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Progressive Knowledge Distillation From Different
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Md Moniruzzaman , Graduate Student Member, IEEE, and Zhaozheng Yin , Senior Member, IEEE

Abstract—In this paper, we explore the problem of Online Action
Detection (OAD), where the task is to detect ongoing actions from
streaming videos without access to video frames in the future.
Existing methods achieve good detection performance by capturing
long-range temporal structures. However, a major challenge of this
task is to detect actions at a specific time that arrive with insufficient
observations. In this work, we utilize the additional future frames
available at the training phase and propose a novel Knowledge
Distillation (KD) framework for OAD, where a teacher network
looks at more frames from the future and the student network
distills the knowledge from the teacher for detecting ongoing
actions from the observation up to the current frames. Usually,
the conventional KD regards a high-level teacher network (i.e.,
the network after the last training iteration) to guide the student
network throughout all training iterations, which may result in
poor distillation due to the large knowledge gap between the high-
level teacher and the student network at early training iterations. To
remedy this, we propose a novel progressive knowledge distillation
from different levels of teachers (PKD-DLT) for OAD, where in
addition to a high-level teacher, we also generate several low- and
middle-level teachers, and progressively transfer the knowledge (in
the order of low- to high-level) to the student network throughout
training iterations, for effective distillation. Evaluated on two
challenging datasets THUMOS14 and TVSeries, we validate that
our PKD-DLT is an effective teacher-student learning paradigm,
which can be a plug-in to improve the performance of the existing
OAD models and achieve a state-of-the-art.

Index Terms—Online action detection (OAD), knowledge
distillation (KD), progressive knowledge distillation.

I. INTRODUCTION

A
CTION detection in untrimmed videos has been widely

explored under offline settings [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10], [11], [12], [13], [14], [15], where the entire

video is available for the detection at any moment. But, many

real-time applications of computer vision such as human-robot

collaboration, autonomous driving, and video surveillance re-

quire online action detection. Unlike offline action detection,
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Online Action Detection (OAD) aims at the task of detecting

ongoing actions from streaming videos without access to video

frames in the future.

Prior works [16], [17], [18] employed Recurrent Neural Net-

works (RNN) (e.g., Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU)) to encode the temporal depen-

dencies of the observed frames for online action detection. But,

the RNN-based methods have the problem of non-parallelism

and are prone to forgetting informative history. To remedy this,

recent works [19], [20] utilized transformer-like architectures

to encode the observed frames in parallel with the multi-head

self-attention mechanism. However, since online action detec-

tion detects what is happening at each frame based on the avail-

able observations up to the current time, a major challenge of

this task is to detect actions at a specific time that arrive with

insufficient observations.

Since detecting ongoing actions only from observations of

the past and current frames (i.e., online action detection) is more

challenging than the detection from the observations of past, cur-

rent, and future frames (i.e., offline action detection), we utilize

the additional future frames available at the training phase and

formulate a knowledge distillation framework for OAD. Ordi-

narily, knowledge distillation is an effective technique for many

computer vision tasks [21], [22], [23], [24], [25], [26], [27],

[28], where a powerful teacher network with a large number of

parameters transfers knowledge to a less-parameterized student

network. However, different from the ordinary KD, in KD for

online action detection, the difference between the teacher and

student networks lies in their corresponding observations, i.e.,

the input data rather than the network architecture. As shown in

Fig. 1(a), the KD framework in OAD involves: a teacher network

that examines the past, current and future frames for detecting

the action of the current frame; a student network for detecting

the action of the current frame from the observations of the past

and current frames; and a knowledge distillation mechanism to

transfer the knowledge from the teacher network to the student

network.

Usually, in the KD framework, a teacher network fully trained

after the last training iteration (defined as high-level teacher in

short) is naturally considered to guide the training of a student

network throughout all iterations, as shown in Fig. 1(b). In other

words, the student network at every training iteration distills

the same knowledge from the high-level teacher. But, during

the training of the student network, in the early training itera-

tions, there is a large knowledge gap between the student net-

work and the high-level teacher network. Therefore, only using a
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Fig. 1. (a) Knowledge Distillation (KD) for Online Action Detection (OAD).
The KD framework for OAD involves: a teacher network that examines the past,
current, and future frames for detecting the action of the current frame; a student
network for detecting the action of the current frame only from the past and
current frames; and a teacher-student learning mechanism for knowledge distil-
lation from the teacher network to the student network; (b) Vanilla Knowledge
Distillation (KD). A teacher network after the last training iteration (defined
as high-level teacher) is considered to guide the student network throughout all
training iterations; (c) Our progressive knowledge distillation. The student
network progressively distills knowledge from different teachers in the order of
low- to high-level teachers.

single high-level teacher to guide the student network throughout

all training iterations may result in poor distillation. To remedy

this, different levels of teachers are expected, which will pro-

gressively provide more transferrable knowledge to the student

network for effective distillation.

