and update), maintains efficiency and performance 
similar to LSTM, making it widely used in time series tasks. 

Nevertheless, it shows that in some specific applications, the 
combination of convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), often referred to as CNN-
RNN, can offer certain advantages over Long Short-Term 
Memory Recurrent Neural Networks (LSTM)-RNN [3]-[5]. 
There are some known advantages of CNN-RNN over LSTM-
RNN: (1) Spatial Hierarchies in Data: CNNs are well-suited for 
capturing spatial hierarchies and patterns in data. If the time 
series data has inherent spatial structures or patterns, a CNN can 
efficiently capture these features, providing an advantage over 
LSTM, which primarily focuses on temporal dependencies; (2) 
Feature Extraction: CNNs excel at feature extraction from input 
data. They can automatically learn relevant spatial features, 
reducing the need for manual feature engineering. When 
working with time series data, especially in applications such as 
video analysis or sensor data, a CNN's ability to automatically 
extract spatial features can be beneficial; (3) Parallel Processing: 
CNNs can process input data in parallel, which is particularly 
advantageous for large-scale data. In scenarios where parallel 
processing is crucial, such as processing multiple time series 
simultaneously, CNN-RNN architectures may be more efficient 
compared to the sequential processing of LSTM-RNNs. 

The combination of CNNs and RNNs for water quantity 
prediction is a relatively less explored area in the field of 
hydroinformatics and environmental modeling [6]. No 
detailed work has been found on CNN-RNN. Since both 
CNNs and RNNs have their unique strengths, and their 
combination can be powerful for handling spatial and 
temporal dependencies in water quantity data [7]. Therefore, 
it’s imperative to investigate the performance of CNN-RNN 
on streamflow prediction and compare its performance with 
other models, such as LSTM-RNN. We will utilize diverse 
data sources, including historical water quantity measurements to 

enhance the model's ability to generalize across different 
environmental conditions. 

The remainder of the paper is organized as follows: 
Section II details the methodology, encompassing the LSTM-
RNN and CNN-RNN. Section III delves into time series 
prediction using the LSTM network. Section IV provides the 
experimental results. Section V concludes the paper. 

II. PROPOSED METHODS 

A. LSTM-RNN Model for Time Series Prediction 
The depicted diagram Fig. 1 showcases the data flow within 
an LSTM layer, with input denoted as x and output as y across 
T time steps. Here, ht signifies the output, also referred to as 
the hidden state, while ct represents the cell state at each time 
step, t. 

When the layer produces the entire sequence, it yields 
y1, …, yT, equivalent to h1, …, hT. However, if the layer 
outputs solely the last time step, it generates yT, matching hT. 
The output's channel count aligns with the number of hidden 
units within the LSTM layer. 

Fig. 1. Unfolded single layer of LSTM network. 

The initial LSTM operation utilizes the RNN's initial state 
alongside the sequence's first time step to calculate the initial 
output and update the cell state [8]. As for time step t, the 
operation employs the current RNN state ( 1−tc , 1−th ) and the 
subsequent time step of the sequence to compute both the 
output and the updated cell state, tc . 

The layer's state encompasses both the hidden state, also 
referred to as the output state, and the cell state. At time step t, 
the hidden state holds the LSTM layer's output for that 
specific step, while the cell state retains knowledge acquired 
from preceding steps. With each time step, the layer either 
adds or removes information from the cell state, a process 
regulated by gates.  

In contrast to the conventional RNN, the LSTM 
distinguishes itself as a recurrent neural network equipped 
with built-in gates. At each time step, the LSTM layer has the 
capability to selectively incorporate or discard information 
from the cell state, with these actions governed by gates. The 
gated circuit within the LSTM is intentionally crafted to 
regulate the flow of data at time step t, as depicted in Fig. 2. 
The introduction of self-loops in the LSTM creates pathways 
that allow gradients to endure for extended periods, enhancing 
the model's capability to effectively learn long-term 
dependencies. 
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Fig. 2. Block diagram illustrating LSTM operations applied to a time 
series sequence. 

