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Progressive Knowledge Distillation From Different
Levels of Teachers for Online Action Detection

Md Moniruzzaman

Abstract—1In this paper, we explore the problem of Online Action
Detection (OAD), where the task is to detect ongoing actions from
streaming videos without access to video frames in the future.
Existing methods achieve good detection performance by capturing
long-range temporal structures. However, a major challenge of this
task is to detect actions at a specific time that arrive with insufficient
observations. In this work, we utilize the additional future frames
available at the training phase and propose a novel Knowledge
Distillation (KD) framework for OAD, where a teacher network
looks at more frames from the future and the student network
distills the knowledge from the teacher for detecting ongoing
actions from the observation up to the current frames. Usually,
the conventional KD regards a high-level teacher network (i.e.,
the network after the last training iteration) to guide the student
network throughout all training iterations, which may result in
poor distillation due to the large knowledge gap between the high-
level teacher and the student network at early training iterations. To
remedy this, we propose a novel progressive knowledge distillation
from different levels of teachers (PKD-DLT) for OAD, where in
addition to a high-level teacher, we also generate several low- and
middle-level teachers, and progressively transfer the knowledge (in
the order of low- to high-level) to the student network throughout
training iterations, for effective distillation. Evaluated on two
challenging datasets THUMOS14 and TVSeries, we validate that
our PKD-DLT is an effective teacher-student learning paradigm,
which can be a plug-in to improve the performance of the existing
OAD models and achieve a state-of-the-art.

Index Terms—Online action detection (OAD), knowledge
distillation (KD), progressive knowledge distillation.

I. INTRODUCTION

CTION detection in untrimmed videos has been widely
A explored under offline settings [1], [2], [3], [4], [5], [6],
[71, [8], [9], [10], [11], [12], [13], [14], [15], where the entire
video is available for the detection at any moment. But, many
real-time applications of computer vision such as human-robot
collaboration, autonomous driving, and video surveillance re-
quire online action detection. Unlike offline action detection,
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Online Action Detection (OAD) aims at the task of detecting
ongoing actions from streaming videos without access to video
frames in the future.

Prior works [16], [17], [18] employed Recurrent Neural Net-
works (RNN) (e.g., Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU)) to encode the temporal depen-
dencies of the observed frames for online action detection. But,
the RNN-based methods have the problem of non-parallelism
and are prone to forgetting informative history. To remedy this,
recent works [19], [20] utilized transformer-like architectures
to encode the observed frames in parallel with the multi-head
self-attention mechanism. However, since online action detec-
tion detects what is happening at each frame based on the avail-
able observations up to the current time, a major challenge of
this task is to detect actions at a specific time that arrive with
insufficient observations.

Since detecting ongoing actions only from observations of
the past and current frames (i.e., online action detection) is more
challenging than the detection from the observations of past, cur-
rent, and future frames (i.e., offline action detection), we utilize
the additional future frames available at the training phase and
formulate a knowledge distillation framework for OAD. Ordi-
narily, knowledge distillation is an effective technique for many
computer vision tasks [21], [22], [23], [24], [25], [26], [27],
[28], where a powerful teacher network with a large number of
parameters transfers knowledge to a less-parameterized student
network. However, different from the ordinary KD, in KD for
online action detection, the difference between the teacher and
student networks lies in their corresponding observations, i.e.,
the input data rather than the network architecture. As shown in
Fig. 1(a), the KD framework in OAD involves: a teacher network
that examines the past, current and future frames for detecting
the action of the current frame; a student network for detecting
the action of the current frame from the observations of the past
and current frames; and a knowledge distillation mechanism to
transfer the knowledge from the teacher network to the student
network.

Usually, in the KD framework, a teacher network fully trained
after the last training iteration (defined as high-level teacher in
short) is naturally considered to guide the training of a student
network throughout all iterations, as shown in Fig. 1(b). In other
words, the student network at every training iteration distills
the same knowledge from the high-level teacher. But, during
the training of the student network, in the early training itera-
tions, there is a large knowledge gap between the student net-
work and the high-level teacher network. Therefore, only using a
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Fig. 1. (a) Knowledge Distillation (KD) for Online Action Detection (OAD).
The KD framework for OAD involves: a teacher network that examines the past,
current, and future frames for detecting the action of the current frame; a student
network for detecting the action of the current frame only from the past and
current frames; and a teacher-student learning mechanism for knowledge distil-
lation from the teacher network to the student network; (b) Vanilla Knowledge
Distillation (KD). A teacher network after the last training iteration (defined
as high-level teacher) is considered to guide the student network throughout all
training iterations; (¢) Our progressive knowledge distillation. The student
network progressively distills knowledge from different teachers in the order of
low- to high-level teachers.

single high-level teacher to guide the student network throughout
all training iterations may result in poor distillation. To remedy
this, different levels of teachers are expected, which will pro-
gressively provide more transferrable knowledge to the student
network for effective distillation.

In this paper, we propose a novel progressive knowledge dis-
tillation from different levels of teachers (PKD-DLT) for online
action detection. Rather than using a single high-level teacher
network to guide a student network throughout all iterations, we
generate several low- and middle-level teachers in addition to
the high-level teacher, and progressively transfer the knowledge
from different teachers to the student network throughout the
training iterations, as shown in Fig. 1(c). More specifically, we
train a student network that takes the past and current frames
as input, and progressively distills the knowledge from different
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teachers in the order of low- to high-level teachers, to accu-
rately detect ongoing actions from streaming videos. The intu-
ition of our progressive teacher-student learning approach can
be explained as analogous to human education. For the first few
grades, the student learns from teachers well-trained for elemen-
tary school, while the grades continue to increase, the student
becomes more knowledgeable and gradually learns from teach-
ers in middle school, junior high school, and so on. Similarly,
our student network initially distills the knowledge from the
low-level teacher. As the training iterations continue, the student
becomes more knowledgeable and gradually distills knowledge
from higher-level teachers. Please note that at inference time,
we only use the student network, which detects the action of
the current frame from the observations of the past and current
frames, for online action detection.

