
Query Complexity of Stochastic Minimum Vertex

Cover

Mahsa Derakhshan #

Northeastern University, Boston, MA, USA

Mohammad Saneian #

Northeastern University, Boston, MA, USA

Zhiyang Xun #

University of Texas at Austin, TX, USA

Abstract

We study the stochastic minimum vertex cover problem for general graphs. In this problem, we
are given a graph G = (V, E) and an existence probability pe for each edge e ∈ E. Edges of G are
realized (or exist) independently with these probabilities, forming the realized subgraph G. The
existence of an edge in G can only be verified using edge queries. The goal of this problem is to find
a near-optimal vertex cover of G using a small number of queries.

Previous work by Derakhshan, Durvasula, and Haghtalab [STOC 2023] established the existence
of 1.5 + ε approximation algorithms for this problem with O(n/ε) queries. They also show that,
under mild correlation among edge realizations, beating this approximation ratio requires querying
a subgraph of size Ω(n · RS(n)). Here, RS(n) refers to Ruzsa-Szemerédi Graphs and represents the
largest number of induced edge-disjoint matchings of size Θ(n) in an n-vertex graph.

In this work, we design a simple algorithm for finding a (1 + ε) approximate vertex cover by
querying a subgraph of size O(n · RS(n)) for any absolute constant ε > 0. Our algorithm can tolerate
up to O(n · RS(n)) correlated edges, hence effectively completing our understanding of the problem
under mild correlation.
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1 Introduction

We study the stochastic minimum vertex cover problem. In this problem, we are given an

arbitrary n-vertex graph G(V, E) and an existence probability pe for each edge e ∈ E. Edges

of G are realized or exist independently, with their corresponding probability forming the

realized subgraph G. While G is unknown, one can query an edge e ∈ E to see if this edge

exists in G. The goal is to find a near-optimal vertex cover of G by querying a small subset

of E.

There is extensive literature studying various graph problems in this stochastic setting,

such as minimum spanning tree [21, 22], all-pairs shortest paths [24], and maximum match-

ing [13, 5, 12, 25, 3, 6, 9, 10, 8, 16, 15]. The stochastic vertex cover for general graphs was

first studied by Blum, Behnezhad, and Derakhshan [7]. They provided a 2-approximation

algorithm with O(n/p) queries where p = mine∈E pe. Later, this approximation ratio was

improved to 1.5 + ε by the work of Derakhshan, Durvasula, and Haghtalab [14] with O(n/εp)
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41:2 Query Complexity of Stochastic Minimum Vertex Cover

queries. Even though these stochastic settings are primarily concerned with information-

theoretical questions, this was the first work to provide positive results for a computationally

hard problem. However, the key unresolved question remains:

▶ Question 1. How many non-adaptive edge queries are needed to find a (1+ε)-approximation

to the minimum vertex cover problem in the stochastic setting?

In this paper, we take a step toward answering this question. We design a simple

algorithm and establish a relation between the number of queries it makes and the density

of a well-known class of graphs called Ruzsa-Szemerédi Graphs (Definition 2). Our number

of queries matches the lower bound of Derakhshan, Haghtalab, and Durvasula [14] for the

number of queries needed to surpass a 1.5-approximation in the presence of O(n) correlated

edges.

▶ Definition 2 (Ruzsa-Szemerédi Graphs [23]). An n-vertex graph G(V, E) is an RSn(r, t)

graph if its edge set E can be decomposed into t edge-disjoint induced matchings of size r.

We use RSn(r) to denote the maximum t for which RSn(r, t) exists.

Our main result is formalized in the theorem below.

▶ Result 3. Given any ε ∈ (0, 1) let t be RSn(cn) for c = ε2

128 . There exists an algorithm that

queries a subgraph of size O(tn/p) and finds a vertex cover with the expected approximation

ratio of (1 + ε).

