

Quorum sensing orchestrates parallel cell death pathways in *Vibrio cholerae* via Type 6 secretion dependent and independent mechanisms

Authors

Ameya A. Mashruwala^{1,2,3} and Bonnie L. Bassler^{1,2*}

Affiliations

¹Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA

²The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

³Current address: The Stowers Institute for Medical Research, Kansas City, MO, 64110

*Correspondence to: bbassler@princeton.edu

1 Abstract

2 Quorum sensing (QS) is a cell-to-cell communication process that enables bacteria to
3 coordinate group behaviors. In *Vibrio cholerae* colonies, a program of spatial-temporal
4 cell death is among the QS-controlled traits. Cell death occurs in two phases, first along
5 the colony rim, and subsequently, at the colony center. Both cell death phases are
6 driven by the type VI secretion system (T6SS). Here, we show that HapR, the master
7 QS regulator, does not control *t6ss* gene expression nor T6SS-mediated killing activity.
8 Nonetheless, a Δ hapR strain displays no cell death at the colony rim. RNA-Seq
9 analyses reveal that HapR activates expression of an operon containing four genes of
10 unknown function, *vca0646-0649*. Epistasis and overexpression studies show that two
11 of the genes, *vca0646* and *vca0647*, are required to drive cell death in both a Δ hapR
12 and a Δ hapR Δ t6ss strain. Thus, *vca0646-0649* are regulated by HapR but act
13 independently of the T6SS machinery to cause cell death, suggesting that a second,
14 parallel pathway to cell death exists in *V. cholerae*.

15

16 Significance

17 Cell death is a fundamental biological process. In mammals, cell death sculpts tissues
18 during development, enables injury recovery, and regulates immunity. In bacteria, cell
19 death mechanisms remain little explored. Recently, colonies formed by the pathogen
20 *Vibrio cholerae* were demonstrated to undergo a spatio-temporal program of cell death.
21 The program is controlled by quorum sensing (QS) and driven by the Type VI secretion
22 system. Here, we discover QS-controlled genes, called *vca0646-0649*, that cause cell
23 death in *V. cholerae* colonies independently of the Type VI secretion system. These
24 findings indicate that a second cell death pathway exists in *V. cholerae*. The results

25 expand our understanding of bacterial cell death mechanisms and provide insight into
26 how cell death shapes bacterial community structure.

27

28 **Introduction**

29 Quorum sensing (QS) is a process of bacterial cell-cell communication that depends on
30 the production, release, accumulation, and detection of extracellular signal molecules
31 called autoinducers (AIs) (1, 2). QS enables bacteria to monitor the vicinal cell density
32 and coordinate population-wide gene expression and collective behaviors (1, 2). In so
33 doing, bacteria accomplish tasks that require many cells acting in synchrony to make
34 the tasks successful. In the model QS bacterium and pathogen *Vibrio cholerae*, which
35 causes the cholera disease, information encoded in AIs is relayed through two QS
36 pathways both of which converge on a shared transcription factor, LuxO (3). At low cell
37 density (LCD), when AIs are absent, LuxO is phosphorylated (LuxO~P) and it activates
38 transcription of genes encoding four small RNAs, called Qrr1-4 (4, 5). Qrr1-4 repress
39 production of the HapR transcription factor (5). HapR is the master high cell density
40 (HCD) QS regulator. At HCD, when AI concentrations are above the threshold required
41 for detection, LuxO is dephosphorylated, production of Qrr1-4 ceases, HapR is
42 produced, and it activates expression of genes specifying group behaviors.

43 The bacterial type VI secretion system (T6SS) is a contact-dependent nanomachine
44 that delivers toxic molecules into other cells (6–8). Briefly, T6SS structural proteins
45 assemble into a syringe-like device, the tip of which is loaded with toxic effector proteins
46 (7, 9). The apparatus injects the effectors into neighboring competitor cells, which kills
47 them. To avoid self-harm, T6SS-active bacteria produce immunity proteins that
48 inactivate the toxic effector proteins (10). Protection from incoming T6SS attacks is also
49 conferred by physical means including exopolysaccharide or capsular polysaccharide
50 macromolecules that act as “shields” (11, 12). In *V. cholerae*, the genes encoding T6SS
51 components are arranged in one large and three auxiliary clusters (Figure S1).
52 Regulation of the T6SS machinery is strain specific, and important for this work is that
53 unlike the commonly studied pandemic El Tor strain, the El Tor *V. cholerae*
54 environmental isolate called 2740-80 expresses its *t6ss* genes under laboratory settings
55 due to the presence of an activating, cis-acting, single nucleotide polymorphism (13,
56 14). In *V. cholerae*, T6SS function is also QS regulated (15). At LCD, *t6ss* expression
57 from the large cluster is repressed by the Qrr sRNAs via a post-transcriptional
58 mechanism. In addition, the Qrr sRNAs indirectly repress expression of auxiliary *t6ss*
59 clusters by preventing HapR production (15). HapR is an activator of auxiliary *t6ss* gene
60 cluster expression. Simultaneous to reducing T6SS offensive capacity, at LCD, the Qrr
61 sRNAs promote increased production of the *Vibrio* polysaccharide (Vps) “shield” that
62 blocks incoming T6SS attacks, and thus, boost T6SS defenses (16, 17).

63 Certain bacteria, including *V. cholerae* 2740-80, form colonies that, over time, develop
64 outgrowths called sectors (16, 18–20). In *V. cholerae*, sector formation is preceded by a

65 cell death program that occurs in two phases (16). The first phase of death occurs at the
66 colony rim and the second phase in the colony center. Relevant to the present work is
67 that cell death at the colony rim is a consequence of T6SS-dependent kin-killing (16).
68 Killing imposes a selective pressure for the bacteria to acquire mutations that enable
69 them to resist killing. As a consequence, these “variants” form the outgrowths called
70 sectors. The *V. cholerae* 2740-80 sector variants commonly possess gain-of-function
71 mutations in *luxO* that “lock” the cells into the QS LCD gene expression program (16).
72 The “locked” *luxO* LCD mutations confer growth advantages by two mechanisms: First,
73 they reduce *t6ss* expression and thus suppress overall T6SS-mediated killing activity.
74 Second, they increase Vps production, which enhances defense against incoming T6SS
75 attacks. Isolation and streaking of the *luxO* variants as pure colonies show that they
76 display no cell death at the colony rim, and they do not sector. However, cell death in
77 the center of the colony continues to occur. Thus, killing at the rim must be a HCD QS-
78 controlled T6SS-dependent trait (16).

79 Some *V. cholerae* 2740-80 variants isolated from sectors have mutations in *hapR*
80 (Supplementary Table 1) (16). With one exception, the *hapR* mutations confer
81 attenuation or loss-of-function and thus, analogous to the above *luxO* mutations, “lock”
82 the cells into the QS LCD mode. Only one variant, encoding HapR A52T, did not fit this
83 pattern (16). HapR A52T is known to drive expression of both HCD and LCD QS genes
84 (16, 21). The role of HapR or the HapR variants in modulating T6SS function and/or the
85 rim cell death program was not analyzed in the previous study (16). Exploring the role
86 HapR plays in driving *V. cholerae* cell death pattern formation is the topic of this work.

87 Surprisingly, we discover that, in *V. cholerae* 2740-80, HapR does not regulate *t6ss*
88 gene expression nor T6SS-mediated killing activity. Rather, QS control relies only on
89 the LuxO-Qrr arm of the circuit. Despite being proficient in T6SS-mediated killing, a
90 Δ *hapR* strain nonetheless displays an absence of cell death at the colony rim. RNA-Seq
91 demonstrated that expression of the *vca0646-vca0649* operon was diminished in the
92 Δ *hapR* strain. Restoration of *vca0646-vca0649* operon expression reestablishes cell
93 death at the colony rim. Introduction of each gene and combination of genes from the
94 operon into a Δ *hapR* strain showed that the *vca0646-0647* pair of genes is sufficient to
95 drive the cell death pattern. VCA0647 was previously identified as a potential repressor
96 of T6SS defense function in *V. cholerae* (22). The obvious hypothesis was that in *V.*
97 *cholerae* 2740-80, HapR activates *vca0646-0649* expression and VCA0646 and
98 VCA0647, in turn, suppress T6SS defense function. Together, these regulatory
99 arrangements enable T6SS kin-killing and cell death to occur at the colony rim.
100 However, again to our surprise, expression of *vca0646-0649* restored the cell death
101 pattern in a Δ *hapR* Δ *t6ss* strain that lacks all T6SS killing machinery. Thus, VCA0646
102 and VCA0647 do not carry out their functions via a T6SS-mediated mechanism. While
103 overexpression of *vca0646-0649* promoted cell death, deletion of these genes did not
104 alter the cell death pattern. This finding suggests redundant or additional components
105 exist that can compensate for loss of *vca0646-0649*. We conclude that VCA0646-0647

106 participate in a new QS-regulated, T6SS-independent cell death pathway in *V. cholerae*
107 (Figure 1).