Our main contributions are summarized as follows:

® We propose a novel progressive knowledge distillation
from different levels of teachers (PKD-DLT) for online ac-
tion detection, where we progressively transfer the knowl-
edge (in the order of low- to high-level) from different lev-
els of teachers to the student network throughout training
iterations, for effective distillation.

e We validate the effectiveness of the proposed PKD-DLT
on two popular benchmark datasets THUMOSI14 and
TVSeries. The experimental results demonstrate that our
PKD-DLT is capable of learning a well-performed student
network, which can be an effective plug-in to improve the
performance of the previous online action detection models
and achieve state-of-the-art.

II. RELATED WORK

In this section, we review related works, including offline
action detection, online action detection, and knowledge distil-
lation.

Offline action detection: The goal of offline action detection
is to localize the start time and end time of each action instance
in untrimmed videos, where the entire video is available at any
given moment. Most of the existing methods [1], [2], [3], [4],
[51, [6], [29], [301, [31], [32], [33], [34], [35], [36] are trained
in a fully-supervised manner, where the video-level action class
labels along with the frame-wise detailed temporal annotations
of each action instance are provided within the training videos.
Since the fully-supervised approach requires a lot of annotation
efforts, in contrast to the full-supervision-based methods, the
research community pays a significant amount of attention to
the weakly-supervised action detection [7], [8], [9], [10], [11],
[12], [13], [37], [38], [39], [40], [41], [42], which attempts to lo-
calize action instances, leveraging only video-level supervision.
However, both these fully and weakly supervised methods need
to observe the entire video, which is not available in the online
action detection task.

Online action detection: Different from offline action de-
tection, the goal of online action detection is to detect ongo-
ing actions from the observation of the current and past video
frames [16], [19], [20], [43], [44], [45], [46], [47]. Geest et
al. [44] defined the online action detection task for the first
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time and introduced the TVSeries dataset. Later, they also pro-
posed two-stream LSTM networks [16] to model the temporal
structure for online action detection. IDN [17] manipulated the
GRU cell to model the relationship between the current frame
and the past frames. Recently, Temporal Recurrent Networks
(TRN) [18] utilized LSTM blocks to anticipate future informa-
tion and proposed TRN cells to combine the predicted future
features with the current and past features to identify ongoing
actions. More recently, OadTR [20] replaced the LSTM-based
networks with a transformer-like architecture to encode the
observed frames in parallel with the multi-head self-attention
mechanism. Colar [47] considered historical frames as exem-
plars and utilized the exemplar consultation mechanism to model
long-term dependencies for the online action detection task.
GateHUB [48] introduced a model to more informatively lever-
age history and suppress background frames for online action
detection. MAT [49] developed a memory anticipation-based
approach, to address the online action detection and anticipa-
tion tasks. JOADAA [50] introduced a transformer encoder and
transformer decoder-based framework to perform online action
detection and action anticipation jointly.

However, since online action detection detects what is hap-
pening at each frame based on the available observations up
to the current time, a major challenge of this task is to detect
actions at a specific time that arrive with insufficient observa-
tions. To tackle this problem, in this work, we utilize the addi-
tional future frames available at the training phase and propose
a novel knowledge distillation framework for online action de-
tection, where a teacher network looks at more frames from
the future and the online student network distills the knowl-
edge from the teacher network for detecting ongoing actions
from the observations up to the current frames. During the in-
ference time, we only use the student network for online action
detection.

Knowledge distillation: Knowledge distillation is a popular
research topic in computer vision, which transfers knowledge
from a cumbersome teacher to a small student network. Hinton
et al. [51] first introduced the knowledge distillation concept
to transfer knowledge of a large teacher network as additional
supervision for training a smaller student network. Later, sev-
eral works [25], [52], [53], [54], [55] introduced the transfer
of soft-label distribution as knowledge, while some works [56],
[57], [58], [59] transferred intermediate features. Recently, a va-
riety of knowledge distillations such as graph-based knowledge
distillation [22], [60], contrastive knowledge distillation [61],
relational knowledge distillation [21], [62], and multi-modal
knowledge distillation [23], [63], [64], [65] were adopted in
different tasks.

More recently, some works [24], [66], [67], [68], [69] uti-
lized multiple powerful teacher networks (ranked by parame-
ter size) to guide a less-parameterized student network progres-
sively. You et al. [67] trained a thin student network by incorpo-
rating distillation from cumbersome multiple-teacher networks
for image classification. Park et al. [68] introduced a knowledge
distillation framework to transfer feature-level ensemble knowl-
edge from multiple teachers to a student network. Hao et al. [69]
incorporated a student model with a multi-level feature-sharing

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

structure that learns from multiple teacher models. [70] intro-
duced a progressive knowledge distillation mechanism for fast
sampling of diffusion models, which reduces the sampling time
of diffusion models by distilling a trained deterministic diffusion
sampler, using many steps, into a new diffusion model that takes
half as many sampling steps. They progressively applied this
distillation procedure to halve the number of required sampling
steps each time. [71] proposed a progressive knowledge distilla-
tion mechanism that transfers intermediate supervision signals
of a cumbersome teacher model into a lightweight student net-
work. [72] introduced a progressive self-knowledge distillation,
which progressively distills a model’s own knowledge by com-
bining the ground truth and the predictions from the preceding
iteration. This approach essentially involves the student model
transitioning into the role of the teacher. Xie et al. [73] proposed
a capacity dynamic distillation framework, the student model
is initially a heavy model to learn distilled knowledge fruit-
fully, and then the student model is gradually compressed. How-
ever, these progressive knowledge distillation mechanisms were
mainly adopted in image classification, retrieval, and generation.