The trainable parameters of an LSTM layer encompass the 
input weights W (Input Weights), the recurrent weights R 
(Recurrent Weights), and the bias b (Bias). Matrices W, R, 
and b are constructed by amalgamating the input weights, the 
recurrent weights, and the bias of each component, 
respectively. The layer merges these matrices based on the 
following equations: 
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where i, f, g, and o denote the input gate, forget gate, cell 
candidate, and output gate, respectively. 

The equations describing the operations are listed below. 

)( 1 ftftfgt bhRxWf ++= −σ    (1) 

)( 1 ititigt bhRxWi ++= −σ    (2) 

)( 1 ototogt bhRxWo ++= −σ    (3) 

)( 1 gtgtgct bhRxWg ++= −σ
   

(4) 

gσ denotes the sigmoid function 

cσ denotes the hyperbolic tangent function 
The cell state at time step t is given by 

ttttt gicfc  += −1      (5) 

Where ° denotes the element-wise multiplication of vectors. 

The hidden state at time step t is given by 

)( tctt coh σ=     (6) 

B. CNN-RNN Model for Time Series Prediction 
A hybrid CNN-RNN model will be developed to address 

the water quantity prediction. This model complements the 
advantages of both CNNs and RNNs. On one hand, CNNs are 
well-suited for extracting spatial features from input data. In 
the context of water quantity prediction, satellite imagery or 
sensor data from various geographical locations can be fed 
into the CNN layers. These layers can capture spatial patterns, 
such as land cover, terrain characteristics, and other relevant 

features. RNNs, on the other hand, are effective in capturing 
temporal dependencies in sequential data. Time-series data 
related to water quantity, such as streamflow measurements, 
precipitation, and temperature, can be input into the RNN 
layers. The RNN component helps in modeling the dynamic 
behavior and dependencies over time. 

In the new hybrid CNN-RNN architecture, the CNN and 
RNN layers can be integrated in a hybrid architecture. The 
output from the CNN layers capturing spatial features can be 
fed into the RNN layers to model temporal dependencies. This 
combination allows the model to learn both spatial and 
temporal patterns simultaneously. The hybrid CNN-RNN 
architecture is shown in Fig. 3. 

 
 
 
 
 
 
 
 
 
 

Fig. 3. The hybrid CNN-RNN architecture. 

The CNN excels in extracting features, making it a strong 
neural network for this purpose, while the RNN has 
demonstrated its proficiency in predicting values within 
sequence-to-sequence series. In each time step, the CNN 
extracts key features from the sequence, whereas the RNN 
focuses on learning to predict the next value in the sequence. 
The input size of the sequence is lagged by n-months, 
consequently, the RNN anticipates an input size of n-months 
cases to generate the prediction for the subsequent month, 
specifically one step ahead. 

In the performance evaluation, one of the most common 
evaluation metrics for water quantity prediction problem is the 
symmetric mean absolute percentage error (sMAPE). sMAPE, 
commonly employed to evaluate forecasting model 
performance, measures accuracy, with lower values indicating 
higher accuracy. This measure of accuracy relies on 
percentage (or relative) errors and is defined as follows: 

sMAPE = 100
𝑛𝑛
∑ |𝐹𝐹𝑡𝑡−𝐴𝐴𝑡𝑡|

(|𝐹𝐹𝑡𝑡|+|𝐴𝐴𝑡𝑡|)/2
𝑛𝑛
𝑡𝑡=1    (7) 

where 𝐴𝐴𝑡𝑡 represents the actual value and 𝐹𝐹𝑡𝑡 represents the 
forecast value. The absolute difference between 𝐴𝐴𝑡𝑡  and 𝐹𝐹𝑡𝑡  is 
divided by half the sum of the absolute values of the actual 
value 𝐴𝐴𝑡𝑡 and the forecast value 𝐹𝐹𝑡𝑡. The result is then summed 
for each fitted point t and further divided by the total number 
of fitted points n. The result is a percentage, and the goal is to 
minimize this percentage. 

