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Abstract. Corn, also recognized as maize, is one of the most popular food grains
in the world, accounting for 80% of the total volume of global trade of feed grains
[1]. Corn leaf diseases pose a significant threat to global agricultural production,
impacting crop yield, quality, and economy. Rapid and accurate detection of these
diseases is crucial for reducing the impact to the agricultural production. In this
study, we propose a transfer learning (TL) based model for the classification of corn
leaf diseases. The proposed TL model integrates a convolutional neural network
(CNN) known as AlexNet as it has been pre-trained on a large dataset containing
more 1000 images [2]. The model is then trained on a dataset from PlantVillage [3]
which consists of images of three types of corn leaf diseases, including common
rust, gray leaf spot, northern leaf blight, and healthy corn leaves. To ensure better
performance, the TL model, entitled NewNet, uses data augmentation techniques
such as rotation, scaling, and flipping during training, effectively enhancing the
model’s ability to handle variations in image appearance and diseases. Transfer
learning was achieved by fine-tuning the pre-trained AlexNet CNN and leveraging
its learned features. Experimental results show that the TL model achieves a 99.2%
accuracy for classifying common rust disease, 93.5% for gray leaf spot, 100% for
healthy corn leaves, and 90.0% for northern leaf blight. Therefore, by using the TL
technique, we can improve the accuracy of detecting plant diseases, specifically
corn leaf diseases.
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1 Introduction

The agricultural industry plays a significant role within the world economy. It employs
more than one billion people, while serving the entire world’s population with numerous
crops and meats. The security of these crops is of great importance, and it can be easily
negatively influenced by a plethora of natural and human factors. Some of these include
natural disasters [4], chemical influences [5], plant diseases [6], and many others. Plant
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disease is one of the most common factors for the decrease of agricultural yield. It affects
both global food security and farmers who depend on healthy crops and high yield. Corn
is one of the most popular food grains in the world, accounting for 80% of the total volume
of global trade of feed grains [1]. The United States alone produces approximately
95% of total feed grain production and use in the world. However, in other developing
countries, farmers produce approximately 80% of their agricultural production [7], and
reports have shown that more than 50% loss of crops due to disease and pests [8].
With the expected increase in global population, food security is a concern and must be
prioritized. Therefore, rapid, and accurate techniques to classify plant diseases should
be investigated.

To aid towards this issue, our goal of this research is to develop a CNN model that can
detect and classify corn leaf diseases within a given dataset. This model will aid in the
detection of plant diseases within developing countries while being low-cost and easily
applicable. This can lead to higher yields of corn in such countries, thus enhancing food
security. Early methods of detection of plant diseases required agricultural experts and
farmers to physically visit the location and manually determine the disease. This was
limited by various reasons, such as the number of agricultural experts available to oversee
crop lands and number of locations. Thus, researchers have been looking into automated
and smart methods for plant disease detection. Computer-aided detection systems have
become a popular method in reducing human dependency and aiding in plant disease
detection by using a combination of artificial intelligence (Al), machine learning (ML)
and deep learning (DL). Machine learning (ML), in combination with image processing
approaches, presents an opportunity to benefit the agricultural scene. Deep learning
(DL) is a type of machine learning technique that has been actively used in various fields
outside of agriculture, such as medical [9] and climate change [10]. Its popularity comes
from its various capabilities, which includes feature extraction, pattern discernability,
and data classification. Convolutional neural networks (CNNs) are a branch of deep
learning renowned for their proficiency in extracting and learning features from images.
The efficacy of CNN models is based on factors such as the dimensions of the training
dataset and the architecture of the network layers. Due to the time-consuming nature of
collecting agricultural data, such as plant diseases in various crops, an approach in deep
learning is investigated. Transfer learning is a suggested suitable approach for training
the CNN model for detecting plant disease.

The remainder of this paper is organized as follows. In Sect. 2, we provide a literature
review of previous similar studies. Section 3 then explains how we prepared the data for
training and testing our transfer learning model, along with its structure and algorithm.
Next, in Sect. 4, we present and analyze the results obtained from our model, comparing
them with those of other methods and models. Finally, Sect. 5 concludes the paper.