108 **Results**

109 **QS control of T6SS-mediated killing activity in *V. cholerae* 2740-80 is driven by**
110 **LuxO~P and the Qrr sRNAs independently of HapR.** It was previously reported that
111 some variants recovered from *V. cholerae* 2740-80 colony sectors had acquired
112 mutations in *hapR* (Supplementary Table 1) (16). However, the mechanism connecting
113 the *hapR* mutations to T6SS-mediated cell death was not investigated. We do that here
114 starting by assessing whether *V. cholerae* 2740-80 Δ *hapR* or *V. cholerae* 2740-80
115 possessing the *hapR* variant mutations display altered *t6ss* gene expression compared
116 to wildtype (WT) *V. cholerae* 2740-80. To measure expression, we constructed a
117 luciferase (*lux*) transcriptional fusion to the *hcp2* promoter (designated *hcp2-lux*). *Hcp2*
118 is encoded by the first gene in the T6SS operon that also harbors *vasX* (Figure S1).
119 *VasX* is a key T6SS toxin that drives cell death at the rim of *V. cholerae* 2740-80
120 colonies (16, 22). To avoid complications from possible secondary mutations in the
121 *hapR* variants originally obtained from colony sectors, we reintroduced each *hapR* allele
122 from the variants into the parental *V. cholerae* 2740-80 strain. As a control, we included
123 *V. cholerae* 2740-80 carrying *luxO* A97E in our analyses (16). *LuxO* A97E is a
124 phosphomimetic allele that confers the QS LCD state (16). *V. cholerae* 2740-80 *luxO*
125 A97E has decreased expression of *t6ss* genes (16). Indeed, when strains were grown
126 to HCD, *V. cholerae* 2740-80 *luxO* A97E displayed ~15-fold lower *hcp2-lux* activity than
127 WT *V. cholerae* 2740-80 (Figure 2A). By contrast, at HCD, the Δ *hapR* strain and the
128 strains harboring the variant *hapR* alleles did not exhibit altered *hcp2-lux* expression,
129 producing light levels similar to that of *V. cholerae* 2740-80 at HCD (Figure 2A and
130 Supplementary Table 1).

131 To understand whether T6SS-mediated killing activity tracks with level of expression of
132 *t6ss* genes, we measured the capacity of the *V. cholerae* 2740-80 Δ *hapR* strain, the
133 *hapR* variants, and the *luxO* A97E strain to act as predators and kill *Escherichia coli*
134 prey cells in an inter-bacterial T6SS-dependent killing assay. The *E. coli* strain used as
135 the prey in our assay constitutively produces *lux* and is unable to defend itself against
136 incoming T6SS attacks (16). Thus, light output from the *E. coli* prey correlates with live
137 prey cells. To ensure that we are exclusively measuring T6SS-dependent killing, we
138 also assayed a *V. cholerae* 2740-80 strain lacking a T6SS structural protein that is
139 essential for function of the T6SS injection machine, *VasK* (Δ *vasK*) (23). When the *luxO*
140 A97E strain was used as the predator, there was a ~50-fold decrease in prey killing
141 relative to when *V. cholerae* 2740-80 was predator (Figure 2B). By contrast, when the
142 Δ *hapR* strain or strains carrying the variant *hapR* alleles were used as predators, they
143 displayed T6SS-mediated killing activity similar to WT *V. cholerae* 2740-80 when it was
144 predator (Figure 2B and Supplementary Table 1). No killing occurred when the Δ *vasK*
145 strain was the predator, confirming that, in our assay, killing requires T6SS activity.

146 Thus, HapR alters neither *t6ss* expression nor T6SS-mediated killing activity in
147 *V. cholerae* 2740-80.

148 HapR resides at the bottom of the *V. cholerae* QS regulatory cascade, downstream of
149 LuxO and the Qrr sRNAs (Figure 1). Given that LuxO and the Qrr sRNAs are required
150 for T6SS-mediated killing but HapR is not, we wondered how QS control of T6SS-
151 mediated killing occurs in strains lacking HapR or those with attenuated HapR activity.
152 One possibility is that the Qrr sRNAs control T6SS-mediated killing activities by a HapR-
153 independent mechanism. To test this notion, we introduced a plasmid encoding a
154 constitutively expressed representative Qrr sRNA, *qrr4* (*Ptac-qrr4*), or the plasmid alone
155 (*Pcontrol*), into *V. cholerae* 2740-80, the *ΔhapR* strain, and the *ΔvasK* strain and
156 examined their ability to kill *E. coli* in the T6SS-mediated killing assay. Here, we are
157 using the *ΔhapR* strain as the representative for strains with decreased HapR function.
158 Introduction of *Ptac-qrr4* into *V. cholerae* 2740-80 and the *ΔhapR* strain resulted in loss
159 of prey killing relative to the strains carrying the control plasmid (Figure 2C). The *ΔvasK*
160 strain displayed no T6SS-mediated killing activity, irrespective of whether it carried
161 *Ptac-qrr4* or *Pcontrol* (Figure 2C). Thus, the Qrr sRNAs repress T6SS-mediated killing
162 function in *V. cholerae* and HapR is dispensable for this activity.

163 **Despite normal T6SS-mediated killing activity, the *V. cholerae* 2740-80 rim cell
164 death program is abolished in strains lacking HapR.** The above results show that
165 HapR does not regulate overall *t6ss* expression nor T6SS activity. Nonetheless, we
166 wondered if HapR plays a role in driving the spatio-temporal pattern of cell death in *V.*
167 *cholerae* colonies. To explore this possibility, we used a time-lapse fluorescence
168 microscopy assay that we previously developed to track live and dead cell distributions
169 in colonies (16). We assessed colonies of *V. cholerae* 2740-80, *luxO A97E*, *ΔhapR*, and
170 the *hapR* variants. The *luxO A97E* strain lacks the rim cell death program and was
171 included as a control (16). In our assay, live cells are tracked via mKO fluorescent
172 protein produced constitutively from the chromosome of each strain (shown in red).
173 SytoX dye (shown in cyan) marks dead cells. Representative images for *V. cholerae*
174 2740-80, the *luxO A97E* strain, and the *ΔhapR* strain are shown in Figure 3 to
175 demonstrate how the data are obtained. Ratio-metric data (dead/live cell distributions)
176 are converted into space-time kymographs (Figure 4). In *V. cholerae* 2740-80, the cell
177 death program occurs in two phases. “Phase 1” occurs along the colony rim between
178 ~8 and 40 h (marked by a white arrow in Figure 3, left panel and a black arrow in Figure
179 4A). “Phase 2” initiates as a ring in the colony center at ~44 h, and over the next ~6 h,
180 cell death propagates inward and outward in an apparent wave (marked by a white
181 arrow in both Figure 3, right panel, and Figure 4A). In contrast to the parent, the *luxO*
182 and *ΔhapR* strains, and each *hapR* variant displayed near absences of Phase 1
183 cell death along the colony rims (Figure 4; ~10-fold lower). Each strain exhibited the
184 Phase 2 death pattern at the colony center (Figure 4 and (16)). Thus, despite not
185 altering *t6ss* expression or T6SS-mediated killing function, HapR is required to drive the
186 spatio-temporal cell death pattern at the rims of *V. cholerae* 2740-80 colonies. Because
187 the *ΔhapR* and *hapR* variant colonies phenocopy each other, in the remainder of this

188 work, we focus on the Δ *hapR* strain to understand how HapR influences spatiotemporal
189 cell death.

190 **Elimination of the ability to form biofilms as a defense against T6SS-mediated**
191 **killing in the *V. cholerae* 2740-80 Δ *hapR* strain does not restore rim cell death.** A
192 mechanism enabling variants in *V. cholerae* 2740-80 colony rims to escape killing is via
193 overproduction of Vps exopolysaccharide that blocks incoming T6SS attacks (16). The
194 Δ *hapR* strain and *hapR* variants exhibit high level *vps* expression. Thus, it is possible
195 that the decreased rim cell death that occurs in the Δ *hapR* strain and *hapR* variants
196 compared to WT *V. cholerae* 2740-80 is a consequence of excess Vps that prevents
197 neighboring cells from engaging in T6SS-mediated killing. If so, we reasoned that a
198 Δ *hapR* strain that is incapable of Vps production would display high colony rim cell
199 death. To test this idea, we tracked cell death in colony rims of a Δ *hapR* Δ *vpsL* strain.
200 *VpsL* is essential for Vps synthesis. To our surprise, the Δ *hapR* Δ *vpsL* strain had a
201 phenotype identical to the Δ *hapR* strain: minimal death along the colony rim (compare
202 data in Figure 4 panels A and H).

203 **The *vca0646-0649* operon restores rim cell death in the *V. cholerae* 2740-80**
204 **Δ *hapR* strain.** In addition to Vps blocking incoming attacks, in *V. cholerae*, T6SS
205 defense is conferred by T6SS immunity proteins, each of which neutralizes one specific
206 T6SS effector toxin protein. Also, a recent Tn-Seq aided genetic screen uncovered
207 several new defense genes that function independently of T6SS immunity proteins,
208 including a gene called *vca0647* (24). The mechanisms by which these components
209 confer T6SS defense remain largely unknown. We wondered whether HapR protects
210 against T6SS-mediated killing at *V. cholerae* 2740-80 colony rims by altering expression
211 of T6SS immunity genes or genes encoding the newly discovered defense proteins. To
212 test this idea, we performed RNA-Seq on WT *V. cholerae* 2740-80 and Δ *hapR* cells
213 isolated from colonies after 20 h of growth, a time when the normal rim cell death
214 pattern is established. Expression of genes encoding T6SS components, including
215 structural, effector, and immunity proteins, was not substantially different in the WT *V.*
216 *cholerae* 2740-80 and Δ *hapR* strains (see blue in Figure 5). Moreover, most of the
217 recently reported defense gene showed no differences between the two strains (see
218 green in Figure 6). By contrast, the newly identified *vca0647* defense gene displayed
219 higher expression in WT *V. cholerae* 2740-80 than in the Δ *hapR* strain (see red in
220 Figure 5). Our inspection of the DNA sequence surrounding *vca0647* reveals that it
221 resides in a four gene operon (*vca0646*, *vca0647*, *vca0648*, and *vca0649*), and indeed,
222 the RNA-Seq data show higher expression of all four genes in WT *V. cholerae* 2740-80
223 compared to the Δ *hapR* strain (also highlighted in red in Figure 5).

