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Abstract— Although the immediate threat of the
coronavirus disease 2019 (COVID-19) has been significantly
mitigated through widespread vaccination efforts and public
health measures, ongoing observation and preparedness
remain crucial in managing potential future outbreaks and
ensuring global health security. Our research focuses on using
a transfer learning-based convolutional neural network (CNN)
to distinguish and classify chest X-ray images (CXR) of
patients with COVID-19, pneumonia, and relatively normal
lungs. The proposed transfer learning model, named NewNet,
integrates features from CXR images and deep learning model,
AlexNet [1]. Training of the transfer learning CNN model was
conducted using two datasets: the Kaggle CXR dataset [2] and
the dataset collected by Joseph et al. [3]. The experimental
results indicate that the NewNet model achieves an average
accuracy of 96.82% for classifying COVID-19 CXR images,
92.94% for pneumonia, and 96.32% for normal cases. Thus,
through the transfer learning technique, the proposed NewNet
deep learning network demonstrates improved accuracy in
diagnosing COVID-19.

Keywords— Transfer Learning (TL), Coronavirus Disease
2019 (COVID-19), Machine Learning (ML), Deep Learning
(DL), Convolution Neural Network (CNN).

L INTRODUCTION

The rapid spread of the coronavirus disease has caused
significant detrimental impacts to the world, particularly in
regions with limited medical resources and lower healthcare
standards. The primary diagnostic approach for COVID-19
involves reverse transcriptase polymerase chain reaction
(RT-PCR), known for its specificity. However, there is still a
lack of detections kits in many countries due to the lasting
disruption of supply chains and high demand [4]. Moreover,
its diminished sensitivity raises the likelihood of false
negative results, presenting significant challenges to
effective COVID-19 prevention initiatives. In areas with
limited medical resources, there is a need to find a rapid,
dependable, and cost-effective detection method. Chest X-
ray (CXR) is widely recognized as the predominant imaging
test for diagnosing heart and chest diseases [5]. In
comparison to CT scans, CXR involves lower levels of
ionizing radiation [6].

Identifying diseases through chest radiographs poses a
highly demanding challenge, requiring a specific level of
expertise and meticulous observation. COVID-19 exhibits
certain radiological features detectable through CXR.
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However, relying on manual film reading for analyzing
these characteristics not only consumes significant medical
staff time, but also introduces the risk of errors arises from
visual fatigue and other related issues. Hence, it is
imperative to explore methods for automating the CXR
detection process.

Recently, there has been an increasing investigation of
computer-aided detection systems as a means to reduce
dependency on medical staff and aid in diagnoses. Machine
learning (ML) approaches have become ubiquitous in
numerous medical fields, showing positive results [7]. Deep
learning (DL) approaches, in particular, have garnered
attention in clinical imaging due to their feature extraction
capabilities, allowing them to discern patterns, orientation,
and boundaries effectively. Convolutional Neural Networks
(CNNs) is a prominent branch of deep learning technology
which excel in tasks involving image feature extraction and
learning [8]. The performance of the convolutional neural
network (CNN) model depends on variables like the size of
the training dataset and the architecture of the layers. Given
the limitations in the size of medical imaging datasets and
the time-consuming nature of collecting such data, a more
robust approach to deep learning should be investigated.

The adoption of transfer learning is recommended for
the training of the CNN model [9], [10]. Transfer learning is
a machine learning technique that involves applying
knowledge acquired from training a model on one task to a
different yet related task. In the context of neural networks
utilizing transfer learning, the training process occurs in two
stages. Initially, the network undergoes training on the
ImageNet dataset, which comprises over 1000 images.
Subsequently, fine-tuning occurs, where the pretrained
network is further trained on the specific dataset of interest.
Typically, the initial layers of the model are trained to learn
basic features like edges, corners, and curves, while the
final layers concentrate on capturing more advanced
features.

