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ABSTRACT  

A fundamental challenge in pursuing topological states in twisted homobilayer transition 

metal dichalcogenides is the relative energies between the valence band extrema at the 

topologically trivial !  and nontrivial "/"′  valleys. We employ many-body perturbation 

theory within the GW approximation to investigate the energy difference of the valence 

band extrema in homobilayer WSe2 and MoTe2, the two most promising candidate platforms 

hosting various quantum phases. In contrast to the results obtained from density functional 

theory, the GW calculation predicts quasiparticle energies of the "/"′ valley above those of 

the !  valley for all high-symmetry stackings. We further develop a "fractional folding" 

technique, allowing for the inclusion of substrate and encapsulating dielectric screening 

effects in GW simulations. We find that while environmental dielectric screening from h-BN 

reduces the energy difference between the "/"′ and !  valley extrema, the valence band 

maximum remains situated at the topologically nontrivial "/"′ valley. Finally, many-body 

effects enhance the depth of the moiré potential, leading to a shift of the "magic angle", 
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compared to the result from density functional theory. Our study offers quasiparticle energy 

landscapes to guide the search for twisted homobilayers of topological interest. 

 

I. INTRODUCTION 

Layered transition metal dichalcogenides (TMDs) show promise of two-dimensional (2D) 

semiconducting devices for applications in catalysis, electronics, photovoltaics, and 

electrochemistry [1-4]. Particularly, the electronic band extremum energy landscapes, e.g., 

the !, "/"′ valleys, and % valleys depicted in Fig. 1(a), can determine abundant fundamental 

electronic properties. For example, the locations of the valence band maximum (VBM) and 

the conduction band minimum (CBM) determine whether the electronic band gaps are 

direct or indirect and are responsible for many important optical and transport features, such 

as valleytronics and photoluminescence spectroscopy [5-7]. In 2H-phase TMD materials, the 

"/"′ valley, characterized by a non-trivial Berry curvature, plays a crucial role in hosting 

various quantum phases, e.g., integer and fractional quantum anomalous Hall effects, and 

doping induced multiferroics [8-14]. Importantly, all these quantum phases prefer the "/"′ 
valley to reside at the VBM to ensure that the doped hole is located at the topologically non-

trivial valley. 

On the other hand, the energy difference between the valence valleys, denoted as Δ!"#$  = 

"$ − !$ as illustrated in Fig. 1(a), where "$ and !$ represent the band extremum energies at 

the valence " and ! valleys, respectively, can be either positive or negative depending on a 

variety of factors [15-18]. For instance, different stacking configurations, as depicted in Fig. 

1(b), can lead to variations in interlayer tunneling and affect Δ!"#. Particularly for several 

TMD homobilayers, the valence !	and " valley energies are so close to each other that Δ!"#$  

may be tuned experimentally via, e.g., the application of gate voltage [9,12,18]. Meanwhile, 

many extrinsic factors, e.g., self-doping and substrate effects, can contribute to variations in 

the measured experimental results [19-22]. Consequently, examining the electronic band-
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edge energy landscape to unambiguously identify the VBM is of fundamental importance to 

understand available measurements and search for new twisted topological TMD 

homobilayers. 

The first-principles density functional theory (DFT) is indispensable to investigate the 

electronic structures, but it is also known for significantly underestimating band gaps. 

Particularly, local or semi-local exchange-correlation functionals, e.g., local-density 

approximation and Perdew−Burke−Ernzerhof (PBE) functional, may yield contradictory 

results regarding the VBM location in TMD materials [9,12,18,23]. This indicates that more 

advanced calculations are needed. To date, the more advanced SCAN [9] and the modified 

Beck-Johnson functional [18], have been applied to address this issue for specific stacking 

configurations. Furthermore, current theoretical studies predominantly focus on the 

suspended topological moiré TMD bilayers. The impact of environments, such as substrate 

and encapsulation (illustrated in Figs. 1(c) and (d)), on the valence band extrema and moiré 

potential remains unexplored. 