224 The *vca0647* gene is predicted to encode a repressor of T6SS defense (24). Based on
225 this earlier report and its high expression in the WT *V. cholerae* 2740-80 strain, we
226 developed the following working model: in the absence of HapR, reduced production of
227 VCA0647 occurs, which enhances T6SS defense and prevents T6SS-mediated killing
228 among cells at the colony rim. If so, we reasoned that increasing the expression of

229 *vca0647* in the ΔhapR strain would restore cell death at the colony rim. To test this
230 hypothesis, we introduced a plasmid carrying arabinose-inducible *vca0647* into the
231 ΔhapR strain and monitored cell death (*Pbad-vca0647*). As a control, we introduced an
232 empty vector (Pcontrol). Overexpression of *vca0647* had no effect on the cell death
233 phenotype (Figure 6; compare panels A and C).

234 The role of *vca0647* in T6SS defense was discovered in a transposon sequencing aided
235 screen, a strategy that can have polar effects on flanking genes. Given that *vca0647*
236 resides in an operon that is more highly expressed in WT *V. cholerae* 2740-80 than the
237 ΔhapR strain, we wondered whether the VCA0647 protein acts together with another
238 component(s) encoded in the operon to promote cell death. To explore this possibility,
239 we engineered plasmids carrying different combinations of genes from the *vca0646-*
240 *0649* operon. Each configuration was placed under control of an arabinose inducible
241 promoter in the ΔhapR strain. None of the individual genes modified the ΔhapR cell
242 death pattern (Figure 6; compare panels B-E with A). Induction of expression of only
243 one gene pair, *vca0646-0647*, from among three gene pairs tested, increased cell death
244 in the ΔhapR strain relative to the control (Figure 6; compare panels F-H with A).
245 Expression of the three gene *vca0647-0649* segment did not change the cell death
246 pattern, whereas expression of the full operon did increase cell death (Figure 6,
247 compare panels I-J with A). Thus, *vca0646* and *vca0647* are both required to influence
248 the cell death program, while *vca0648* and *vca0649* are dispensable.

249 ***vca0646-0649* activate cell death independently of the T6SS machinery in *V. cholerae* 2740-80.** The obvious conclusion from the above findings is that expression of
250 the *vca0646-0649* operon restores rim cell death to the ΔhapR strain by lowering T6SS
251 defenses. If so, expression of *vca0646-0649* in a ΔhapR Δt6ss strain, in which cells are
252 incapable of engaging in T6SS mediated killing, would not restore cell death at the
253 colony rim. We engineered a ΔhapR Δt6ss strain that lacks all four pairs of T6SS
254 effector-immunity proteins as well as *vasK*, a gene essential for function of the T6SS
255 injection machinery. As expected, cell death did not occur at the rim nor in the center of
256 the ΔhapR Δt6ss strain (Figure 7, compare panel C with A). By contrast, introduction of
257 arabinose-inducible *vca0646-0649* into the ΔhapR Δt6ss strain drove increased overall
258 cell death (Figure 7, compare panel C with panel G and panel D with panel H and see
259 Figure S3 for controls). Indeed, the results resemble those following introduction of the
260 arabinose-inducible *vca0646-0649* operon into the ΔhapR single mutant that possesses
261 a functional T6SS apparatus (Figure 7, compare panel A with panel E and panel B with
262 panel F). Thus, *vca0646-0649* promotes *V. cholerae* cell death by a mechanism that
263 does not rely on the T6SS machine.
264

265 **Deletion of *vca646-49* does not affect cell death in *V. cholerae*.** Given that
266 overexpression of *vca646-49* boosts cell death at the rims of *V. cholerae* colonies
267 (Figures 6 and 7), we reasoned that deletion of *vca0646-0649* would dampen colony rim
268 cell death. We assessed cell death in WT *V. cholerae* 2740-80 and the $\Delta\text{vca0646-0649}$,
269 Δt6ss , and Δt6ss $\Delta\text{vca0646-0649}$ strains. Surprisingly, deletion of *vca0646-0649* did

270 not alter the cell death patterns (Supplementary Figure 4). Possibly, redundancy exists,
271 and other genes compensate for the loss of *vca0646-0649*. Alternatively, *vca0646-0649*
272 could function together with some other component and while the high dose of *vca0646-0649*
273 delivered by overexpression is sufficient to bypass its requirement, deletion of
274 *vca0646-0649* is not.

275 Discussion

276 Here, we discover that QS-regulated spatio-temporal cell death in *V. cholerae* colonies
277 is conferred by at least two pathways operating in parallel (Figure 1). The first cell death
278 pathway, previously described, is driven by the T6SS. The second pathway requires
279 genes in the *vca0646-0649* operon, particularly *vca0646* and *vca0647* but not the T6SS
280 apparatus (Figures 1 and 6). Overexpression of *vca0646-0649* promotes cell death,
281 while deletion of these genes does not influence cell death. This finding suggests
282 redundant or additional components exist that can compensate for loss of *vca0646-0649*. We do not know the functions of any of the VCA0646-0649 proteins. As
283 mentioned, a Tn-Seq study revealed *vca0647* to be a repressor of T6SS defense, but
284 the mechanism was not defined (24). A separate expression analysis reported *vca0646*
285 to be more highly transcribed in classical *V. cholerae* than in El Tor biotypes (25). Our
286 next goal is to discover the functions of VCA0646-0649, with an emphasis on VCA0646
287 and VCA0647 as well as identify the genes that, in the absence of *vca0646-0649*, drive
288 rim cell death. Another question for future study is whether VCA0646- and VCA0647-
289 mediated cell death is a consequence of self-poisoning or sibling killing.
290

291 Our epistasis analyses show that HapR does not regulate *V. cholerae* 2740-80 T6SS-
292 mediated killing (Figure 2). This finding was unexpected because studies conducted in
293 pandemic isolates of *V. cholerae* (C6706 and A1552) demonstrate that HapR activates
294 *t6ss* gene expression (15, 26, 27). A key difference in these T6SS studies may explain
295 our findings. In pandemic isolates, the T6SS machine is not produced under laboratory
296 growth conditions. Environmental stimuli (low temperature or changes in osmolarity) or
297 genetic modification (deletion of *tsrA* encoding a T6SS repressor) are required to induce
298 T6SS-mediated killing in pandemic strains in the laboratory setting (26–28). By contrast,
299 in *V. cholerae* 2740-80, the T6SS system functions during laboratory growth (13, 14).
300 Thus, in the work here, there was no need to expose *V. cholerae* 2740-80 to additional
301 stimuli present in the environment to have T6SS activity. Perhaps, however, in *V. cholerae*
302 2740-80, HapR only participates in T6SS regulation when the strain is cultured
303 under conditions that closely mimic the environment. Consistent with this logic, the
304 promoter regions driving HapR-controlled T6SS genes (i.e., *vc1415* and *vca0017*)
305 possess 100% sequence identity in pandemic *V. cholerae* C6706 and in *V. cholerae*
306 2740-80, suggesting that the HapR binding sites are retained in each strain.

307 The two cell death pathways in *V. cholerae* 2740-80, one that is T6SS-driven and one
308 that is VCA0646-0649-dependent (Figure 1) provide intriguing parallels to cell death
309 mechanisms in higher organisms. In humans, at least five cell death mechanisms exist,
310 each thought to serve a different biological function. For example, apoptosis helps

311 sculpt tissues during development, necroptosis is associated with inflammation and
312 tissue damage, while pyroptosis is relevant during infection or stress (29–32). Perhaps
313 each of the cell death pathways we have discovered in *V. cholerae* is likewise relevant
314 in a specific biological context. For, example, T6SS-mediated cell death could be crucial
315 for development of particular structures such as sectors or biofilm morphological
316 features in bacterial communities. By contrast, the VCA0646-0649 pathway may
317 function in the context of external stress or phage infection by providing a means for
318 members of the community to, respectively, contain the spread of a toxic substance or
319 undergo abortive infection.

320 Materials and Methods

321 **Bacterial growth:** *E. coli* S17-1 λ pir was used for cloning and conjugations. *V. cholerae*
322 and *E. coli* were cultured in LB medium at 37°C with shaking and with a headspace to
323 growth medium volume ratio of 7. When required, media were supplemented with
324 streptomycin, 200 μ g/mL; polymyxin B, 50 μ g/mL; kanamycin 50 μ g/mL;
325 chloramphenicol, 1 μ g/mL. Gene expression was induced with 0.1% arabinose as
326 designated. *V. cholerae* assays were performed at 30°C unless otherwise noted. LB
327 medium, both liquid and solid, was prepared using either dd H₂O, 100% tap water, or a
328 mixture of 80% tap water and 20% dd H₂O. These variations in preparation were due to
329 COVID disruptions in supply which made acquisition of LB reagents from multiple
330 vendors necessary. Medium batch differences influenced assay timing and amount of
331 sectoring. However, consistent phenotypes were achieved when solid LB medium was
332 prepared with 80% tap water and 20% dd H₂O, and liquid LB medium was prepared
333 with 100% tap water (16). Bioluminescence assays were conducted as previously
334 described (16). Relative light units (RLU) denote bioluminescence output divided by
335 culture optical density.