However, there are not many literature studies on knowledge
distillation for online action detection. The privileged knowl-
edge distillation (PKD) [43] is the only method on knowledge
distillation for online action detection. PKD utilized multiple
teacher networks with different observations to guide a stu-
dent network, where all teacher networks are fully trained, i.e.,
high-level teachers. But, during the training of the student net-
work, there is usually a large knowledge gap between the stu-
dent network and the high-level teachers in the early training
iterations. Thus, we propose a novel progressive knowledge dis-
tillation from different levels of teachers (PKD-DLT), where in
addition to a high-level teacher, we also generate several low-
and middle-level teachers, and progressively transfer the knowl-
edge (in the order of low- to high-level) to the student network
throughout training iterations, for effective distillation. Table I
summarizes the innovations of our PKD-DLT compared to the
existing PKD.

III. METHOD

In this section, first, we introduce the problem statement
(Section III-A). Then, we present our vanilla knowledge dis-
tillation for online action detection (Section III-B). Finally, we
introduce our progressive knowledge distillation from different
levels of teachers for online action detection (Section III-C).

A. Problem Statement

Given a video stream that contains sequential various types of
actions, online action detection aims to detect ongoing actions
in real time without access to the video frames in the future.
Formally, given a streaming video sequence V = {v}°,, our
task is to classify the action in the current frame v based on the
observation of the past L frames and the current frame. We use
yo € RE*!torepresent the action and background classes of the
current frame vg, where there are a total of C' action classes and
the (C' + 1)th class represents the background class. We tackle
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TABLE I
EXISTING PRIVILEGED KNOWLEDGE DISTILLATION (PKD) [43] VS. OUR PROGRESSIVE KNOWLEDGE DISTILLATION FROM DIFFERENT LEVELS OF TEACHERS
(PKD-DLT) FOR ONLINE ACTION DETECTION

Existing PKD

Our PKD-DLT

Existing PKD utilized multiple teachers to guide a student
network, where all teachers are thoroughly or fully trained,
i.e., high-level teachers.

Limitations: 1) In the early training iterations, usually, there
is a significant knowledge gap between the student network
and the fully-trained (high-level) teachers. Therefore, using
fully-trained (high-level) teachers to guide the student network
throughout all training iterations may not always guide the
student properly; and 2) It is a time-consuming process. It
requires multiple fully trained teachers, eventually leading to
training the student network multiple times.

We propose a novel progressive knowledge distillation from
different levels of teachers (PKD-DLT), where in addition to a
high-level teacher (network after the last training iteration), we
also generate several low- and middle-level teachers from dif-
ferent respective training iterations, and progressively transfer
the knowledge (in the order of low- to high-level) to the student
network throughout training iterations, for effective distillation.
Since we generate different levels of teachers from different
training iterations and the student network also progressively
distills the knowledge throughout training iterations, we need
to train both teacher and student networks only once.

this problem by developing a novel progressive knowledge dis-
tillation framework that contains different levels of teachers to
guide a student network for detecting ongoing actions in an on-
line mode.

B. Vanilla Knowledge Distillation for Online Action Detection

The key concept of Knowledge Distillation (KD) for online
action detection is training a student network to distill the soft
targets (i.e., the labels that reduce the most confident value of the
one-hot-vector and assign a small amount of probability mass
to semantically similar actions) of a teacher network, where the
difference between the teacher network and the student network
lies in their corresponding input data rather than the network
architecture. Both the teacher and student networks can be any
state-of-the-art online action detection model, with KD as a plug-
in for the training mechanism. More specifically, our vanilla KD
is a two-stage approach:

¢ Firstly, we train a teacher network that detects ongoing
action from the observations of the past, current, and future
frames, T : {v}L, — §T, where y& € RE*! represents
the classification scores of the current frame vy for the
teacher network.

e Secondly, we freeze the parameters of the teacher network
and transfer its predictive capability to the student network
through knowledge distillation. In other words, we train a
student network that distills the knowledge from the teacher
network and detects ongoing action from the observations
of the past and current frames, S : {v}% L= }73, where
y5 € RE*H! represents the classification scores of the cur-
rent frame vq for the student network.

Since the teacher model observes more frames in the future
to make a decision, the soft target from the teacher model can
transfer “dark knowledge” containing privileged information
on similarity among different action categories to enhance the
learning of the student network. To achieve this goal, the vanilla
KD is formulated by minimizing the Kullback-Leibler (KL) di-
vergence between the prediction of the student and the teacher,
as follows:

Efffs = KL(softmax(j'I(?/T)7 softmax(yg/T)) (D

where the right arrow in the subscript indicates the teaching
direction. 7 is the temperature parameter to control the softening
of logits. In addition to the distillation loss, the student network
has its own online action detection loss ﬁgAD , whichis usually a
cross-entropy loss between the predicted and ground-truth labels
of the current frame:

ﬁ(s)AD = CE(softmax(yg),yo) 2)
As a result, the student’s total loss is derived as follows:
Ls = LN + LD 3)

Please note that we only use the online action detection loss to
train the teacher network:

Ly = LT = CE(softmax(§7), yo) )

