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Abstract—Custom spectral convolutional neural networks
(CSCNNs) combine the strengths of convolutional neural
networks with specialized spectral processing, resulting in
improved classification accuracy by effectively capturing subtle
variations in hyperspectral data. This paper proposes a
CSCNNs based approach to classify hyperspectral images. The
proposed method leverages the high-dimensional spectral data
inherent in hyperspectral images, employing convolutional
layers specifically designed to capture spectral-spatial features.
By reducing dimensionality through principal component
analysis and creating image patches, the model is trained to
recognize complex patterns across different spectral bands. In
addition, a comprehensive analysis of CSCNN performance is
carried out, focusing on its architecture, key features, and
benefits in computational efficiency and spectral representation.
Experimental results on datasets such as Salinas-A, Pavia
University (Pavia-U), and Indian Pines demonstrate that the
CSCNN model surpasses traditional methods, achieving higher
classification accuracy and more robust performance metrics
like overall accuracy (OA), average accuracy (AA), and Kappa
coefficient. The proposed model achieved an overall accuracy
(OA) of 98.2%, 96.7%, and 92.5% for the Salinas-A, Pavia-U,
and Indian Pines datasets, respectively. The model's average
accuracy (AA) was 97.5%, 95.4%, and 89.8% for the same
datasets. Furthermore, the model attained Kappa coefficients of
97.7%, 95.2%, and 89.1% for Salinas-A, Pavia-U, and Indian
Pines, respectively.

Keywords— deep learning, custom spectral convolutional
neural networks (CSCNNs), pixel-based image classification

L INTRODUCTION

Hyperspectral imaging captures a wide spectrum of light for
each pixel in an image, allowing for the identification of
materials, objects, and conditions that are not visible to the
naked eye or detectable with traditional imaging techniques.
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In hyperspectral images, each pixel is considered a high-
dimensional vector, with each component representing
spectral reflectance at a specific wavelength. This detailed
spectral information allows for the differentiation of subtle
spectral variations, making Hyperspectral imaging valuable
across numerous applications [1]—[12]. According to recent
studies [13], hyperspectral image classification assigning
each pixel to a specific class based on its spectral properties
is a highly active research area within the hyperspectral
community and has gained significant attention in the remote
sensing field.

Unlike standard RGB images, which capture light in three
bands (red, green, and blue), hyperspectral images can
capture hundreds of contiguous spectral bands, offering rich
and detailed information about the scene. This high-
dimensional data has proven valuable in various fields,
including agriculture, environmental monitoring, mineral
exploration, and military surveillance. However, the vast
amount of data in hyperspectral images presents challenges
in processing and analysis. In fact, there are two primary
challenges in hyperspectral image classification: the high
spatial variability of spectral signatures and the imbalance
between the limited number of training samples and the high
dimensionality of the data [14]. The first challenge arises
from several factors, including changes in lighting,
environmental conditions, atmospheric effects, and temporal
variations. The second challenge creates ill-posed problems
for certain methods and reduces the classifiers' ability to
generalize effectively.

The conventional methods for analyzing hyperspectral
images are pixel-based approaches, where each image pixel
is classified based on its spectral information [15]. This
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traditional approach to classification relies on the pixel
because the pixel serves as the fundamental unit of satellite
imagery.

Custom spectral convolutional neural networks (CSCNNs)
offer several advantages over traditional pixel-based
approaches, particularly in the context of hyperspectral data
analysis: 1) Spectral-Spatial Feature Integration: CSCNNs
can simultaneously capture both spectral and spatial features,
providing a more comprehensive understanding of the data.
Traditional pixel-based approaches often treat pixels
independently, missing the spatial context that CSCNNs can
incorporate. 2) Improved Classification Accuracy: By
leveraging deep learning techniques, CSCNNs can model
complex relationships within the data, leading to higher
classification accuracy compared to traditional methods that
rely solely on spectral information. 3) Noise Reduction:
CSCNNs can better handle noise in hyperspectral images.
Traditional pixel-based methods may classify noisy or outlier
pixels incorrectly, while CSCNNs can mitigate this by
considering spatial information, leading to more robust
classifications. 4) Dimensionality Reduction: CSCNNs can
effectively reduce the dimensionality of hyperspectral data by
learning lower-dimensional representations, making the
processing more efficient without losing critical information.
Traditional pixel-based methods may struggle with the high
dimensionality of hyperspectral data. 5) Scalability and
Efficiency: CSCNNs are designed to handle large-scale data
efficiently, often requiring fewer computational resources as
they can exploit the spectral structure more effectively than
traditional methods, which may require more intensive
processing for similar tasks. 6) Enhanced Spectral
Representation: Custom spectral convolutions in CSCNNs
are tailored to better capture the unique spectral signatures of
different materials, leading to more precise and context-
aware classifications than pixel-based methods, which may
not fully utilize the spectral richness of the data. Therefore, it
is imperative to develop a novel Custom Spectral
Convolutional Neural Networks (CSCNNs) method for
hyperspectral image classification.