336 **Strain construction:** Chromosomal alterations in *V. cholerae* strains were introduced
337 using either the pKAS32 or pRE112 suicide vectors as previously described (33, 34).
338 Plasmids were constructed using *Pbad*-pEVS, pKAS32, or pRE112 as backbones and
339 assembled using the NEB Hi-Fi assembly kit. Plasmids were routinely maintained in *E.*
340 *coli* S17-1 λ pir and introduced into *V. cholerae* strains by conjugation. All strains and
341 plasmids used in the study are listed in Supplementary Tables 2 and 3, respectively.

342 **Cell death assay:** The cell death assay was previously reported (16). Briefly, a 700 μ L
343 aliquot of a *V. cholerae* overnight culture was combined with 4 mm glass beads in an
344 Eppendorf tube and the sample subjected to vortex for 5 min to disperse aggregates.
345 The sample was diluted with PBS to reach a final OD₆₀₀ of 0.5. The sample was again
346 subjected to vortex for 5 min, this time without glass beads. A 1 μ L aliquot of this
347 suspension was placed onto 35 mL of solid LB agar supplemented with 2 μ M SytoX dye
348 (ThermoFisher) in a one well plate and allowed to dry for 5 min at room temperature.
349 The plate was incubated at 30°C for the remainder of the assay. A total of 24 such
350 samples were aliquoted onto each agar pad.

351 **RNA isolation and sequencing:** Strains were cultured on LB agar medium exactly as
352 described for the cell death assay. Subsequently, colonies were resuspended in PBS,
353 4 mm glass beads were added, and the suspensions subjected to vortex for 5 min to
354 disperse aggregates. The resulting cell suspensions were treated for 15 min at room
355 temperature with RNAProtect reagent per the manufacturer's instructions. Thereafter,
356 RNA isolation was performed as described previously (16, 35). Samples were stored at
357 -80°C and shipped on dry ice to SeqCenter (<https://www.seqcenter.com/>). Sequencing
358 and bioinformatic analyses were conducted as previously described (36). The volcano
359 plot was produced using a custom script in R. Fold-changes for all genes are provided
360 in Supplementary Table 4.

361 **Image acquisition and analysis:** Colonies were plated as described above for the cell
362 death assay. Images of growing colonies were acquired with a Cytaion 7 imaging plate
363 reader (Biotek) as reported (16). mKO and SytoX were monitored at ex: 556 and em:
364 600 nm and ex: 500 and em: 542 nm, respectively. The focal plane was maintained
365 using the Biotek laser autofocus method. At each time point and in each acquisition
366 channel, a 3x3 xy-montage of the colony was obtained and stitched together using the
367 linear blend algorithm. A depth of between 225 and 500 μ m was sectioned. Maximum
368 intensity z-projections were generated for each time point using the Biotek Gen5
369 software. Fluorescence time-course images of colony growth were analyzed using a
370 custom ImageJ script. First, image background subtraction was performed using a
371 rolling ball radius of 1,000 pixels. Second, to account for shifts during imaging, the
372 sequence of images was registered using the MultiStackReg Fiji plugin and the Rigid
373 Body algorithm. Colony boundaries were determined using the information from the live
374 channel images as a reference and with the aid of the Triangle algorithm. Thereafter,
375 the center of the colony was located with a centroid-finding algorithm using the
376 fluorescent channel that monitored live cells, beginning at the first image acquisition at 8
377 h and the FeretAngle was determined. The centroid and FeretAngle were used to
378 calculate coordinates to draw a line from the center of the colony to the colony
379 boundary. Finally, spatiotemporal fluorescence intensities in both the live- and dead-cell
380 channels along the line were extracted for kymograph analyses. The regions used to
381 extract intensities were manually monitored to ensure they lacked sectors. The obtained
382 intensity values were used to construct kymograph profiles quantifying the space-time
383 development of live and dead cells within the colony using the R and the ggplot2
384 visualization packages.

385

386 **Data and code availability**

387 Imaging data reported in this study will be shared by the lead contact upon request.
388 Original scripts employed here will be deposited at Zenodo and will become publicly
389 available on the date of publication.

390

391 **Acknowledgments**

392 We thank Professor Ned Wingreen for generous feedback about this work and Bassler
393 group members, especially Boyang Qin, for thoughtful discussions. This work was
394 supported by the Howard Hughes Medical Institute, NSF grant MCB-2043238, and NIH
395 grant 5R37GM065859 to B.L.B. A.A.M. is grateful for support from both the Howard
396 Hughes Medical Institute and the Life Sciences Research Foundation through a HHMI-
397 LSRF fellowship.

398

399 **Author contributions**

400 A.A.M constructed strains and performed experiments; A.A.M and B.L.B designed
401 experiments and analyzed data; A.A.M wrote custom scripts for image analyses and
402 performed data visualization; A.A.M and B.L.B wrote the manuscript; B.L.B provided
403 oversight, resources, and funding.

404

405 **References:**

- 406 1. K. Papenfort, B. L. Bassler, Quorum sensing signal-response systems in Gram-
407 negative bacteria. *Nature Reviews. Microbiology* 14, 576–588 (2016).
- 408 2. C. M. Waters, B. L. Bassler, Quorum sensing: cell-to-cell communication in bacteria.
409 *Annual Review of Cell and Developmental Biology* 21, 319–346 (2005).
- 410 3. M. B. Miller, K. Skorupski, D. H. Lenz, R. K. Taylor, B. L. Bassler, Parallel quorum
411 sensing systems converge to regulate virulence in *Vibrio cholerae*. *Cell* 110, 303–314
412 (2002).
- 413 4. Y. Wei, W.-L. Ng, J. Cong, B. L. Bassler, Ligand and antagonist driven regulation of
414 the *Vibrio cholerae* quorum-sensing receptor CqsS. *Molecular Microbiology* 83, 1095–
415 1108 (2012).
- 416 5. D. H. Lenz, *et al.*, The small RNA chaperone Hfq and multiple small RNAs control
417 quorum sensing in *Vibrio harveyi* and *Vibrio cholerae*. *Cell* 118, 69–82 (2004).
- 418 6. J. D. Mougous, *et al.*, A virulence locus of *Pseudomonas aeruginosa* encodes a
419 protein secretion apparatus. *Science* 312, 1526–1530 (2006).
- 420 7. R. D. Hood, *et al.*, A Type VI Secretion System of *Pseudomonas aeruginosa* Targets
421 a Toxin to Bacteria. *Cell host & microbe* 7, 25–37 (2010).
- 422 8. A. B. Russell, *et al.*, Type VI secretion delivers bacteriolytic effectors to target cells.
423 *Nature* 475, 343–347 (2011).
- 424 9. D. L. MacIntyre, S. T. Miyata, M. Kitaoka, S. Pukatzki, The *Vibrio cholerae* type VI
425 secretion system displays antimicrobial properties. *Proceedings of the National
426 Academy of Sciences of the United States of America* 107, 19520–19524 (2010).
- 427 10. A. B. Russell, S. B. Peterson, J. D. Mougous, Type VI secretion system effectors:
428 poisons with a purpose. *Nature Reviews. Microbiology* 12, 137–148 (2014).

429 11. J. Toska, B. T. Ho, J. J. Mekalanos, Exopolysaccharide protects *Vibrio cholerae*
430 from exogenous attacks by the type 6 secretion system. *Proceedings of the National*
431 *Academy of Sciences of the United States of America* 115, 7997–8002 (2018).

432 12. N. Flaughnati, *et al.*, Human commensal gut Proteobacteria withstand type VI
433 secretion attacks through immunity protein-independent mechanisms. *Nature*
434 *Communications* 12, 5751 (2021).

435 13. N. C. Drebes Dörr, *et al.*, Single nucleotide polymorphism determines constitutive
436 versus inducible type VI secretion in *Vibrio cholerae*. *ISME J* 16, 1868–1872 (2022).

437 14. S. L. Ng, *et al.*, Evolution of a cis-Acting SNP That Controls Type VI Secretion in
438 *Vibrio cholerae*. *mBio* 13, e0042222 (2022).

439 15. Y. Shao, B. L. Bassler, Quorum regulatory small RNAs repress type VI secretion in
440 *Vibrio cholerae*. *Molecular microbiology* 92, 921–930 (2014).

441 16. A. A. Mashruwala, B. Qin, B. L. Bassler, Quorum-sensing- and type VI secretion-
442 mediated spatiotemporal cell death drives genetic diversity in *Vibrio cholerae*. *Cell*
443 S0092-8674(22)01125–4 (2022). <https://doi.org/10.1016/j.cell.2022.09.003>.

444 17. B. Qin, B. L. Bassler, Quorum-sensing control of matrix protein production drives
445 fractal wrinkling and interfacial localization of *Vibrio cholerae* pellicles. *Nat Commun* 13,
446 6063 (2022).

447 18. M. Simon, M. Silverman, Recombinational Regulation of Gene Expression in
448 Bacteria. (1983). <https://doi.org/10.1101/087969176.15.211>.

449 19. G. Koch, *et al.*, Evolution of resistance to a last-resort antibiotic in *Staphylococcus*
450 *aureus* via bacterial competition. *Cell* 158, 1060–1071 (2014).