In this paper, we propose a novel progressive knowledge dis-

tillation from different levels of teachers (PKD-DLT) for online

action detection. Rather than using a single high-level teacher

network to guide a student network throughout all iterations, we

generate several low- and middle-level teachers in addition to

the high-level teacher, and progressively transfer the knowledge

from different teachers to the student network throughout the

training iterations, as shown in Fig. 1(c). More specifically, we

train a student network that takes the past and current frames

as input, and progressively distills the knowledge from different

teachers in the order of low- to high-level teachers, to accu-

rately detect ongoing actions from streaming videos. The intu-

ition of our progressive teacher-student learning approach can

be explained as analogous to human education. For the first few

grades, the student learns from teachers well-trained for elemen-

tary school, while the grades continue to increase, the student

becomes more knowledgeable and gradually learns from teach-

ers in middle school, junior high school, and so on. Similarly,

our student network initially distills the knowledge from the

low-level teacher. As the training iterations continue, the student

becomes more knowledgeable and gradually distills knowledge

from higher-level teachers. Please note that at inference time,

we only use the student network, which detects the action of

the current frame from the observations of the past and current

frames, for online action detection.

Our main contributions are summarized as follows:
� We propose a novel progressive knowledge distillation

from different levels of teachers (PKD-DLT) for online ac-

tion detection, where we progressively transfer the knowl-

edge (in the order of low- to high-level) from different lev-

els of teachers to the student network throughout training

iterations, for effective distillation.
� We validate the effectiveness of the proposed PKD-DLT

on two popular benchmark datasets THUMOS14 and

TVSeries. The experimental results demonstrate that our

PKD-DLT is capable of learning a well-performed student

network, which can be an effective plug-in to improve the

performance of the previous online action detection models

and achieve state-of-the-art.

II. RELATED WORK

In this section, we review related works, including offline

action detection, online action detection, and knowledge distil-

lation.

Offline action detection: The goal of offline action detection

is to localize the start time and end time of each action instance

in untrimmed videos, where the entire video is available at any

given moment. Most of the existing methods [1], [2], [3], [4],

[5], [6], [29], [30], [31], [32], [33], [34], [35], [36] are trained

in a fully-supervised manner, where the video-level action class

labels along with the frame-wise detailed temporal annotations

of each action instance are provided within the training videos.

Since the fully-supervised approach requires a lot of annotation

efforts, in contrast to the full-supervision-based methods, the

research community pays a significant amount of attention to

the weakly-supervised action detection [7], [8], [9], [10], [11],

[12], [13], [37], [38], [39], [40], [41], [42], which attempts to lo-

calize action instances, leveraging only video-level supervision.

However, both these fully and weakly supervised methods need

to observe the entire video, which is not available in the online

action detection task.

Online action detection: Different from offline action de-

tection, the goal of online action detection is to detect ongo-

ing actions from the observation of the current and past video

frames [16], [19], [20], [43], [44], [45], [46], [47]. Geest et

al. [44] defined the online action detection task for the first
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time and introduced the TVSeries dataset. Later, they also pro-

posed two-stream LSTM networks [16] to model the temporal

structure for online action detection. IDN [17] manipulated the

GRU cell to model the relationship between the current frame

and the past frames. Recently, Temporal Recurrent Networks

(TRN) [18] utilized LSTM blocks to anticipate future informa-

tion and proposed TRN cells to combine the predicted future

features with the current and past features to identify ongoing

actions. More recently, OadTR [20] replaced the LSTM-based

networks with a transformer-like architecture to encode the

observed frames in parallel with the multi-head self-attention

mechanism. Colar [47] considered historical frames as exem-

plars and utilized the exemplar consultation mechanism to model

long-term dependencies for the online action detection task.

GateHUB [48] introduced a model to more informatively lever-

age history and suppress background frames for online action

detection. MAT [49] developed a memory anticipation-based

approach, to address the online action detection and anticipa-

tion tasks. JOADAA [50] introduced a transformer encoder and

transformer decoder-based framework to perform online action

detection and action anticipation jointly.

However, since online action detection detects what is hap-

pening at each frame based on the available observations up

to the current time, a major challenge of this task is to detect

actions at a specific time that arrive with insufficient observa-

tions. To tackle this problem, in this work, we utilize the addi-

tional future frames available at the training phase and propose

a novel knowledge distillation framework for online action de-

tection, where a teacher network looks at more frames from

the future and the online student network distills the knowl-

edge from the teacher network for detecting ongoing actions

from the observations up to the current frames. During the in-

ference time, we only use the student network for online action

detection.