Proving lower and upper bounds parameterized by the density of RS-graphs has been of

interest in various communities, such as dynamic algorithms [11, 4], streaming algorithms [20,

1, 2], property testing [17], and additive combinatorics [19]. Despite this, our understanding

of their density remains incomplete. What we currently know is:

nΩc(1/ log log(n))
[17]
f RSn(cn)

[18]
f n/ log(O(log(1/c)))

where log(x) is the x-iterated logarithmic function. Our result is most interesting if the

lower-bound turns out to be tight. In such a case the number of edges queried by our

algorithms is

|Q| = O(n1+Ωc(1/ log log(n))/p) = O(n1+o(1)/p).

On the opposite end, if the actual density of RSgraphs is closer to the known upper-bound,

our result implies |Q| = O( n2

p logO(log(1/c)) ).

1.1 Technical Overview

We first design an algorithm with an additive error of at most εn in Section 2 and later show

how it can be modified to obtain the (1 + ε) approximation ratio. To choose which edges to

query we rely on a parameter ce defined for any edge e ∈ E as follows:

ce = Pr[e has an end-point in OPT],

where OPT = MVC(G). In this definition, the randomization comes from the realization

of G and MVC(.) is a fixed algorithm which returns the minimum vertex cover of a given

graph. Basically, ce is the probability with which an edge e ∈ E is covered by MVC(G).1

1 Since we are not concerned with computational efficiency, we assume ces are known. Regardless, similar
to [14], our results can also be obtained with the estimated value of ces calculated using polynomially
many calls to the MVC oracle.
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Given a parameter τ ∈ (0, 1) whose value we fix later, we set Q, the subgraph that we

query, to be the subgraph of edges with ce f 1 − τ . I.e.,

Q = {e ∈ E : ce f 1 − τ}.

Since we need the output to be a valid vertex cover, our final solution also needs to cover

all the edges that we do not query. Let us denote this subgraph by H = G − Q. Therefore,

after we query Q and see its realization Q, the most straightforward way of finding a small

vertex cover is to output MVC(Q ∪ H). However, for the sake of analysis, we need to design

an alternative algorithm for finding a vertex cover of Q ∪ H. We formally explain this in

Algorithm 1 and briefly explain the overall ideas below.

After querying Q and observing its realization Q, we also hallucinate the edges in H

to get H. The hallucinated subgraph H is a random realization of H containing each edge

independently w.p. pe. We then let P1 = MVC(Q ∪ H) and commit all its vertices to the

final solution. Next, we pick another set of vertices, P2, to cover all the edges in H that were

not covered by P1. That is, P2 = MVC(H[V − P1]). We finally output P1 ∪ P2. This clearly

covers both Q and H and is a valid solution. The extra step of hallucinating H is to ensure

that P1 has the same distribution as the optimal solution (see Claim 8). This gives us two

properties:

1. The expected size of P1 is the same as OPT. To analyze our approximation ratio, it

suffices to upper-bound E[|P2|].

2. For any edge e ∈ H, we have Pr[e not covered by P1] = 1 − ce. Since by our choice of Q,

the edges in H = G − Q all have ce g 1 − τ . This implies that any edge in H remains in

H[V − P1] w.p. at most τ .

Having this, we argue that if the expected size of the solution P1 ∪ P2 is more than

E[OPT] + εn, then we have |P2| g εn. This means that the subgraph R = H[V − P1] has a

large minimum vertex cover and, consequently, a large maximum matching. Now, suppose

we draw T independent subgraphs of H from the same distribution as R and call them

R1, . . . , RT . (We can do so by running our algorithm on T different hallucinations of G (see

Definition 4).)

From each Ri, we take the maximum matching of it to be Mi, and from Mi, we delete

all the edges present in at least one other Rj for j ≠ i. We show that this gives us a set of

induced matchings. Notice that since we have that any edge is present in Ri with probability

at most τ , we can argue that deleting the edges present in other Rj ’s will not reduce the size

of Mi significantly for a choice of T = 1
2τ . Therefore, we conclude that if E[|P2|] is greater

than εn, we can find a dense RS-graph in H. Finally, by carefully choosing τ = 1/3t, where

t is RSn(εn/8), we argue that Algorithm 1 has an additive approximation of at most εn.