C. Progressive Knowledge Distillation From Different Levels
of Teachers for Online Action Detection

Usually, in the KD framework, a high-level teacher network
is considered to guide the student network throughout all train-
ing iterations. But, at the early training stage, there is a large
knowledge gap between the student network and the high-level
teacher network. Therefore, using a single high-level teacher to
guide the student network throughout all training iterations may
not always guide the student properly. To remedy this, in this
paper, rather than only using a single high-level teacher, we also
generate several low- and middle-level teachers and progres-
sively transfer knowledge from different teachers to the student
network throughout training iterations for effective knowledge
distillation. More specifically, we design our progressive knowl-
edge distillation from different levels of teachers (PKD-DLT),
as follows:

e Similar to vanilla KD, we first train a teacher network
that detects ongoing action from the observations of the
past, current, and future frames. However, different from
vanilla KD, rather than only storing the parameters of the
high-level teacher, i.e., the parameters of the last training
iteration, we also uniformly store the parameters of several
low- and middle-level teachers. Formally, from N training
iterations, we uniformly select D number of teachers with
n = N/D training iteration gap between two consecutive
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Tlustration of our progressive knowledge distillation mechanism. In the first step, a teacher network is trained to detect the action of the current frame

from the observation of the past, current, and future frames. Rather than only storing the parameters of the high-level teacher, the parameters of several low- and
middle-level teachers are also stored uniformly with n training iteration gap to different levels of teachers. In the second step, a student network is trained to detect
the action of the current frame from the observation of the past and current frames. During the training, the student network progressively distills the knowledge
from different teachers in the order of low-level T'; to high-level T p teachers. For the first few iterations, the student network distills the knowledge from the
low-level teacher T';. As the training iterations continue, the student becomes more knowledgeable and gradually distills the knowledge from more higher-level
teachers and also distills the historic information from old teachers. During the inference, we only use the student network for our online action detection.

teachers. In other words, we store the parameters of the
first teacher T'; at the n-th iteration, the second teacher Ty
at the 2n-th iteration, and so on.

e Secondly, we train a student network that takes only the
observed past and current frames as input and progressively
distills the knowledge throughout training iterations from
different teachers in the order of the low-level teacher T
to the high-level teacher T p, to accurately detect ongoing
actions in real-time.

As shown in Fig. 2, to progressively distill the knowledge
from different teachers in the order of lower-level to higher-level
teachers, we first divide the N training iterations of the student
network into D chunks, where each chunk contains n = N/D
iterations. During the first chunk, i.e., training the student net-
work Sjy.,,) from iteration 1 to n, the student network distills the
knowledge from the low-level teacher T';. As the training iter-
ations continue, the student becomes more knowledgeable and
gradually distills knowledge from more higher-level teachers.
Although the student becomes more knowledgeable and gradu-
ally interacts with new teachers, we let the student not forget the
knowledge from old teachers. Therefore, in addition to distilling
the knowledge from a new teacher, the student network also dis-
tills the historic knowledge from old teachers. Formally, during
the training of the d-th chunk, the student network S(4 1), 41:dn]
distills the knowledge from the d-th teacher T'; and the historic
information from old teachers T; to T ;. This progressive

knowledge distillation process for D training chunks can be for-
mulated as:
KD _ pKD
[’S[l:n] - ‘CTlﬁs[lzn]

KD KD

S{(d-1)n+1:dn] )\’IKIH(Tla~~wTdfl)‘)S[(d—l)n-f—l:dn]
KD _
+ )\QETdHS[(d—l)n+1:dn]’ d - 27 ey D

(&)

where X, and A, are the balancing hyper-parameters. H repre-
sents the historic information from old teachers. More specifi-
cally, we obtain historic information from the fusion of the old
teachers’ logits, which generates a more smoothed label for reg-
ularization, as follows:

H(Ty, To, ..., Ti) = aTi({v}"))

+§ (;:?) T,({v}%)  ©

where « is a combination factor « € [0, 1]. Finally, the student’s
total loss is derived as follows:

D
Ls =L +> &P @)

Si(a-1)n+1:dn]’
d=1
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where EgAD is from (2) and we use the OAD loss (4) to train the
teacher network. During the inference, we only use the student
network to detect the current ongoing actions from the observa-
tions of the past and current frames.

Note, our PKD-DLT may seem to be conceptually similar to
the moving-averaged KD. In moving-averaged KD, the teacher
is formulated from the student network. More specifically, the
teacher network is an average of consecutive student networks
throughout training iterations. However, the moving-averaged
KD is not an effective solution for online action detection. The
main reason is that when the student network detects an action
from insufficient observation, the teacher network will also need
to detect that action from insufficient observation, which may
result in a wrong detection for both networks. Thus, we pro-
pose a novel PKD-DLT, where a teacher network looks at more
frames from the future for sufficient observations and the stu-
dent network progressively distills the knowledge from different
levels of teachers for detecting actions from the observation up
to the current frames. During the inference, we only use the
student network to detect the current ongoing actions from the
observations of the past and current frames.

IV. EXPERIMENTS
A. Datasets

We conduct our experiments on two benchmark datasets that
are widely used in the community of online action detection:
THUMOS 14 [74] and TVSeries [44].

THUMOS14 [74]: THUMOS 14 has annotations for 200 val-
idation videos and 213 testing videos for the online action de-
tection task, which belong to 20 classes from sports videos. This
dataset includes drastic intra-category varieties, motion blur, sig-
nificant changes in the length of the action instances (from less
than a second to minutes), and many background frames, which
have diverse contexts and variations in motion patterns. All of
these properties make this dataset challenging for online action
detection. Following the literature [17], [19], [20], [75], we train
our model on the validation set and evaluate on the test set.

TVSeries [44]: TVSeries includes 27 episodes of 6 popular
TV series with a total duration of about 16 hours, which is an-
notated with 30 daily actions (e.g., run, drink, etc.). The online
action detection on this dataset is challenging since this dataset
contains many unconstrained perspectives, a large proportion of
background frames, and temporal overlapping action instances.
We follow the train-test splits provided by the dataset to evaluate
our method.

Evaluation metric: Following the literature [17], [18], [20],
[47], [76], we use per-frame mean average precision (mAP) and
mean calibrated average precision (mcAP) to evaluate the perfor-
mance of online action detection on THUMOS 14 and TV Series
datasets, respectively.