451 20. M. Servin-Massieu, Spontaneous appearance of sectored colonies in
452 *Staphylococcus aureus* cultures. *Journal of Bacteriology* 82, 316–317 (1961).

453 21. J. C. van Kessel, L. E. Ulrich, I. B. Zhulin, B. L. Bassler, Analysis of Activator and
454 Repressor Functions Reveals the Requirements for Transcriptional Control by LuxR, the
455 Master Regulator of Quorum Sensing in *Vibrio harveyi*. *mBio* (2013).
456 <https://doi.org/10.1128/mBio.00378-13>.

457 22. S. T. Miyata, M. Kitaoka, T. M. Brooks, S. B. McAuley, S. Pukatzki, *Vibrio*
458 *cholerae* Requires the Type VI Secretion System Virulence Factor VasX To Kill
459 *Dictyostelium discoideum* \triangleright . *Infect Immun* 79, 2941–2949 (2011).

460 23. S. Pukatzki, *et al.*, Identification of a conserved bacterial protein secretion system in
461 *Vibrio cholerae* using the *Dictyostelium* host model system. *Proceedings of the National*
462 *Academy of Sciences of the United States of America* 103, 1528–1533 (2006).

463 24. S. J. Hersch, R. T. Sejuty, K. Manera, T. G. Dong, High throughput identification of
464 genes conferring resistance or sensitivity to toxic effectors delivered by the type VI
465 secretion system. [Preprint] (2021). Available at:
466 <https://www.biorxiv.org/content/10.1101/2021.10.06.463450v1> [Accessed 20 June
467 2024].

468 25. S. Beyhan, A. D. Tischler, A. Camilli, F. H. Yildiz, Differences in Gene Expression
469 between the Classical and El Tor Biotypes of *Vibrio cholerae* O1. *Infect Immun* 74,
470 3633–3642 (2006).

471 26. J. Zheng, O. S. Shin, D. E. Cameron, J. J. Mekalanos, Quorum sensing and a global
472 regulator Tsra control expression of type VI secretion and virulence in *Vibrio cholerae*.
473 *Proc Natl Acad Sci U S A* 107, 21128–21133 (2010).

474 27. T. Ishikawa, *et al.*, Pathoadaptive Conditional Regulation of the Type VI Secretion
475 System in *Vibrio cholerae* O1 Strains. *Infect Immun* 80, 575–584 (2012).

476 28. L. Townsley, M. P. Sison Mangus, S. Mehic, F. H. Yildiz, Response of *Vibrio*
477 *cholerae* to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm
478 Formation, and Association with Zooplankton. *Applied and Environmental Microbiology*
479 82, 4441–4452 (2016).

480 29. F. K.-M. Chan, N. F. Luz, K. Moriwaki, Programmed necrosis in the cross talk of cell
481 death and inflammation. *Annu Rev Immunol* 33, 79–106 (2015).

482 30. Y. Fuchs, H. Steller, Programmed Cell Death in Animal Development and Disease.
483 *Cell* 147, 742–758 (2011).

484 31. I. Jorgensen, M. Rayamajhi, E. A. Miao, Programmed cell death as a defence
485 against infection. *Nat Rev Immunol* 17, 151–164 (2017).

486 32. J. Yuan, G. Kroemer, Alternative cell death mechanisms in development and
487 beyond. *Genes Dev* 24, 2592–2602 (2010).

488 33. M. J. Eickhoff, C. Fei, X. Huang, B. L. Bassler, LuxT controls specific quorum-
489 sensing-regulated behaviors in *Vibrionaceae* spp. via repression of qrr1, encoding a
490 small regulatory RNA. *PLOS Genetics* 17, e1009336 (2021).

491 34. R. A. Edwards, L. H. Keller, D. M. Schifferli, Improved allelic exchange vectors and
492 their use to analyze 987P fimbria gene expression. *Gene* 207, 149–157 (1998).

493 35. A. A. Mashruwala, B. L. Bassler, The *Vibrio cholerae* Quorum-Sensing Protein
494 VqmA Integrates Cell Density, Environmental, and Host-Derived Cues into the Control
495 of Virulence. *mBio* 11, e01572-20 (2020).

496 36. A. A. Bridges, J. A. Prentice, C. Fei, N. S. Wingreen, B. L. Bassler, Quantitative
497 input-output dynamics of a c-di-GMP signal transduction cascade in *Vibrio cholerae*.
498 *PLoS Biol* 20, e3001585 (2022).

499 37. L. C. Metzger, *et al.*, Independent Regulation of Type VI Secretion in *Vibrio cholerae*
500 by TfoX and TfoY. *Cell Reports* 15, 951–958 (2016).

501

502

503 **Figure Legends**

504 **Figure 1: Simplified model of *V. cholerae* 2740-80 QS regulation of t6ss, vps, and**

505 vca0646-0649, and consequently, the HCD-specific cell death behavior.

506 **Figure 2: QS control of T6SS-mediated killing activity in *V. cholerae* 2740-80 is**

507 driven by LuxO~P and the Qrr sRNAs independently of HapR. (A) Transcriptional
508 activity of *hcp2-lux* in the indicated strains. (B, C) Inter-bacterial T6SS-mediated killing
509 assay measuring survival of *E. coli* Top 10 prey. *E. coli* Top 10 does not possess the
510 T6SS machinery and thus, does not perform T6SS attacks. *E. coli* Top 10 is
511 susceptible to incoming T6SS attacks. *E. coli* Top 10 survival is shown following
512 challenge with the indicated *V. cholerae* predators. The *E. coli* prey cells constitutively

513 express luciferase, so light production can be used as a proxy for live cells (16). In all
514 panels, data represent average values from biological replicates ($n = 3$), and error bars
515 show SDs. Asterisks indicate statistical significance using a two-tailed Student t test as
516 follows: **, $P < 0.005$; ***, $P < 0.0005$. Abbreviations: *hapR* 2aa ins denotes a variant
517 with DNA encoding a two amino acid insertion in *hapR*, *hapR* IS ins denotes a variant
518 with an IS 200-like element inserted in *hapR*.

519 **Figure 3: Time-series images demonstrating the two phases of spatio-temporal**
520 **cell death in *V. cholerae* 2740-80 colonies.** Quantitative images from selected time
521 points during growth of the WT *V. cholerae* 2740-80, *luxO* A97E, and Δ *hapR* strains.
522 The strains constitutively produce mKO, which marks live cells. Dead cells are marked
523 with the SytoX stain. The white arrows with the P1 designations highlight the rim of the
524 colony where Phase 1 cell death occurs (left panel). The white arrows with the P2
525 designations pointing to the colony interior show the Phase 2 cell death ring (right
526 panel). For Phase 2, WT *V. cholerae* 2740-80 colonies are shown between 37-52 h and
527 *luxO* A97E and Δ *hapR* colonies are shown between 27-44 h. There are ~2.5 h intervals
528 between images, with time increasing from left to right. The differences in timing of
529 Phase 2 among strains has been reported previously (16). Higher level cell death
530 occurs during Phase 1 than Phase 2. Thus, to highlight Phase 2 cell death, logarithmic
531 ratios of the intensities are shown (right panel). For each acquisition channel, the
532 intensity values were mapped using the indicated colors. Scale bars indicate
533 color:intensity.

534 **Figure 4: The *V. cholerae* 2740-80 rim cell death program is abolished in a Δ *hapR***
535 **strain and in *V. cholerae* 2740-80 *hapR* variants.** (A–G) Cell death space-time
536 kymographs of the indicated strains show logarithmic ratio values obtained by dividing
537 the output intensity from the dead-cell channel by that from the corresponding live-cell
538 channel. Ratio values are color-mapped, and the scale bars represent color:intensity.
539 The X axis on each kymograph indicates the radial position in the colony at which the
540 intensity was quantified. The center of the colony is at 0 mm and the colony rim is at ~3
541 mm. Phase 1 cell death occurs along the colony rim and is indicated with the black
542 arrow labeled P1 in (A) and cell death is visible as the yellow-colored region. Phase 2
543 cell death is indicated with the white arrow labeled P2 in (A) and is visible as the red
544 colored region in the colony interior. Kymographs from one colony are presented and
545 are representative of results from ~3 colonies for each strain.

546 **Figure 5: Transcriptomic analysis of *V. cholerae* 2740-80 reveals that HapR**
547 **controls the vca0646-0649 operon.** Volcano plot displaying fold-changes in gene
548 expression in *V. cholerae* 2740-80 and Δ *hapR* colonies measured by RNA sequencing.
549 Data are displayed relative to transcript abundance in *V. cholerae* 2740-80. Genes
550 encoding T6SS-mediated killing components (structural, effector, and immunity genes)
551 are highlighted in blue, those encoding T6SS defense components identified by Hersch
552 et. al. (24) are highlighted in green and the *vca0646-0649* genes are highlighted in red.
553 Note: the dots showing the four *vca0646-0649* genes overlap making them difficult to

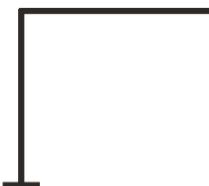
554 distinguish. Expression levels of individual genes are also provided in Supplementary
555 Table 4. The horizontal line represents a *p*-value of 0.05. Left and right vertical lines
556 represent \log_2 fold-changes of -1 and 1, respectively. Samples are from $n=3$ biological
557 replicates. Complete datasets are provided in Supplementary Table 4.