We are motivated to develop transfer learning based
machine learning and deep learning methods to address the
challenges in the COVID-19 CXR (chest X-ray) image
recognition problem, such as (1) Limited Annotated Data
for COVID-19: Annotated datasets for COVID-19 CXR
images may be limited, making it challenging to train deep
neural networks from scratch. Transfer learning allows
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leveraging pre-trained models on large datasets, such as
general medical images, and fine-tuning them on the limited
COVID-19 CXR dataset. (2) Knowledge Transfer from
General Medical Images: Pre-trained models on general
medical images can capture valuable features and patterns
that are relevant to CXR analysis. Transfer learning allows
the model to inherit knowledge from broader medical
contexts and adapt it to the specific characteristics of
COVID-19 CXR images. (3) Accelerated Model Training:
Training deep neural networks from scratch requires
significant computational resources and time. Transfer
learning accelerates the training process by starting with a
model that has already learned meaningful representations.
Fine-tuning this pre-trained model on COVID-19 CXR
images requires fewer iterations and computational
resources.

The contribution of this paper is an accurate transfer
learning-based method for recognizing CXR images of
COVID-19 and pneumonia. This will aid medical
professionals in diagnosis and minimize dependency on
user interpretation. In this paper, we present an innovative
method to aid in the diagnosis of COVID-19 patients. This
includes augmenting CXR images and identifying
distinctive features. Next, we train a convolutional neural
network (CNN), which is entitled NewNet, to detect
COVID-19, normal, and pneumonia, based on the
differences in CXR images. Our goal is to enhance the
accuracy and robustness of COVID-19 detection, thereby
contributing to more efficient and effective medical
diagnoses.

The paper is structured into several sections, with
Section I providing an introduction to the research. Section
II presents a review of existing works within the field.
Following this, Section III goes into data preparation for
training and testing the proposed transfer learning model.
Section IV expands upon the proposed model's algorithm
and architecture, In Section V, the results obtained from
the developed model are detailed and compared with
existing methods and model results. Section VI serves as
the conclusion of the paper and future work.

II.  LITERATURE REVIEW

In recent years, deep learning techniques have seen
extensive application in medical image analysis, particularly
in tasks such as detection and classification. Transfer
learning techniques were employed by Misra et al. [9] and
Justin et al. [11] on brightness-mode ultrasound images and
elastograms. Their approach involved combining AlexNet
with other neural network models to discern between benign
and malignant breast cancers, achieving an overall accuracy
of 86.39% and 88%, respectively.

Two convolutional neural network models, namely
VGG-16 and VGG-19, have been pre-trained using transfer
learning for the automatic classification of patients into
COVID-19, normal, or pneumonia categories [12]. The
utilization of the ESIHE image enhancement technique with
the VGG-16 model demonstrated the highest accuracy,
achieving a noteworthy 92.17%. Bai and Zhang employed
AlexNet as the foundation for a novel transfer learning
algorithm, achieving accuracies of 95.15% and 92.47% in
the detection of corn disease and rice disease, respectively
[13]. By utilizing Dilated Convolutional Neural Networks

and transfer learning for feature extaction, Kumar et al. was
able to provide a CNN architecture for detection of COVID-
19 using a combination of two datasets of chest X-ray
images and CT scans [14]. The best classification accuracy
achieved on Chest CT images is 91.6%.

Researchers have been advocating for using deep
learning methodologies to facilitate the detection of lesions
in Chest X-ray (CXR) images, thereby conserving medical
resources and enhancing diagnostic efficiency [15]-[17]. For
instance, Tang et al. [15] investigated five pre-trained state-
of-the-art CNN models (DarkNet-19, ResNet-101,
SqueezeNet, VGG-16, and VGG-19) to determine the best
CNN for detection of COVID-19. Tang et al. used transfer
learning to modify the pre-trained CNN models to classify
CXR images between COVID-19 and normal lungs. Shelke
et al. [16] introduced a classification model for categorizing
chest X-ray (CXR) images into four classes: normal,
pneumonia,  tuberculosis (TB), and COVID-19.
Subsequently, the COVID-19 images were further
categorized based on severity, distinguishing between mild,
medium, and severe cases. The VGG-16 model employed
achieved a high test accuracy of 95.9% for the classification
of pneumonia, TB, and normal lung conditions. In addition,
the severity of COVID-19 cases was classified using
ResNet-18, resulting in an accuracy of 76%.

