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Abstract. In this paper, we investigate ultraspherical spectral method for the Ohta-
Kawasaki (OK) and Nakazawa-Ohta (NO) models in the disk domain, representing
diblock and triblock copolymer systems, respectively. We employ ultraspherical spec-
tral discretization for spatial variables in the disk domain and apply the second-order
backward differentiation formula (BDF) method for temporal discretization. To our
best knowledge, this is the first study to develop a numerical method for diblock and
triblock copolymer systems with long-range interactions in disk domains. We show
the energy stability of the numerical method in both semi-discrete and fully-discrete
discretizations. In our numerical experiments, we verify the second-order temporal
convergence rate and the energy stability of the proposed methods. Our numerical
results show that the coarsening dynamics in diblock copolymers lead to bubble as-
semblies both inside and on the boundary of the disk. Additionally, in the triblock
copolymer system, we observe several novel pattern formations, including single and
double bubble assemblies in the unit disk. These findings are detailed through exten-
sive numerical experiments.
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1 Introduction

Block copolymers are macromolecules that contain monomers comprising different re-
peating units covalently linked together in polymer chains. Due to their remarkable
ability for self-assembly, block copolymers form various nanoscale-ordered structures
at thermodynamic equilibrium [1,2,4,19] and have attracted considerable theoretical and
experimental interest over the past several decades [20,24,28,31]. Diblock copolymers,
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referred to as the binary system, comprise two distinct subchains made up of species
A, and B, respectively. In contrast, triblock copolymers, known as the ternary system,
consist of three subchains, each containing species A, B, and C, respectively.

In this paper, we begin with the Ohta-Kawasaki (OK) and Nakazawa-Ohta (NO) mod-
els introduced in [29, 31], which are general block copolymer systems with long-range
interactions and describe the binary and ternary systems, respectively. In our study, we
aim to explore the coarsening dynamic and pattern formations at equilibrium state in the
OK/NO models in the disk domain.

Using the phase field labeling function u =u(x) to represent the density of the species
A and tracing the concentration of the species B by 1—u(x), the OK model introduces the
diblock copolymers by the following energy functional [58,59]:

OK1y] = € 2, 1 I/ S YT
E [u]_/QLyw +€W(u)}dx+2 [I(=2) H(u—w)Pax, (1.1)
with a volume constraint

/ udx=wlQ)|,
0

where 0<e<1 is an interface parameter, Q CIR? is the spatial domain. W (u)=18(u?—u)?

is a double well potential which enforces the labeling function u to be 0 and 1 except the
interfacial region between species A and B. The parameter 7y represents the strength of
the long-range repulsive interaction that favors the smaller size of the species and forces
them to split in the OK model. Similarly, the free energy functional of the NO model [29]
for the triblock copolymer system is defined as follows:

1
ENOuy,up) = | S (VP4 | Vo P+ Vg - Vg ) dac+ | =Wa (g, 1) dix
02 O€

+ i %/Q [(_A)_%(”i_wi) X (—A)_%(uj—w]-)} dx, (1.2)

ij=1

where u; = u;(x), i=1,2 are phase field labeling functions representing the density of
species A and B, respectively. The concentration of species C can be implicitly described
by 1—uj(x) —up(x). Wa(uq,uz) is defined as

Wo(uq,uz) == [W(u1) +W(up) +W(1—ug—uy)],

1
2
and the volume constraints for 17 and u, are

/ wdx=w;|Q, i=1,2.
0
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To implement the volume constraint in energy minimization, we introduce penalty
terms to the energy functionals (1.1 and 1.2), leading to the unconstrained free energy
functionals of the penalized OK model [58],

£ = [ |S1Vult e W) dx ] [ () - Pax
2

([ uax-wiar) (13)
2 \Ua
and the penalized NO model [10],

1
EPNO[ul,uz]:/Qg (\Vul‘Z—l—\Vu2|2+Vu1-Vuz)dx~|—/QEW2(u1,u2)dx

+y [ [(8) Fu—w) % (—8) Hy—wp]dx

2

M; 2
+27</Quidx—wilﬂl> , (1.4)

i=1

with the penalty constants M, M;,M; > 1. Then by considering the corresponding pe-
nalized L? gradient flow dynamics for the energy functionals (1.3), (1.4), we derive the
penalized Allen-Cahn-Ohta-Kawasaki (pACOK) equation for the time evolution u(x,)
with given initial data u(x,t=0) =uo(x),

d SEPOK 1., _
= et W = (-8) M) - M ( [ wdx-ala]),  @5)

and the penalized Allen-Cahn-Nakazawa-Ohta (pACNO) equations for the time evolu-
tion u;(x,t), i=1,2 with given initial data u;(x,t=0) =u,(x),

ouj _ SEPNO[uy,up]
ot N 51/11'
€ 1 90W. _
=€Aui+§AMj—EWi2—’Yii(—A) Mui—w;)
—'yij(—A)_l(uj—w]')—Mi (/Quidx—wi]0|> ’ i,j=1,2. (16)

1.1 Previous work and our contributions

There have been extensive theoretical and numerical studies on the OK and NO models
in recent years. In [30,37], the authors presented a simpler analogy of a binary inhibitory
system derived from the OK model for diblock copolymers. Meanwhile, Ren and Wei [38,
39] derived the ternary system from the NO model for triblock copolymers. Additionally,
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Wang, Ren, and Zhao [53] numerically and theoretically studied the bubble assemblies
in the NO model while varying the system parameters. To study the equilibria and dy-
namics of the binary and ternary systems numerically, Xu and Zhao [58, 59] presented
the L? gradient flow for the energy functional of the OK and NO models and introduced
the corresponding ACOK and ACNO equations. Similar to the energy stable methods
for various gradient flow dynamics of different equations [9,11,18,21,23,27,45,46,54,57],
Luo, Zhao and Choi [10,26] proposed the stabilized second-order semi-implicit methods
in time-discretization and used the Fourier spectral method in spatial domain to solve the
ACOK and ACNO equations in the square domain with periodic boundary conditions.
Furthermore, Luo and Zhao [25, 26] introduced a generalized OK model and perform
several numerical and theoretical studies for their model with novel square lattice pat-
terns.

In the binary system, Ren and Shoup [36] investigated the stationary bubble assem-
blies of the OK model in the disk domain with the Neumann boundary condition and
studied the energy difference between the number of interior discs and boundary half
discs. The other theoretical works by Wang and Ren [51,52] explored the explicit form of
Green’s function of the Laplacian operator in the disk domain. This explicit form played
a key role in studying the bubble’s interaction with the disk boundary (boundary effect)
in the ternary system. However, it is difficult to predict the pattern formation at the equi-
librium state for both the binary and ternary systems from analytical studies. Therefore,
numerical studies are necessary to guide us to understand the equilibria and coarsen-
ing dynamics of the OK and NO models in the disk domain. Furthermore, numerical
findings may suggest the new directions for the future theoretical research and practical
application.