558 **Figure 6: Overexpression of *vca0646-0649* restores rim cell death to the *V.***
559 ***cholerae* 2740-80 Δ *hapR* strain.** (A–J) Logarithmic space-time kymographs showing
560 cell death, similar to those in Figure 4, for the indicated strains carrying the designated
561 plasmids. All strains were cultured in the presence of 0.1 % arabinose to induce
562 expression from the *Pbad* promoter. Kymographs from one colony are presented and
563 are representative of results from ~3 colonies for each strain. Companion kymographs
564 for the same strains cultured in the absence of arabinose are provided in Figure S2.
565 Note that the scale used here differs from that in Figure 4. The goal is to enable better
566 visualization of features in strains with low overall cell death.

567 **Figure 7: The *vca0646-0649* genes confer cell death to *V. cholerae* 2740-80**
568 **independently of the T6SS.** (A–H) Logarithmic space-time kymographs showing cell
569 death, similar to those in Figure 4, for the indicated strains carrying the designated
570 plasmids. Strains were cultured in the absence or presence of 0.1 % arabinose to
571 induce expression from the *Pbad* promoter. Kymographs from one colony are presented
572 and are representative of results from ~3 colonies for each strain. Note that the scale
573 used here differs from that in Figure 4. The goal is to enable better visualization of
574 features in strains with low overall cell death. Consequently, it appears as if the Δ *hapR*
575 Δ *t6ss* strain undergoes cell death in the colony center. That is not the case, only
576 residual death occurs relative to that in the WT *V. cholerae* 2740-80 and Δ *hapR* strains
577 as shown in Figure S3.

