Erratum: "Quasiparticle electronic structure of phthalocyanine: TMD interfaces from first-principles GW" [J. Chem. Phys. 155, 214702 (2021)]

Gyanu P. Kafle and Zhen-Fei Liu^{a)}
Department of Chemistry, Wayne State University, Detroit, Michigan 48202 USA
(Dated: 27 July 2024)

In a subsequent investigation, we have found an error in our previously reported 1 GW electronic structure of the $H_{2}Pc:MoS_{2}$ interface when the composite system is supported on a SiO_{2} substrate.

The correct line in Table I should be:

TABLE I. Key descriptors of the electronic structure for the H₂Pc:MoS₂ interface adsorbed on SiO₂ using GW. All values are in eV. Δ^0_{TMD} and Δ^0_{mol} are the band gaps of the freestanding TMD monolayer and molecular layer, respectively. Δ^0_{TMD} is calculated at the K point for the unit cell, and Δ^0_{mol} is calculated at the Γ point. Δ_{TMD} , Δ_{LL} , Δ_{HL} , Δ_{HH} , and Δ_{mol} are energy level differences within the interface systems defined in Fig. 2 of the original paper, all calculated at the Γ point.

		Method		$\Delta_{ m TMD}^0$						
Originally reported in Ref. 1	H ₂ Pc:MoS ₂ :SiO ₂	GW	IIa, Fig. 2(c)	2.81	2.07	0.68	1.62	0.45	2.30	3.86
Corrected result	H ₂ Pc:MoS ₂ :SiO ₂	GW	IIa, Fig. 2(c)	2.81	2.70	0.13	2.25	0.45	2.38	3.86

Correspondingly, the correct Fig. 4 of the paper should be:

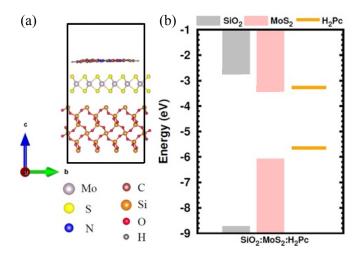


FIG. 4. (a) (This panel stays the same as in Ref. 1) Optimized structure of the H₂Pc:MoS₂:SiO₂ interface. (b) (This panel is corrected in this erratum) Quasiparticle energy level alignment from an embedding GW calculation, where the H₂Pc:MoS₂ interface is embedded into a dielectric environment of a SiO₂ substrate. All energy levels are measured with respect to vacuum.

Consequently, the substrate effect of SiO₂ is not as strong as we originally determined. Compared to the $H_2Pc:MoS_2$ interface, the SiO₂ substrate has a moderate effect of renormalizing the MoS_2 gap by about 0.08 eV. Due to the dielectric screening of SiO₂, the gap of H_2Pc within the $H_2Pc:MoS_2$ interface is renormalized by 0.09 eV, and the gap of the $H_2Pc:MoS_2$ interface is renormalized by 0.08 eV. The Δ_{LL} and Δ_{HH} in the $H_2Pc:MoS_2$ interface are nearly not affected by the SiO₂ substrate. This moderate screening effect of the SiO₂ substrate is consistent with Refs. 2–4, where the change in the band gap of MoS_2 is found to be in the 0.09-0.25 eV range when monolayer MoS_2 (without an H_2Pc molecule) is deposited on SiO₂ substrate.

This erratum does not alter the results of all other calculations without the SiO_2 substrate or the structure-property relationship that we predicted using GW in Ref. 1.

a) Electronic mail: zfliu@wayne.edu

ACKNOWLEDGMENTS

Z.-F.L. acknowledges support from NSF CAREER Award No. DMR-2044552. This work used Bridges-2 at Pittsburgh Supercomputing Center through allocation PHY220043 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by NSF grants #2138259, #2138286, #2138307, #2137603, and #2138296. Additionally, large-scale *GW* calculations were performed using resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using NERSC award BES-ERCAP0027306.

¹O. Adeniran and Z.-F. Liu, "Quasiparticle electronic structure of phthalocyanine:TMD interfaces from first-principles GW," J. Chem. Phys. 155, 214702 (2021).

²M. Drüppel, T. Deilmann, P. Krüger, and M. Rohlfing, "Diversity of trion states and substrate effects in the optical properties of an MoS₂ monolayer," Nat. Commun. 8, 2117 (2017).

³M. H. Naik and M. Jain, "Substrate screening effects on the quasiparticle band gap and defect charge transition levels in MoS₂," Phys. Rev. Mater. **2**, 084002 (2018).

⁴N. Zibouche, M. Schlipf, and F. Giustino, "GW band structure of monolayer MoS₂ using the SternheimerGW method and effect of dielectric environment," Phys. Rev. B **103**, 125401 (2021).