In this work, given the dramatically enhanced many-body effects in 2D structures [24-26], 

we employ the first-principles many-body perturbation theory (MBPT) within the GW 

approximation [27] to study the renormalization of quasiparticle bands extrema in different 

stackings of homobilayer WSe2 and MoTe2, the two most promising candidate platforms 

hosting various quantum phases. We find that the GW calculation predicts that the 

extremum at the valence " valley is energetically much higher than that at the ! valley, 

compared to DFT results, and the quasiparticle VBM is located at the "  valley for all 

stackings. To reduce the computational cost for TMDs supported by a substrate or 

encapsulated by another material, we have developed a “fractional folding” technique to 

include the dielectric screening effect of hexagonal boron nitride (h-BN) as a substrate and 

encapsulation material, which is the most common one used in experiments. Our results 

indicate that external dielectric screening effects reduce Δ!"#$ , but the VBM remains located 
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at the " valley. To this end, we demonstrate the renormalizations of the moiré potentials and 

moiré mini bands from many-body interactions. The depth of moiré potential is increased by 

36-52%, and many-body effects alter the value of the “magic angle” compared to DFT results. 

The remainder of this article is organized as follows: In Sec. II, we present the computational 

details of DFT and GW calculations. In Sec. III, the results of suspended TMD homobilayers 

are presented and discussed. In Sec. IV, we develop the “fractional folding” technique and 

discuss the h-BN substrate/encapsulation screening effects on the relative energies of valence 

band extrema, Δ!"#$ . In Sec. V, we compare the moiré potentials obtained by various 

theoretical approaches. The influences from many-body interactions on the bandwidth of 

the first moiré mini band are discussed. Finally, the conclusions are summarized in Sec. VI. 

 

II. COMPUTATIONAL DETAILS 

The DFT calculation is performed using the PBE exchange−correlation functional with SOC 

including semi-core electrons [28,29], as implemented in the Quantum ESPRESSO package 

[30]. A wavefunction cutoff of 60 Ry, a charge density cutoff of 240 Ry, and a 12 × 12 × 1 k-

grid are adopted. For 2D structures, the van der Waals (vdW) interaction is included via the 

semiempirical Grimme-D3 scheme [31]. A vacuum of 18 Å between adjacent layers is used to 

avoid spurious interactions between periodic images along the out-of-plane direction of 2D 

structures.  

The single-shot G0W0 calculations are performed using the BerkeleyGW package [32]. As the 

first step, we compute the static non-interacting Kohn-Sham (KS) polarizability, )%, using Eq. 

(1): 

)&&!% (+, - = 0) = ∑
'2, 3 + +(5)(+,&)∙/(6, 30'6, 315")2+,&!3∙/!12, 3 + +0

4",$%&"4',$$,6,7 ,                   (1) 
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where q and k are vectors in the first Brillouin zone, G is a reciprocal-space lattice vector. v 

refers to occupied (valence) states and c refers to unoccupied (conduction) states. |2, 3 + +⟩, 
|6, 3⟩, 9$,7,+, and 96,7	are the KS eigenvectors and eigenvalues, respectively. Then the static 

dielectric matrix : is computed from the KS )% using Eq. (2): 

:(+; <, <8) = =&&! − 2(+ + <))%(+; <, <′),                                           (2) 

where 2(+ + <) is the bare Coulomb interaction, i.e., 2(+ + <) = 4?/|+ + <|9. Notably, in 

practical applications, the formulation of the bare Coulomb interaction can be modified 

based on the specific truncation methods selected for the system [33]. Then, the static 

screened Coulomb interaction is calculated using Eq. (3): 

@(+;<, <′) = :":(+; <, <′)	2(+ + <′) ,                                            (3) 

The Hybertsen−Louie generalized plasmon-pole model is used to treat the frequency 

dependence of the dielectric function [27]. The static remainder approximation [34] is used 

in the evaluation of the self-energy for faster convergence. SOC is considered as a 

perturbation to the self-energy correction [23,35]. The slab Coulomb truncation [33] is 

adopted to remove the spurious long-range Coulomb interactions along the non-periodic 

direction. An 18 × 18 × 1 and a 15 × 15 × 1 (as discussed in Supplementary Material Sec. I) q-

grid is adopted to calculate the polarizability and quasiparticle energies for bilayer WSe2 and 

MoTe2, respectively. Given the slow convergence behavior of quasiparticle band extrema in 

TMD materials as discussed in Supplementary Material Sec. I, a high screened Coulomb 

energy cutoff 35 Ry is used.  