2 Literature Review

Deep learning techniques have been used in many applications, such medical, automo-
tive, climate change, and networking. Transfer learning techniques have been used in
such applications for their ability to detect and classify data. In the medical field for
examples, Justin et al. [9] applied transfer learning to brightness-mode (B-mode) and
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ultrasound elastography images to distinguish malignant and benign breast tumors. This
was done by using a pre-trained network of AlexNet, fine-tuning it to fit their needs, and
feeding the medical images to it. This resulted in a classification accuracy of 88%.

Mishra et al. [11] investigated combining smart devices and machine learning in
diagnosing corn leaf diseases automatically to reduce crop loss. They developed a real
time method based deep CNN to detect and classify corn crop diseases. They also used
the corn leaf dataset from the PlantVillage dataset [3] for their model. They fine-tuned
the model’s hyperparameters and used a system equipped with GPU to enhance the
performance of the proposed model. They then optimized for real-time performance.
The pre-trained deep CNN model was then deployed on a Raspberry Pi 3 using the Intel
Movidius Neural Compute Stick, which features dedicated hardware blocks for CNNs.
The testing results showed that the deep learning model achieved an accuracy of 88.46%
in identifying corn leaf diseases, highlighting the effectiveness of this approach. This
approach shows that it can be applied to other smart devices.

Bai et al. [12] uses a similar AlexNet approach as our research. They developed
and used CNN to detect food plant diseases of rice, wheat, and corn. They adjusted the
CNN’s hyperparameters for optimization of the datasets. Bai et al. used four datasets,
one from PlantVillage [3], one containing wheat leaf diseases, and two containing rice
leaf diseases. They fine-tuned the CNN by using different types of layers compared to
the traditional AlexNet, along with adjusting the number of layers. By doing so, they
were able to achieve classification accuracies of 99.34%, 95.15% and 92.47% for wheat,
corn, and rice respectively.

In the paper by Panigrahi et al. [13], they investigate different supervised machine
learning methods like Random Forest (RF), Naive Bayes (NB), Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), and Decision Tree (DT) to detect diseases in maize
plants using images of the plants. The various classification techniques are evaluated
and compared to find the most accurate model for predicting plant diseases. Among
them, the Random Forest (RF) algorithm demonstrated the highest accuracy at 79.23%,
outperforming the other classification methods.

Agarwal et al. [14] developed a CNN model to identify corn crop diseases. The
model developed consists of three convolution and max pooling layers, followed by
fully connected layers. They used the PlantVillage dataset [3], and after running 1000
epochs, they were able to obtain an accuracy of 94%. They compared their model with
state-of-the-art CNN models, VGG-16 [15] and Inception V3 [16] and found that they
had a higher classification accuracy compared to the Inception V3 architecture, but lower
accuracy compared to the VGG-16 architecture.

3 Proposed Methodology

Several state-of-the-art machine learning techniques that have been used in image clas-
sification include convolutional neural networks (CNNs), transfer learning, ensemble
learning, deep learning architectures and self-supervised learning. Transfer learning is
chosen due to knowledge transfer from a pre-trained CNN, and accelerated model train-
ing as it takes considerably less time and resources to start with a model that has already
learned image features than starting from scratch.
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3.1 Dataset

The dataset used for fine-tuning the pre-trained model is from PlantVillage dataset [3].
The PlantVillage dataset consists of images of leaves of various crops, such as apples,
corn, and tomatoes. The dataset expands on these crop leaves by also including crop
leaves afflicted by diseases or pests. These images are sorted and classified correctly
already. As we are focusing on corn leaf diseases, only the folders containing images
of corn leaves were used in our proposed model as our dataset. The corn leaf classes
consist of common rust, gray leaf spot, northern leaf blight and healthy.