III. DATA PREPARATION

The datasets that will be used to conduct experiments
are from Kaggle dataset [2] and Joseph dataset [3]. Both
datasets contain more than 1000 CXR images of patients
with COVID-19, pneumonia, or healthy lungs. A significant
challenge in image detection, particularly in public datasets
such as COVID-19 detection, is the variation in image sizes
across different sources. This variability poses a hindrance
to feeding deep learning (DL) models effectively, as these
models typically require uniform image sizes for optimal
performance. Without preprocessing the data from diverse
sets to standardize image dimensions, leveraging DL for
disease detection becomes impractical. For this research, we
pre-processed the dataset using the MATLAB. We add the
datasets into a shared folder and use the resizing feature of
MATLAB to ensure they are uniform in dimensions. In the
pre-trained AlexNet network, the input to the network is a
batch of RGB images with dimensions of 227-by-227-by-3.
The 227-by-227 represents the image's dimensions and the
3 represents the image’s number of channels for color (red,
green, blue). After the images are homogenized in size and
are in a readable image format, we can use them for training
and testing the NewNet model.

A. Kaggle and Joseph et al. CXR Dataset

The Kaggle CXR dataset [2] contains 2 classes of data
including Normal, and Pneumonia affected lungs. Out of the
two categories of images mentioned above, 351 images and
600 images were chosen, respectively. The sizes of the CXR
images vary, as illustrated in Figure la. Following data
preprocessing, we standardized all the images to 227-by-227-
by-3 dimensions, as depicted in Figure 1b.

The dataset, compiled and curated by Joseph et al,
includes a total of 428 chest X-ray (CXR) and computed
tomography (CT) images depicting patients infected with
either COVID-19 or other forms of pneumonia. From this
dataset, 428 CXR images specifically from COVID-19
patients were selected. The initial CXR images exhibit
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variations in sizes (Fig 2. a), and through preprocessing, all
images were standardized to dimensions of 227 x 227 x 3
(Fig 2. b). Table I outlines the distribution of images for each
class and provides the overall count for the entire dataset.

TABLE I. KAGGLE AND JOSEPH ET AL. CXR

DATASET
CXR Dataset Number | The initial Dimensions
from Kaggle | of images dimensions of the
[2] and Joseph used of the resized
[3] images images
Normal 351 Varying 227 %227 x3
Pneumonia 600 Varying 227x227x3
COVID-19 428 Varying 227 x227x3
Total 1379

Image 2
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Fig. 1. Kaggle CXR data: (a) The initial dimensions of the
images; (b) Dimensions of the resized images.

BT 0 T O
W [ RN e
(a) (b)

Fig. 2. Joseph et al. CXR data: (a) The initial dimensions of
the images; (b) Dimensions of the resized images.

IV. PROPOSED METHODOLOGY

In this paper, we used the pre-trained AlexNet [1], which
is a prominent convolutional neural network. Utilizing GPU
acceleration during training increases its speed compared to
alternative models. AlexNet, designed primarily by Alex
Krizhevsky, was developed with the primary objective of
classifying large amounts of images into one-thousand object
classes, including items such as keyboards, coffee mugs,
pencils, and various animals. Because of this, the network
has been trained to distinguish a large array of features
across numerous images.

The utilized AlexNet model comprises eight crucial
layers, with the first five layers from the bottom designated
as convolutional layers, and the subsequent three layers at
the top identified as fully connected (FC) layers, as
illustrated in Figure 3. In addition, to mitigate the potential
overfitting problems, pooling layers are incorporated after
the second, third, and fifth convolutional layers.

A. Transfer Learning Architecture

Transfer learning is used for our proposed model of
NewNet. Transfer learning uses a pre-trained model, which
in our case is AlexNet, to recognize patterns and features.
Since AlexNet was training on more than 1000 distinct
images, we leverage this learned knowledge and adapt it to
our combined datasets. This process involved substituting the
ultimate layer of the pre-trained model with a new layer.