In contrast to the square domain, where periodic boundary conditions can be effi-
ciently handled using the Fourier spectral method, one of the most challenging problems
we faced in this project is to solve the fully discrete systems in the disk domain with the
Neumann boundary condition. A highly effective approach for handling problems in
polar geometries is to map the disk domain to a rectangular domain using polar coordi-
nates. By employing polar coordinates, the angular direction becomes periodic, allow-
ing for efficient treatment using techniques like the fast Fourier transform (FFT). There-
fore, by carefully addressing the boundary conditions, spectral methods are remarkably
well-suited for solving problems in polar geometries. In the 1970s, several spectral-
collocation or spectral-tau methods were developed to compute functions in polar ge-
ometries [8,15-17,22,61]. Eisen et al. [15] proposed an algorithm based on an odd-even
parity argument for the Cartesian and polar coordinates [5, 6] and the tau method [35],
which had quasi-optimal computational complexity but was limited to second-order
equations. Subsequently, Shen [41-43] developed efficient Spectral-Galerkin methods
using bases for second, third, fourth, and higher odd-order differential equations with
constant coefficients in polar geometries. However, these methods faced challenges in
automatically imposing boundary conditions. In 2011, Boyd and Yu [6] provided a com-
prehensive overview of numerical methods for computing functions on unit disk and
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solving Poisson’s equation in polar geometries associated with a broad range of strate-
gies.

Recently, Olver and Townsend [33] introduced the so called ultraspherical spectral
method for solving differential equations with variable coefficients and general bound-
ary conditions. The ultraspherical spectral method utilizes Chebyshev and ultraspherical
polynomial bases, depending only on the order of the differential equation, rather than
the specific boundary conditions. This approach leads to nearly banded matrices, pre-
serving efficiency and accuracy in computations. Furthermore, the ultraspherical spec-
tral method is not limited to polar geometries. In fact, Olver and Townsend [34] demon-
strated its effectiveness in solving linear partial differential equations (PDEs) with gen-
eral boundary conditions on rectangular domains. This flexibility makes the ultraspher-
ical spectral method a valuable tool for a wide range of problems in different domains.
Employing the ultraspherical spectral method, Wilber, Townsend, and Wright [55] devel-
oped algorithms on computing functions such as integration, function evaluation, vector
calculus on unit disk, in addition to devising a fast disk Poisson solver in polar geome-
tries. Their algorithms applied a structure-preserving variant of iterative Gaussian elim-
ination which enabled the adaptive construction of low-rank approximations for func-
tions in polar geometries. This approach significantly reduced the computational cost
associated with various operations while maintaining the ability for fast and spectrally
accurate computations in the disk domain.

The main contribution of our work is two-folded. Firstly, we apply the stabilized
second-order linear semi-implicit scheme [10,26] for the pACOK and pACNO equations,
where all nonlinear and nonlocal terms are treated explicitly. Incorporating the Neumann
boundary conditions, we then solve the fully discrete systems using the ultraspherical
spectral method [33] with low-rank approximations [55] to efficiently solve the phase
field functions in polar geometries at each time step. To the best of our knowledge, this
is the first numerical method developed to study binary and ternary systems with long-
range interactions over disk domains. Secondly, we investigate pattern formation at the
equilibrium state for the OK and NO models in the disk domain. Our observations reveal
various types of bubble assemblies, some of which have not been previously reported
and deserved further numerical and theoretical exploration. The interior double bubble
assemblies in the ternary system, as illustrated in Section 4.3, are particularly noteworthy.

1.2 Notations

In this paper, for the discussion of energy stability in the rest of the paper, we modify
the function W(s) with a quadratic approach. This modification ensures that W” possess
a finite upper bound, a prerequisite for the energy stable schemes in Ginzburg-Landau
type dynamics [45]. We adopt the quadratic extension W (u) of W (u) as used in [45] and
referenced in related citations. For simplicity in our discussion, we continue to use W(u)
to represent W (u), and denote Ly := | W”||1~, namely, Ly~ denote the upper bound for
[wW”l.
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We adopt the similar notations from [58]. Let the disk domain Q) =10,1] x [0,277) CR?,
and the space H*(Q) is given by

B(Q) :{u € H*(Q): u is homogeneous Neumann in 7,

periodic in 6, and /u(x)dxzo},
o)

consisting of all functions u € H*(Q)) which satisfies the Neumann boundary condition in
r-direction and the periodic boundary condition in 0-direction with zero mean. We use
||| s to represent the standard Sobolev norm and L?(Q)) = H°(Q).

The inverse Laplacian operator defined on the unit disk (—A)!: [2(Q) — H'(Q)
follows:

1 1
(-A)Yo=u = —Au=—uy—-u— —Ugg =70,
r r

u,(r=1,0)=0, uis periodicin 6, and homogeneous Neumannin r. (1.7)

We denote ||(—A) |2 as the optimal constant such that || (—A) 1 f| 2 <C||f||2 [7]. Note
that the constant C is bounded and depends on () which is a simple consequence of the
elliptic regularity for general smooth domains.

The rest of the paper is organized as follows. In Section 2, we will review the ba-
sic ideas of the ultraspherical spectral method, including its conversion, differentiation,
multiplication, and application to the Poisson equation with the Dirichlet and Neumann
boundary conditions. In Section 3, we will present the second-order BDF energy stable
schemes with semi- and fully-discrete systems for the pACOK and pACNO equations
in the disk domain and prove their energy stability. In Section 4, we will present some
numerical experiments for the second-order convergence rate, the coarsening dynam-
ics, and the equilibrium state of the pACOK and pACNO equations in the disk domain.
These numerical findings will display single-bubble assembly for the OK model, and sev-
eral types of novel pattern formation with both single and double bubble assemblies on
the interior of the disk domain for the NO model.

2 Preliminary review

In the past decades, two main challenges are faced when dealing with functions in po-
lar geometries: maintaining regularity at the original of the disk, and using fast trans-
forms for numerical computation. Most methods [15, 16,40] address only one of the
challenges by representing functions with Chebyshev-Fourier expansion. Recently, [55]
proposed a novel approach using Chebyshev-Fourier expansion, providing three key
benefits: a structure that allows for fast transforms, regularity at the origin of the disk,
and near-optimal sampling. This method combines low-rank approximations for func-
tions in polar geometries with an adaptive interpolation method that uses an iterative
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Gaussian elimination process and a strategy similar to the double Fourier sphere (DFS)
method [16].

To approximate smooth functions f(r,0) in polar geometries, low-rank approxima-
tion is adopted as a sum of a relatively small number K of rank-1 functions to machine
precision. To maintain regularity and symmetry of the function, [55] defined the Type-
IT Block-Mirror-Centrosymmetric (BMC-II) functions (2.1) to represent the smooth func-
tions on the unit disk, which guarantees that the function remains smooth and continu-
ous at the origin and preserves its geometric properties.