B. Implementation Details

Our proposed PKD-DLT can be used as a plug-in to any
state-of-the-art online action detection model. To show the
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TABLE II
RESULTS ON THUMOS 14
Method | Feature | mAP
RED [76], BMVC2017 453
TRN [18], ICCV2019 47.2
IDN [17], CVPR2020 50.0
0adTR [20], ICCV2021 58.3
Colar [47], CVPR2022 TSN-Anet 59.4
GateHub [48], CVPR2022 69.1
MAT [49], ICCV2023 70.4
0adTR [20] + PKD-DLT TSN-Anet 61.2
291
Colar [47] + PKD-DLT TSN-Anet 62.1
277
MAT [49] + PKD-DLT TSN-Anet 72.8
241
IDN [17], CVPR2020 60.3
PKD [43], PR2020 64.5
0adTR [20], ICCV2021 65.2
Colar [47], CVPR2022 TSN-Kinetics | 66.9
Colar [47] + moving-averaged KD 67.5
GateHub [48], CVPR2022 70.7
MAT [49], ICCV2023 71.6
JOADAA [50], WACV2024 72.6
0adTR [20] + PKD-DLT TSN-Kinetics | 67.8
(26 1)
Colar [47] + PKD-DLT TSN-Kinetics | 69.1
221
MAT [47] + PKD-DLT TSN-Kinetics | 73.6
201

We plug our proposed PKD-DLT into three latest online action detection methods
OadTR [20], colar [47], and MAT [49] to show its effectiveness to boost the
performance of existing methods and achieve state-of-the-art performance.

effectiveness of our PKD-DLT, we plug it into three latest on-
line action detection methods: OadTR [20], Colar [47], and
MAT [49]. For the feature extractor, following the literature [17],
[18], [20], [47], [76], we use the same two-stream network [77],
whose spatial stream adopts ResNet-200 [78] and temporal
stream adopts BN-Inception [79]. Similar to existing methods,
we report the performances of two experimental settings, where
the two-stream is pre-trained on either ActivityNet v1.3 [80]
(TSN-Anet) or Kinetics-400 [81] (TSN-Kinetics), for a fair
comparison. By validation, we set 7 = 3, a = 0.8, n = 200,
)\.1 = 02, )LQ = 07, and L = 63.

C. Comparison With State-of-The-Arts

In this subsection, we compare the performance of our pro-
posed PKD-DLT with other state-of-the-art methods on THU-
MOS14 and TVSeries datasets.

THUMOS 14: Table I summarizes the results of existing state-
of-the-art online action detection methods on the THUMOS 14
dataset. We plug our PKD-DLT into three latest online action
detection methods OadTR [20], Colar [47], and MAT [49]. As
shown in Table II, based on TSN-Anet features, our PKD-DLT
brings an mAP gain of +2.9% over OadTR [20], an mAP gain
of +2.7% over Colar [47], and an mAP gain of +2.4% over
MAT [49]. On the other hand, we also find that our PKD-DLT can
boost the performance of OadTR [20], Colar [47], and MAT [49]
by +2.6%, +2.2%, and +2.0%, respectively, when the compar-
ison is based on TSN-Kinetics features.
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TABLE III
RESULTS ON TVSERIES

Method | Feature | mcAP
LRCN [82], CVPR2015 64.1
RED [76], BMVC2017 71.2
2S-FN [16], WACV2018 RGB 724
TRN [18], ICCV2019 75.4
IDN [17], CVPR2020 76.6
FV-SVM [16], WACV2018 Flow 743
IDN [17], CVPR2020 80.3
RED [76], BMVC2017 79.2
TRN [18], ICCV2019 83.7
IDN [17], CVPR2020 84.7
PKD [43], PR2020 TSN-Anet 86.4
0adTR [20], ICCV2021 854
Colar [47], CVPR2022 86.0
GateHub [48], CVPR2022 88.4
MAT [49], ICCV2023 88.6
0adTR [20] + PKD-DLT TSN-Anet 86.8
(141D
Colar [47] + PKD-DLT TSN-Anet 87.1
111
MAT [49] + PKD-DLT TSN-Anet 89.6
1.01)
IDN [17], CVPR2020 86.1
0adTR [20], ICCV2021 87.2
Colar [47], CVPR2022 TSN-Kinetics | 88.1
Colar [47] + moving-averaged KD 88.3
GateHub [48], CVPR2022 89.6
MAT [49], ICCV2023 89.7
0adTR [20] + PKD-DLT TSN-Kinetics | 88.4
121
Colar [47] + PKD-DLT TSN-Kinetics | 89.1
101
MAT [47] + PKD-DLT TSN-Kinetics | 90.5
0.8 1)

‘We plug our proposed PKD-DLT into three latest online action detection methods
OadTR [20], colar [47], and MAT [49] to show its effectiveness to boost the
performance of existing methods and achieve state-of-the-art performance.

TVSeries: We also conduct the same experiment on the
TVSeries [44] dataset to confirm the generality of the proposed
plug-in. As shown in Table III, for the TSN-Anet feature input,
we obtain performance gains of +1.4%, +1.1%, and +1.0%
by incorporating the proposed PKD-DLT into OadTR [20], Co-
lar [47], and MAT [49] respectively, while we also achieve im-
provements of +1.2%, +1.0%, and +0.8% over these three
methods, respectively, with the TSN-Kinetics feature input.

Performance under different action portions: Since one of the
most important characteristics of online action detection is to
detect an action at an early stage, we further verify the effective-
ness of our plug-in on existing methods at different action stages.
Table IV shows the online action detection performance on the
TVSeries dataset when different action stages are observed. For
example, the mcAP value within the action stage 40%—-50%
represents how accurately the model can detect an action when
observing 40%—-50% of the action. Since there are significant
changes in the length of the action instances (from less than a
second to minutes) in the THUMOS 14 dataset, evaluating per-
formance across different action portions for instances that last
barely milliseconds becomes impractical. Therefore, following
the literature [17], [18], [20], [43], [47], we report the online
action detection performance under different action portions on

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

the TVSeries dataset. The results show that our PKD-DLT can
boost the performance of OadTR [20] and Colar [47] at all ac-
tion stages, for both the ActivityNet and Kinetics features. This
demonstrates the superiority of our PKD-DLT in improving the
online action detection performances at early stages as well as
all stages.