The remainder of the paper is organized as follows:
Section II details the proposed methodology. Section III
delves into time series prediction using the LSTM network.
Section IV provides the experimental results. Section V
concludes the paper.

II. PROPOSED METHODS

Hyperspectral image classification is a complex task due to
the high dimensionality of the data and the variability of
spectral signatures across different materials. To address
these challenges, we propose a Spectral Convolutional Neural
Network (CSCNN), to effectively learn and classify
hyperspectral images.

A. CSCNN Architecture

CSCNN combines the advantages of Convolutional Neural
Networks (CNNs) with the characteristics of spectral domain
processing. Its basic architecture typically includes multiple

convolutional layers, activation layers, pooling layers, and
fully connected layers. One of the key features of CSCNN
includes spectral feature extraction. CSCNN performs
convolution operations in the spectral domain, effectively
capturing subtle variations and features in hyperspectral
images. Compared to traditional spatial domain processing,
this approach better preserves spectral information. Another
key feature of CSCNN is the layer count and parameter
tuning. CSCNN ’s layer count can be flexibly adjusted based
on requirements, such as using a custom 17-layer network.
The parameter settings of each layer directly influence the
network's learning ability and classification performance.

The proposed network architecture for hyperspectral
image classification leverages a custom Spectral
Convolutional Neural Network (CSCNN) specifically
designed to handle the high-dimensional data inherent in
hyperspectral images (HSI), as shown in Fig. 1. The CSCNN
architecture consists of several layers that are tailored to
extract spectral and spatial features effectively, enabling the
classification of each pixel in an HSI into a specific class
based on its spectral signature.
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Fig. 1. The CNN layers.

B. Input Layer

The network begins with a 3D input layer that accepts
hyperspectral image patches. The input size is defined as [25,
25, 30], where 25 x 25 represents the spatial dimensions of
the image patch and 30 represents the number of spectral
bands after dimensionality reduction using techniques like
PCA.

C. 3D Convolutional Layers

The network includes a series of 3D convolutional layers that
apply 3D filters to the input data. These layers are designed
to learn spatial-spectral features by convolving across both
spatial dimensions (height and width) and the spectral
dimension (depth). The network typically includes multiple
convolutional layers with varying filter sizes, such as:
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e First 3D convolutional layer with a filter size of [3, 3, 7]
and 8 filters, followed by a ReLU activation function.

e Second 3D convolutional layer with a filter size of [3, 3,
5] and 16 filters, followed by a ReLU activation function.

e Subsequent 3D convolutional layers further refine the
feature extraction with progressively smaller filter sizes,
capturing detailed spatial-spectral relationships.

D. Fully Connected Layers

¢ Following the convolutional layers, the network includes
fully connected layers to aggregate the features extracted
from the convolutional layers. These layers transform the
3D feature maps into a 1D feature vector for
classification purposes. Typically, there are multiple
fully connected layers with a decreasing number of
neurons:

e The first fully connected layer with 256 neurons,
followed by a ReLU activation.

e A second fully connected layer with 128 neurons,
incorporating dropout to prevent overfitting.

e A final fully connected layer corresponding to the
number of classes in the dataset, followed by a softmax
activation function to produce class probabilities.

E. Output Layer

The output layer of the network uses a softmax function to
generate a probability distribution across all the classes,
allowing for the classification of each input patch into one of
the predefined classes.