Difference in image sizes poses a serious challenge in image detection, especially
from public datasets. This inconsistency poses a hindrance to feeding deep learning
(DL) models effectively, as these models usually require homogenized image sizes for
optimal performance. Without preprocessing the data from diverse sets to standardize
image dimensions, leveraging DL for disease detection becomes impractical. Sample
images of common rust, gray leaf spot, healthy, and Northern leaf blight classes in
the dataset are shown in Fig. 1. In this research, the dataset was pre-processed using
MATLAB. The dataset is placed into a shared folder, where we then use MATLAB’s
resizing feature to homogenize the image sizes. The input format for the pre-trained
AlexNet CNN model consists of batches of RGB images, each sized at 227-by-227-
by-3, where 227-by-227 denotes the image dimensions and 3 represents the number
of color channels (red, green, blue). Following the homogenization of image sizes and
conversion to a readable format, the images are poised for training and testing within
the NewNet model architecture.

(a) (b) (c) (d)

Fig. 1. Sample images of each class in the dataset. (a) Common rust, (b) Gray leaf spot, (c)
Healthy, and (d) Northern leaf blight

3.2 Transfer Learning Architecture

Transfer learning is a technique in machine learning which involves leveraging knowl-
edge obtained from training a model on one task to a related but distinct task [17]. In terms
of neural networks, transfer learning typically occurs in two stages. In our research, the
pre-trained CNN of AlexNet is used as the pre-trained model. AlexNet has been trained
on the ImageNet dataset, which encompasses over 1000 images of numerous classes.
Afterwards, fine-tuning occurs, where the pre-trained network is further refined using the
specific dataset of interest. This fine-tuned model becomes the transfer learning model,
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which we entitled NewNet. Typically, the initial layers of the model are tasked with
learning basic features such as edges, corners, and curves, while the final layers focus
on capturing more intricate features such as complex shapes and textures.

We used the pre-trained AlexNet [2], a widely recognized convolutional neural
network. AlexNet was used as leveraging GPU acceleration during training signifi-
cantly enhances its computational efficiency compared to alternative models. Origi-
nally designed by Alex Krizhevsky, AlexNet was primarily engineered to categorize
large quantities of images into a thousand object classes, including animals, household
items, and clothing items. Thus, the network underwent extensive training to discern a
spectrum of features across a diverse set of images from the ImageNet database. The
AlexNet model used in this research comprises 25 layers, consisting of convolution
layers, rectified linear unit (ReLU) layers, max pooling layers, cross channel normaliza-
tion layers, dropout layers, fully connected (FC) layers, a softmax layer, and an output
layer. To address potential overfitting issues, pooling layers are integrated. Our proposed
model, NewNet, uses transfer learning, which is a technique that capitalizes on a pre-
trained model, such as AlexNet in our case, to discern patterns and features. Leveraging
AlexNet’s training on over 1000 augmented images, we use this acquired knowledge
and adapt it to our dataset. This adaptation process involves substituting the final layer
of the pre-trained model with a new layer. Additionally, we replaced the training and
testing images used by AlexNet with corn leaf images from our dataset after resizing
them. The fully connected (FC) layer, originally used in AlexNet to categorize images
into 1000 distinct labels, was changed to accommodate 4 classes: common rust, gray
leaf spot, healthy, and northern leaf blight. The architecture of the proposed NewNet
transfer learning model is illustrated in Fig. 2.
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Fig. 2. Proposed transfer learning CNN architecture

In AlexNet, fully connected layer 8 (fc8) in the figure refers to the final fully con-
nected layer that consists of 1000 neurons. In AlexNet, this layer is responsible for
producing the final output for classification across 1000 distinct labels, such as pen, key-
board, or cat. In the proposed NewNet, this layer is changed to house 4 neurons, as we
have 4 classification classes, or labels. This was done as it is more efficient to have the
output consist of 4 neurons rather than 1000, as we only have 4 classes. This adjustment
lessens the model’s computational resources, making it more appropriate for the task.
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3.3 Proposed Transfer Learning Algorithm

The proposed CNN, NewNet, works in a step-by-step manner. Initially, images or data are
fed into the network, passing through each layer one after the other. As it moves through
these layers, the model gradually identifies the unique traits of each class, helping it
become better at accurately classifying new images over time. The dataset is divided
into training and testing sets, constituting 80% and 20% of the data, respectively. The
proposed architecture relies heavily on convolutional layers, which play a crucial role in
extracting features from input images. These layers apply filters to the images, moving
across them to calculate dot products between the filter weights and corresponding pixel
values. The resulting output highlights patterns and features present in the image.