Existing knowledge distillation for online action detection vs.
our knowledge distillation: We compare our proposed knowl-
edge distillation method (PKD-DLT) with the latest knowledge
distillation-based method (PKD [43]) for online action detec-
tion. Note, the privileged knowledge distillation (PKD) [43] is
the only method for knowledge distillation in online action de-
tection so far. As shown in Table II to Table IV, our PKD-DLT
achieves superior performances compared to existing PKD [43]
on both THUMOS 14 and TV Series datasets, on all metrics. For
example, on the THUMOS 14 dataset (Table II), our PKD-DLT
on Colar achieves 69.1% mAP, compared to PKD [43] with
64.5% mAP.

In terms of efficiency, the existing PKD [43] is also a time-
consuming process. It requires multiple fully trained teach-
ers, eventually leading to training the student network multiple
times. On the other hand, we generate different levels of teach-
ers from different training iterations, and the student network
also progressively distills the knowledge throughout training it-
erations. Therefore, we need to train both teacher and student
networks only once, which is a more efficient training process
compared to the existing PKD [43].

Moving-averaged KD vs. our PKD-DLT: Since our PKD-DLT
may seem to be conceptually similar to the moving-averaged
KD, we also compare our PKD-DLT with the moving-averaged
KD to show the effectiveness of our PKD-DLT over the moving-
averaged KD. For this comparison, we first plug the moving-
averaged KD into Colar [47], and then replace it with our
PKD-DLT. As shown in Table II and Table III, our PKD-DLT
achieves better performances compared to the moving-averaged
KD on both THUMOS 14 and TVSeries datasets, respectively.
The key factor contributing to this performance improvement
lies in the difference in how the teacher networks operate. In
the moving-averaged KD, the teacher network is an average
of consecutive student networks throughout training iterations.
Therefore, if the student network detects an action based on in-
sufficient observation, the teacher network also identifies that
action with insufficient observation. In contrast, the teacher net-
work in our PKD-DLT examines more frames from the future,
ensuring sufficient observations. The student network then pro-
gressively distills knowledge from various levels of teachers,
which results in more effective distillation and, consequently, a
notable improvement in detection performances. For example,
on the THUMOS 14 dataset (Table II), our PKD-DLT on Colar
achieves 69.1% mAP, outperforming the moving-averaged KD
on Colar, which attains 67.5% mAP.

D. Ablation Study

Ablation study on different numbers of iteration gaps: We
conduct experiments to examine how different iteration gaps
between two consecutive teachers (i.e., parameter n in Fig. 2)
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RESULTS ON TVSERIES WHEN ONLY PORTIONS OF ACTIONS ARE CONSIDERED (E.G., 40%—50% MEANS ONLY FRAMES OF THIS RANGE OF ACTION INSTANCES
ARE USED TO COMPUTE MCAP AFTER DETECTING CURRENT ACTIONS ON ALL FRAMES IN AN ONLINE MANNER)

Method Portion of actions

0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 7T0%-80% 80%-90% 90%-100%
CNN [44] 61.0 61.0 61.2 61.1 61.2 61.2 61.3 61.5 61.4 61.5
LSTM [44] 63.3 64.5 64.5 64.3 65.0 64.7 64.4 64.4 64.4 64.3
FV-SVM [44] 67.0 68.4 69.9 71.3 73.0 74.0 75.0 75.4 76.5 76.8
TRN [18] 78.8 79.6 80.4 81.0 81.6 81.9 82.3 82.7 82.9 83.3
IDN [17] 80.6 81.1 81.9 82.3 82.6 82.8 82.6 82.9 83.0 83.9
0adTR [20] 79.5 83.9 86.4 85.4 86.4 87.9 87.3 87.3 85.9 84.6
Colar [47] 80.2 84.4 87.1 85.8 86.9 88.5 88.1 87.7 86.6 85.1
OadTR [20] + 81.2 854 87.7 86.7 87.6 89.0 88.5 88.6 87.5 86.2
PKD-DLT a7zt asyH a3 137 a1z 11 azm 13" (1.6 1) (1.6 1)
colar [47] + 81.6 85.7 88.2 86.8 87.8 89.3 89.0 88.7 87.7 86.3
PKD-DLT a4t a3 arh 1.0 091 0.8 1) 09 1M 1.0 (1.1 1) 1.2 71)
IDN * [17] 81.7 81.9 83.1 82.9 83.2 83.2 83.2 83.0 83.3 86.6
PKD * [43] 82.1 83.5 86.1 87.2 88.3 88.4 89.0 88.7 88.9 87.7
OadTR * [20] 81.2 84.9 87.4 87.7 88.2 89.9 88.9 88.8 87.6 86.7
Colar * [47] 82.3 85.7 88.6 88.7 88.8 91.2 89.6 89.9 88.6 87.3
0OadTR [20] + 82.7 86.3 88.7 88.8 89.2 90.9 90.0 89.9 88.9 88.1
PKD-DLT * astH a4t a3 1.1 1) (1.0 1) (1.0 1) 1.1 1) (1.1 1) a3 a4
Colar [47] + 83.6 86.8 89.6 89.7 89.9 92.0 90.5 90.9 89.6 88.5
PKD-DLT * a3t a1t 3a.om (1.0 11 081 091 1.0 1.0 azm

We plug our PKD-DLT into OadTR [20] and colar [47], and our approach improves the action detection performances at early stages as well as all stages. ¥ Means the feature

extractor is pre-trained on kinetics.