 

III. SUSPENDED TMD HOMOBILAYERS 

We consider the five high-symmetry stacking configurations of the suspended TMD 

homobilayers, as depicted in Fig. 1(b). As two typical examples, Fig. 2 presents the electronic 
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structure of bilayer WSe2 and MoTe2 in their natural bulk A;<(BB′) stacking. Our calculated 

in-plane lattice constants for bilayer WSe2 and MoTe2 are 3.30 Å and 3.53 Å, respectively, 

which agree well with experimental values [6,23,36,37]. In bilayer WSe2, DFT results show 

that the valley energy difference is	Δ!"#$ 	= -53 meV, and the VBM is located at the ! valley 

as demonstrated in Figs. 2(a) and 2(c). The "-to-" direct gap is 1.22 eV, and the !-to-" 

indirect gap is 1.17 eV. To obtain a more accurate description of the bandgap and extremum 

energies, we perform the GW calculation, as illustrated in Figs. 2(b). Many-body effects 

substantially increase bandgaps compared to the DFT results. The quasiparticle "-to-" direct 

and !-to-" indirect gaps are increased to 2.16 and 2.25 eV, respectively. These values agree 

well with previous GW results [38-40].  

Importantly, electronic self-energy corrections are different for the " and ! valleys. A more 

substantial GW correction at the !  point moves the !  valley lower than the "  valley. 

Consequently, the GW calculation reverses the sign of the DFT valley-energy difference, 

yielding Δ!"#$ = 88 meV and elevating the " valley to be the VBM, as illustrated in Fig. 2(c).  

This difference in the self-energy corrections can be explained by the different electron 

localization of the states at these two valleys. Our calculation shows that the quasiparticle 

effective mass is 0.45 C% at the valence " valley and 1.56 C% at the ! valley, respectively, 

where C% represents the electron rest mass. The larger effective mass indicates that the in-

plane wavefunction is more spatially localized at the ! valley, which leads to an enhanced 

contribution of the screened exchange interaction (D=>) to the self-energy correction at the 

valence ! valley (as discussed in Supplementary Material Sec. II). Consequently, there is a 

more substantial GW correction at the valence ! valley, moving its energy below that of the 

" valley. 

For the conduction valleys, DFT calculations indicate the % valley is the CBM in bilayer 

WSe2. However, the exact location of the CBM remains ambiguous, since the " and % valleys 

are almost degenerate, with an energy difference of only 8 meV as depicted in Fig. 2(a). 
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Notably, many-body effects are expected to induce a larger correction to the conduction " 

valley, which will elevate the "  valley above the %  valley. The reason is similar to the 

previous discussion of the VBM. As shown in Fig. 2(b), our GW calculation confirms this 

speculation and increases the "-	% valley energy difference Δ!"?6  to 260 meV, signifying that 

the % valley is the CBM.  

Aside from the natural bulk stacking, the valley energy differences obtained from DFT and 

GW calculations for all stacking configurations are summarized in Table I. For the valence 

valleys in WSe2, similar to the A;< stacking, many-body effects convert Δ!"#$  from negative 

values (-18 meV and -24 meV) to positive values (102 meV and 112 meV) for the A<< and E;< 

stackings, respectively. For the conduction valleys, a similar change in the sign of Δ!"?6  is 

observed for the A<< and A;; stackings, as we show in Table I. 

Interestingly, DFT and GW yield the same signs for Δ!"#$  in the A;;  and E<<  stacking 

configurations for bilayer WSe2. This can be understood from the interlayer interaction and 

screening effects. As listed in Table I, the interlayer distance is larger by approximately 0.6 Å 

in the A;;  and E<<  stackings compared to other stacking configurations. Notably, the DFT 

calculated interlayer distances may depend on the exchange-correlation functionals and van-

der-Waals correction scheme [18,41]. But the trend that the A;; and E<< stackings have a larger 

interlayer distance remains valid. The valence !  valley exhibits a more pronounced 

interlayer hybridization effect than that in the " valley, making the ! valley more sensitive 

to the interlayer spacing distance. Such larger interlayer distances in the A;;  and E<< 

stackings reduce the interlayer hybridization, lowering the energy of the !  valley. 