Knowledge distillation: Knowledge distillation is a popular

research topic in computer vision, which transfers knowledge

from a cumbersome teacher to a small student network. Hinton

et al. [51] first introduced the knowledge distillation concept

to transfer knowledge of a large teacher network as additional

supervision for training a smaller student network. Later, sev-

eral works [25], [52], [53], [54], [55] introduced the transfer

of soft-label distribution as knowledge, while some works [56],

[57], [58], [59] transferred intermediate features. Recently, a va-

riety of knowledge distillations such as graph-based knowledge

distillation [22], [60], contrastive knowledge distillation [61],

relational knowledge distillation [21], [62], and multi-modal

knowledge distillation [23], [63], [64], [65] were adopted in

different tasks.

More recently, some works [24], [66], [67], [68], [69] uti-

lized multiple powerful teacher networks (ranked by parame-

ter size) to guide a less-parameterized student network progres-

sively. You et al. [67] trained a thin student network by incorpo-

rating distillation from cumbersome multiple-teacher networks

for image classification. Park et al. [68] introduced a knowledge

distillation framework to transfer feature-level ensemble knowl-

edge from multiple teachers to a student network. Hao et al. [69]

incorporated a student model with a multi-level feature-sharing

structure that learns from multiple teacher models. [70] intro-

duced a progressive knowledge distillation mechanism for fast

sampling of diffusion models, which reduces the sampling time

of diffusion models by distilling a trained deterministic diffusion

sampler, using many steps, into a new diffusion model that takes

half as many sampling steps. They progressively applied this

distillation procedure to halve the number of required sampling

steps each time. [71] proposed a progressive knowledge distilla-

tion mechanism that transfers intermediate supervision signals

of a cumbersome teacher model into a lightweight student net-

work. [72] introduced a progressive self-knowledge distillation,

which progressively distills a model’s own knowledge by com-

bining the ground truth and the predictions from the preceding

iteration. This approach essentially involves the student model

transitioning into the role of the teacher. Xie et al. [73] proposed

a capacity dynamic distillation framework, the student model

is initially a heavy model to learn distilled knowledge fruit-

fully, and then the student model is gradually compressed. How-

ever, these progressive knowledge distillation mechanisms were

mainly adopted in image classification, retrieval, and generation.

However, there are not many literature studies on knowledge

distillation for online action detection. The privileged knowl-

edge distillation (PKD) [43] is the only method on knowledge

distillation for online action detection. PKD utilized multiple

teacher networks with different observations to guide a stu-

dent network, where all teacher networks are fully trained, i.e.,

high-level teachers. But, during the training of the student net-

work, there is usually a large knowledge gap between the stu-

dent network and the high-level teachers in the early training

iterations. Thus, we propose a novel progressive knowledge dis-

tillation from different levels of teachers (PKD-DLT), where in

addition to a high-level teacher, we also generate several low-

and middle-level teachers, and progressively transfer the knowl-

edge (in the order of low- to high-level) to the student network

throughout training iterations, for effective distillation. Table I

summarizes the innovations of our PKD-DLT compared to the

existing PKD.

III. METHOD

In this section, first, we introduce the problem statement

(Section III-A). Then, we present our vanilla knowledge dis-

tillation for online action detection (Section III-B). Finally, we

introduce our progressive knowledge distillation from different

levels of teachers for online action detection (Section III-C).

A. Problem Statement

Given a video stream that contains sequential various types of

actions, online action detection aims to detect ongoing actions

in real time without access to the video frames in the future.

Formally, given a streaming video sequence V = {v}0−L, our

task is to classify the action in the current frame v0 based on the

observation of the past L frames and the current frame. We use

y0 ∈ R
C+1 to represent the action and background classes of the

current frame v0, where there are a total of C action classes and

the (C + 1)th class represents the background class. We tackle
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TABLE I
EXISTING PRIVILEGED KNOWLEDGE DISTILLATION (PKD) [43] VS. OUR PROGRESSIVE KNOWLEDGE DISTILLATION FROM DIFFERENT LEVELS OF TEACHERS

(PKD-DLT) FOR ONLINE ACTION DETECTION

this problem by developing a novel progressive knowledge dis-

tillation framework that contains different levels of teachers to

guide a student network for detecting ongoing actions in an on-

line mode.