In Section 3, we explain how we can modify this algorithm and design our (1+ε) algorithm

Algorithm 3. The main difference is that we pre-commit a subset of vertices to the final

solution at the beginning of the algorithm. These vertices are the ones that have a high

chance of being in OPT; therefore, including them does not significantly increase the size of

the output. This allows us to argue that the optimal solution on H is large enough to allow

us to turn the additive error into a multiplicative error.

1.2 Preliminaries

Throughout the paper, we denote the input graph as G = (V, E), where |V | = n. From this

input graph, we have each edge e present in G independently with probability pe. We denote

the minimum value among all pes to be p. Given a small constant ε > 0, our goal is to query

a sparse subgraph of G represented by Q non-adaptively and find a (1 + ε) approximate

minimum vertex cover of G.

ITCS 2025
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We let MVC() be a fixed algorithm which given any graph outputs its minimum vertex

cover. We may also refer to this as the minimum vertex cover oracle. We define OPT =

MVC(G) to be the optimal solution to our problem. Note that OPT is a random variable

since G is a random realization of G. We also let opt = E[|OPT|] be the expected size of

this optimal solution. We let µ(G) be the size of the maximum matching of the graph G.

For any vertex v ∈ V , we define

cv = Pr[v ∈ OPT],

which is the probability that v joins the optimal solution. This means
∑

v∈V cv = opt.

Similarly for any edge e = (u, v) in the graph G we define

ce = Pr[u ∈ OPT or v ∈ OPT].

▶ Definition 4 (Graph Hallucination). Given a any subgraph L of G we define a hallucination

of L to be a subgraph L which contains each edge e ∈ L independently with probability pe.

We define RS(n) to be the largest number of induced edge-disjoint matchings of size Θ(n)

in an n-vertex graph.

2 The algorithm

In this section, we prove the following theorem.

▶ Theorem 5. Let t be RSn(εn/8). Running Algorithm 1 with τ = 1
3t finds a vertex cover

that has an additive approximation of at most εn to the optimal minimum vertex cover and

queries a subgraph of size O(tn/p).

To prove this theorem, we design Algorithm 1, which takes a parameter τ , and queries

the subgraph Q with ce f 1 − τ . Let us call the edges realized in Q to be Q. We then

hallucinate the edges not in Q which we call the subgraph H = G − Q to get H. We then let

P1 be MVC(Q ∪ H).

This makes P1 have the same distribution of OPT (see Claim 8 for the proof). Now we

commit the vertices in P1 to the final solution and all that remains to be covered are edges

in H that have not been covered so far. Therefore we add P2 = MVC(H[V − P1]) to the

solution. All we need to do is to argue E[|P2|] is small since we have E[|P1|] = opt.

We show that if E[|P2|] is large we can find a large RS-graph in H (see Algorithm 2) so

by carefully choosing τ which we relate to the density of RS-graphs we prove E[|P2|] is small

and hence we prove Algorithm 1 has at most additive error of εn. In the next section we

modify Algorithm 1 slightly to get Algorithm 3 and show that this algorithm finds a (1 + ε)

approximation to the minimum vertex cover.

2.1 A Two-Step Algorithm

Here we describe the algorithm for finding the minimum vertex cover of G. We call it the

two step algorithm because the output consists of union of two sets P1 and P2.

First, let us prove that the output of Algorithm 1 is a vertex cover.

▷ Claim 6. The output of Algorithm 1 is a vertex cover for G.

Proof. Since P2 is a vertex cover on the graph that P1 does not cover we can argue that

P1 ∪ P2 is a vertex cover for G. ◁
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Algorithm 1 An algorithm to find MVC for G.

Parameter: τ

1. Let Q be the subgraph of edges with ce f 1 − τ .

2. Let H be G − Q.

3. Query edges in Q to get its realization Q.

4. Hallucinate edges in H to form H.

5. Let P1 = MVC(Q ∪ H).

6. Let R = H[V \ P1].

7. Let P2 = MVC(R).

8. Return O = P1 ∪ P2.

Now let us bound the number of queries that Algorithm 1 makes.

