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Abstract

The Simulating eXtreme Spacetimes Collaboration’s code SpEC can now
routinely simulate binary black hole mergers undergoing ~25 orbits, with
the longest simulations undergoing nearly ~180 orbits. While this sounds
impressive, the mismatch between the highest resolutions for this long simu-
lation is O(10~!). Meanwhile, the mismatch between resolutions for the more
typical simulations tends to be O(10~#), despite the resolutions being similar
to the long simulations’. In this note, we explain why mismatch alone gives an
incomplete picture of code—and waveform—aquality, especially in the context
of providing waveform templates for LISA and 3G detectors, which require
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templates with O(10%) — O(10°) orbits. We argue that to ready the GW com-
munity for the sensitivity of future detectors, numerical relativity groups must
be aware of this caveat, and also run future simulations with at least three
resolutions to properly assess waveform accuracy.

Keywords: gravitational wave, black hole, binary black hole,
numerical relativity, mismatch

1. Introduction

Gravitational wave (GW) science, whether it be analysis of observed data, or quantifying wave-
form models’ predictions, requires an inner product on the space of waveforms. The standard
choice is a weighted L?(RR) inner product’ called the overlap, where for two waveforms /; and
h,, the overlap is

O(/’lhhz) = <h1,h2> = 4Re/oo Mdﬁ (1)

0 S (f)

where tildes represent the Fourier transform, * represents complex conjugation, and S,(f) is
the power spectral density of the strain noise for some GW detector [2-5]. This is a natural
choice for an inner product, appearing in the Gaussian log-likelihood, and giving the optimal®
signal-to-noise ratio (SNR) for a waveform A(?),

> h()?
Sn(f)

When comparing waveforms, however, the overlap is often replaced by the mismatch

M(huhz):l—M- 3

(h1,h1) (ha, ha)

Note that this is often defined with an implicit optimization over time and phase, which we
do not explicitly include (see appendix for more discussion). Whereas overlap measures the
similarity between two waveforms, mismatch measures the dissimilarity of two waveforms in
a scale-invariant way [7]. Mismatch is a useful measure because by inserting equation (2) into
equation (3) and expanding to leading order in 64 = hy — hy with ||04]| < || 2], one finds

o= Il = =4 | df @)

(6hy ,6hy) _ (6h,6h)
M (hy,hy) ~ 2 < 27 )
where
h < h >
Sh, = o6h— Oh ). 5)
- RN

7 Strain waveforms with memory effects are infrared (IR) divergent and hence not square-integrable with the standard
L? norm, i.e. with S, = 1. With detectors, this is not a problem since 1/S;, — 0 as f — 0. Moreover, since the overlap
is computed with some cutoff fi,in > 0, this is not an issue. Alternatively, one can instead use the news (the first time
derivative of the strain) which is IR-finite. See [1] for improved methods of Fourier transforming waveforms with
memory.

8 For the matched filtering SNR, see, e.g. equations (109) and (110) in [6].
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Consequently, one can use the mismatch as a kind of distinguishability criterion when compar-
ing two waveforms or two models’ predictions. That is, two waveforms cannot be distinguished
if (see appendix G of [8] or [9])

D
where D is the number of dimensions that your two waveform models depend on, e.g. 9 for bin-
ary black hole (BBH) mergers®. This criterion can also be used for testing Einstein’s equations,
in which case one should study the mismatch between a beyond-GR model and a set of approx-
imate GR solutions. It is crucial that the approximate solutions’ errors (e.g. analytical or numer-
ical truncation errors) are also smaller than this criterion, in the sense explained in section 2.

The mismatch is clearly foundational in GW science. However, it comes with many
caveats—see appendix for a brief discussion. In this paper, we highlight one issue: how mis-
match depends on the length of a numerical relativity (NR) waveform.