B. Vanilla Knowledge Distillation for Online Action Detection

The key concept of Knowledge Distillation (KD) for online

action detection is training a student network to distill the soft

targets (i.e., the labels that reduce the most confident value of the

one-hot-vector and assign a small amount of probability mass

to semantically similar actions) of a teacher network, where the

difference between the teacher network and the student network

lies in their corresponding input data rather than the network

architecture. Both the teacher and student networks can be any

state-of-the-art online action detection model, with KD as a plug-

in for the training mechanism. More specifically, our vanilla KD

is a two-stage approach:
� Firstly, we train a teacher network that detects ongoing

action from the observations of the past, current, and future

frames, T : {v}L−L → ỹT
0 , where ỹT

0 ∈ R
C+1 represents

the classification scores of the current frame v0 for the

teacher network.
� Secondly, we freeze the parameters of the teacher network

and transfer its predictive capability to the student network

through knowledge distillation. In other words, we train a

student network that distills the knowledge from the teacher

network and detects ongoing action from the observations

of the past and current frames, S : {v}0−L → ỹS
0 , where

ỹS
0 ∈ R

C+1 represents the classification scores of the cur-

rent frame v0 for the student network.

Since the teacher model observes more frames in the future

to make a decision, the soft target from the teacher model can

transfer “dark knowledge” containing privileged information

on similarity among different action categories to enhance the

learning of the student network. To achieve this goal, the vanilla

KD is formulated by minimizing the Kullback-Leibler (KL) di-

vergence between the prediction of the student and the teacher,

as follows:

LKD
T→S = KL(softmax(ỹS

0 /τ), softmax(ỹT

0 /τ)) (1)

where the right arrow in the subscript indicates the teaching

direction. τ is the temperature parameter to control the softening

of logits. In addition to the distillation loss, the student network

has its own online action detection lossLOAD
S

, which is usually a

cross-entropy loss between the predicted and ground-truth labels

of the current frame:

LOAD
S = CE(softmax(ỹS

0 ),y0) (2)

As a result, the student’s total loss is derived as follows:

LS = LOAD
S + LKD

T→S (3)

Please note that we only use the online action detection loss to

train the teacher network:

LT = LOAD
T = CE(softmax(ỹT

0 ),y0) (4)

C. Progressive Knowledge Distillation From Different Levels

of Teachers for Online Action Detection

Usually, in the KD framework, a high-level teacher network

is considered to guide the student network throughout all train-

ing iterations. But, at the early training stage, there is a large

knowledge gap between the student network and the high-level

teacher network. Therefore, using a single high-level teacher to

guide the student network throughout all training iterations may

not always guide the student properly. To remedy this, in this

paper, rather than only using a single high-level teacher, we also

generate several low- and middle-level teachers and progres-

sively transfer knowledge from different teachers to the student

network throughout training iterations for effective knowledge

distillation. More specifically, we design our progressive knowl-

edge distillation from different levels of teachers (PKD-DLT),

as follows:
� Similar to vanilla KD, we first train a teacher network

that detects ongoing action from the observations of the

past, current, and future frames. However, different from

vanilla KD, rather than only storing the parameters of the

high-level teacher, i.e., the parameters of the last training

iteration, we also uniformly store the parameters of several

low- and middle-level teachers. Formally, from N training

iterations, we uniformly select D number of teachers with

n = N/D training iteration gap between two consecutive
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Fig. 2. Illustration of our progressive knowledge distillation mechanism. In the first step, a teacher network is trained to detect the action of the current frame
from the observation of the past, current, and future frames. Rather than only storing the parameters of the high-level teacher, the parameters of several low- and
middle-level teachers are also stored uniformly with n training iteration gap to different levels of teachers. In the second step, a student network is trained to detect
the action of the current frame from the observation of the past and current frames. During the training, the student network progressively distills the knowledge
from different teachers in the order of low-level T1 to high-level TD teachers. For the first few iterations, the student network distills the knowledge from the
low-level teacher T1. As the training iterations continue, the student becomes more knowledgeable and gradually distills the knowledge from more higher-level
teachers and also distills the historic information from old teachers. During the inference, we only use the student network for our online action detection.

teachers. In other words, we store the parameters of the

first teacher T1 at the n-th iteration, the second teacher T2

at the 2n-th iteration, and so on.
� Secondly, we train a student network that takes only the

observed past and current frames as input and progressively

distills the knowledge throughout training iterations from

different teachers in the order of the low-level teacher T1

to the high-level teacher TD, to accurately detect ongoing

actions in real-time.

As shown in Fig. 2, to progressively distill the knowledge

from different teachers in the order of lower-level to higher-level

teachers, we first divide the N training iterations of the student

network into D chunks, where each chunk contains n = N/D
iterations. During the first chunk, i.e., training the student net-

work S[1:n] from iteration 1 to n, the student network distills the

knowledge from the low-level teacher T1. As the training iter-

ations continue, the student becomes more knowledgeable and

gradually distills knowledge from more higher-level teachers.