F. Dropout Layers

Dropout layers are interspersed between fully connected
layers to mitigate overfitting by randomly setting a fraction
of input units to zero during each forward pass, which helps
improve the model's generalization capability.

III. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
from using the Convolutional Spectral Convolutional Neural
Network (CSCNN), for hyperspectral image classification.
We evaluate the effectiveness of our proposed method on the
widely used hyperspectral datasets, including Indian Pines,
Salinas, and Pavia University datasets.

A. Datasets

In the experiments, we assess the proposed CSCNN network
on three widely used hyperspectral scenes named Salinas-A
[16], PaviaU [17], and Indian Pines [18].

e  Salinas-A: A sub-scene from Salinas Valley, USA,
captured by the AVIRIS sensor with a spatial resolution
of approximately 3.7 m/pixel. The scene covers 86 lines
by 83 samples and includes six classes and background
elements, such as bare soil, vegetables, and vineyard
grounds. The original and ground truth images are
shown in Fig. 2. It has 6 ground truth classes, as shown
in TABLE I.

\

(b)
Fig. 2. (a) Salinas-A and (b) the ground truth images.

TABLE I. THE SALINAS-A CLASSES AND THEIR
RESPECTIVE GROUND TRUTH SAMPLE NUMBER

# Class Samples
1 Brocoli_green_weeds_1 391

2 Corn_senesced_green_weeds 1343

3 Lettuce_romaine_dwk 616

4 Lettuce_romaine_Swk 1525

5 Lettuce_romaine_6wk 674

6 Lettuce_romaine_7wk 799

Pavia-U: Captured in 2003 over Northern Italy by the
ROSIS sensor, with dimensions of 610 x 340 x 103
pixels. It contains nine ground truth classes. The
original and ground truth images are shown in Fig. 3. It
has 9 ground truth classes, as shown in TABLE II.

(a) (b)

Fig. 3. (a) Pavia-U and (b) ground truth images.
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TABLE II. THE PAVIAU CLASSES AND THEIR
RESPECTIVE GROUND TRUTH SAMPLE NUMBER

# Class Samples
1 Asphalt 6631

2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345

6 Bare Soil 5029

i Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

¢ Indian Pines: Acquired over Northwestern Indiana by
the AVIRIS sensor with a wavelength range of 0.4-2.5
pm, this scene comprises 145 x 145 pixels and includes
16 classes representing agricultural, forest, and road
areas. The original and ground truth images are shown
in Fig. 4. It has 16 ground truth classes, as shown in
TABLE III.

Fig. 4. (a) Indian Pines and (b) ground truth images.

TABLE III. THE INDIAN PINES CLASSES AND THEIR
RESPECTIVE GROUND TRUTH SAMPLE NUMBER

# Class Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Qats 20
10 Soybean-notill 972
1 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

B. Experimental Setup

Each hyperspectral image was normalized and divided into
smaller patches of size 25x25 pixels to ensure uniform input
to the deep learning model. Dimensionality reduction was
performed using PCA to reduce the number of spectral bands
to 30, maintaining the most significant features. In addition,
the network was trained using the Adam optimizer with an
initial learning rate of 0.001, batch size of 256, and a

maximum of 100 epochs. Moreover, the datasets were
randomly split into training (70%) and test (30%) subsets to
evaluate the model's performance on unseen data.

C. Performance Evaluation Metrics

The performance is evaluated by the Overall Accuracy (OA),
Average Accuracy (AA), and Kappa Coefficient [19]-[22].
The OA is calculated as the average of Producer's Accuracy
and User's Accuracy.

) correctly identified pixels
Producer’s Accuracy —

total number of pixels/class

= i correctly identified pixels
User’s Accuracy —

correctly identified pixels + incorrectly identified pixels

Average Accuracy (AA) is a performance metric used in
Average Accuracy (AA) is a performance metric used in
classification tasks that calculates the average of accuracies
obtained for each class in a dataset. AA is computed by taking
the mean of individual class accuracies, providing an overall
measure of how well the model performs across all classes. It
helps to identify if the model is performing well across all
classes or if it is biased towards one or more classes with
higher representation. Where N is the total number of classes.