III. EXPERIMENTAL RESULTS 
In this section, we will perform a one-step ahead forecast, 

where we predict the next time point based on historical data. 
In addition, we will compare the forecast performance of 
CNN-RNN and RNN. 
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A. Study Area and Streamflow Data 
Since we focus on Potomac River Basin, i.e. the Four Mile 

Run stream station at Alexandria, VA is selected to retrieve 
real-time streamflow water data from the U.S. Geological 
Survey (USGS)’s national water information system. Four 
Mile Run is a tributary of the Potomac River and is located in 
the Potomac River basin. It flows through the Washington, 
D.C. metropolitan area and into the Potomac River in northern 
Virginia. The Potomac River basin encompasses a large area, 
and many smaller rivers and streams, including Four Mile Run, 
contribute to the overall drainage system that feeds into the 
Potomac River. 

The dataset comprises streamflow discharge values 
(measured in cubic feet per second) recorded from July 31, 
2010, to November 20, 2010. The time series data are 
organized with timestamps and corresponding values., as 
illustrated in Fig. 4.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Discharge information, measured in cubic feet per second, 
gathered at the Four Mile Run site in Alexandria, VA, spanning from July 31, 
2010, to November 20, 2010. 

Real-time time series data is typically logged at intervals of 
15 to 60 minutes. Consequently, each graph displays 34,721 
data points collected over the 120-day period. The input data is 
represented by a 34,721x1 matrix, capturing dynamic data 
across 34,721 time steps, each consisting of a single element.  

Then the time series data will be split into training and 
testing sets. The training set will be used to train the model, 
and the testing set will be used to evaluate its performance. 
Thus, the data is randomly split into 34,721 time steps, with 90% 
allocated for training, contributing 31,249 target time steps. 
These are presented to the network during training, and 
adjustments are made based on the network's error. The 
remaining 10% of the data, consisting of 3,472 target time 
steps, is utilized for testing.  

B. Feature Engineering 
To improve the convergence process, the data is 

standardized. The most important task in feature engineering 
is to create lag features by shifting the target variable (the 
variable we want to predict) by a certain number of time steps 
to create lagged values. This represents the "look-back" effect. 
We have monthly data, so we create a lag feature with a lag of 
15 month, which means using the value of the previous 15 
months as a feature. In addition, hyperparameter tuning and 
optimization are also important to achieve the best results. 
The input parameters are specified as follows: Learning rate is 
set to 0.006. Moreover, we use the adaptive moment 

estimation, a.k.a. Adam optimization algorithm to train both 
CNN-RNN and RNN. It is an extension of the stochastic 
gradient descent (SGD) optimization method and is known for 
being computationally efficient. One of the main features of 
Adam is its adaptive learning rate. Furthermore, the Bayesian 
regularization backpropagation algorithm is used for training 
feedforward neural networks. This algorithm combines the 
advantages of both Bayesian regularization and Levenberg-
Marquardt backpropagation. Bayesian regularization is used 
to prevent overfitting by adding a penalty term to the error 
function, while the Levenberg-Marquardt algorithm is 
employed for backpropagation to update updates the weight 
and bias values. 

C. Model Training of CNN-RNN and RNN  
For the proposed CNN-RNN time series forecasting model, 

the maximum number of epochs for training is set to 600. The 
learning rate is reduced by a factor of 0.25 every 96 epochs. A 
mini-batch size with 64 observations is used at each iteration. 
On the other hand, RNN time series forcasting model uses the 
same setting. We train the two models on the training set 
using the lagged features as input and the target variable as 
output. 

D. Forecasting the Testing Data 
We forecast the streamflow discharge value for the next 

month (next step). The network is expecting a sequence of 
Lag values roll back window to predict the streamflow 
discharge value for the next month. The trained network still 
"remember" the training time sequence and it expects a new 
sequence to predict one step ahead. The training time series 
and the forecasted values for CNN-RNN and RNN are plotted 
in Fig. 5 (a) and (b), respectively.  

As we can observe from Fig. 5, the sMAPE for CNN-RNN 
in (a) is lower, which is 0.048592, while the sMAPE for RNN 
in (b) is higher, which is 0.067662. A lower sMAPE indicates 
that the forecasted values are closer to the actual values, 
reflecting better accuracy in the forecasting model. 

Fig. 5. The forecasted values are show in red, while the observed values 
(targets) are shown in blue. (a) CNN-RNN (b) RNN. 