2. Results

One area of GW science where mismatch is used extensively is NR, where the mismatch is used
to determine if an NR simulation is accurate enough to be used to analyze GW observations.
To quantify our truncation error, we run multiple NR simulations of the same system at two or
more resolutions, resulting in two waveforms, /s 1 2, and then compute M (fyes 1, fires.2). How
small must this be? As an example, suppose a detector is expected to observe BBH mergers
with SNRs of p = 10; then equation (6), with D =9, says the truncation error is sufficiently
small when

M (hres. 1 7hres.2) ,S 4.5 x 1072 . (7)

Consequently, it is often unfortunately assumed in the NR community that if a simulation can
be run that achieves this mismatch, then the NR code is ready to produce waveforms for the
detector in question. In reality, an NR code must achieve this mismatch over the detector’s
entire frequency range'®. Furthermore, as we will show now, even if one can run an NR sim-
ulation that achieves a target mismatch, this does not imply that the same mismatch can be
achieved for a longer simulation.

We consider the regime where our simulations are converging well enough that we can treat
the amplitude and phase errors as small. We write the waveform of one resolution in terms of
another,

)= (14580 0t 0. ®

This parameterization is completely general, but particularly useful when the waveforms are
similar. Here the phase error d¢(¢) as well as the fractional amplitude error (JA/A)(r) are
both real functions. Amplitude errors tend to be bounded, while phase errors are secular and

9 These 9 parameters are the mass ratio, two three-dimensional spin vectors, and the eccentricity and mean anomaly.
The extrinsic parameters are not included in D, as they are model-independent.
10 There is a slight caveat to this that we explain at the end of this section.
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steadily accumulate as simulations run for a long time'!. Thus, phase errors dominate for
sufficiently long binary simulations. Now we estimate the time-domain overlap between these
two resolutions, using a flat noise curve S, = 1, over the time interval [#{,,]. While the overlap
in equation (1) is defined in the frequency domain, we stress that because of Parseval’s theorem,
performing this integral in the time domain is equally valid and we do so to avoid tapering
complexities that are necessitated by Fourier transforms. This overlap, distinguished from its
frequency-domain counterpart by a subscript ¢, is

n 6 A .

O; (hres.l 5 hres.Z) = 4Re/ (1 + A> 615¢|hres.l |2 dr. )
n

As the phase error is supposed to be notably small, we Taylor expand the exponential. Keeping

in mind that we take the real part of the integral, and everything else in the integrand is real,

we must go to second order,

(6(;5 (0)2 ‘hres.l |2 dr. (10)

r 0A _ 1
Ot (hres.lahresl) ~ 4Re/ I+ X (t) + 16925 (t) - E

il
For sufficiently long waveforms, phase errors dominate over amplitude errors, and keeping
only the real part yields,

15 1
Ot (hresAlahres.2) ~ 4/ |:1 - E (5¢ (t))2:| |hres,1 |2dt, (11)

151

== Oz (hre&] 7hres.l) - 2/ (5¢ (t))z |hres.l |2dt- (12)

131

Converting this to a mismatch, we find

2 f
My (s 1) % = / (66(6)) Jhresr (1) Pt (13)

h

where p? = O; (hyes.1, hres1) = 4 f[? |hes.1 (1) dt. The integrals in the numerator and denomin-
ator both grow with the length of the interval |¢, — #;|. However, the numerator has the extra
factor of (6¢)(¢))?, making it grow faster. As a simple estimate, suppose we take the phase error
to be a linear function of time, d¢ (1) = (¢t —1,)(dd¢/dt)|,,, where t, € [t1,1,] is some alignment
time. Now our mismatch is approximated as

2 (dop| \* (" > 2
res. 1y ftres. ~ | —ta hres.
Mulhssoton) % (G2] ) [ 0=t s ()P
dég| \’ 2
—_— h—t 14
O<( & u) |t — 1], (14)

where we kept the asymptotic scaling as |t, — #,| grows very large. The integral can be per-
formed asymptotically with, e.g. a post-Newtonian (PN) waveform. This shows that, assuming
the main error in NR simulations is a small phase error, the mismatch will tend to increase with
the square of the length of the simulation.

11 In the study of orbital dynamics it is typical to use symplectic integration methods that are able to drastically reduce
such errors (often O(A#?) smaller than the integration method) because they preserve the Hamiltonian dynamics
exactly [10-15]. It is not currently known if or how to do this for NR simulations of BBH mergers.
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Figure 1. Comparison of waveforms from different resolutions for SXS:BBH:1132: a
quasi-circular, equal-mass, and non-spinning simulation from the SXS catalog. The left
panels are for the two highest resolutions, while the right panels are for the next two
highest resolutions. The top panels show the mismatch between the waveforms when
truncated at time #;, while the middle and bottom panels show the (2,2) mode’s amp-
litude and phase error. The full simulation (black) has length ~25 000 M, and we trun-
cate to lengths of ~15 000 M (blue, dashed) and ~2500 M (green, dotted) to demonstrate
the effects of simulation length. Waveforms between different resolutions are aligned to
each other by optimizing over a time translation and an SO(3) rotation.