Consequently, at the DFT level, Δ!"#$  equals 155 and 191 meV for the A;; and E<< stackings, 

respectively. Moreover, the larger interlayer distance weakens the screening effects and 

many-electron interactions. Therefore, the GW corrections for Δ!"#$  in A;; and E<< stackings 

are 50-60 meV smaller than those in the A;<, A<<, and E;< stackings.  
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Figures 2(d)-2(f) present DFT and quasiparticle band structures for the A;< stacking of bilayer 

MoTe2, respectively. In contrast to bilayer WSe2, both DFT and GW calculations designate 

the " valley as the VBM across all stackings. As shown in Table I, GW calculations augment 

Δ!"#$  by approximately 200 meV for A;<, A<<, and E;< stackings and around 100 meV for A;; 

and E<< stackings, respectively, compared to DFT results. This is again due to the large self-

energy correction at the valence ! valley, similar to bilayer WSe2. This result suggests that 

bilayer MoTe2 can be more heavily doped for observing various quantum phases based on the 

doped hole at the " valley. For the conduction bands, both DFT and GW calculations predict 

a positive sign for Δ!"?6  across all stacking orders, but the GW values are larger by about 150 

meV. Tables SII and SIII in the Supplementary Material list detailed information on the 

electronic band extremum energies obtained by DFT and GW calculations of suspended 

homobilayer WSe2 and MoTe2.  

IV. ENVIRONMENTAL DIELECTRIC SCREENING EFFECTS 

The above calculations are for suspended bilayers. However, in realistic experimental 

settings, the environmental dielectric screening effects also play a significant role in 

modulating the quasiparticle electronic structure [24,42-47]. In this section, we investigate 

how the external substrate and encapsulation influence the quasiparticle band extrema at the 

valence ! and " valleys in bilayer WSe2 and MoTe2. We consider h-BN as the substrate or 

encapsulation material in this work, which is widely used in experiments [8,14,20]. In our 

calculations, we include two layers of h-BN as the substrate/encapsulation material. The 

approach we develop can be readily extended to other substrate or encapsulation materials. 

We employ the substrate screening approximation [Eq. (4)] to include the screening effects 

of h-BN in the KS polarizability. As TMD bilayer and h-BN exhibit neglectable 

hybridization, the total KS polarizability χ% can be divided into two terms: 

                                                     )% ≈ 	)@<A% +	)BCD% ,                                                       (4) 
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where )@<A%  is the KS polarizability of the bilayer TMD and )BCD%  is the contribution from 

the h-BN substrate or encapsulation. To address the lattice mismatch within 1% between the 

TMD bilayer (~3.30 Å for WSe2) and h-BN (~2.50 Å), traditional GW calculations often 

construct an interface consisting of a 3 × 3 TMD supercell and a 4 × 4 h-BN supercell, as 

depicted in Fig. 3(a) and 3(b). However, the supercell GW calculations are computationally 

expensive [32,48]. Additionally, an accurate determination of the peculiar energy extrema in 

TMD materials requires a high energy cutoff of 35 Ry for the screened Coulomb energy, 

which is substantially larger than what is required to converge the direct band gap (~10 Ry). 

This high energy cutoff poses a further challenge for supercell GW self-energy calculations, 

even after Eq. (4) is used to address the computational cost of KS polarizability. As an 

example, at an energy cutoff of 35 Ry, 6023 G-vectors are necessary in a primitive cell 

calculation and 52516 G-vectors are necessary in a supercell calculation, respectively, 

compared to 1233 G-vectors in a primitive cell TMD when the energy cutoff is 10 Ry. 

We propose a “fractional folding” technique to circumvent a supercell GW calculation, as 

depicted in the schematic flowchart of Fig. 3(c). This idea is an extension of the folding 

technique that was originally developed in the context of weakly coupled interface systems 

[42-45]. The workflow of fractional folding can be described as the following procedures 

(using bilayer WSe2 and h-BN interface as an example):  

)hBN(1×1)% (+E + <E, +E + <E8 )
foldingHIIJ )hBN(4×4)% (+ + <, + + <8)                        (5) 

unfoldingHIIIIJ)hBN(4/3×4/3)% (+Q + <Q, +Q + <Q8 ). 