Definition 2.1 (BMC-II function [55]). A function f:[—m, 7] x[—1,1]— C is a Type-II Block-
Mirror-Centrosymmetric (BMC-II) function if there are functions g,h: [0,7t] x [0,1] — C such
that

F_ 8 h
f= Lﬂp(h) ﬂip(g)]' 2.1)

where filp is a glide reflection in group theory, and f(-,0) =, where « is a constant. Note that
(2.1) is called a BMC structure. A BMC function with f(-,0) equals a constant is BMC-II.

To construct low-rank approximations of BMC-II functions while preserving the BMC-
IT structure, a parity-based interpretation of structure-preserving iterative Gaussian elim-
ination procedure (GE) has been developed [55], which ensures that the pivot selection
and each rank-1 update maintain the symmetry and regularity of the function. By using
GE, the low-rank approximation of f(r,6) is constructed by

K
f(r,0)~ ;ajcj(”)dj(e)/
p

where a; is a coefficient related to the GE pivots, cj(r) and d;(0) are the jth column slice
and row slice, respectively, constructed during the GE procedure, and K is a relatively
small rank of the approximation [49].

The low-rank approximation method samples functions over the unit disk in a way
that avoids oversampling near the origin, ensuring a near-optimal interpolation grid,
and is particularly effective for operations such as point-wise evaluation, integration,
and differentiation, simplifying them to essentially one-dimensional procedures. Using
this idea, Townsend [13] has built the computational frameworks for differentiation, in-
tegration, function evaluation, and vector calculus in polar geometries, which is pub-
licly available through the open source Chebfun package written in MATLAB. In our
work, we directly use this package to work with functions in polar geometries. This in-
cludes evaluating polar functions on mesh grids, converting polar functions from and to
Chebyshev-Fourier basis, and computing integrals of polar functions.

To efficiently solve the linear differential equations in Chebyshev-Fourier expansion
with variable coefficients and general boundary conditions, Olver and Townsend [33]



8 W. Luo and Y. Zhao / Adv. Appl. Math. Mech., x (2025), pp. 1-35

developed the ultraspherical spectral method, which results in the almost banded matri-
ces to an almost banded, well-conditioned linear system. In the rest part of this section,
we review this method, focusing on the matrix representations for the differentiation,
multiplication, and conversion operators. We then discuss its application in the spectral
collocation method [44] for solving the boundary value problem with Dirichlet and Neu-
mann boundary condition, and its extension to the 2D Helmholtz equation in the disk
domain [55].

2.1 Matrix operators for the ultrasherical spectral method

The ultraspherical spectral method employs the differentiation rule [33] to create the re-
currence relations of the m-th derivative of Chebyshev polynomials

m
;WTHH,Z(x) =2" Y —1)(n+m)C{" (x), VmeN, n>0, (2.2)

where C,S’”) (x) is the degree-n ultraspherical polynomials of parameter m [12], and these

recurrence relations result in a sparse representation of differentiation operators for the
m-th derivative of Chebyshev polynomials and ultraspherical polynomials. Denote Dy,
as the differentiation operator which maps a vector of Chebyshev T, coefficients to a
vector of ultraspherical CElm) coefficients of the m-th derivative. The sparse representation
matrix is given by

m times

0O -0 m O
Do,mzszl(m_l)! 0 m+1 0 , m>1. (2.3)

Since the ultraspherical spectral method switches the coefficients between bases, it’s
important to find the operators that convert between the Chebyshev and ultraspherical
bases. Under the recurrence relations in [12],

1/.a0) ~0) m (m+1)  ~(m+1)
_ (m) _ m
= %d”, k=1, and G'= m—HCYHH), k=1,
C(()l)/ kZO, C(()m-i—l)’ kZO,

Sp,1 denote the conversion operator between the Chebyshev Tj basis and ultraspherical
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C(™ basis, and Snn+1 for n>1 converts the ultraspherical C (1) and C"*1) bases

and

Sn,n—H -

1
10 —=
2
1 1
-0 -=
So1= 2 1 2 1
> 0 3
n
1 -
n+2
n 0 . n
n+1 n+3
n 0 _ n
n-+2 n+4

(2.4a)

(2.4b)

Therefore, the conversion between the Chebyshev Ty and ultraspherical C () basis is de-
noted by &t — So i =Sy 1,Sy_2n-1-So1#, where @i = [#y,1l,113,--+]T are the Chebyshev
Ty coefficients for the function u(x).

To handle the multiplication of two functions of the form a(x)u(x), we expand a(x)
and u(x) as the Chebyshev series

2(x) = YA Ti(x), u(x)= Y iTi(x).
k=0 k=0

The product a(x)u(x) involves multiplication of basis functions T; and Ty with j,k >0,
which leads to the Chebyshev coefficients of a(x)u(x) as

Then, the new Chebyshev coefficients vector b= [130,@1,152,- . -]T can be expressed as the
multiplication of a matrix Mr[a] and a coefficient vector 4, i.e., b= Mr[a]i, where the
matrix operator Mrla] is of the following form

N[ =

MT[EI]

240

aq

>

a1 Ay a3
240 41 d»
4, 280
dp, a1 24

0 0

a1
114 n
+= ap das
2 A A
az a4

> >
'S @

x>
.G

h)
= O

<>
[e])

>
. o

(2.5)
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Moreover, while requiring the ultraspherical expansion of a(x)u(x), we can combine the
Chebyshev multiplication operator and the conversion operator (2.4) between Cheby-
shev and ultraspherical bases to explore the ultraspherical coefficients of a(x)u(x). For
example, the C(") expansion coefficient of a(x)u(x) can be expressed as

c= Sm—l,mSm—Z,m—l T 80,1 [MT[a]ﬁ]r (26)

where ¢ is the vector of coefficients in ultraspherical C") basis.

2.2 Boundary value problem with Dirichlet and Neumann boundary
conditions

In this subsection, we review the ultraspherical spectral collocation method applied to
the boundary value problem:

u”(x) +u' (x) +a(x)u(x)=f(x), xe[-11],
Dirichlet: u(1)=u(-1)= 0, or (2.7)

= 1
Neumann: u/(1)=u'(-1)=

Given a set of Gauss-Lobatto quadrature nodes and weights {xy, wi:=w(x;)}.,, the
solution u € C([a,b]) of the boundary value problem is approximated by

N
:Zﬁk(,bk(x)/ XE[—l,l], (2.8)
k=0

where the basis functions ¢¢(x) are the Chebyshev or ultraspherical polynomials of
degree-k, and it’s corresponding coefficients 7y are determined by the Gauss-Lobatto
points {x; 1, as detailed in [44].