To train convolutional neural networks effectively, it’s essential to incorporate batch
normalization layers between convolutional layers and nonlinear activation functions. To
achieve this, we integrated ReLU (Rectified Linear Unit) layers into our architecture. This
not only speeds up processing but also reduces the network’s dependence on initialization
conditions. The ReLU layer utilizes the ReLLU activation function, transforming negative
values into zero while preserving positive values unchanged. This process enhances the
network’s ability to learn and make predictions. Following the ReLU layer, the rectified
feature map undergoes pooling, a procedure that reduces the dimensionality of the feature
map. In our network, we utilize max pooling, which selects the maximum value within
a filter and transfers it to the new pooling feature map. After the convolutional and
pooling layers, fully connected (FC) layers are commonly included in neural network
architectures. These layers establish connections between every neuron in the layer
before, linking the features extracted by preceding layers across the entire image. This
interconnectedness aids the neural network in identifying additional features. The final
FC layer combines these features to effectively classify the CXR images.

When training a neural network like NewNet, a common issue that can arise is
overfitting. Overfitting occurs when the model learns to perform well on the training
data but struggles to generalize to new, unseen data. To combat overfitting, a technique
called “Dropout” can be employed. The Dropout layer randomly deactivates a portion of
input units during each training step, preventing the network from relying too heavily on
specific features and reducing the risk of overfitting. The SoftMax layer is another crucial
component in neural network architectures, often used as the final layer for classification
tasks. Its main function is to convert the raw output values, known as logits or scores,
into probabilities for each class in a set of mutually exclusive classes. This enables
the network to make predictions by identifying the class with the highest probability
as the predicted label. In the NewNet convolutional neural network, the final layer is
the ClassOutput layer, also known as the classification layer. This layer computes the
probabilities of the output classification obtained from the SoftMax layer, assigning
a probability value to each class for every input image. Using these probabilities, the
ClassOutput layer determines the class for each input image and calculates the associated
loss.
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4 Experimental Results

169

The corn leaf dataset used consists of four classes of images, including common rust,
gray leaf spot, healthy, and northern leaf blight. The training and testing data is shown

in Table 1.
Table 1. Corn Leaf Dataset
Corn Leaf Class Number of images used | Number of images used | Total number of
for training (80%) for testing (20%) images

Common rust 400 100 500

Gray leaf spot 410 103 513

Healthy 400 100 500

Northern leaf blight | 400 100 500

Number of images 1610 403 2013

Throughout the training phase, we use the cross-entropy loss function in conjunction
with the Stochastic Gradient Descent Optimizer (SGDM), configured with a learning
rate of 0.0001. The training procedure extends over 20 epochs, with a MiniBatchSize
of 124. Additionally, the training images undergo resizing to dimensions of 227-by-
227-by-3 and data augmentation to feed the dataset. This augmentation is done by
random vertical flipping and random translations of up to 20 pixels in both horizontal and
vertical directions. The integration of data augmentation helps in mitigating overfitting
by deterring the network from memorizing specific details of the training images. During
the training phase of the network, we were able to achieve a training accuracy of 96.07%.
Figure 3 represents the training progress and accuracy throughout each iteration. Figure 4
shows the corresponding loss curve associated with the training progress.
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lteration