Although the student becomes more knowledgeable and gradu-

ally interacts with new teachers, we let the student not forget the

knowledge from old teachers. Therefore, in addition to distilling

the knowledge from a new teacher, the student network also dis-

tills the historic knowledge from old teachers. Formally, during

the training of thed-th chunk, the student networkS[(d−1)n+1:dn]

distills the knowledge from the d-th teacher Td and the historic

information from old teachers T1 to Td−1. This progressive

knowledge distillation process for D training chunks can be for-

mulated as:

LKD
S[1:n]

= LKD
T1→S[1:n]

LKD
S[(d−1)n+1:dn]

= λ1L
KD
H(T1,...,Td−1)→S[(d−1)n+1:dn]

+ λ2L
KD
Td→S[(d−1)n+1:dn]

, d = 2, . . ., D

(5)

where λ1 and λ2 are the balancing hyper-parameters. H repre-

sents the historic information from old teachers. More specifi-

cally, we obtain historic information from the fusion of the old

teachers’ logits, which generates a more smoothed label for reg-

ularization, as follows:

H(T1,T2, . . .,Tk) = αTk({v}
L
−L)

+
k−1
∑

i=1

(

1− α

k − 1

)

Ti({v}
L
−L) (6)

where α is a combination factor α ∈ [0, 1]. Finally, the student’s

total loss is derived as follows:

LS = LOAD
S +

D
∑

d=1

LKD
S[(d−1)n+1:dn]

, (7)
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whereLOAD
S

is from (2) and we use the OAD loss (4) to train the

teacher network. During the inference, we only use the student

network to detect the current ongoing actions from the observa-

tions of the past and current frames.

Note, our PKD-DLT may seem to be conceptually similar to

the moving-averaged KD. In moving-averaged KD, the teacher

is formulated from the student network. More specifically, the

teacher network is an average of consecutive student networks

throughout training iterations. However, the moving-averaged

KD is not an effective solution for online action detection. The

main reason is that when the student network detects an action

from insufficient observation, the teacher network will also need

to detect that action from insufficient observation, which may

result in a wrong detection for both networks. Thus, we pro-

pose a novel PKD-DLT, where a teacher network looks at more

frames from the future for sufficient observations and the stu-

dent network progressively distills the knowledge from different

levels of teachers for detecting actions from the observation up

to the current frames. During the inference, we only use the

student network to detect the current ongoing actions from the

observations of the past and current frames.

IV. EXPERIMENTS

A. Datasets

We conduct our experiments on two benchmark datasets that

are widely used in the community of online action detection:

THUMOS14 [74] and TVSeries [44].

THUMOS14 [74]: THUMOS14 has annotations for 200 val-

idation videos and 213 testing videos for the online action de-

tection task, which belong to 20 classes from sports videos. This

dataset includes drastic intra-category varieties, motion blur, sig-

nificant changes in the length of the action instances (from less

than a second to minutes), and many background frames, which

have diverse contexts and variations in motion patterns. All of

these properties make this dataset challenging for online action

detection. Following the literature [17], [19], [20], [75], we train

our model on the validation set and evaluate on the test set.

TVSeries [44]: TVSeries includes 27 episodes of 6 popular

TV series with a total duration of about 16 hours, which is an-

notated with 30 daily actions (e.g., run, drink, etc.). The online

action detection on this dataset is challenging since this dataset

contains many unconstrained perspectives, a large proportion of

background frames, and temporal overlapping action instances.

We follow the train-test splits provided by the dataset to evaluate

our method.

Evaluation metric: Following the literature [17], [18], [20],

[47], [76], we use per-frame mean average precision (mAP) and

mean calibrated average precision (mcAP) to evaluate the perfor-

mance of online action detection on THUMOS14 and TVSeries

datasets, respectively.

B. Implementation Details

Our proposed PKD-DLT can be used as a plug-in to any

state-of-the-art online action detection model. To show the

TABLE II
RESULTS ON THUMOS14

effectiveness of our PKD-DLT, we plug it into three latest on-

line action detection methods: OadTR [20], Colar [47], and

MAT [49]. For the feature extractor, following the literature [17],

[18], [20], [47], [76], we use the same two-stream network [77],

whose spatial stream adopts ResNet-200 [78] and temporal

stream adopts BN-Inception [79]. Similar to existing methods,

we report the performances of two experimental settings, where

the two-stream is pre-trained on either ActivityNet v1.3 [80]

(TSN-Anet) or Kinetics-400 [81] (TSN-Kinetics), for a fair

comparison. By validation, we set τ = 3, α = 0.8, n = 200,

λ1 = 0.2, λ2 = 0.7, and L = 63.

C. Comparison With State-of-The-Arts

In this subsection, we compare the performance of our pro-

posed PKD-DLT with other state-of-the-art methods on THU-

MOS14 and TVSeries datasets.