In addition, we replaced training and testing images used
for AlexNet with CXR images from our datasets after the
images were resized. This was done in the input layer. The
fully-connected (FC) layer that was used in AlexNet to
classify images into 1000 distinct labels was replaced with 3
classes: COVID-19, normal, and pneumonia. Fig 3. shows
the proposed NewNet transfer learning model architecture.

ClassOutput

@~ — — — — Replacing last layer

ez | fc7

fc6 [ fc6

Transfer Learning convs
conva

CLEHN 3 x 3 conv. 384 conv3

LYl 3 x 3 conv. 256 3 x 3 conv. 256

UL 3 x 3 conv. 384 3 x 3 conv. 384
3 x 3 conv. 384
CUUZ 5 x 5 conv. 256 U2 5 x 5 conv. 256

L 11 x 11 conv. 96 U2 11 x 11 conv. 96

227x227x3
Image Input

AlexNet

227 x227x3
Image Input

NewNet

Fig. 3. Proposed transfer learning from AlexNet to NewNet.

In Fig. 3, for AlexNet, FC 1000 refers to the last fully
connected layer which contains 1000 neurons. This layer is
responsible for producing the final output for classification
across 1000 different classification classes, i.e. labels. For
example, there are labels in AlexNet for shark, vulture, mug,
and keyboard. In the proposed NewNet, FC 3 refers to the
last fully connected layer in the network, which contains 3
neurons. This layer produces the final output for
classification across 3 different labels. We replace the FC
1000 with FC 3 since the task at hand involves a different
number of classes. It is more efficient to have a final FC
layer with 3 neurons instead of 1000. This adjustment
reduces the model's complexity and computational resources,
making it more suitable for the task at hand.

B. Proposed Algorithm

The proposed CNN, NewNet, operates through a
sequential process. Initially, images or data are inputted into
the network, progressing through each layer successively.
Features are gradually extracted throughout this process,
enabling the model to discern the distinguishing
characteristics of each class. Therefore, the trained model
becomes increasingly adept at classifying new images
accurately.

Convolutional layers are important in the proposed
architecture. Convolutional layers perform feature extraction
by applying filters to input images. These filters traverse the
image, calculating dot products between the filter weights

Authorized licensed use limited to: Univ of the District of Columbia. Downloaded on June 04,2025 at 13:22:01 UTC from IEEE Xplore. Restrictions apply.



and the corresponding pixel values in the input. The output
of this layer highlights patterns and features present in the
image. It is important to include integrate batch
normalization layers between convolutional layers and
nonlinear activation functions when training convolutional
neural networks. To do this, we implemented ReLU
(Rectified Linear Unit) layers into our proposed architecture.
This allows for faster processing and reduces the network’s
reliance on initialization conditions. The ReLU layer within
the network employs the Rectified Linear Unit (ReLU)
activation function on the input data. This function
transforms negative values into zero, preserving positive
values unchanged. This process contributes to enhancing the
network's capacity for learning and predicting the provided
data. Following the ReLU layer, the rectified feature map
undergoes pooling. Pooling is a downsampling procedure
that decreases the dimensionality of the feature map. In this
network, max pooling is utilized, selecting the maximum
value within a filter and transferring it to the new pooling
feature map. Following the convolutional and pooling layers,
fully connected (FC) layers are commonly included in neural
network architectures. FC layers are named so because every
neuron within the layer establishes connections with neurons
within the layer before. Fully Connected (FC) layers
primarily serve to link the features extracted by preceding
layers across the entire image. This connection aids the
neural network in discerning more features. The final FC
layer unifies the acquired features to classify the CXR
images effectively.