578

LCD Behavior


QS Receptors

LuxO~P

Qrr 1-4

T6SS

HapR - - - **Vps**

VCA0646-0649

Cell death

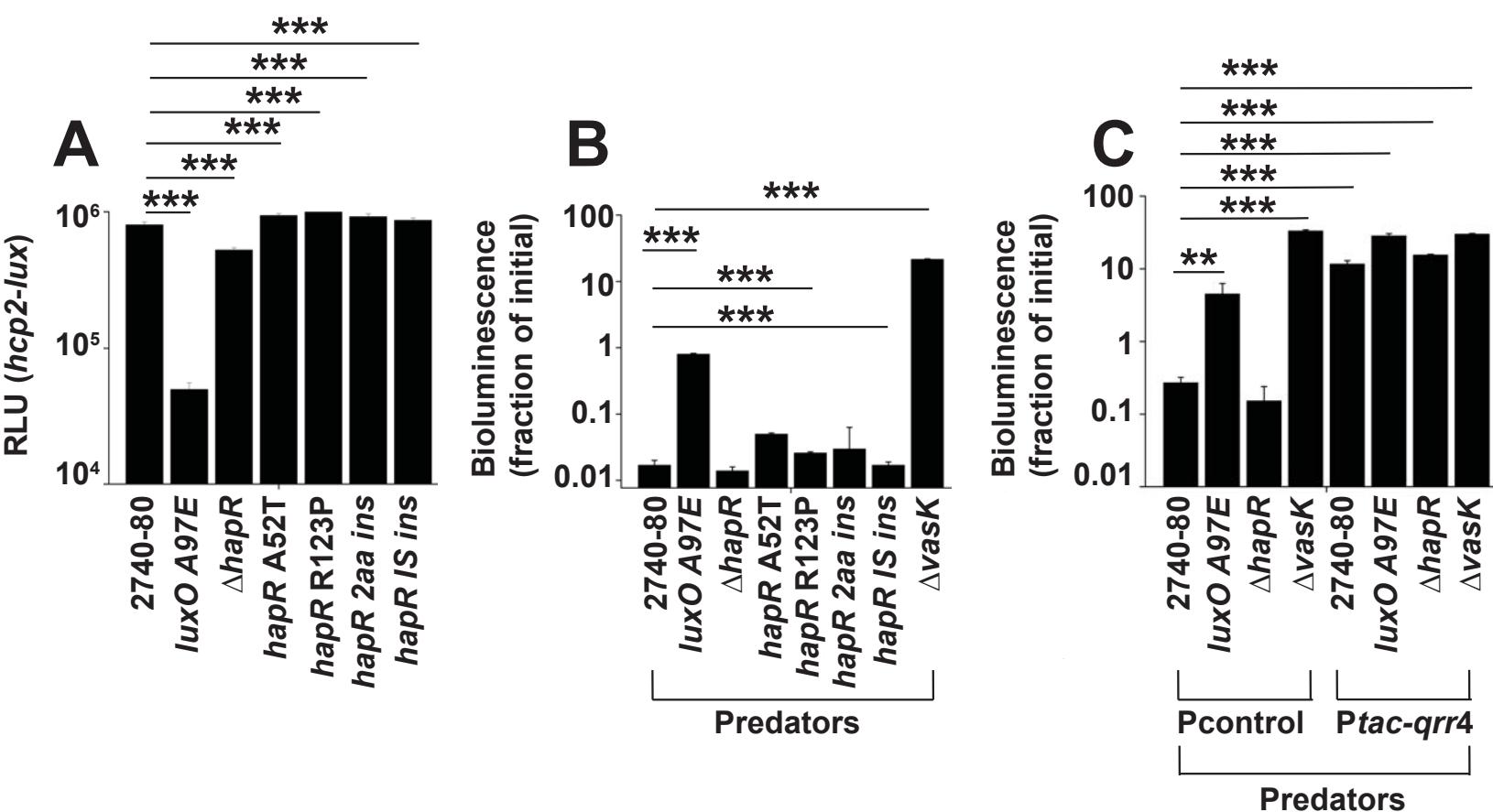
HCD Behavior

QS Receptors

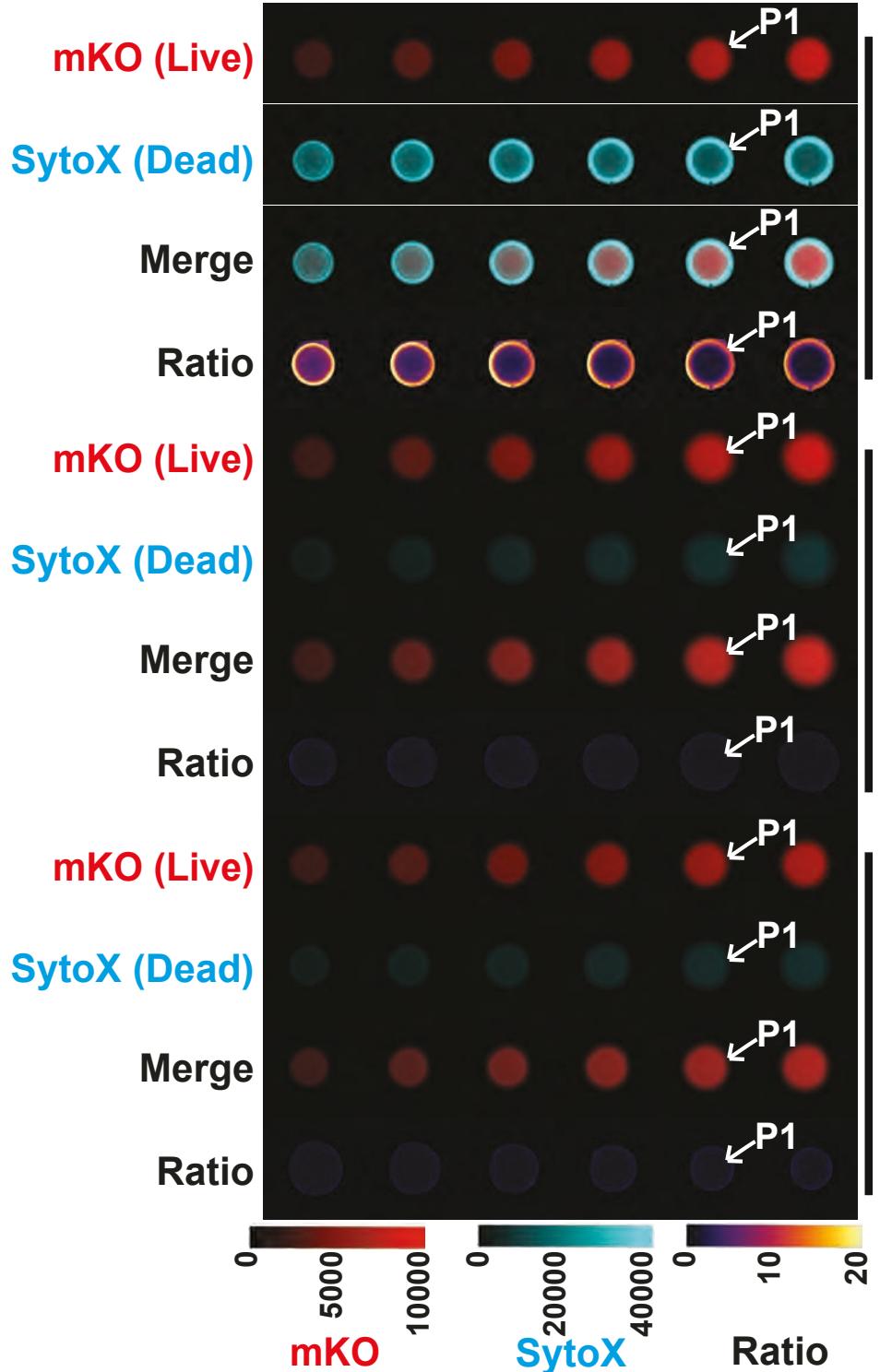
LuxO~P

Qrr 1-4

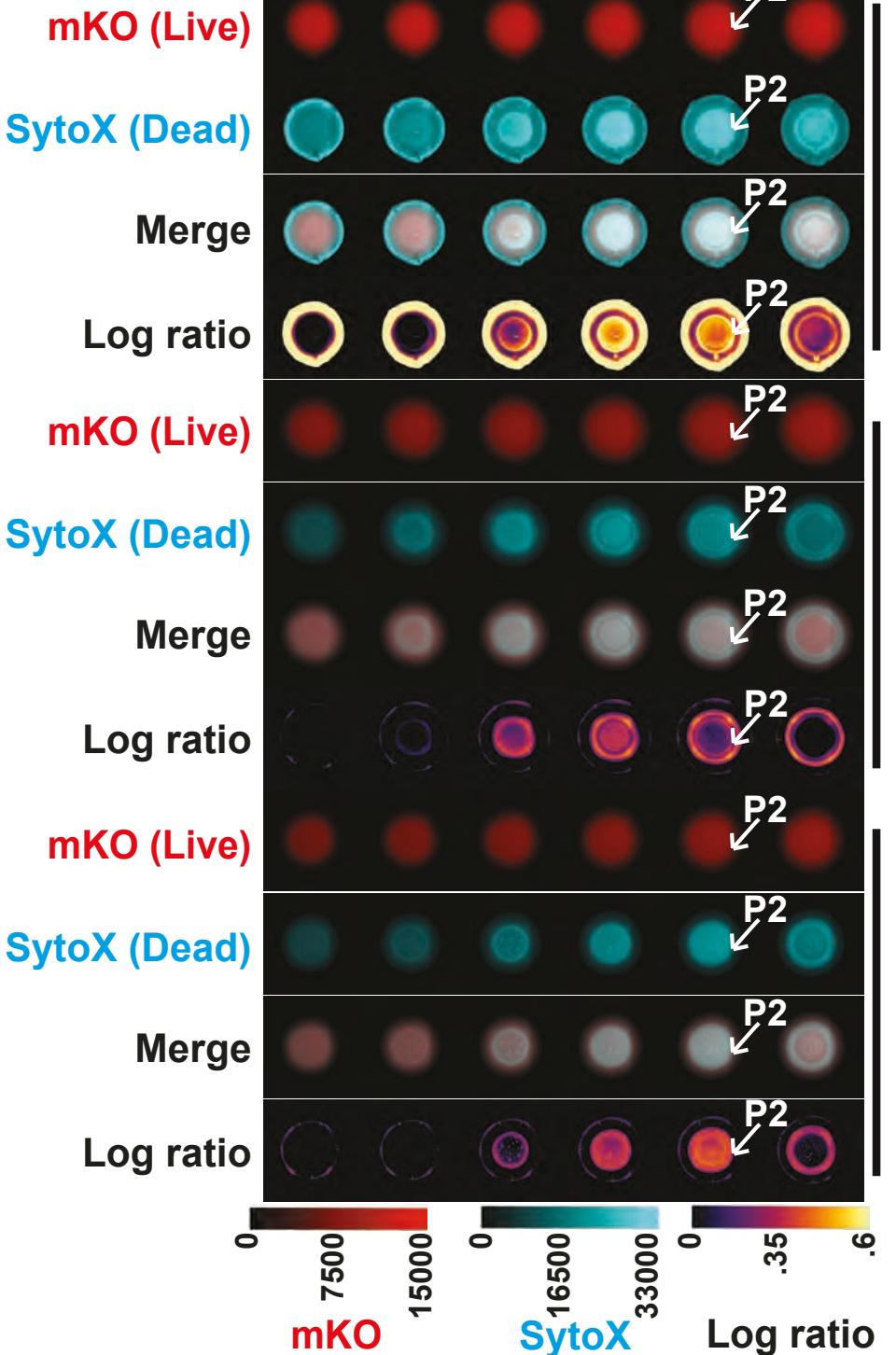
T6SS

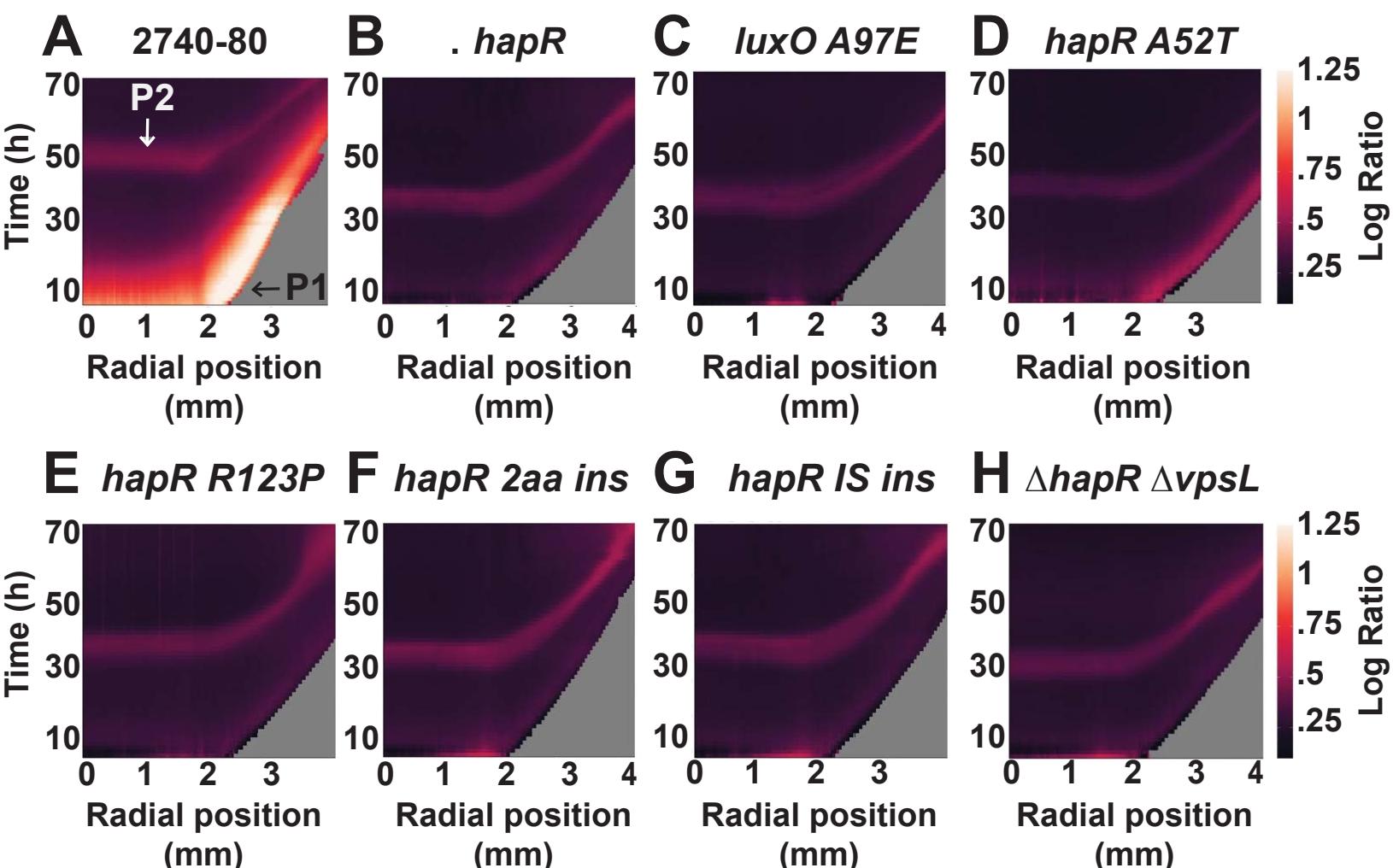

HapR — **Vps**

VCA0646-0649