N e - o
Number of correctly classified samples in class

1
Ah= N e Total number of samples in class i
The Kappa Coefficient, also known as Cohen's Kappa, is
a statistical measure that evaluates the agreement between the
predicted and actual classifications while accounting for the
possibility of random agreement. The formula for the Kappa
Coefficient is:
P,— P,
1-F,

K=

P, is the observed accuracy (the proportion of correctly classified instances).

P, is the expected accuracy (the probability of random agreement).

D. Experimental Results

Figures 5 to 7 display the original ground-truth images and
the predicted classification maps. The proposed model
achieved overall classification accuracies of 98.2%, 96.7%,
and 92.5% for Salinas-A, Pavia-U, and Indian Pines datasets,
respectively. Simpler images achieved 100% classification
accuracy due to their smaller dimensions and fewer ground-
truth classes.

Fig. 5. Ground-truth of Salinas-A (left) and the classification
result (right).
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Predicted Classification

Ground Truth Classification

Fig. 6. Ground-truth of Pavia-U (left) and the classification
result (right).

Ground Truth Classification Predicted Classification

Fig. 7. Ground-truth of Indian Pines (left) and the
classification result (right).

The comparison of the performance of the proposed
CSCNN model with other state-of-the-art 3D Convolutional
Neural Network (3D-CNN) [23], Support Vector Machine
(SVM) [24], and Graph Convolutional Network (GCN) [25]
on the Salinas-A, Pavia University (Pavia-U), and Indian
Pines datasets is demonstrated in TABLE IV. The best
values are bolded.

TABLE IV. COMPARISON OF CLASSIFICATION
PERFORMANCE OF CSCNN WITH STATE-OF-THE-
ART METHODS ON THREE DIFFERENT DATASETS

Overall || Average
Dataset || Method ||Accuracy|/Accuracy
(0A) (AA)

| 3D-CNN || 96.5% || 95.8% | 96.5% |
| SVM | 892% | 885% | 882% |
Salinas-A|  GCN || 97.0% | 96.0% | 97.0% |

Kappa
Coefficient

CSCNN

(Proposed)|| O32% | 975% || 97.7%

| 3D-CNN || 94.8% || 93.6% | 942% |
Pavia | SVM || 854% | 842% | 83.6% |

University|  GCN || 95.5% || 94.1% || 94.8% |
(Pavia-U) CSCNN

(Proposed)
| 3D-CNN || 90.2% | 88.9% | 87.5% |
| svM || 783% || 765% || 76.5% |

96.7% || 95.4% 95.2%

Indian

Pines |__GCN ][ 9L.0% | 89.3% ][ 88.5% |
CSCNN
(Proposed) 92.5% | 89.8% | 89.1%

From TABLE IV, we observed that the CSCNN model
achieved high overall accuracy on all datasets, demonstrating
its effectiveness in capturing the spectral-spatial features of
hyperspectral images. In addition, the model's average
accuracy is close to the overall accuracy, indicating balanced
performance across different land cover classes. Moreover,
the CSCNN model showed robustness to spectral variability
within the datasets, achieving high Kappa coefficients, which
indicate a strong agreement between the predicted and actual
classes. Furthermore, the proposed CSCNN method
outperformed other state-of-the-art methods.

IV. CONCLUSIONS

This paper proposes custom spectral convolutional neural
networks (CSCNNGs) to classify hyperspectral images. The
experimental results demonstrated that the CSCNN model
achieved high overall accuracy across all datasets,
demonstrating its effectiveness in capturing the spectral-
spatial features of hyperspectral images. Additionally, the
model's average accuracy closely aligns with its overall
accuracy, indicating balanced performance across various
land cover classes. The CSCNN model also exhibited
robustness to spectral variability within the datasets,
achieving high Kappa coefficients that indicate strong
agreement between predicted and actual classes. Furthermore,
the proposed CSCNN method outperformed other state-of-
the-art approaches.

V. FUTURE WORK

Potential improvements could include the integration of
spatial information. Combining spatial features with spectral
features can significantly improve classification performance
[26]. CSCNNSs can be designed to effectively extract spatial-
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spectral features, using spatial context information to enhance
classification accuracy.
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