▷ Claim 7. The size of subgraph Q that we query is at most O( n
pτ ) for p = min(pe) for

e ∈ E.

Proof. Due to [14] we know that if we take a random minimum vertex cover P for G at

most O(n/p) edges will not be covered by it with high probability. Here we repeat how this

argument works for convenience. Let us call this number of edges X and call this subgraph

F . For any subgraph with more than n/p edges, the probability of none of its edges being in

G is at most (1 − p)n/p. Moreover, since F is an induced subgraph of G, there are at most

2n possibilities for it. By a union bound, we get that with high probability, F has at most

n/p edges. That is:

Pr[|E(F )| f n/p] g 1 − 2n(1 − p)n/p g 1 −
2n

en
= 1 − (2/e)n

Due to linearity of expectation we have

E[X] =
∑

e

1 − ce.

For the edges in Q we have 1 − ce g τ so we can get |E(Q)| f X
τ and since we have

X = O(n/p) we get that |E(Q)| f O( n
pτ ). ◁

▷ Claim 8. The expected size of P1 from Algorithm 1 is equal to opt and the distribution

of P1 is the same as OPT

Proof. Look at the graph that P1 is a minimum vertex cover for. It is the graph Q ∪ H.

For any edge e, if it is in H then it is present in H with probability pe and if it is in Q it

is present in Q with probability pe. Since Q ∪ H = G we can see that the distribution of

Q ∪ H is the same as the distribution for G and hence the expected size of the minimum

vertex cover for Q ∪ H is the same as G which is opt. Also since the distribution of Q ∪ H

is the same as G we get

P1 = MVC(Q ∪ H) = MVC(G) = OPT

Hence P1 comes from the same distribution as OPT. ◁

▶ Lemma 9. If Algorithm 1 does not have additive approximation of at most k in expectation,

then E[µ(R)] g k
2

ITCS 2025
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Proof. Due to Claim 8, the expected size of P1 is opt. Therefore, if Algorithm 1 has worse

than k additive approximation then we can conclude E[|P2|] g k. In any graph the maximum

matching size it at least half of the size of minimum vertex cover. Applying this statement

on the graph R give us that

E[µ(R)] g
E[|P2|]

2
g

k

2
. ◀

2.2 Finding a Dense RS-graph in H

Suppose in Algorithm 1 instead of querying Q and hallucinating H we hallucinate all the

edges. We repeat this process T times, calling the resulting graph R in Algorithm 1 Ri for

each i from 1 to T . For each Ri, we find the maximum matching Mi. Then, from each Mi,

we delete the edges that are present in at least one other Rj for j ̸= i, and we define Si

to be the remaining edges of Mi after these deletions. In Algorithm 2, we formalize this

process. Our goal in this section is to argue that if Algorithm 1 does not have an additive

error of at most εn, then the matchings Si will be large, and we can find a large RS-graph as

a subgraph of H.

Algorithm 2 Finding a large RS-graph in H in Algorithm 1.

Parameter: τ

1. For i from 1 to T :

a. Let Q and H be graphs defined in Algorithm 1

b. Hallucinate graph G to get Gi

c. Let Pi be MVC(Gi)

d. Let Ri = H[V \ Pi]

2. Let Mi be the maximum matching of Ri

3. Delete the edges in Mi present in at least one other Rj with j ̸= i to get Si

4. Return S1 ∪ S2 ... ∪ ST

The next claim will bound the probability of edges being in Ri.

▷ Claim 10. For each edge e and each graph Ri, we have that Pr[e ∈ Ri] f τ .

Proof. For the edge e we have two cases, e ∈ Q or e ∈ H. If we have e ∈ Q and e /∈ Q, then

this edge will not be present in R, otherwise if e ∈ Q since P1 covers all the edges of Q this

edge will not be present in R. So the only case that e ∈ R happens is when we have e ∈ H.

In this case since we have ce g 1 − τ and P1 is a random minimum vertex cover of G, then

the edge e will be covered with probability ce in P1 (this is because P1 comes from the same

distribution as OPT according to Claim 8). So this edge is present in P2 with a probability

of at most 1 − ce f τ . ◁

The following claim will prove that the matching Si are induced matchings.