We list the five steps of the fractional folding below. (I) We calculate the KS )% of the h-BN 

unit cell )hBN(1×1)% (+E + <E, +E + <E8 ), where <E, <E8  are the reciprocal lattice vectors and +E is 

a vector in the first Brillouin zone of the h-BN unit cell. A 24 × 24 × 1 q-mesh is used for this 

calculation. (II) Then, we fold the h-BN unit-cell KS )% to a 4 × 4 × 1 supercell )hBN(4×4)% (+ +
<, + + <8) on a q-mesh of 6 × 6 × 1, where <, <8 are reciprocal lattice vectors and + is a 
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vector in the first Brillouin zone of the supercell. Note that this 4 × 4 × 1 h-BN supercell is 

commensurate with a 3 × 3 × 1 TMD supercell, i.e., )hBN(4×4)%  and )TMD(3×3)
%  share the same 

dimension. The folding is realized by matching the q and G vectors between the unit cell and 

the supercell, i.e.,	+ + < = +E + <E  and + + <8 = +E + <E8 , because )hBN(1×1)%  and )hBN(4×4)%  

contain the same physical information. This is discussed in detail in Ref. [42]. (III) After we 

obtain the supercell h-BN KS )%, we unfold it to the TMD unit cell on a q-mesh of 18 × 18 × 

1, and call this quantity )hBN(4/3×4/3)% (+Q + <Q, +Q + <Q8 ) , where <Q , <Q8  are the reciprocal 

lattice vectors and +Q  is a vector in the first Brillouin zone of the TMD unit cell. The 

unfolding is realized by q- and G-vector matching similar to the folding step. We emphasize 

that the dimension of )hBN(4/3×4/3)% (+Q + <Q, +Q + <Q8 ) is commensurate with that of )TMD(1×1)%  

due to lattice matching, which makes the q- and G-vector matching feasible in the unfolding 

step. This is why we term this process “fractional folding”, and the resulting )hBN(4/3×4/3)%  is 

equivalent to the KS )% of a fictitious 4/3 × 4/3 × 1 h-BN “effective fractional cell” (one that 

shares the same lattice constants as a TMD unit cell). (IV) We add the resulting h-BN 

)hBN(4/3×4/3)%  to the directly calculated TMD unit cell )TMD(1×1)
%  based on Eq. (4). The resulting 

KS )% and the related : defined in Eq. (2) define the dielectric environment that TMD “feels” 

when it is interfaced with h-BN. (V) Finally, we perform embedding GW self-energy 

calculations in the TMD unit cell using the : calculated in the last step, similar to those in 

the context of weakly coupled interfaces [49]. Here, the Green’s function is computed for the 

TMD unit cell only, while the screened Coulomb interaction calculated using Eq. (3) takes 

into account the effect of h-BN. 

This method avoids direct GW calculation of the supercell, in both steps of the KS 

polarizability and the self-energy. As a result, the overall computational cost is comparable to 

GW calculations of a TMD unit cell. To validate the accuracy of our fractional folding 

approach, we used an interface of monolayer WSe2 and monolayer h-BN as a benchmark test 

case (as discussed in the Supplementary Material Sec. IV). We have verified that for the "-
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to-" direct gap, the fractional folding technique yields an error of ~10 meV, compared to the 

direct calculations of the interface, indicating a good accuracy. For the h-BN encapsulation, 

)BCD%  includes contributions from both top and bottom h-BN layers with the “fractional 

folding” process similar to the substrate case.  

The external screening effects from h-BN bilayers substrate/encapsulation on the ! and " 

valleys of bilayer WSe2 and MoTe2 are summarized in Fig. 4. We note that we focus on the 

valence bands in this work because their properties are more relevant to various quantum 

phases than those of the conduction bands. Using the bilayer WSe2 A;<(BB′)  stacking as a 

representative example, we can see that the external screening effects decrease the bandgaps. 

For instance, when placed on the h-BN substrate, the "-to-" direct gap of bilayer WSe2 is 

2.10 eV and the !-to-" indirect gap is 2.16 eV, respectively, a reduction of 60 meV for the 

" -to-"  direct gap and 93 meV for the ! -to-"  indirect gap from the suspended case, 

respectively. When the h-BN substrate effect is included, Δ!"#$  becomes 55 meV, a reduction 

of 33 meV from the freestanding scenario. When a h-BN encapsulation environment is 

considered,  Δ!"#$  is further reduced to 14 meV. Other stacking configurations demonstrate 

the similar trend, as depicted in Fig. 4(a). Environmental screening effects reduce Δ!"#$  and 

elevate the energy extremum at the ! valley. Nevertheless, the " valley consistently remains 

as the VBM for all stacking configurations.  