E. Correlation between forecasted values and the testing data 
In addition, we compare the forecasted values with the 

testing data. The result is shown in Fig. 6. As we can see from 
Fig. 6, the correlation of the test sequence and prediction for 
CNN-RNN is higher, which is 0.97753, while the correlation 
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of the test sequence and prediction for RNN is lower, which is 
0.96694. 

Fig. 6. Comparison of the forecasted values with the testing data. (a) 
CNN-RNN (b) RNN. 

In order to better visualize the correlation, the correlation 
between the forecasted values and the testing data for CNN-
RNN and RNN can be plotted in Fig. 7 (a) and (b). Fig. 7 
shows that CNN-RNN has higher correlation, which is 
0.97753, and RNN has lower correlation, which is 0.96694. In 
time series prediction, the correlation between the forecasted 
values and the testing data is an important measure of the 
accuracy of the predictive model. A higher correlation 
between the test sequence and the predictions is considered 
better.  

The correlation coefficient quantifies the strength and 
direction of a linear relationship between two variables. In the 
context of forecasting or prediction, a high positive correlation 
suggests that the predicted values move in the same direction 
as the actual values. For a perfect prediction model, all of the 
correlations should be 1. 

Fig. 7. The correlation between the forecasted values and the testing data 
for CNN-RNN and RNN. (a) CNN-RNN (b) RNN. 

F. Forecasting Unobserved Values Beyond the Horizon
We also conduct some preliminary experiments on the

ability of the CNN-RNN to predict sequences extending beyond 
the testing data. This experiment elucidates the approach for 
approximately forecasting "future" streamflow discharge values 
in the absence of observable data. The trained network retains 
its memory, signifying its ability to recall the sequence from the 
training data period. Specifically, the network retains 
information from the last lag time step. Consequently, the 
network anticipates a new sequence, enabling it to predict one 
step ahead. 

Initially, we establish a novel network and transfer its 
knowledge and memory to a fresh variable. Subsequently, the 
network is prepared to extend its prediction to the subsequent 
step. However, generating a new sequence becomes 
imperative, relying on the previous prediction. In this phase, 
we aim to forecast a sequence matching the number of steps in 
the testing data (horizon). The earlier predicted value is placed 
at the beginning of the sequence, and the list is shifted 
downward to maintain a consistent number of features. Fig. 8 
illustrates the forecasted sequence derived from the testing 
data (complete testing sequence) alongside the new prediction 
based on a sequence constructed from the preceding 
forecasted value. 

 

Fig. 8. The forecasted sequence derived from the testing data (complete 
testing sequence) alongside the new prediction based on a sequence 
constructed from the preceding forecasted value for CNN-RNN. 

From Fig. 8, we observe a decline in prediction accuracy as 
we extend further away from the last known time step in the 
sequence. The disparity between the aforementioned testing 
prediction and this final prediction is contingent on the 
sequence information. The testing prediction encompasses a 
complete sequence of observable values, whereas this ultimate 
prediction comprises only a limited set of observable values, 
with the remainder being constructed or populated through 
bootstrapping from the preceding predicted value. 

IV. CONCLUSIONS

This paper proposes a hybrid convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs) 
model, referred to as CNN-RNN model to forecast the 
streamflow discharge values using the historical streamflow 
discharge values for potomac river basin. The experimental 
results demonstrated that the designed network successfully 
predicts the streamflow discharge values for the next month. In 
addition, a new sequence based on one-step ahead was built to 
forecast streamflow discharge values beyond the horizon of the 
testing data. Moreover, The CNN-RNN model demonstrates a 
lower symmetric mean absolute percentage error (sMAPE) and 
a higher correlation between the forecasted values and the 
testing data than the RNN model, indicating higher prediction 
accuracy. 

V. FUTURE WORK

We will implement transfer learning utilizing ResNet50, 
Xception, and a feedforward neural network to forecast 
streamflow discharge beyond the horizon of the testing data. 
Furthermore, we will fine-tune the parameters of the model 
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based on its performance on the testing set in order to further 
enhances the accuracy of the forecasts. 
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