In figure 1 we first show an example illustrating that the dominant resolution error in NR
simulations tends to be the binary phase error. In figure 1 we show the (2,2) mode amplitude
and phase errors between the two highest resolutions for the Simulating eXtreme Spacetimes
(SXS) Collaboration’s simulation SXS:BBH:1132 [16]. We also show how these errors change
as one changes the effective length of the simulation, by removing inspiral data from each
resolution’s waveform. While the amplitude error for each of the two resolution pairs is roughly
consistent and below the square root of the mismatch'?, the phase error can be notably large.
Meanwhile, in the top panel of figure 1, we show the mismatch between the two resolutions’
waveforms. Here, and in subsequent plots, the mismatch is computed by integrating over the
two-sphere rather than by evaluating the strain waveforms at some arbitrary point. As one
decreases the effective length of the simulation, the mismatch correspondingly decreases, even
though the amplitude and phase errors are similar to the comparison in which the numerical
waveforms are longer. Note that here, and in subsequent figures, mismatch is computed by
integrating the strain over the two-sphere.

In figure 2 we further illustrate this point regarding the length dependence of the mismatch.
Each point in this figure represents taking waveforms from two resolutions, truncating them
so that their length prior to the simulation’s common horizon time is some #;, minimizing
the L2 norm of their residual over the two-sphere by optimizing over a time translation and
an SO(3) rotation'?, and then computing a mismatch between ¢; and some fixed time in the

12 Note that mismatch goes as the residual squared; see equation (4).
13 For an explanation of why this is done, see appendix.
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Figure 2. Mismatch between waveforms from different resolutions for two simulations
from the SXS catalog as a function of the length of the waveform. Solid lines correspond
to the mismatch between the two highest resolutions, while dashed lines correspond to
the mismatch between the next two highest resolutions. Waveforms between different
resolutions and for different trunctations are aligned to each other by optimizing over a
time translation and an SO(3) rotation.

late ringdown phase relative to fcommonhorizon- L NiS Optimization is performed numerically using
scipy’sminimize function via the sxs package [17, 18]. Both simulations are quasi-circular,
non-precessing systems. As can be seen, by making each simulation ‘shorter’, one can decrease
the mismatch by many orders of magnitude. Equation (14) predicts that on a log-log plot like
figure 2, we would see a slope of roughly —2, and indeed using scipy’s curve_£fit we find
slopes in good agreement with this prediction.

At this point, one may worry that the results of figure 2 as well as the M < 10~® mismatch
requirement of LISA (i.e. an SNR of p ~ 1000 in equation (6)) seem to suggest that current
NR codes are no where near accurate enough to simulate the O(10?) orbit binaries that future
detectors will observe. We stress, however, that this concern is partially resolved by utilizing
PN hybridizations [19]. Specifically, provided one can run a simulation long enough such that,
over its length it is accurate to M < 10~ and over a comparison window the NR/PN hybrid
is accurate to M < 107° and PN itself before the window is accurate to M < 107°%!4, then
one need not actually simulate O(10?) orbits. Thus far some work has been done to study how
feasible this is. In particular, [19] has shown that many of the simulations produced by the SXS
collaboration can obtain hybridization mismatches < O(10~°) for spin-aligned systems and
< 0(1072) for precessing systems, with the primary limitations being residual eccentricity
and the lack of higher-order PN spin terms. Thus, with more accurate eccentricity control and
higher-order PN terms, and perhaps even aid from the effective-one-body framework [20], it

14 To measure this, one unfortunately needs to compare to a long NR simulation. But performing this comparison for
one point in the more complicated region of parameter space is likely sufficient to claim that PN (at whatever PN
order one has) is sufficiently accurate for modeling purposes.
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is likely that PN hybridizations can ready the community for future detectors without the need
to push NR to be able to accurately simulate the entirety of O(10%) orbits'>.