Similarly, for bilayer MoTe2 as illustrated in Fig. 4(b), the substrate and encapsulation 

screening environment can reduce the value of Δ!"#$ . However, it does not reverse the sign 

of Δ!"#$ , and the " valley remains the global VBM. This conclusion supports the idea of 

realizing various quantum phases based on the valence " valley of both bilayer WSe2 and 

MoTe2. For more detailed information on the electronic band extremum energies obtained 

by different theoretical strategies, please refer to Table SII-SV in the Supplementary 

Materials. 

V. MOIRÉ POTENTIAL AND MINIBANDS 
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To investigate the many-body effects and external screening influences on the moiré 

potential and moiré mini bands, we employ the following Eq. (6) to describe the dependence 

of the homobilayers valence extrema energy on the relative displacement KV between the 

aligned layers [9,12,50], where the C3 symmetry in the homobilayer leads to the two-

parameter (C:, L) formalism of the potential:                                       

M(KV) = C% +	2C: ∑ cos	(<W ∙ KV + L)WX:,Y,Z ,                                   (6) 

where C%  is a constant and referenced with respect to the vacuum level. KV  is the 

displacement between the aligned layers. The summation runs over the three nearest 

neighbor reciprocal lattices in two dimensions, and <W = 4?/(√3U<)(6VW2? W":
Y , WXY2? W":

Y ), 

where Z = 1,3,5. U<  is the monolayer lattice constant. C: characterizes the amplitude of the 

potentials and is decided by the relative energy position of the investigated valley with respect to 

different stacking configurations (band extremum energies obtained by different methods 

referenced to the vacuum level are shown in the Supplementary Materials Tables SII-V). L 

characterizes the shape of the potentials to keep the C3 symmetry. In practice, to describe the 

moiré potential M(K) experienced by electrons from the valence band extrema due to the 

moiré superlattice with a twist angle ], KV is replaced by ]^̂ × K in Eq. (6), approximating the 

local displacement between the two layers. Fig. 5 presents the moiré potentials of R stacking 

bilayer WSe2 and MoTe2, obtained using different theoretical approaches. For bilayer WSe2 as 

depicted in Figs. 5(a-d), DFT-calculated moiré potentials from the ! and " valleys overlap 

with each other, with the ! moiré potential being the VBM. GW calculations demonstrate 

that the ! and " moiré potentials have a Δ = 77 meV separation. Here, Δ is defined as the 

energy difference between the global minimum of the "  moiré potential and the global 

maximum of the !  moiré potential, which differs from Δ!"#$  for a single stacking 

configuration discussed in the previous sections. Environmental screening effects can reduce 

the energy separation between the ! and " moiré potentials. When a h-BN bilayer substrate 

is included, Δ = 50 meV, while Δ decreases to 17 meV when a h-BN bilayer encapsulation 
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environment is considered. The results for MoTe2, shown in Figs. 5(e-h), are similar to those 

in WSe2. Many-body effects can augment Δ  while external screening effects reduce it. 

Overall, in GW results, the !  and "  moiré potentials always have a positive energy 

separation Δ, and globally " moiré potential remains the VBM. Furthermore, the energy 

difference, Δ, in MoTe2 is consistently 150-170 meV higher than in WSe2 across all scenarios, 

whether it is freestanding, on a substrate, or encapsulated. This significant difference 

indicates that bilayer MoTe2 has a greater potential for heavy doping to support a variety of 

quantum phases. 

Since the "  valley has a topologically non-trivial Berry curvature, the moiré potential 

originating from the " valley is primarily of concern in this section, as depicted in Figs. 6(a) 

and 6(b). For WSe2, the DFT-calculated moiré potential depth is ~25 meV. Including many-

body effects, the moiré potential depth is renormalized and increases by 36% to 34 meV. For 

MoTe2, the DFT-calculated moiré potential depth is 23 meV, and the GW moiré potential 

depth is 35 meV, a 52% increase owing to the many-body effects. Interestingly, the dielectric 

screening from an external h-BN substrate or encapsulation can significantly impact the 

relative valence energy difference between the !  and "  valleys, as illustrated in Fig. 5. 