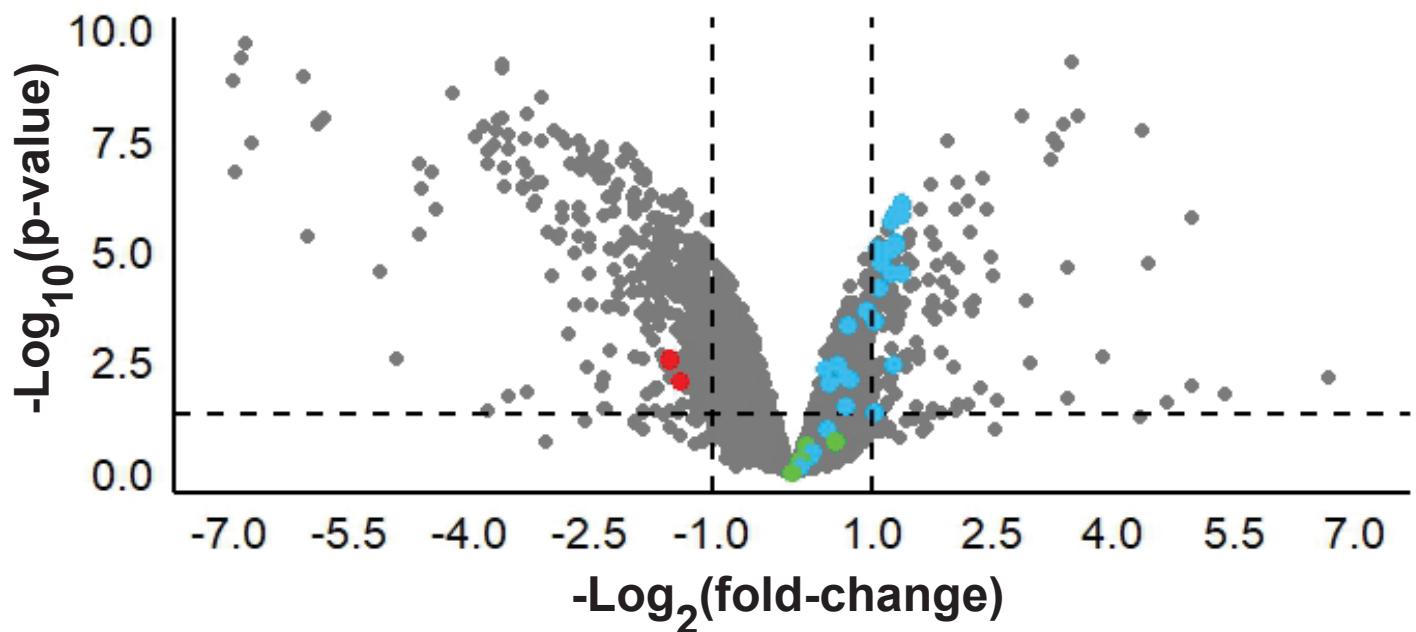


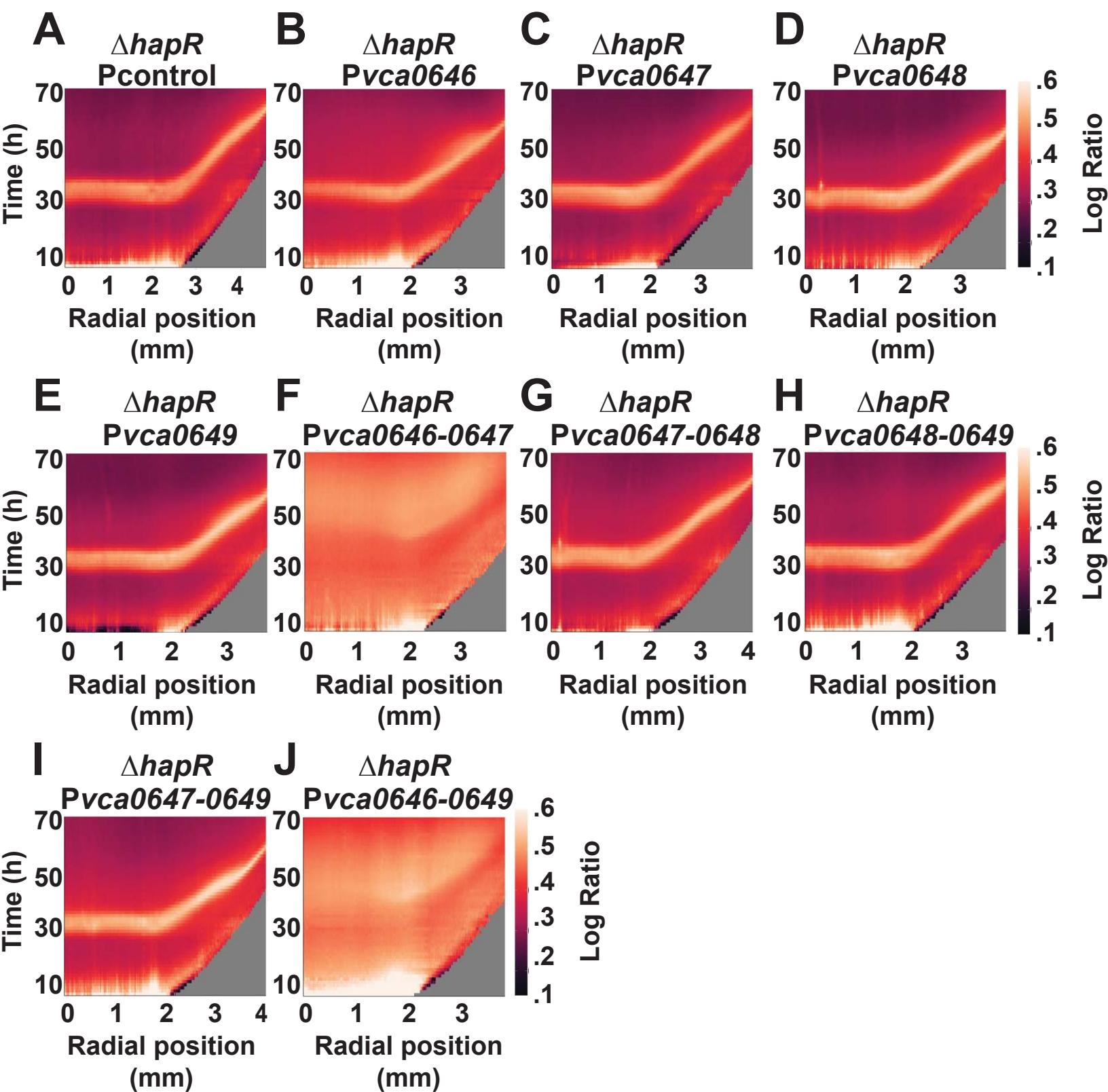
Cell death

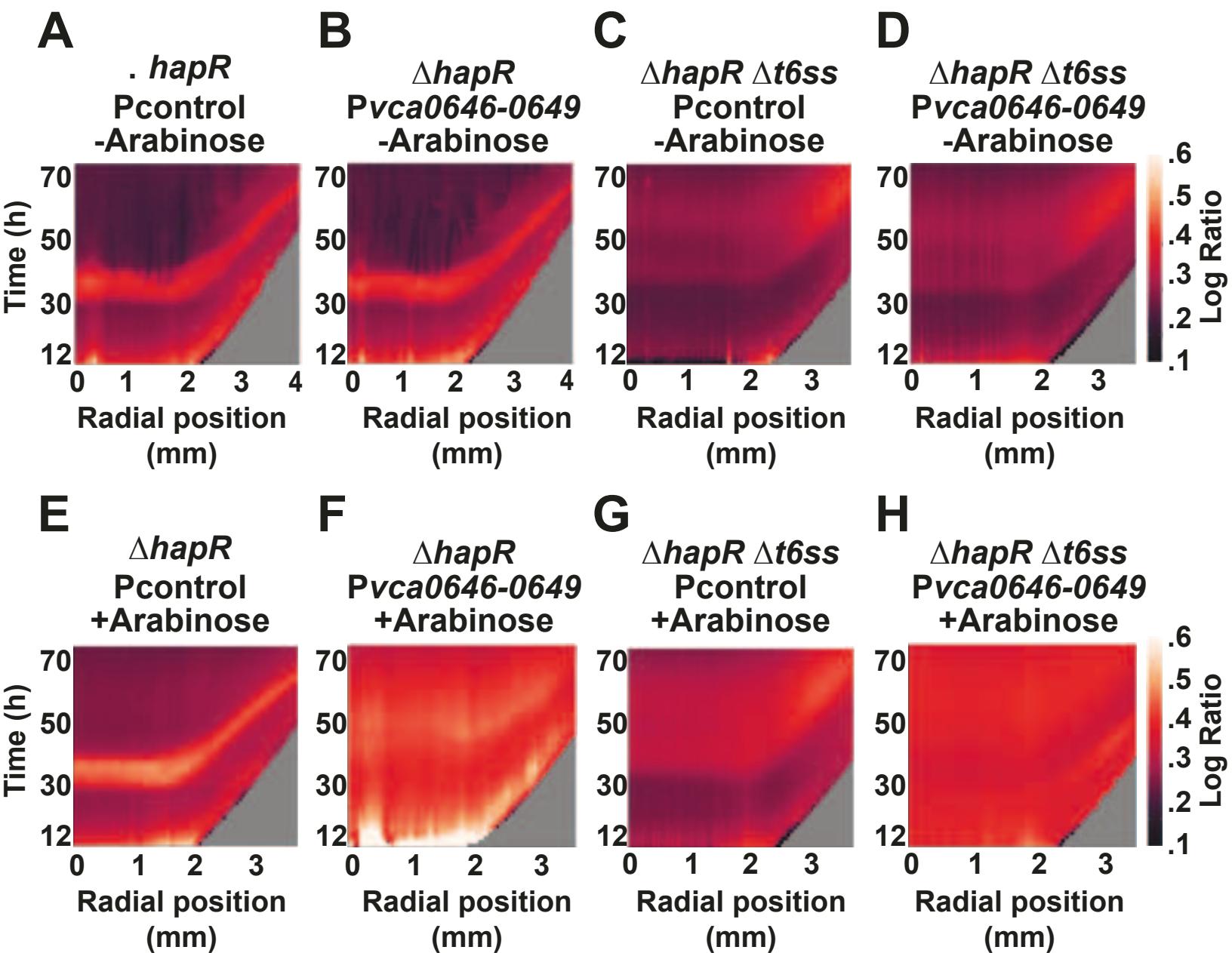

P1 (colony rim)


Time (h) 10 13 16 19 22 25

P2 (colony center)


Variable timing (see legend)





● T6SS structural, effector, and immunity ● T6SS defense ● vca0646-0649

Downregulated in $\Delta hapR$ Upregulated in $\Delta hapR$