THUMOS14: Table II summarizes the results of existing state-

of-the-art online action detection methods on the THUMOS14

dataset. We plug our PKD-DLT into three latest online action

detection methods OadTR [20], Colar [47], and MAT [49]. As

shown in Table II, based on TSN-Anet features, our PKD-DLT

brings an mAP gain of +2.9% over OadTR [20], an mAP gain

of +2.7% over Colar [47], and an mAP gain of +2.4% over

MAT [49]. On the other hand, we also find that our PKD-DLT can

boost the performance of OadTR [20], Colar [47], and MAT [49]

by +2.6%, +2.2%, and +2.0%, respectively, when the compar-

ison is based on TSN-Kinetics features.
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TABLE III
RESULTS ON TVSERIES

TVSeries: We also conduct the same experiment on the

TVSeries [44] dataset to confirm the generality of the proposed

plug-in. As shown in Table III, for the TSN-Anet feature input,

we obtain performance gains of +1.4%, +1.1%, and +1.0%
by incorporating the proposed PKD-DLT into OadTR [20], Co-

lar [47], and MAT [49] respectively, while we also achieve im-

provements of +1.2%, +1.0%, and +0.8% over these three

methods, respectively, with the TSN-Kinetics feature input.

Performance under different action portions: Since one of the

most important characteristics of online action detection is to

detect an action at an early stage, we further verify the effective-

ness of our plug-in on existing methods at different action stages.

Table IV shows the online action detection performance on the

TVSeries dataset when different action stages are observed. For

example, the mcAP value within the action stage 40%–50%

represents how accurately the model can detect an action when

observing 40%–50% of the action. Since there are significant

changes in the length of the action instances (from less than a

second to minutes) in the THUMOS14 dataset, evaluating per-

formance across different action portions for instances that last

barely milliseconds becomes impractical. Therefore, following

the literature [17], [18], [20], [43], [47], we report the online

action detection performance under different action portions on

the TVSeries dataset. The results show that our PKD-DLT can

boost the performance of OadTR [20] and Colar [47] at all ac-

tion stages, for both the ActivityNet and Kinetics features. This

demonstrates the superiority of our PKD-DLT in improving the

online action detection performances at early stages as well as

all stages.

Existing knowledge distillation for online action detection vs.

our knowledge distillation: We compare our proposed knowl-

edge distillation method (PKD-DLT) with the latest knowledge

distillation-based method (PKD [43]) for online action detec-

tion. Note, the privileged knowledge distillation (PKD) [43] is

the only method for knowledge distillation in online action de-

tection so far. As shown in Table II to Table IV, our PKD-DLT

achieves superior performances compared to existing PKD [43]

on both THUMOS14 and TVSeries datasets, on all metrics. For

example, on the THUMOS14 dataset (Table II), our PKD-DLT

on Colar achieves 69.1% mAP, compared to PKD [43] with

64.5% mAP.

In terms of efficiency, the existing PKD [43] is also a time-

consuming process. It requires multiple fully trained teach-

ers, eventually leading to training the student network multiple

times. On the other hand, we generate different levels of teach-

ers from different training iterations, and the student network

also progressively distills the knowledge throughout training it-

erations. Therefore, we need to train both teacher and student

networks only once, which is a more efficient training process

compared to the existing PKD [43].

Moving-averaged KD vs. our PKD-DLT: Since our PKD-DLT

may seem to be conceptually similar to the moving-averaged

KD, we also compare our PKD-DLT with the moving-averaged

KD to show the effectiveness of our PKD-DLT over the moving-

averaged KD. For this comparison, we first plug the moving-

averaged KD into Colar [47], and then replace it with our

PKD-DLT. As shown in Table II and Table III, our PKD-DLT

achieves better performances compared to the moving-averaged

KD on both THUMOS14 and TVSeries datasets, respectively.

The key factor contributing to this performance improvement

lies in the difference in how the teacher networks operate. In

the moving-averaged KD, the teacher network is an average

of consecutive student networks throughout training iterations.

Therefore, if the student network detects an action based on in-

sufficient observation, the teacher network also identifies that

action with insufficient observation. In contrast, the teacher net-

work in our PKD-DLT examines more frames from the future,

ensuring sufficient observations. The student network then pro-

gressively distills knowledge from various levels of teachers,

which results in more effective distillation and, consequently, a

notable improvement in detection performances. For example,

on the THUMOS14 dataset (Table II), our PKD-DLT on Colar

achieves 69.1% mAP, outperforming the moving-averaged KD

on Colar, which attains 67.5% mAP.