However, we find that they only have minor modulations (2-3 meV) on the moiré potential 

depth. 

The renormalized moiré potential depth by the many-body effects can alter the behaviors of 

moiré mini bands. The continuum model Hamiltonian for the " valley moiré mini bands is 

given by Eq. (7) (the fitting parameters are listed in Supplementary Materials Sec. V): 

ℋ = b
− ℏ((7"\%)(

9]∗ +M:(K) c(K)
c^(K) − ℏ((7"\*)(

9]∗ +M9(K)
d.                                  (7) 

where the Hamiltonian consists of a two-by-two matrix accounting for the two layers. The off-

diagonal elements represent the interlayer coupling, where c(K) = e(1 + 5")&(∙/ + 5")&+∙/). e 
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is the tunneling strength parameter decided by the band splitting at the valence " valley, 

which is induced by the ferroelectricity of the R stacking. The diagonal elements comprise the 

kinetic term and the moiré potential terms M:(K) and M9(K) for the bottom and top layers, 

respectively. M:,9(K) are determined by Eq. (6), where 1,2 indicates different layers and have 

opposite signs of L. f± points of the moiré Brillouin zone are formed from the " points of 

the twisted monolayer Brillouin zones. Notably, in practice, the twisted angle ]  enters 

M:,9(K) and c(K) by replacing K by ]^̂ × K. And the moiré period is 	U</	]. The continuum 

model Hamiltonian is solved in the moiré mini Brillouin zone using the reciprocal lattice 

constant g, where g = 8? sin(] 2⁄ )/√3U<.  

 

We employ Eq. (7) to study the moiré mini bands using moiré potentials obtained from DFT 

and GW calculations, respectively. The bandwidth of the first moiré band, denoted as @, is 

plotted as a function of the twisted angle in Figs. 6(c) and 6(d). The first moiré band can 

achieve almost perfect flatness near a “magic angle” ]] and is a crucial feature for studying 

fractional quantum anomalous Hall phases [9]. For WSe2, the DFT moiré mini band has a 

magic angle at ]]A`@  = 1.41° that agrees well with previous DFT calculation results [9]. 

Including many-body effects, the GW calculation yields a larger magic angle at ]]ab = 1.52°. 

Similarly, for MoTe2, the renormalized moiré potential increases the magic angle from ]]A`@ 

= 1.65° to ]]ab = 1.87°. To conclude, many-body effects can augment moiré potential depth 

by 36-52%, alter the moiré mini bands, and shift the magic angle to a larger value. 

It is important to note that this study focuses on highlighting a single factor: the significance 

of many-electron interactions in influencing the valence band extrema and the resulting 

moiré potentials. Previous research [51,52] has demonstrated that structural reconstructions 

and piezoelectric effects may also play a crucial role in shaping the moiré potential and 

subsequent moiré mini bands. A comprehensive analysis incorporating all these factors 

would necessitate direct moiré-supercell calculations. Such an extensive investigation falls 
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outside the scope of our current work but presents a promising avenue for future research 

endeavors. 

VI. CONCLUSION 

In this work, we demonstrate that the quasiparticle bands extrema are renormalized by the 

many-body effects in homo-bilayers WSe2 and MoTe2. Consequently, the energy difference 

Δ!"#$  between the " and ! valley extrema increases by hundreds of meV due to many-body 

effects. The VBM is located at the " valley for all stacking configurations. To efficiently 

capture dielectric screening effects from environments, we have developed a “fractional 

folding” technique that enables dielectric embedding GW calculations in the TMD unit cell, 

while taking into account the many-body effects from h-BN substrate or encapsulation. Our 

results demonstrate that the external screening effects from h-BN can reduce Δ!"#$  

quantitatively, while the VBM remains at the " valley. Moreover, we compared the moiré 

potentials obtained from various theoretical approaches. Compared to DFT-calculated moiré 

potentials, the depths of the moiré potentials are increased by 36-52% when many-body 

effects are incorporated. The continuum model exhibits a renormalized first moiré mini 

bandwidth as a function of the twist angle. Based on this model, many-body effects result in 

a larger "magic angle" compared to DFT results. 
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FIGURES: 