Take the Chebyshev expansions of the function u(x), a(x), and f(x):

N N N
=Y uTi(x), a(x)=) &Ti(x), f(x)=) ATi(x)
k=0 k=0 k=0

Define @=[fy, i1, --,iin]" and f=[fo,f1,---,fn]" as the vector of coefficients in Chebyshev
basis. In terms of differentiation operator in (2.3), we represent Dy, as the first order
derivative in C(V) basis and Dy, as the second-order derivative in C basis. In order to
describe all the coefficients vector in the same basis, we need to multiply Si» to D, i.e.
S12Dp11 to convert the coefficients from C (1) basis to C?) basis. Next, the coefficients of
a(x)u(x) in C? basis can be represented by S; »So,1[M|a]il] ii] by (2.6). Also, the coefficient
vector of function f(x) in C(?) basis can be written as S; »Sy,1 f which changes f from T
basis to C(?) basis. Therefore, the equation in (2.7) can be expressed by a linear matrix
problem

Lia=F, (2.9)
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where the matrix operator £ and F are given by
L=Dy+81,Pn+S1281Mrla)l, F=3812801f.

Furthermore, to impose the homogeneous Dirichlet and Neumann boundary conditions
(2.7), we remove the last two rows from £ and F, creating £ and F, respectively. For the
homogeneous Dirichlet boundary condition, we observe that

N N
=) T(1) Zﬁ =0

~1)= iﬁka(—l) =Y i (—1)F=0.
k=0

k=0

On the other hand, the homogeneous Neumann boundary condition yields
Zuk (}lgnTk ) Zukk =0,
N
u'( Zuk<hm Ty (x ) Z 1)1k =o0.

k=

This adjustment makes room for the boundaries as
(B)a= (%), o1

1 0z 12 22 ... N2
B= 1 -1 1 .. (_1)1\,] and B= [_02 12 2 .. (—1)NHIN2|” (2.11)

denote the homogeneous Dirichlet and Neumann boundary conditions, respectively.

2.3 Ultraspherical spectral method for Helmholtz equation in disk domain

Note that the key steps of solving pACOK (1.5) and pACNO (1.6) over disk domain is
to find (—A)~'u as defined in (1.7) and to solve for the equations as in (3.17). These
involve solving the non-homogeneous Helmholtz equation over disk domain with the
given boundary conditions in (1.7). We detail the numerical treatment as follows.
Consider the Helmholtz equation —Au+au = f in polar coordinate, where « is a
constant. We apply the disk analogue to the DFS method and extend the disk do-
main Q = [0,1] x [0,277) to Q) =[—1,1] x [0,27), with the extended Helmholtz equation
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—Adi+aii = f. Here, f is the BMC-II extension of f from (2.1), which satisfies the regular-
ity over the origin of the unit disk and can be represented by

— (PP +ril,+1ige) +ar?i=1"f, (r,0)€Q=[-1,1]x[0,277), (2.12a)
il is homogeneously Neumann in r, and periodicin 6, (2.12b)

where the multiplication by r? aims to deal with the singularity at r = 0. The actual
solution u can be given by restricting 7 to ) =[0,1] x [0,277).
The solution 7 in (2.12) can be approximated by the Chebyshev-Fourier series as

Np
Til Ny

a(r,0)~ Y, Y 0 Ti(r)e, (2.13)

j—_ No k=0
- 2

where Nj is a positive even integer defined the number of uniform mesh points in 6 and
N, is a positive odd integer defined the number of Gaussian-Lobatto points in r. The
Chebyshev-Fourier coefficients 7y ; can be solved by a system of equations from (2.12)

N N
g . v . Ny N,
= Y iy [T (r)+rTi(r) — (P4a) Te(r) | e = Y for® Ti(r)e™, 1= —79 : 79 —1. (2.14)
k=0 k=0
Define a matrix operator £ as
2 2 Np Ny
L= —Mz[i’ ]DO,Z —31,2./\/11 [T’]Do,l + (Z +0€)S(),2, = 5 : 5~ 1, (2.15)

where Mj[r?] = Spa Mr[1?]Syp is for the multiplication by 72 in C(?) basis and M [r] =
So1 Mr[r]S1 is for the multiplication by rin C () basis. Therefore, the linear system from
(2.14) becomes

Liy=SopMr(r*)fi, 1==—:7-1, (2.16)
where ) = [lg;,11,-++,in,,;]T and fi= [foll,fl,,,m,fN”l]T as the vector of coefficients in
Chebyshev-Fourier basis. Incorporating the homogeneous boundary condition B in
(2.11) gives us the system

<£(1:erl13d—2,:)> = ([So,zMT(VZ)f(l)](l5end—2f¢)> = _Ne : &_1‘ (2.17)

There are two methods for solving the linear system (2.17). The first one is the fast disk
solver introduced by Townsend [55], which combines the alternating direction implicit
(ADI) method with the ultraspherical spectral method, directly computing the low-rank
approximations of the Chebyshev-Fourier coefficients 71 € CN*Ne. The second method
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is to apply the Sherman-Morrison formula [47], see details in [56]. This method solves
the linear system (2.17) separately for the even-indexed and odd-indexed terms of the
Chebyshev-Fourier coefficients iy and g1 2+1, reducing the computational com-
plexity of the system. For the detailed discussion, we refer to [5,16,40,48].

Wilber compared these two methods in [55, Fig. 7]. For large mesh grid sizes, when
the numerical rank of 7 is sufficiently low, the ADI method with low-rank approximation
proves faster than the full-rank solver. However, for small to medium mesh sizes, when
the rank is not sufficiently low, the second method is often preferred.

In our work, we often use medium-sized mesh of 512 or 256. Therefore, we apply the
algorithm from [56] to the linear system (2.17) with adjustments for the homogeneous
Neumann boundary condition. Detailed application can be found in Section 3.2.3.

3 Second order time-discrete energy stable scheme

In this section, we aim to find the equilibrium state of the binary and ternary systems
introduced by the OK and NO models in the disk domain. By introducing the second
order Backward Differentiation Formula (BDF) method [10] for temporal discretization
and the ultraspherical spectral method for the spatial discretization for pACOK (1.5) and
PACNO (1.6) equations on the unit disk, we study the energy stability for both semi- and
fully-discrete schemes.

3.1 Second order semi-discrete scheme for pACOK and pACNO equation in
disk domain

For the OK model, we adopt the second-order BDF method from [10] for the pACOK
equation (1.5) in the disk domain. For a given time interval [0,T] and an integer N >0, we
define a uniform time step size 7= % with t, =nt for n=0,1,---,N and the approximate

solution u" ~u(r,0,t,). Choosing the stabilizer
un+1 —oy" _{_unfl

the second order BDF scheme for the pACOK equation follows: given initial data u~! =
1% =ug, we can find u"*! for each n=1,2,---,N such that

3untl gy 41
2T
1
:eAun—O—l_E [Zwl(un)_w/(un—l)}
_E n+1 _ n n—1\ _ _ -1 n+1 _ n n—1
e(u 2u"+u ) YB(—A) (u 2u"+u >

() ot -] M [/Q (20 —u1) dx_wm@ , 3.1)
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where £ (1" —2u"+u""1) and yB(—A) ! (u"! —2u" +u"1) control the energy stabil-
ity of the system and «, >0 are stabilization constants.