D. Ablation Study

Ablation study on different numbers of iteration gaps: We

conduct experiments to examine how different iteration gaps

between two consecutive teachers (i.e., parameter n in Fig. 2)
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TABLE IV
RESULTS ON TVSERIES WHEN ONLY PORTIONS OF ACTIONS ARE CONSIDERED (E.G., 40%−50% MEANS ONLY FRAMES OF THIS RANGE OF ACTION INSTANCES

ARE USED TO COMPUTE MCAP AFTER DETECTING CURRENT ACTIONS ON ALL FRAMES IN AN ONLINE MANNER)

TABLE V
ABLATION STUDY ON DIFFERENT NUMBERS OF ITERATION GAPS

affect online action detection performance. As shown in Table V,

when the iterations gap is relatively small (e.g., 50), the knowl-

edge gap between two consecutive teachers is not significant and

the performance gain from multi-level teachers is relatively low.

As the iteration gap gradually increases, the teachers become

more knowledgeable compared to their predecessors, and per-

formance improves. However, when it exceeds a specific value

(e.g.,n = 200), there is a large knowledge gap between two con-

secutive teachers, eventually, a large knowledge gap between the

student and teacher, which results in a distillation performance

drop.

Memory efficiency and computational cost: Since we save

model parameters for different levels of teachers, memory con-

sumption can be a concern. However, we utilize a uniform sam-

pling strategy to save the parameters of several teachers, which

does not take up a lot of memory. For instance, the teacher

network consists of 75.8 million parameters, which takes ap-

proximately 300 MB of memory. From N (1400 in our experi-

ment) training iterations, we only save the parameters ofD (e.g.,

7) teachers with n = N/D (e.g., 200) iteration gap between

two consecutive teachers. This approach necessitates approxi-

mately (N/n× 300) (e.g., 2.1GB) of memory. We perform the

analysis of memory consumption across various numbers of it-

eration gaps in Table V.

On the other hand, in our PKD-DLT, both the teacher and

student networks should be trained, which brings extra compu-

tational costs compared to directly training the student network.

On average, the training time for PKD-DLT is about 2× to train a

student network without KD. It takes approximately 60 minutes

to train our network on THUMOS14 with a single Tesla V100

GPU. We only use the student network during the inference for

OAD. Thus, our approach has the same inference complexity as

the student network without KD.

Effects of different levels of teachers: We perform experiments

to examine how different levels of teachers affect the student

within training chunks, as shown in Table VI. To teach a student

network at each training chunk d, we consider five different

groups of teachers:
� H(T1, . . .,Td−1): the fusion of old teachers
� Td−1: the old teacher only from the previous chunk
� Td: the current teacher
� Td+1: the future teacher only from the next chunk, and
� H(Td+1, . . .,TD): the fusion of future teachers

The top set in Table VI summarizes the results where the

student network distills knowledge from a single category of

different teacher levels. We find that the student distills better

knowledge from the corresponding current teacher due to the

relatively smaller knowledge gap between them. For example,

as analogous to K-12 education, normally, a student in a mid-

dle school learns the best from a teacher well-trained for mid-

dle school education, compared to other levels of teachers. On

the other hand, the bottom set in Table VI summarizes the re-

sults in which the student network distills the knowledge from

the combination of different levels of teachers. In this scenario,

we find that the knowledge from the current teacher and the
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TABLE VI
EFFECTS OF DIFFERENT LEVELS OF TEACHERS

TABLE VII
ABLATION STUDY ON TEACHERS WITH DIFFERENT FUTURE OBSERVATIONS

TABLE VIII
EFFECTIVENESS OF OUR PKD-DLT OVER VANILLA KD

historical knowledge from old teachers lead the student to

achieve better performance (e.g., a student in a middle school

will learn from the teacher in middle school, in the mean-

while, the student should not forget the knowledge learned from

teachers in elementary schools). By obtaining historical knowl-

edge through the fusion of old teachers’ logits, we produce a

more smoothed label for regularization, which improves perfor-

mances.

Ablation study on teachers with different observations: We

further perform experiments to examine how teacher networks

with different future observations affect the student network, as

shown in Table VII. As the teacher network looks at more frames

from the future, it can successfully detect action by capturing

long-range temporal structures with sufficient observations of

that action. However, when the observation of more frames from

the future exceeds a certain number, distractive observations

may occur. We achieve the best performance from the teacher

that observes 64 more frames in the future.

Effectiveness of PKD-DLT over vanilla KD: As shown in

Table VIII, we conduct experiments to justify that using a single

high-level teacher to guide the student network throughout all

training iterations (i.e., vanilla KD) may result in poor distilla-

tion compared to our PKD-DLT. Please note that the vanilla KD

in Table VIII is not from previous works. It is also formulated

from our knowledge distillation framework. For our vanilla KD,

we only distill the knowledge from the high-level teacher net-

work, while we progressively distill the knowledge from low-

to high-level teacher networks for PKD-DLT. The results in

Table VIII support this claim across various scenarios:
� Different Datasets: We evaluate performances on the THU-

MOS14 and TVSeries datasets to show the superior perfor-

mances of our PKD-DLT over vanilla KD across diverse

datasets.
� Different Models: To compare the effectiveness of our

PKD-DLT over vanilla KD, we plug vanilla KD and

PKD-DLT into different online action detection methods,

OadTR [20] and Colar [47].
� Different Features: We use TSN-Anet and TSN-Kinetics

features to show the effectiveness of our PKD-DLT over

vanilla KD across diverse features.