 

FIG. 1. (a) Typical TMD bilayer electronic band structure. The inset is a schematic 

illustration of the band extrema offset at the !  and "  valleys. (b) Common local high 

symmetry stacking configurations in TMD moiré bilayer systems. The two layers exhibit a 

180° relative rotational orientation for H stackings. Conversely, the two layers orient in the 

same direction for R stackings. The superscript and subscript indicate the vertical overlap of 

X and M atoms, where M represents transition-metal elements and X presents chalcogen 

elements. There is another E<;  stacking not shown in the figure, which has a degenerate 

electronic structure with E;<. (c,d) Schematic illustration of external screening environment 

for (c) substrate and (d) encapsulation, respectively. 

 



 18 

 

 

 

 

FIG. 2. Bilayer TMD electronic band structure for natural bulk A;<(BB′) stacking. (a,d) DFT 

electronic band structure for bilayer (a) WSe2 and (d) MoTe2. (b,e) Quasiparticle band 

structure for bilayer (b) WSe2 and (e) MoTe2. (c,f) Schematic illustration of the band extrema 

offset at the ! and " valleys corresponding to the dashed boxes for bilayer (c) WSe2 and (f) 

MoTe2. The red and blue dashed boxes represent DFT and GW results, respectively. ∆!"c$ 	=
	"$ − !$ (unit: meV) measures the energy difference between the valence band extrema at " 

and ! valleys. 
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FIG. 3. (a) a side view and (b) a top view of the TMD/h-BN interface supercell. (c) Schematic 

illustration for including h-BN substrate using the “fractional folding” technique. 
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FIG. 4. Energy extrema difference between valence " and ! valleys of (a) bilayer WSe2 and 

(b) bilayer MoTe2. Different color bars correspond to the different theoretical methods.  

 

 

 

 

FIG. 5. Moiré potentials obtained by different theoretical methods for WSe2 (a-d) and MoTe2 

(e-h). The red and blue lines are moiré potentials that originate from the valence ! and " 

valleys, respectively. The vacuum level is set to zero. 
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FIG. 6. (a,b) The " valley moiré potentials obtained by DFT and GW calculations for bilayer 

(a) WSe2 and (b) MoTe2. The maxima of the DFT and GW curves are aligned to enable an 

easy comparison of the depth. The DFT potential is measured with respect to the vacuum 

level. (c,d) The bandwidth of the first moiré band, @, versus the twist angle for bilayer (c) 
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WSe2 and (d) MoTe2. ]]A`@ and ]]ab is the magic angle (where W = 0) obtained from DFT and 

GW calculations, respectively. 

 

 

 

TABLE: 

      Gap (eV) 

GW gap 

Δ!"#$ (meV) Δ!"%& (meV) 

 Stacking d0 (Å) DFT GW DFT GW DFT GW 

 

WSe2 

"'(($$′) 6.42 1.219 2.160 -53 88 8 260 

"(( 6.48 1.211 2.158 -18 102 -46 217 

"'' 7.07 1.217 2.176 155 211 -50 227 

'((($$) 7.06 1.186 2.150 191 256 16 290 

''( 6.41 1.152 2.097 -24 112 9 298 

 

MoTe2 

"'(($$′) 7.01 0.980 1.651 50 264 95 240 

"(( 7.10 0.969 1.646 106 297 38 189 

"'' 7.66 0.994 1.681 333 432 40 172 

'((($$) 7.68 0.961 1.652 364 467 32 148 

''( 7.02 0.933 1.607 71 281 42 179 
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TABLE I. Electronic band gap and band extremum energy difference for bilayer WSe2 and 

MoTe2. d0 is calculated equilibrium interlayer distance measured as the vertical distance 

between the W or Mo atoms on the neighbor layers. The "-to-" direct gap is presented. 

Δ!"#$ = 	"$ − !$ presents energy difference between the valence band extremum at the " 

and !  valleys. Δ!"?6 = 	"6 − %6  presents energy difference between the conduction band 

extremum at the " and % valleys. The bold fonts indicate that many-body effects reverse the 

sign of Δ!"#$  or Δ!"?6  compared to the DFT results.  
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