3. Discussion and conclusions

In this Note, we highlight a commonly overlooked feature of the waveform mismatch: its
dependence on the length of an NR simulation. In particular, by assuming that two waveforms
differ by some small phase error—as is the case for waveforms from different resolution NR
simulations—we showed analytically that the mismatch tends to increase with the square of
the length of the simulation. Moreover, by examining simulations from the SXS collaboration,
we showed that this increase in mismatch can be as large as a three orders of magnitude when
increasing the length of a simulation by ~100000M or ~100 orbits. Consequently, demon-
strating that a relatively short simulation is accurate to within a target mismatch is not sufficient
to claim a NR code’s accuracy for much longer simulations, i.e. those which are required for
spanning the entire frequency band of future GW detectors.

This shows that NR groups have much to achieve to be prepared for the next era of GW sci-
ence [22, 23]. There are now many independent NR simulation catalogs [16, 24—-36], but most
only provide a single resolution for each system. We encourage future catalogs to provide at
least two, preferably three, resolutions so that their truncation errors can be quantified. We also
point out that there are many important studies that one can pursue to help prepare us for next-
generation sensitivities: better control of eccentricity in simulations, improving the accuracy
of PN waveforms with more terms and effective-one-body calculations, and extending mass
ratio coverage with gravitational self-force.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://data.black-holes.org/simulations/index.html.
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Appendix. Other mismatch caveats

The GW literature contains varying degrees of parameter minimization when computing wave-
form mismatches. Above, we only (implicitly) considered time and SO(3) rotations of two
fixed waveforms. At a different extreme, in the context of GW detectability, one only cares
if any template has a high overlap with a signal, so one might minimize mismatch over
both extrinsic parameters (e.g. time translations, rotations of the source, and GW polarization
angle (rotations about the line of sight to the source)) and intrinsic parameters (e.g. masses,
spins, eccentricity), regardless of how close the template parameters are to the true source
parameters.

A more subtle question is how to use mismatch to quantify the similarity of waveform
models themselves, apart from detectors that live at one point on the source’s celestial sphere.
A waveform model is effectively a map f: X — F(ZT) where X is our parameter space (e.g.
the 9-dimensional space of BBH mergers), Z* is future null infinity, which topologically is
$? x R; and F(Z) is some appropriate function space (e.g. twice differentiable for the Weyl
curvature scalars to exist; with square-integrable news for the memory to be finite). The overlap
integral can be taken over the two-sphere, providing a metric on the function space (modulo
the minor convergence issue related to memory effects mentioned in footnote 7).

Now we can ask how similar are two models f, g. Unfortunately this is not as simple as
sup,cx M (f(x),g(x)) where sup is the supremum, because the two models f and g may have
different meanings for the parameters; see the discussion of figure 1 in [19]. We can allow
for different parameter definitions as follows. For some fixed waveform f(x) we can find the
‘shortest distance’ from the image of g by finding M (f(x), g) = infyex M (f(x),g(x")), where
inf is the infimum. Doing this for all x € X, we can find the point in the image of f whose
shortest distance is greatest, sup, .y M (f(x),g). Similarly, reversing the roles of f and g, we
can find the point in the image of g whose shortest distance to the image of f is greatest—this
need not be the same pair of points. Finally we take the larger of the two mismatches. This is
the Hausdorff distance between the images of f and g. Unfortunately, this is only practical on
a discrete subset A C X, but is still a useful measure of the similarity of f and g.

Finally, one might consider waveforms on Z* to be in equivalence classes of future null
infinity’s asymptotic symmetry group, i.e. the Bondi—van der Burg—Metzner—Sachs (BMS)
group [37-42]. Some of these BMS transformations are clearly physically meaningful across
the set of all binary merger observations—for example, each merger happens at a specific
time, so it can not be translated to a different time. However in the model, we have a Universe
with only a single GW source. The action of BMS on the function space F(Z7) gives gauge-
equivalent orbits, so a measurement of model similarity should be a Hausdorff distance on
the quotient space F(ZT)/BMS. Note that this is partially achieved when performing the
optimizations described earlier, i.e. optimizing over time translations, source rotations, and
GW polarization angle, but one should also include the Lorentz boost and supertranslation
transformations.
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