These comprehensive experiments demonstrate that the

vanilla KD, i.e., using a single high-level teacher to guide the

student network throughout all training iterations, results in poor

distillation compared to our PKD-DLT.

E. Qualitative Results

As shown in Fig. 3, we visualize some online action de-

tection results, where we visualize the detection results for

three settings: (i) detection results for the student network (i.e.,

OadTR [20]) without knowledge distillation (KD); (ii) detection

results for the student network with our vanilla KD; and (iii)

detection results for the student network with our PKD-DLT.

As shown in Fig. 3, the student network without KD roughly

detects actions with some false positives and false negatives.

Since the student network without KD learns to detect ongoing

actions from insufficient observations (i.e., observations of the

past and current frames), it incorrectly treats some background

frames as action and some action frames as background, which

results in false positive and false negative errors. In contrast, the

student network with our vanilla KD and the student network

with our PKD-DLT learn to detect ongoing actions by distilling

knowledge from the teacher network that looks at more frames

(i.e., the past, current, and future frames) for sufficient observa-

tions. Therefore, as shown in Fig. 3, the student networks with

our vanilla KD and our PKD-DLT improve the detection perfor-

mance compared to the student network without KD by detecting

more action instances and suppressing more background-related

frames. On the other hand, our PKD-DLT outputs more precise

detection than the student network with our vanilla KD, which

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 29,2025 at 15:25:03 UTC from IEEE Xplore.  Restrictions apply. 



MONIRUZZAMAN AND YIN: PROGRESSIVE KNOWLEDGE DISTILLATION FROM DIFFERENT LEVELS OF TEACHERS FOR 1535

Fig. 3. Qualitative results. With many background frames, the video (a) and (b) contain multiple instances of “Throw Discus” and “High Jump” actions,
respectively. We visualize the detection results for three settings: (i) detection results for the student network without knowledge distillation (KD); (ii) detection
results for the student network with our vanilla KD; and (iii) detection results for the student network with our PKD-DLT.

Fig. 4. Failure cases. (a), (b), and (c) contain sample frames of “Baseball
Pitch”, “Frisbee Catch” and “Billiards” actions, respectively. Magenta boxes
indicate where the action of interest is being performed.

validates the effectiveness of knowledge distillation from differ-

ent levels of teachers compared to the distillation only from a

high-level teacher.

F. Failure Analysis and Future Work

Although we achieve state-of-the-art performances, the online

action detection performance is not 100% correct yet. In Fig. 4,

we visualize some sample frames for which we get incorrect

detection. Most of the failure cases are from: (1) Barely visible

action. The action in which the subject (i.e., the person who is

performing the corresponding action) is very far away from the

camera (e.g., Fig. 4(a) and (b)); and (2) Tiny motion. The action

incurs only tiny movements, as shown in Fig. 4(c).

In this work, we plug our PKD-DLT into the recent online

action detection models: OadTR [20] and Colar [47], which are

capable of capturing long-range temporal structures. Motivated

by the failure cases, in the future, we will first develop an online

action detection model to capture long-range structures in both

spatial and temporal domains, and then plug our PKD-DLT into

that model.

On the other hand, recent advancements with large founda-

tion models like GPT-4 V have demonstrated impressive ca-

pabilities in visual tasks. The potential applications of em-

ploying these models in online action detection tasks include:

(i) Feature Extraction: Pretrained large foundation models can

provide rich, high-dimensional feature representations essential

for online action detection; (ii) Multimodal Integration: Large

foundation models can integrate visual information with other

data sources, such as audio, to enhance the performance of

online action detection; and (iii) Pretrained large foundation

models can be fine-tuned on task-specific datasets to improve

performance of online action detection. However, achieving

real-time processing of video frames is crucial for online action
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detection. By progressively distilling knowledge from large

models into smaller ones, we can develop efficient student mod-

els that maintain high performance while demanding fewer com-

putational resources.

V. CONCLUSION

We propose a novel progressive knowledge distillation from

different levels of teachers (PKD-DLT) for online action de-

tection. Rather than using a single high-level teacher network

to guide a student network throughout all training iterations,

we also generate several low- and middle-level teachers, and

progressively transfer the knowledge from different levels of

teachers to the student network throughout training iterations.

Experimental results on two challenging datasets demonstrate

that our PKD-DLT is an effective plug-in to improve the perfor-

mances of previous online action detection methods and achieve

state-of-the-art.
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