▷ Claim 11. The matchings Si formed in the random process are induced matchings.

Proof. The graphs Ri are induced subgraphs on V − P1. Suppose that Si’s are not induced

matchings. Since we delete duplicate edges from Ri to get Si there is no edge e that is present

in Si and Sj for i ≠ j. Hence, there must exist two edges e1 = (u1, v1) and e2 = (u2, v2)

present in Si and e3 = (u1, u2) present in Sj for i ≠ j to break the property of induced

matchings. We call edges like e3 a cross edge. In this case, we can argue that the edge e3 is
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also present in Ri since both of its endpoints are in the vertices of Ri. Since e3 is present in

Ri and Rj this edge gets deleted and can not be part of Sj . This contradicts with what we

assumed. Therefore we can conclude that Si’s are induced matchings. ◁

▷ Claim 12. Suppose we set T = 1
2τ , then we have E[|Si|] g k

4 .

Proof. Due to Lemma 9, we have that E[|Mi|] g k
2 . Now we should argue that with the edge

deletions, each Mi will lose at most k
4 edges in expectation. Take an edge e in Mi. For each

j ≠ i we have Pr[e ∈ Mi] f τ due to Claim 10 since for an edge to be in Mi it should also

be in Ri. By an application of union bound the edge e is present in at least one other Mj

with probability at most Tτ . Hence we get,

Pr[e not in any Mj ] g 1 − Tτ =
1

2

And for the size of Si we have:

E[|Si|] =
∑

e∈Mi

1e/∈Mj for j ̸=i g
∑

e∈Mi

1

2
g

k

4
◁

▶ Lemma 13. By running the process explained above in Algorithm 2 we can find an RSn(r, t)

graph (see Definition 2) with t = 1
2τ and r = k

8 on H.

Proof. Due to Claim 12 we can have T = 1
2τ matchings each with expected size k

4 . Putting

these matchings together will give us expected T k
4 edges in total. Suppose we break each

matching Si to smaller matchings of size k
8 size. If the number of edges in Si is not divisible

by k
8 we will lose at most the reminder of |Si| to k

8 which is at most k
8 . The new matchings

each have size exactly k
8 and are induced matchings. This is because the original Si’s did not

have a cross edge (see Claim 11 for what a cross edge is) and hence the new matchings also

do not have a cross edge since we are just partitioning the edges of Si to smaller matchings.

The total size of the new set of matchings is at least

Tk

4
−

Tk

8
=

Tk

8

This is because the total number of removed edges is bounded by the number of edges

removed from each Si which is εn
8 times the number of Si’s which is T . Since we are running

the random process which in expectation gives us induced matchings of size k
8 with total

size of T k
8 there is an instance which we have at least T k

8 edges in total. From this we can

construct an RSn(r, t) graph with r = k
8 and t = 1

2τ . ◀

Now we are ready to prove Theorem 5. We restate the theorem below.

▶ Theorem 5. Let t be RSn(εn/8). Running Algorithm 1 with τ = 1
3t finds a vertex cover

that has an additive approximation of at most εn to the optimal minimum vertex cover and

queries a subgraph of size O(tn/p).

Proof. Suppose that Algorithm 1 does not find a vertex cover with additive approximation

of εn. Then by setting k = εn in Lemma 13 we get

t′ =
1

2τ
=

1

2 1
3t

= 1.5t

matchings each of size εn
8 that are induced matchings. This is in contradiction with what we

assumed since t is the maximum number of induced matchings of size εn
8 for an RS-graph and

now we have found 1.5t matchings of this size. This means that indeed Algorithm 1 has an

additive approximation of at most εn for τ = 1
3t . Due to Claim 7, we have |E(Q)| f O( n

pτ )

which for τ = 1/3t we get |E(Q)| = O(tn/p). ◀

ITCS 2025
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3 Getting a Multiplicative Approximation

In this section, we modify Algorithm 1 to give us a multiplicative approximation of 1 + ε.