For the NO model, the second order BDF scheme is used to explore the pACNO equa-
tion system in the disk domain over time interval [0,T], and the uniform time step size
T= % with t, =nt for n=0,1,---,N is defined by choosing an integer N > 0. Let the
approximate solutions u!' ~u;(r,0,t,) for i=1,2. Incorporating the stabilizer

ul oyl 4ult, i=1,2,

the second order BDF scheme for the pACNO equation system becomes: given initial

data ui_l = u? =1;, the approximate solutions u?“, i=1,2forn=1,2,---,N can be found

by
3u n+1 4u +unl
2T
_eAu”“ng <2Auﬂ+mod(i+l,2)_Au771+2-m0d(i+],2)>
oW, rrmod(i+12) OWs , y—142mod(i+12)  n-1
_ = 2 ’ n ’ , n
|25 )=S0 ] )

_7:( n+1 2u +un 1) 'Yzz,B( ) ( n+1 2u +un 1)

—7ii(=A)~ [Zu uh1_ l} _')’ij(_A)_l [2u7+mod(z+1,2) _u;1—1+2-mod(i+l,2) —wj

—M; [/Q (2u?—u?’l>dx—wi|0|}, (3.2)

fori=1,2 and j #1i, and x1,%2, 1,81 >0 are stabilization constants.
Next, we can ensure that the second-order BDF schemes, (3.1) for pACOK and (3.2)
for pACNO, always have a unique solution, as shown by the following lemma.

Lemma 3.1. The second-order BDF schemes (3.1) for the pACOK equation and (3.2) for the
pACNO equations at time-discrete level are uniquely solvable.

Proof. Since two schemes are similar, we only need to prove for the scheme (3.1) of pA-
COK. This scheme can be rewritten as

(ot Eve(-a) +rp(-0) " a1 —Res

where RHS is the nonlinear terms and only depends on u" and u"~!. Then in the disk
domain under the homogeneous Neumann boundary condition, the operator (—A) is
positive-definite by the Green’s identity. Therefore, the operator applying on u"*! is
invertible, which shows the unique solvability of the schemes (3.1) and (3.2). O

Then, for the energy stability of the pACOK and pACNO equations (3.1), (3.2), we
have the following theorem.
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Theorem 3.1. For pACOK equation, we define a modifying energy functional EPOX[u",u"=1] for
the OK model

ppOK (., n  n—1\ _ppOK(, n £ i n__  n—1/2
EPOX (7 ) =B () + 5+ o+ C ) = T

1

’Y_ﬁ A\~ > n__,n—1 2
+ =) (w =) |, (33)
where x,3 >0, and the constant C is given by

LW//
2¢

_ M
C=L 4T [(=8) iz + 5 1. (34)

Let {u"}N_, be generated by scheme (3.1), and the time step size T < %, then
EpOK[unJrl,un] < EpOK[un/unfl].
n—1 n—1

For pACNO equations,we define the modifying energy functional EPNO[u u =1 ult ul~1] as

rpNOr,, n ,,n—1 _n  n—1
EP[ud uf ™ up,uy |

2
g+ | (5 o+ ) = Bt ) H - D, 69)
i=1

where x;,B; >0, i=1,2, and the constants C; are given by

Ly vt -1 M;
c= b Tty gy Mg 66)

Let {u,u} })N_, be generated by scheme (3.2), and the time step size T < min{;?,;@}, then
BN 8] < POy,

Proof. The proofs of the energy stability for the pACOK and pACNO equations are sim-
ilar. The main difference is that for the pACNO schemes, we deal with i =1,2 separately
and then add them up. Therefore, we omit the proof for the pACOK equation and pro-
vide a detailed proof for the pACNO equations. Note that this proof is similar to the one
for the square case by Zhao and Choi [10].

By taking L? inner product of the two equations in (3.2) with u
using the identities

n+1

; ui fori=1,2,and

a~(a—b):%a2—%b2+%(a—b)2 and b-(a—b):%az—%bz—%(a—b)z

with

Lyl b=ul—ul!

a=u ; i
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we obtain two equations:

1 1 2 1 1 2 -1 1 ~1y2
a2 o (= 12— =2 a2, )
:—g<<—Au?+1,u§’+1>—<—Au§’,u?>+< A( §z+1 ul)uiz+1 u§z>

4% 4% _
= (g ) g ) =2 (250 )~ SR )

I(a)

1 2 12 1 12
2 (U = = B =20+ )

”“ﬁl(u ) ) P [ (—A) i~ )P
NTENSS T 2u1+u¥1>||iz)

—711<(—A)_] (2M1 uy~ 1—w1) uptt— ”>—712<(—A) (Zuz uy~ 1—wz) uf th— u¥>
1I(a) ITI(a)
M (/Q(Zuil—uq’l)dA—wl|Q|> (Lati—ut), (3.7a)

IV(a)

1
gt g (™ 2 R 2 4 22

=== (o )y — (g + (=B (e ) up =g ) =t g ) )

__< aWZ( n+1,u£l)_aﬂ(un+l n— l) n+1 u51>

au Uy auz 1 Uy up
1(b)
1 2 -1 1 —1y2
= 52l =g+ g =y 12— =203 4y 12 )

= 1282 ()b g ) B~ 1 -8) ) (- 8) g 2y )2
_722<(_A)_1<2”2 uy wZ) uyt— ”§>_721<(—A) 1( - w1>ru§‘+1—u3>

1(b) MI(b)
M <./o(2”3_”31)d‘4_“’2|0|> (L —u). (3.7b)

IV(b)

Next, we add the terms of Egs. (3.7a) and (3.7b) one by one. The combined terms
II(a)+1I(b) and IV(a)+IV(b) can be written as

I(a)+1(b) = — i % (<(—A)*1 [u ! —w],u"t? —w> — <(—A)*l [u" —w],u" —w>)

i=1
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IV(a)+1V(b) = — i % <<u"+1 —w,1>2 —(u" —w,1>2>

+2 D100 (a2 222

The other terms, I(a)+I(b) and III(a)+III(b), which include the coupling terms between 1
and uy, can be estimated by Taylor expansion and Young’s inequality. The estimations
state as following:

1@)+106) < — < (Wo L ™),1) + = (W () 1)

LW// _
T N (el R R
i=1

IT1(2) +T11(0) < —y21 { (—8) 7% (1 =2 ) (=) 7 (1 —cor ) )
712 (=8)7F (uf —0r), (~8)F (1 —w2) )
1 _ n n— n
51 (=8) i (vl =g~ 2+ iy = ).