TABLE V
ABLATION STUDY ON DIFFERENT NUMBERS OF ITERATION GAPS

. OadTR [20] + Colar [47] +
# Iteration PKD-DLT PKD-DLT Memor}/
gap THO- R THO R consumption
MOS14 | Series | MOSI14 | Series
n = 50 60.1 86.1 61.2 86.6 ~ 84 GB
n = 100 60.7 86.4 61.6 86.8 ~ 4.2 GB
n = 150 60.9 86.6 61.7 86.9 ~ 3.0 GB
n = 200 61.2 86.8 62.1 87.1 ~ 2.1 GB
n = 250 61.0 86.7 61.9 87.0 ~ 1.8 GB
n = 300 60.5 86.4 61.5 86.7 ~ 1.5 GB

affect online action detection performance. As shown in Table V,
when the iterations gap is relatively small (e.g., 50), the knowl-
edge gap between two consecutive teachers is not significant and
the performance gain from multi-level teachers is relatively low.
As the iteration gap gradually increases, the teachers become
more knowledgeable compared to their predecessors, and per-
formance improves. However, when it exceeds a specific value
(e.g.,n = 200), there is a large knowledge gap between two con-
secutive teachers, eventually, a large knowledge gap between the
student and teacher, which results in a distillation performance
drop.

Memory efficiency and computational cost: Since we save
model parameters for different levels of teachers, memory con-
sumption can be a concern. However, we utilize a uniform sam-
pling strategy to save the parameters of several teachers, which
does not take up a lot of memory. For instance, the teacher
network consists of 75.8 million parameters, which takes ap-
proximately 300 MB of memory. From N (1400 in our experi-
ment) training iterations, we only save the parameters of D (e.g.,
7) teachers with n = N/D (e.g., 200) iteration gap between
two consecutive teachers. This approach necessitates approxi-
mately (N/n x 300) (e.g., 2.1GB) of memory. We perform the

analysis of memory consumption across various numbers of it-
eration gaps in Table V.

On the other hand, in our PKD-DLT, both the teacher and
student networks should be trained, which brings extra compu-
tational costs compared to directly training the student network.
On average, the training time for PKD-DLT is about 2 X to train a
student network without KD. It takes approximately 60 minutes
to train our network on THUMOS 14 with a single Tesla V100
GPU. We only use the student network during the inference for
OAD. Thus, our approach has the same inference complexity as
the student network without KD.

Effects of different levels of teachers: We perform experiments
to examine how different levels of teachers affect the student
within training chunks, as shown in Table VI. To teach a student
network at each training chunk d, we consider five different
groups of teachers:

e H(Ty,...,Ty_1): the fusion of old teachers
T,_1: the old teacher only from the previous chunk
T ;: the current teacher
T 4+ 1: the future teacher only from the next chunk, and
H(T441,-.., Tp): the fusion of future teachers

The top set in Table VI summarizes the results where the
student network distills knowledge from a single category of
different teacher levels. We find that the student distills better
knowledge from the corresponding current teacher due to the
relatively smaller knowledge gap between them. For example,
as analogous to K-12 education, normally, a student in a mid-
dle school learns the best from a teacher well-trained for mid-
dle school education, compared to other levels of teachers. On
the other hand, the bottom set in Table VI summarizes the re-
sults in which the student network distills the knowledge from
the combination of different levels of teachers. In this scenario,
we find that the knowledge from the current teacher and the
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TABLE VI
EFFECTS OF DIFFERENT LEVELS OF TEACHERS
KD from OadTR [20] + PKD-DLT Colar [47] + PKD-DLT
H(T1,...,Tq_1) Ty 1 Ty Tyt H(T4+1,...,Tp) | THUMOSI4 | TVSeries | THUMOSI4 | TVSeries
v 60.5 86.3 61.4 86.7
v 60.4 86.2 61.2 86.6
v 60.7 86.4 61.6 86.8
v 60.1 86.0 61.0 86.4
v 60.0 85.9 60.9 86.3
v v 61.2 86.8 62.1 87.1
v v 60.9 86.6 61.8 86.9
v v 60.5 86.3 61.3 86.7
v v 60.2 86.1 61.1 86.5
TABLE VII

ABLATION STUDY ON TEACHERS WITH DIFFERENT FUTURE OBSERVATIONS

Aooroach 0adTR [20] + PKD-DLT | Colar [47] + PKD-DLT
pp THUMOSI4 | TVSeries | THUMOSI4 | TVSeries
T(+32 frames) — S | 60.1 36.2 61.1 36.7
T(+64 frames) — S | 61.2 6.8 62.1 87.1
T(+96 frames) — S | 60.9 86.6 61.7 87.0
T(+128 frames) — S | 60.4 86.3 61.3 86.8
T: teacher network; and S: student network.
TABLE VIII

EFFECTIVENESS OF OUR PKD-DLT OVER VANILLA KD

R OadTR [20] Colar [47]
Approach Feature THO- TV THO- TV:
MOS14 Series MOS14 Series
S 58.3 85.4 59.4 86.0
T — S (vanilla KD) | TSN- 59.9 86.1 60.9 86.6
T — S (PKD-DLT) Anet 61.2 86.8 62.1 87.1
S 65.2 87.2 66.9 88.1
T — S (vanilla KD) | TSN- 66.4 87.7 68.0 88.6
T — S (PKD-DLT) Kinetics | 67.8 88.4 69.1 89.1

T: teacher network; and S: student network.

historical knowledge from old teachers lead the student to
achieve better performance (e.g., a student in a middle school
will learn from the teacher in middle school, in the mean-
while, the student should not forget the knowledge learned from
teachers in elementary schools). By obtaining historical knowl-
edge through the fusion of old teachers’ logits, we produce a
more smoothed label for regularization, which improves perfor-
mances.