Our modification is simple yet effective. At the beginning of the algorithm, we set P0 = {v :

cv g 1 − αε} and commit P0 to the final solution. The intuition behind this is that since

these vertices have high cv, they have a high probability of being in the final solution so it

does not hurt us to have them in the final solution.

We do this specifically to be able to prove Lemma 16 which states cvs for a subgraph of

vertices is lower bounded by αε
2 . This means that if we find an algorithm that is additive in

terms of n′ the size of this subgraph, then it is also a multiplicative approximation because

of the lower bound for cvs of this subgraph. Here is the modified algorithm.

Algorithm 3 Multiplicative Approximation Algorithm.

1. Let P0 = {v : cv g 1 − αε}.

2. Let G′ = G[V \ P0].

3. Let Q be the subgraph of edges with ce f 1 − τ in G′.

4. Let H = G′ − Q.

5. Query edges in Q to get its realization Q.

6. Hallucinate edges in G \ Q to form subgraph F .

7. Let P1 = MVC(Q ∪ F).

8. Let R = H[V \ P1].

9. Let P2 = MVC(R).

10. Return O = P0 ∪ P1 ∪ P2.

The first lemma we prove is for bounding the expected size of P0 ∪ P1.

▶ Lemma 14. E[|P0 ∪ P1|] f (1 + ε/2)opt for α f 1
4

Proof. We can write E[|P0 ∪ P1|] as follows:

E[|P0 ∪ P1|] = |P0| + E[|P1|] − E[|P0 ∩ P1|].

Due to Claim 8, we know that E[|P1|] = opt. Take an arbitrary vertex v ∈ P0. Since P1 is a

random minimum vertex cover, any vertex v in P0 has a probability of cv of also being in P1.

And since cv g 1 − αε for v ∈ P0 we have Pr[v ∈ P1] g 1 − αε. Hence we have

|P0| − E[|P0 ∩ P1|] =
∑

v∈P0

1 − 1v∈P1
f |P0| · (αε) (1)

We know that |P0| f opt

1−αε this is because opt =
∑

v∈V cv and we have
∑

v∈P0
cv g

(1 − αε)|P0|. Form Equation (1), we can get

|P0| − E[|P0 ∩ P1|] f
opt

1 − αε
· (αε) (2)

Since we have α f 1
4 and ε f 1 from Equation (2) we have

|P0| − E[|P0 ∩ P1|] f
opt

1 − αε
· (αε)

f
opt

1 − αε
· (

ε

4
)

f
opt

0.5
·

ε

4

= opt ·
ε

2

Putting this together with E[|P1|] = opt due to Claim 8 we get,

E[|P0 ∪ P1|] f (1 + ε/2)opt ◀
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From Lemma 14 we can argue that if Algorithm 3 has worse than εopt additive approx-

imation in expectation, then |P2| is greater than εopt

2 . We use this fact in the following

lemma.

▶ Lemma 15. If Algorithm 3 does not have a approximation of at most (1+ε) in expectation,

then E[µ(R)] g εopt

4

Proof. Due to Lemma 14 we have E[|P0 ∪ P1|] f (1 + ε/2)opt so if Algorithm 3 does not

have a multiplicative approximation of at most (1 + ε) then we can conclude E[|P2|] g εopt

2 .

In any graph, the maximum matching size is at least half the minimum vertex cover size.

Applying this statement on the graph R gives us,

E[µ(R)] g
E[|P2|]

2
g

εopt

4
◀

The next lemma proves a lower bound for cv of vertices in H having at least one edge.

We call this graph H for future reference, meaning we remove the vertices in H having no

edge.

▶ Lemma 16. For any vertex v ∈ H, we have cv g αε
2 for τ f αε

2 .