Note that the energy functional (1.4) of the NO model can be written as

n n n n n n 1 n n
((—Auj,uy)+(—Auy,uz)+ <V“1/V”2>)+— (Wa(uf,uy),1)

+2 %]< A2 (ul —w;),(—A) "2 (u —w])>+2 —w;,1)?,

i,j=1

EPNO(uf ) =

N ™

Now, rewriting the summation and drop the unnecessary terms, we can get the following
inequality

g
EPNO n+1 n+1 +Z< )Hun+1_un|2 Z 11:31< —A)" (;1+1 u?),u?“—u?ﬂ
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2 2
ki 1 YiiBi _
O (S ) b ST () g )
i=1 i=1

2
LW” ')/ M;
<3 (8 T ) o+ S0 ) (20— 2

i=1

1 _ _ 21

31 =)Mo (vanllg =y~ eyl = ) = 30— =2
i=1

2

1
<1 (ol 2l ) = L ).

where C; are given by

Lwr | vint7i2 -1 M;
= YTV ) (A acifolf 3.8
C= B TR a1 M 68)
where Ly~ and ||(—A)~!||;2 are constants which can be found in Section 1.2.
Adding Y7, C;(||ul ™t —u 12, =l =~ ! |2,) to both side of the above inequality, we
can find that
. 1
EPNO[MT—H ullug-&-l’ ] EpNO[Lq,M1 u2’u2 l] < Z <3C __) Hun—H n||L2'

where the modified energy functional for the pACNO defined in (3.5). Therefore, if 3C; —
% <0, which mean 7 < min{%,% }, then

EpNO[ n+1 u1,u§+1 g] < EpNO{IH’M? 1 uz’ug 1]‘
and the energy stability for the pACNO system is proved. O

Remark 3.1 (Lipschitz constant Ly). For a given constant M, we introduce the quadratic
extension W (u) of W(u)=18(u*—u)? as follows:
18[(6M>—3M+1)u? —8M>u+3M*+M3|, u>M,
W(u)= 18(u —u)?, ue[—M,Mj,
18[(6M>+3M+1)u?+8M3u+3M*—5M3], u<—M.

Then we replace the derivative W' (u) with W’(u), that yields:

(
18[(12M*—6M+2)u—8M3|, u>M,
W (u)={ 18[2(u2—u)(2u—1)], ue[—M,M),
18[(12M3+6M+2)u+8M°], u<—M.

Thus, By replacing W’(u) with W’(u), it is straightforward that there exists a Lipschitz
constant Ly such that

maX|W ( )’ § LW”'
uclR
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Remark 3.2. We can also consider the Cahn-Hillard type of the OK/NO models over
the disk domain, which is derived from the H~! gradient flow of the energy functionals
EOX[u] (1.1) for the OK model and ENC[u] (1.2) for the NO model. The Cahn-Hilliard-
Ohta-Kawasaki (CHOK) equation is given by:

%zA(—@) :A<€Au—%W’(u)>—’y(u—w), (3.9)

and the Cahn-Hilliard-Nakazawa-Ohta (CHNO) equation is derived as follows:
du; _ ( OENO[uj]
ot N 51/[1'
1 0Wa (uq, .
=A ((-:Auﬁ— gAu]- T %) —’yii(ui —wi) —’yi]-(u]- —cu]-), i=1,2. (3.10)
1

For the numerical study, we can apply various fully-implicit or semi-implicit schemes to
solve the CHOK and CHNO equations. For example, we can propose a modification of
the second-order BDF Scheme for the Cahn-Hilliard equation [60], given by:
3yt — 4y 4 yn1
2T

1 _
wn+1:eAunJrl_iW/(unJrl/un/un 1).
€

— Awn+1 _,),(un—H _w),

The fully implicit scheme can handle the nonlocal term easily and offer uncondition-
ally stability, but it will have a high computational cost compared to the semi-implicit
schemes applied to the Allen-Cahn type of ACOK and ACNO equations in this paper.
For more detailed studies of the energy stability, error analysis, and dynamics, we will
reserve for our future work.

3.2 Fully-discrete scheme for pACOK and pACNO equations in the disk
domain

In this section, we apply the ultraspherical spectral method in the disk domain to con-
struct the fully-discrete schemes for both pACOK and pACNO equations.

3.2.1 Ultraspherical spectral method for spatial discretization
For the pACOK/pACNO equations in the disk domain Q) = [0,1] x [0,277), we use the

Chebyshev-Fourier expansion in the spatial domain to express the function f as:

f(r,0)=Y fuT(r)e”, (3.11)
ik

where Ty (r) are the Chebyshev polynomials of the first kind. Next, instead of Q) =
[0,1] x[0,277), we focus on an extended domain Q)=[—1,1] x [0,277) which alleviates over-
sampling near the origin and reduces the computational complexity by even-odd parity.
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We discretize the spatial operators using the spectral collocation approximation. Let
N, be a positive odd integer and Ny be a positive even integer the collocation points
are Chebyshev-Gaussian-Lobatto points r; =cos & with i=0,1,---,N; in r-direction and
the uniform mesh in 0-direction with mesh size h = 2” The set of collocation points is
formulated as (), ={(7;,6;); i=0:N,,j=1:Np}. Then we define the index set:

Sy={(i,j)€Z? i=0:N,, j=1:Ny},
X N N
Sh:{(k,l)GZZ;k:();Nr,l:__9+1 _9}

Denote M, as the collection of grid functions with zero mean defined on Q);:
My ={f: % —=R| fijrun, = fij, V(i,j) €Sp, VN EZ, foo=0}.

Forany f,g€ M; and f=(f1,f?)T,g=(g',¢*)T € M), x M,,, we define the discrete L? inner
product {-,-), discrete L>-norm || || 12, and discrete L*-norm |- ||~ j, as follows:

(fo&hn=ho Y. figijwi, |Ifllizn=1/{ffon Hf!ILoo,hZir?ghlfij!,

(i,j)€Sn ()

<f/g>h:h9 Z ( 1]g1]+fz]g1])wl/ Hf”Lz,h: <f/f>hr

(i j)esll

where w; is the Chebyshev weights such that w; = z N ,i=0:N,and ¢p=CN, =2, ¢ =1,

i=1:N,—1. Note that w; in the model formulation (1 6) with a slight abuse of nota-

tion, represents the volume fraction of u;. The specific meaning of this notation can be
determined by the context.

The 2D discrete Chebyshev-Fourier transform of a function f € M), is defined as
2 fij —ilf; ]
fk] Tk(ri)e ! 7, (k/l)esh/
CkNrNe (i,j) €S g

and its inverse transform is given by
fi= Y, fuTe(ri)é", (i,j)€s;.
(k,l)eﬁh

Moreover, the operators in §-direction on Fourier basis can be found in [10], in r-direction
on Chebyshev basis are introduced in Section 2, and the spectral approximations to the
differential operators dgg, 9, 9, follows:

{footij=1{000ftii= Y., —PfaTe(r;)e", (i,j) € Sn,
(k1)eS$,
{fiti={0: Y= Y, fuTi(ri)e", (i,j) € Sn,
(kl)eﬁh

{frrdij={0nf}ij= E faT{ (r; )el?i, (i,j) €Sp.

(k l)ESh
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In matrix form, let F; = { fkl} k=0:N, be the vector of Chebyshev-Fourier coefficients with
[=— % +1: % By converting the Chebyshev basis to the ultraspherical basis, we have

899 : IA: — 1280,2?,
ar : F — SLZIDOJ?,
arr . F — IDO,ZF,

where Sy, 512, Do 1, and Dy, can be found in Section 2.