Ablation study on teachers with different observations: We
further perform experiments to examine how teacher networks
with different future observations affect the student network, as
shown in Table VII. As the teacher network looks at more frames
from the future, it can successfully detect action by capturing
long-range temporal structures with sufficient observations of
that action. However, when the observation of more frames from
the future exceeds a certain number, distractive observations
may occur. We achieve the best performance from the teacher
that observes 64 more frames in the future.

Effectiveness of PKD-DLT over vanilla KD: As shown in
Table VIII, we conduct experiments to justify that using a single
high-level teacher to guide the student network throughout all
training iterations (i.e., vanilla KD) may result in poor distilla-
tion compared to our PKD-DLT. Please note that the vanilla KD
in Table VIII is not from previous works. It is also formulated
from our knowledge distillation framework. For our vanilla KD,

we only distill the knowledge from the high-level teacher net-
work, while we progressively distill the knowledge from low-
to high-level teacher networks for PKD-DLT. The results in
Table VIII support this claim across various scenarios:
® Different Datasets: We evaluate performances on the THU-
MOS14 and TVSeries datasets to show the superior perfor-
mances of our PKD-DLT over vanilla KD across diverse
datasets.
® Different Models: To compare the effectiveness of our
PKD-DLT over vanilla KD, we plug vanilla KD and
PKD-DLT into different online action detection methods,
OadTR [20] and Colar [47].

® Different Features: We use TSN-Anet and TSN-Kinetics
features to show the effectiveness of our PKD-DLT over
vanilla KD across diverse features.

These comprehensive experiments demonstrate that the
vanilla KD, i.e., using a single high-level teacher to guide the
student network throughout all training iterations, results in poor
distillation compared to our PKD-DLT.

E. Qualitative Results

As shown in Fig. 3, we visualize some online action de-
tection results, where we visualize the detection results for
three settings: (i) detection results for the student network (i.e.,
0adTR [20]) without knowledge distillation (KD); (ii) detection
results for the student network with our vanilla KD; and (iii)
detection results for the student network with our PKD-DLT.
As shown in Fig. 3, the student network without KD roughly
detects actions with some false positives and false negatives.
Since the student network without KD learns to detect ongoing
actions from insufficient observations (i.e., observations of the
past and current frames), it incorrectly treats some background
frames as action and some action frames as background, which
results in false positive and false negative errors. In contrast, the
student network with our vanilla KD and the student network
with our PKD-DLT learn to detect ongoing actions by distilling
knowledge from the teacher network that looks at more frames
(i.e., the past, current, and future frames) for sufficient observa-
tions. Therefore, as shown in Fig. 3, the student networks with
our vanilla KD and our PKD-DLT improve the detection perfor-
mance compared to the student network without KD by detecting
more action instances and suppressing more background-related
frames. On the other hand, our PKD-DLT outputs more precise
detection than the student network with our vanilla KD, which
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(a) An example video of “Throw Discus” action

Ground-truth |

(i) Student
without KD

(i) Student with
our vanilla KD

(iii) Student with
our PKD-DLT

Video

Ground-truth

(i) Student
without KD

(i) Student with
our vanilla KD

(iii) Student with
our PKD-DLT

Fig. 3.

Qualitative results. With many background frames, the video (a) and (b) contain multiple instances of “Throw Discus” and “High Jump” actions,

respectively. We visualize the detection results for three settings: (i) detection results for the student network without knowledge distillation (KD); (ii) detection
results for the student network with our vanilla KD; and (iii) detection results for the student network with our PKD-DLT.

(a) “Baseball Pitch” action

(b) “Frisbee Catch” action

(c) “Billiards” action

Fig. 4. Failure cases. (a), (b), and (c) contain sample frames of “Baseball
Pitch”, “Frisbee Catch” and “Billiards” actions, respectively. Magenta boxes
indicate where the action of interest is being performed.

validates the effectiveness of knowledge distillation from differ-
ent levels of teachers compared to the distillation only from a
high-level teacher.

F. Failure Analysis and Future Work

Although we achieve state-of-the-art performances, the online
action detection performance is not 100% correct yet. In Fig. 4,

we visualize some sample frames for which we get incorrect
detection. Most of the failure cases are from: (1) Barely visible
action. The action in which the subject (i.e., the person who is
performing the corresponding action) is very far away from the
camera (e.g., Fig. 4(a) and (b)); and (2) Tiny motion. The action
incurs only tiny movements, as shown in Fig. 4(c).

In this work, we plug our PKD-DLT into the recent online
action detection models: OadTR [20] and Colar [47], which are
capable of capturing long-range temporal structures. Motivated
by the failure cases, in the future, we will first develop an online
action detection model to capture long-range structures in both
spatial and temporal domains, and then plug our PKD-DLT into
that model.

On the other hand, recent advancements with large founda-
tion models like GPT-4 V have demonstrated impressive ca-
pabilities in visual tasks. The potential applications of em-
ploying these models in online action detection tasks include:
(i) Feature Extraction: Pretrained large foundation models can
provide rich, high-dimensional feature representations essential
for online action detection; (ii) Multimodal Integration: Large
foundation models can integrate visual information with other
data sources, such as audio, to enhance the performance of
online action detection; and (iii) Pretrained large foundation
models can be fine-tuned on task-specific datasets to improve
performance of online action detection. However, achieving
real-time processing of video frames is crucial for online action
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detection. By progressively distilling knowledge from large
models into smaller ones, we can develop efficient student mod-
els that maintain high performance while demanding fewer com-
putational resources.

V. CONCLUSION

We propose a novel progressive knowledge distillation from
different levels of teachers (PKD-DLT) for online action de-
tection. Rather than using a single high-level teacher network
to guide a student network throughout all training iterations,
we also generate several low- and middle-level teachers, and
progressively transfer the knowledge from different levels of
teachers to the student network throughout training iterations.
Experimental results on two challenging datasets demonstrate
that our PKD-DLT is an effective plug-in to improve the perfor-
mances of previous online action detection methods and achieve
state-of-the-art.
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