Proof. Take an edge e = (u, v) ∈ H since it has a degree of at least one. For this edge

we know that ce g 1 − τ since we put all the edges with ce f 1 − τ in Q. Also we have

cu < 1 − αε since u /∈ P0. We also know that ce f cv + cu. Putting this all together we get

that cv g αε − τ which for a τ f αε
2 we get cv g αε

2 . ◀

▷ Claim 17. We have opt g n′αε
2 for n′ = |V (H)|

Proof. This is because we have,

opt =
∑

v∈V

cv g
∑

v∈H′

cv

and we know that
∑

v∈H′ cv g n′ · αε
2 due to Lemma 16. ◁

Putting Claim 17 and Lemma 15 together we get that if Algorithm 3 does not give a

(1 + ε) approximation, then E[µ(R)] g n′αε2

8 . The next lemma asserts that if Algorithm 3

does not find a (1 + ε) approximation then we can find a large RS-graph in H.

▶ Lemma 18. If Algorithm 3 is not a (1 + ε) approximation then, we can find an RSn′(r, t)

graph (see Definition 2) with t = 1/2τ and r = αε2n′

32 on H

Proof. Suppose we set k = n′αε2

4 . Then we can run the algorithm explained in Algorithm 2

and put together matchings Si formed from different realizations of H to find an RS-graph

where each matching size is k/8. Due to having E[µ(R)] g n′αε2

8 we can prove Claim 10.

This is because for edges in Ri we can argue that they exist in Ri with a probability of at

most τ similar to how we proved it for Ri’s in Algorithm 1 in Claim 10. Moreover, like

how we proved for Algorithm 2 that the matchings Si are induced matchings we form Si’s

like in Algorithm 2 and we can argue that they are induced matchings. Then we can also

prove Claim 12 and Lemma 13 for the new value of k. Therefore, similar to how we proved

Lemma 13 we can find an RSn′(r, t) graph with t = 1
2τ and r = k

8 = αε2n′

32 on H. ◀

Now we are ready to prove the main result of this work.
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▶ Result 3. Given any ε ∈ (0, 1) let t be RSn(cn) for c = ε2

128 . There exists an algorithm that

queries a subgraph of size O(tn/p) and finds a vertex cover with the expected approximation

ratio of (1 + ε).

Proof. Let us run Algorithm 3 with α = 1/4 and τ = 1/3t. Meaning we have c = αε2

32 . We

proceed similar to how we proved Theorem 5. Suppose that Algorithm 3 does not find a

vertex cover with (1 + ε) approximation. Then we can find an RSn′(r, t) graph in H for

t = 1/2τ and r = αε2n′

32 since RSn(cn) g RSn′(cn′) for n g n′. By setting k = n′αε2

4 in

Lemma 13 we get

t′ =
1

2τ
=

1

2 1
3t

= 1.5t

matchings each of size k
8 that are induced matchings. This is in contradiction with what we

assumed since t is the maximum number of induced matchings of size k
8 for an RS-graph

and now we have found 1.5t matchings of this size. This means that indeed Algorithm 3 has

an approximation of at most (1 + ε) for τ = 1
3t . Due to Claim 7, we have |E(Q)| f O( n

pτ )

which for τ = 1/3t we get |E(Q)| = O(tn/p). ◀

Correlated Edges

Suppose that G has some edges that are realized in G independently called G1 and some

edges that are correlated with each other and the edges in G1 called G2. This means that

edges in G2 might exist based on edges in G1 or G2 that are realized. We need to adjust the

definition of hallucination and realize the correlated edges by drawing them from the given

distribution rather than realizing them independently. Moreover, if a set of them are queried

and we want to hallucinate the rest, it should be done conditionally.

Notice that the only place we use independent realization of edges is in the proof of

Claim 7. So we can argue that among the edges in G1 at most O(tn/p) edges will be in Q.

Furthermore we know that |Q| f |Q1| + |Q2| where Qi is the subgraph of Gi that is in Q.

Since the number of correlated edges is at most RSn(cn) we have |Q2| f n · RSn(cn) so we

get:

|Q| f |Q1| + |Q2| f O(tn/p) + n · RSn(cn) = O(tn/p) + n · t = O(tn/p)

Based on the explanation above we drive the following corollary.

▶ Corollary 19. Our Algorithm 3 can handle up to t = RSn(cn) correlated edges for c = ε2

128

and still provide a (1 + ε) approximation to the optimal solution with O(tn/p) queries.
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