3.2.2 Estimation of ||(—Ay) |2,

In this subsection, we will provide an upper limit for the L? norm of the dis-
crete inverse Laplacian operator (—A;)~!, denoted by ||(—A;) 1|12, which satisfies
1(=An) ' fllzn < Cll fllr2n, where f € M), and the constant C is a generic constant in-
dependent of the mesh size. Similar to the semi-discrete case (3.1), we require the the
optimal constant ||(—A;) 1|12 to guarantee the energy stability for the fully-discrete
schemes (3.13), (3.14). The following Lemma provides the stability of the discrete inverse
Laplacian operator (—A;) L.

Lemma 3.2. For the function f(r,0) € My, the L?>-bound of the discrete inverse Laplacian oper-
ator is given by

-1
[(=An) 20 <C,
with a generic constant C independent of mesh size in both r- and 6-directions.

Proof. The proof of this lemma is based on [7, Chapter 6,7] and the parity property of the
Cartesian and polar coordinates in the disk domain [5,6,15,40]. We present a brief outline
of the proof as below. For the functions f,u € M;, the discrete Laplacian operator —A,
satisfies:

(—Ah)u:f — _(rur)r_%u%:rf'

Here the derivatives for u € M, are defined in Section 3.2.1. Taking the discrete inner
product with u, we have

(rfu)y,=an(u,u)=(—(ruy),— %Meoruh

=hg ) [(_(””r)r)ij‘F(_%”%) ‘j] Uijci.

(i,j)€Sn L

Next, we define

1 1 1
b(u,u):/_1—(rur),uwdr—l—/_l—;ueguwdr,
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with w=(1-72) 3, which leads to

1
wy=rw®=r(1-r)w’, wp=(1+2r)w® and %—w%w’lziaﬁ’.

Note that, with a slight abuse of notation, w is exclusively used to represent the weight
function in this proof. In other sections of this paper, w always denotes the volume frac-
tion of u for the OK model.

Using the techniques in [7, Chapter 7], we have the following two inequalities:

11 1
b(u,u)Z/ ;u%wdr—%/ ru?w’dr, (3.12a)
-1

-1

1
b(u,u)zé/ ruwdr. (3.12b)
-1
Thus, the inequality (3.12a) and (3.12b) imply
11 1
b(u,u)Z/ ;uéwdr—i’»b(u,u) = / udwdr <4b(u,u).
J-1 -1

Thanks to the closed relation in [7, Chapter 2, (2.2.17)]

N 1
ZP(Xj)ij/lp(x)w(x)dx, VpelPon_1,
=0 -

where IPyn_1 is the set of polynomials of degree 2N —1, we obtain

(ug,ug),=he Y (ug)?jwi <day,(u,u).
(i,j)€Sh

For f,u € Mj, using the discrete Poincare inequality for the Fourier series, we have
/
el 2,0 < Cllullr2

where C’ is a generic constant independent of the mesh size h. Therefore, we have the
following inequalities

][, < C'llugl|72 ), <4Cay (u,u) <AC| £l 2 plletll 12
which lead to the result

Nl 2= 11(=B0) " Fllizp < ClIfl 120

where C is a generic constant independent of the mesh size in both r- and 6-directions. [J
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3.2.3 Fully-discrete schemes and their energy stability
In this subsection, we present the fully-discrete schemes for the pACOK and pACNO
equations in the disk domain. The numerical solutions are given by:

U"=u(r,0;tn)lq,, Ui ~ui(r,0;ts)la,, Us~ux(r,0;th)|q, -

Then, the second order fully-discrete schemes for the pACOK equation follows: given
initial condition
U'=u’=uo(r,0)lg,,, for ne[N*],

find U™t = (LI”“ )ij € My, such that

3urtl—4un+yun-t
2T

1
:eAhun+l _ E [2W/(un) _W/(unfl)}

_ % (un+1 _2un_’_un71) _,Yﬁh(_A);l (un+1 _Zun_{_unfl)
—y(=A);t (211”—u”—1 —w) ~M [<2u" - U”—1,1>h—w|()h|} . (313)

where «;, ), > 0 are stabilization constants, the stabilizer % (LI”+1 —2U"+ U”fl) controls
the growth of W', and the stabilizer 7f;,(—A),* (U"*1—2U"+U""!) dominates the be-
havior of (—A), 1.

Similarly, the second order fully-discrete scheme for the pACNO equations reads:
given initial condition U~ 1= LI? = ug,(r,0)] Onioe” i =1,2, with stabilizer (U"*!—2U"+
U"-1), the numerical solutions

(U U = (W), (R ) € My x My,
for each n € [IN*] are given by

3urtt —aur+urt

2T
:eAhUi”“ng <2Ahu;1+mod(i+l,2)_Ahu?—1+2-mod(i+l,2)>
1[,0W2 . nimod(i+1,2) OWp o n—142.mod(i+12) ;1
— 2 4 ny __ ’ n
e )-SR w; )
Kinh _ — —
- (U?H—ZUI’"JFU? 1) —%iBin(—8);" (ufz+1—2U?+Uf 1)

_')’ii(_A);71 [Zuln _ uln—l _wl} _'Yij(_A);:l [zu;erod(iH,Z) . u;171+2~m0d(i+1,2) _wj]

-M; [<2U?—U?’1,1>h—wilﬂh!], (3.14)
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fori=1,2 and j #i, and stabilization constants x ,x2 , 81,1, B2,n > 0.
To consider the energy stability for the fully-discrete schemes for the pACOK (3.13)
and pACNO (3.14) equations, we define the discrete energy functional for the OK model

BN (U") =3 V3l 2+ (WU, ),
i 7; " M
o l1(=4), (U =) [l 2+ 5 (U, 1)), ~w]Q), (3.15)
and the discrete energy functional for the NO model

OK €
E} (Uilruz”)25(HVhU?HLZ,ﬁIIVhU§|!L2h+<VhU?,VhU§>)

1 i -
<W2(ulru2 + Z 7]< 1 uln_w)’<u]n_w) >h
i,j=1
2
+Y S (UE ), —wl0l). 616
i=1

Then we establish the following energy stability for the fully discrete schemes (3.13),
(3.14). The proofs of the theorems are similar to that of Theorem 3.1, the only difference
is to substitution of (—A) ! with (—A), . We omit the details for brevity.

Theorem 3.2. For the fully discrete scheme (3.13) of pACOK equation, we define a modifying
energy functional as

OK OK 1
R e [ T

TPh —1
£ Pyt (w2,
where {U"}N_, is generated by scheme (3.13). If 5t + L >0, B, >0, and 1 >3C,,, then
EZOK(UVH-l’uﬂ) < EZOK(ul’l,un—l)’

where Cy, is a generic constant independent of the time step size T.
For the pACNO system (3.14), the modifying energy functional is defined by

~ 2 K
g g ug = O g+ L[ (B g ) U7 i
i=1

r),u i, 1 .
AN S T )

where {UP, U3 }N_, is generated by scheme (3.14). If «; 1, B;4>0,i=1,2, and T<min{ 51— cop
then

1
/ 3C2,h 4

EPNOU L Uy, U Ug) < EPNO L, U U,

where C;y, i =1,2 are generic constants independent of the time step size T.