A problem that can occur when training a neural network
such as NewNet is overfitting. Overfitting can cause
suboptimal performance and results when new data is
introduced. To address this issue of overfitting, a layer
technique known as “Dropout” can be used. The Dropout
layer functions by randomly deactivating (converting to 0) a
portion of input units during each training step, determined
by a specified frequency called the "rate." This approach
helps prevent the neural network from overly depending on
specific input units or features, thus mitigating overfitting.
The SoftMax layer is an important component in neural
network architectures, typically used as the final layer for
classification tasks. Its primary function is to convert raw
output values, often referred to as logits or scores, into
probabilities for each class in a mutually exclusive set. This
allows the neural network to make predictions by identifying
the class with the highest probability as the predicted class
label. The final layer in the NewNet convolutional neural
network is the ClassOutput layer, also referred to as the
classification layer. This layer's role is to acquire the
probabilities of the output classification from the SoftMax
layer, assigning a probability value to each class for every
input image. Leveraging these output probabilities, the
ClassOutput layer identifies the class for each input image
and computes the associated loss.

V. EXPERIMENTAL RESULTS

A. CXR Dataset and Validation

The CXR data set used consists of three classes of
images of chest X-rays, including COVID-19, Normal, and
Pneumonia. The training and validation data is shown in
Table II. The dataset is divided into training and validation
sets, constituting 70% and 30% of the data, respectively.

TABLE II. CXR DATASET DETAILS FOR THE

PROPOSED ALGORITHM
CXR Dataset | Number of | Training data | Validation data
images (70%) (30%)
COVID-19 428 300 128
Pneumonia 600 420 180
Normal 351 254 97
1379 (total)

During the training process, the cross-entropy loss
function is utilized along with the Adam optimizer, set to a
learning rate of 0.0001. The training spans 16 epochs.
Moreover, the training images undergo resizing to
dimensions of 227-by-227-by-3 and augmentation to
augment the dataset: this involves random vertical flipping
and random translations of up to 20 pixels both horizontally
and vertically. The incorporation of data augmentation
serves to mitigate overfitting by preventing the network
from memorizing specific details of the training images.
The experiment was run for five tests, and of the five tests,
the best validation accuracy result obtained is 99.15%. Each
run, data augmentation was implemented, and the algorithm
randomly selected training and validation data. The results
for the five tests are shown in Table III.

TABLE III. NEWNET RESULTS FOR CXR DATASET

Test1 | Test2 |Test3 |[Test4 | TestS | Average

Accuracy [ 99.15% (98.33%(92.47% (96.9% (96.23%| 96.62%

B. Evaluation Criteria of Model

Concerning the criteria for model evaluation, we adhered
to the commonly employed standards in medical image
classification models. These criteria encompass accuracy,
precision, sensitivity, specificity, and F1-score. These criteria
serve as benchmarks for evaluating model performance.
Below are the formulas for these evaluation criteria, where
TP represents true positive, FP represents false positive, FN
represents false negative, and TN represents true negative:

Tp+Tn
Accuracy= ——————————
Tp+Tny+Fp+FN
.. Tp
Precision =
Tp+Fp
. Tp
Sensitivity =
Tp+Fpn
[ Tn
Specificity =
Tn+Fp
2Tp
Fl-score= ———
2Tp+Fp+FyN

C. Experimental Results and Analysis

Figure 4 depicts the confusion matrix illustrating the
validation results of the transfer learning model, with an
average accuracy of 96.62% in correct predictions. The
diagonal cells, in terms of both numbers and percentages,
represent correctly classified observations, while off-
diagonal cells indicate instances that are incorrectly
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classified. The rightmost column displays the percentages of
accurately and inaccurately classified instances for the
predicted class. the bottom row indicates the percentages of
each class that are correctly and incorrectly classified.

As depicted in Figure 4, the sensitivity of COVID-19 is
98.9%, with 89 images correctly identified out of 90 tested
images. Additionally, from 76 images tested, NewNet was
able to detect 69 images of the Normal class, resulting in
90.8%. Finally, out of 126 images tested, 123 were detected
by NewNet as the Pneumonia class which results in 97.6%
success rate.

Confusion Matrix

89 0 1 98.9%
COVID | 3950 0.0% 0.3% 1.1%
0 69 7 90.8%
g R 0.0% 236% 2.4% 9.2%
k::
o
b
b= ]
o
E
3 1 2 123
97.6%
PRELIMONIE 0.3% 0.7% 42.1% 2.4%
98.9% 97.2% 93.9% 96.2%
1.1% 2.8% 6.1% 3.8%
O » \g
OA q-é\‘?' O@
< ®) \')Q
< %
&

Target Class

Fig. 4. The confusion matrix for NewNet from Test 5.