Fig. 4. Loss curve

In terms of feature visualization, Fig. 3 shows that neurons in the beginning layers are
where the CNN is able to recognize simple features and patterns. This occuers around the
Convl and Conv 2 layers. Figure 4 shows that the model accuracy becomes stable after
around 18 iterations. This trend is similar in the loss curve, as it starts to stabilize early
after 10 iterations. The early stabilization of the accuracy curve of our model indicates
that the model’s accuracy on the training dataset reached a steady state early in the
training process. Therefore, the model has quickly learned to make accurate predictions
and has converged towards its optimal performance. Similarly, the early stabilization of
the loss curve of our model means that the loss value reached a steady state early in the
training process, indicating that the model has quickly converged towards an optimal
solution. This signifies that our model has effectively learned the underlying patterns
in the training data and will not make significant improvements in performance with
further training iterations.

Figure 5 shows the confusion matrix presenting the classification accuracy of the
transfer learning model on the testimages. It demonstrates an average accuracy of 95.70%
in accurate predictions. Cells along the diagonal, in both numerical and percentage terms,
depict correctly classified observations, while cells off the diagonal signify instances
that are classified incorrectly. The column on the far right displays the percentages of
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Fig. 5. Confusion matrix for the NewNet transfer learning model
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accurately and inaccurately classified instances for the predicted class. Similarly, the
bottom row indicates the percentages of each class that are correctly and incorrectly
classified.

As shown in Fig. 5, the classification accuracy of common rust is 99.2% with 119
images correctly classified out of 120, gray leaf spot is 93.5% with 115 images correctly
classified out of 123, healthy is 100% with 120 out of 120 images correctly classified,
and northern leaf blight has 90% of images correctly classified with 108 images out of
120 images.

Figure 6 shows the testing results of the NewNet TL model on the corn leaf dataset
provided. The labels are either common rust, gray leaf spot, healthy, or northern leaf
blight.

Fig. 6. NewNet classification of corn leaf images

Evaluation of our model was done by comparing the overall classification accuracy
of our NewNet model with the works of Mishra et al. [11], Bai et al. [12], Panigrahi
et al. [13], and Agarwal et al. [14], Yu et al. [15], and Szegedy et al. [16]. The overall
classification accuracy comparison of models is shown in Table 2.

Table 2. Overall Classification Accuracy Comparison of Models

Model Overall Classification Accuracy (%)
NewNet (SGDM Optimizer) 95.70
NewNet (Adam Optimizer) 95.00
Mishra et al. NCS Model [11] 88.66
Bai et al. AlexNet [12] 95.15
Panigrahi et al. Random Forest [13] 79.23
Agarwal et al. [14] 94.00
VGG-16 [15] 95.00
Inception V3 [16] 93.50
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Additional data augmentation techniques were implemented to compare the accuracy
of our model. Solely changing the optimizer to “Adam” (Adaptive Moment Estimation)
instead of “sgdm” resulted in an overall accuracy of 95.0%, which is lower than using the
“sgdm” optimizer. Another augmentation technique used was to add additional transla-
tions in both the X and Y axes directions. This resulted in a similar result of 95.7% as
the original result.

5 Conclusions

This paper proposes a transfer learning model called NewNet, based on the AlexNet
architecture, to identify corn leaf disease images accurately and effectively. The proposed
NewNet model extracts features from corn leaf images and compares them with features
learned from training images. To evaluate its performance, we used a dataset comprising
500 common rust infected corn leaf images, 513 Gy leaf spot infected corn leaf images,
500 healthy corn leaf images, and 500 northern leaf blight infected corn leaf images.
The results demonstrate that NewNet achieved an overall classification accuracy of
95.70% for the corn leaf images used in testing. Comparisons of accuracy were done
with other developed CNN models and state-of-the-art CNN models, which showed
promising results. These findings suggest that the NewNet model can significantly aid
in the agricultural industry in detecting crop diseases. Future work will seek to integrate
our NewNet model into real-time monitoring systems to aid farmers in the field. An
option discussed has been to develop mobile applications for smart devices, so that it is
easily accessible for all farmers. Another option is to develop a device that can process
images and training in real-time.
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