Figure 5 illustrates the testing results of NewNet on chest
X-ray images from the merged dataset. The NewNet transfer
learning model can differentiate the three categories of
images. The predicted NewNet labels are either COVID-19,
Normal, or Pneumonia.

Predicted: NORMAL

2

Predicted: COVID

Predicted: PNEUMONIA

Predicted: PNEUMONIA

Predicted: COVID

Predicted: PNEUMONIA

I

Predicted: PNEUMONIA

)

Predicted: COVID

[}

Predicted: COVID

Iy

Fig. 5. NewNet classification of chest X-Ray images.

To demonstrate classification capability of the NewNet
model, we compared the evaluation criteria with several
state-of-the-art models, including VGG19 [18], GoogleNet
[19], ResNet50 [20], and DenseNetl121 [21], which served
as the control group. The control group encompassed
several lightweight networks, including SqueezeNet1.0 [22],
MobileNet [23], ShuffleNet [24], MobileNetV2 [25], and
ShuffleNetV2 [26].

The evaluation metrics for these cutting-edge models are
presented in Table IV. The assessment criteria encompass
accuracy, precision, sensitivity, specificity, and F1-score of
each state-of-the-art model, as well as our own model. Since
the model was run for five tests, the average result for each
criterion was calculated. Our NewNet results for accuracy,
precision, sensitivity, specificity, and F1-score for COVID-
19 CXR images are 96.82%, 91.55%, 97.89%, 96.49% and
94.50% respectively.

These results show that NewNet is comparable to the
state-of-the-art models and even leads in accuracy,
sensitivity and Fl-score. As an example, ResNet50 [19]
from the control group has the highest accuracy among
traditional networks in our experiment at 93.53%. It is less
than our proposed network, NewNet, by 3.29%.

TABLE IV. ACCURACY, PRECISION, SENSITIVITY, SPECIFICITY, AND F1-SCORE OF THE
PROPOSED METHOD AND 9 BASELINES

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)
VGG19 [18] 93.11 96.09 92.93 96.47 93.02
GoogleNet [19] 92.56 95.29 91.56 95.78 92.06
ResNet50 [20] 93.53 96.01 93.15 96.53 93.34
DenseNetl121 [21] 93.11 95.98 92.75 96.38 92.92
SqueezeNetl.0 [22 67.91 45.83 50.51 64.16 57.93
MobileNet [23] 88.53 90.14 87.25 91.84 87.89
ShuffleNet [24] 87.02 90.08 86.17 92.31 86.59
MobileNetV2 [25] 89.26 91.89 88.51 93.16 88.89
ShuffleNetV2 [26] 92.01 91.92 91.74 96.29 91.87
NewNet (our method) 96.82 91.55 97.89 96.49 94.50
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VI. CONCLUSION

In this paper, a transfer learning model, named NewNet,
was constructed based on an AlexNet model to recognize
COVID-19 CXR images accurately and effectively. The
NewNet model, as proposed, extracts features from chest X-
rays and compares them with features obtained from
training images. To assess the performance of the proposed
model, two datasets are employed. For the experiment, 351
CXR images of normal patients, 600 CXR images of
pneumonia patients and 428 images of COVID-19 patients
were used from the Kaggle and Joseph et al. datasets.
Results show that NewNet has the highest classification
accuracy for the COVID-19 images used for testing, which
was 96.82%. Additionally, the precision, sensitivity,
specificity, and F1-score are 91.55%, 97.89%, 96.49%, and
94.50% respectively. Hence, by using our NewNet model
for the detection of COVID-19 CXR images, it can help
medical staff by significantly increasing diagnostic
efficiency and aiding in detection and isolation of COVID-
19 patients.

VII. FUTURE WORK

Despite the comparable performance of the proposed
NewNet to traditional networks, further clinical research and
testing are required. With additional training and testing,
NewNet can be further improved to be used within the
medical field.
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