W. Luo and Y. Zhao / Adv. Appl. Math. Mech., x (2025), pp. 1-35 25

To implement the fully-discrete scheme (3.13), we take B, =0 and repeat the following
algorithm: forn=1,2,---,

1. Evaluate (—Ay,) 1 (2U"—U""!—w) using the Helmholtz solver with a=0 in Section
2.3;

2. Insert (—A,) "1 (2U"—U""!—w) into the right hand side of (3.13) and solve another
Helmholtz equation

3

Kn n41 nn—1
—eN, L — " =F , 17
< € h+2T+ - > u I (3.17)

where the term F;""~! can be explicitly represented by

n,nfl_% n_i nfl_l i1y _ a7 (1 n—1 K_h n__jm—1
Bt =tur——u ePW(U) W (U ﬂ+€(u1 )

—7(—Aﬁ4(2u"—Lﬂ—P—w)—A4B2U”—LW—RUh—aﬂﬂm}. (3.18)

Similar algorithm applies to solving the fully-discrete scheme (3.14) for the pACNO
system with ;, =0.

4 Numerical experiments

In this section, we present some numerical experiments for the pACOK and pACNO
equations in the disk domain Q = [0,1] x [0,277) C R?. By imposing homogeneous Neu-
mann boundary conditions in radial (r) direction and periodic boundary conditions in
angular (0) direction, we adopt the ultraspectral spectral method in the spatial domain
and BDF schemes (3.13) and (3.14) with proper stabilizers to explore the coarsening dy-
namics and the equilibrium states of OK and NO models. For the disk domain, we take
the uniform mesh grid with Ny =2° in angular direction and Chebyshev mesh grid with
N, =2°+1 in radial direction. Denote the mesh size h= %\1_7; The stopping criteria for the
time iteration are set to

U — U
T

<107
for pACOK equation with approximate solution U" at n-th step, and

1 1
[ I [ 7] [
T T

10-°

for pACNO equation with approximate solution U7, U} at n-th step.
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4.1 Rate of convergence

In this subsection, we test the rate of convergence of the second-order semi-implicit
scheme for both pACOK and pACNO equations (1.5), (1.6) in the disk domain.
For the pACOK equation, we choose the following initial condition:

(2, ) { 1, if x2+.(y—0.2)2 <12,

0, otherwise,
where 1y = /w+0.1. While using the parameter w = 0.15, ¥ =100, x = 1000, =5 and
M =1000, we take the fully discrete scheme (3.1) for the numerical experiments. The test
is conducted for € values of 25 and 20k, up to time T =0.01. The benchmark solution
used for comparison has a time step size of T=1x107°.

While utilizing the second-order scheme (3.1) to solve the pACOK equation for the
binary system, Table 1 presents the error and corresponding rate of convergence at a
fixed time T = 0.01. It can be observed that the numerical rates for each € = 25h, 20h
are approximately equal to 2 for small time step size T, which is in accordance with the
theoretical prediction.

For the pACNO equations, we use two separate disks as the initial data:

W (xy) 1, if (x—04)%+(y+03)2<r3,
X,Yy)= .
1y 0, otherwise,
W (x,y) 1, if (x+04)*+(y—03)*<r3,
X,Y)= .
2\ Y 0, otherwise,

where 71 = /w1 +0.05 and 7, = \/w>+0.05. In the numerical simulation, we take the
parameters wq = wy =0.09, y11 = Y22 =500, y12 =721 =0, x1 =*2 =1000, f1 = B2 =0 and
M; = M =1000 and use the fully discrete scheme (3.2). The test is also performed up to
T=0.01 for € =25h and 20k, and the benchmark solution is calculated with the time step
size of T=1x107°.

Table 1: Rate of convergence for the pACOK equation in the binary system with parameters w=0.15, =100,
x=1000, B=5 and M =1000.

. €=25h €=20h
Error Rate Error Rate

5.000e-4 1.37132e-1 - 1.69732e-1 -

2.500e-4 4.09459¢-2 | 1.74377 | 5.86987e-2 | 1.53186

1.250e-4 1.13057e-2 | 1.85667 | 1.62430e-2 | 1.85351

6.250e-5 3.27654e-3 | 1.78680 | 4.64194e-3 | 1.80702

3.125e-5 9.58757e-4 | 1.77294 | 1.33686e-3 | 1.79587
le-6 (benchmark) - - - -
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Table 2: Rate of convergence for the pACNO equation in the ternary system with parameters wq =w, =0.09,
Y11 = Y22 =500, Y12 =721 =0, 11 =% =1000, ﬁl :ﬁz =0 and M =M, =1000.

€=25h €=20h
T Error Rate Error Rate

5.000e-4 1.31507e-1 - 1.59813e-1 -

2.500e-4 3.88543e-2 | 1.75900 | 5.23678e-2 | 1.60963

1.250e-4 1.06830e-2 | 1.86276 | 1.45313e-2 | 1.84952

6.250e-5 3.18168e-3 | 1.74745 | 4.25723e-3 | 1.77117

3.125e-5 1.04297e-3 | 1.60908 | 1.35478e-3 | 1.65185
le-6 (benchmark) - - - -

Table 2 shows the errors and the convergence rates for the pACNO equations in the
ternary system solved using the second-order scheme (3.2) at a fixed time T=0.01. Similar
to the pACOK equation, the numerical rates closely match the theoretical value of 2 for
each € value of 25k and 204, as well as for a small time step size 7.

4.2 Coarsening dynamics of OK model

In this subsection, we focus on the dynamics of the pACOK equation with the scheme
(3.13). When the relative volume w of one phase (species A) is small compared to the
total volume, and the strength 7 of long-range interactions is relatively large, i.e., w <1
and > 1, the pACOK equation results in an equilibrium of bubble assembly in which
one phase (species A) is embedded into the other one (species B).

The initial data is randomly given by the uniform mesh of the disk domain () =
[0,1] x [0,277) with the mesh size 32k in r-direction and 8k in 6-direction. In MATLAB,
the random initials are easily generated by the command

repelem(rand((N,—1)/ratio,Ny,/(ratio/4)),ratio,ratio/4)" ’

repelem(rand(Ny,/(ratio,1)),ratio,1)T

with ratio = 32 in the numerical experiments for pACOK equation. At last, the param-
eter values are chosen as T=5x10"%, w=0.15, x =2000, B=0and M =2000.

The coarsening dynamics of the pACOK equation and the equilibria in the binary
system are shown in Fig. 1 with y=2500, 3500, and 4000 respectively. For each subfigure,
we insert the snapshots taken at four different times ¢, with colored titles corresponding
to the colored marker on the monotone-decreasing energy curve. With the value of +y
increasing and other parameters fixed, we observe that the stronger long-range repulsive
force leads to an increase in the number of bubbles. The results show in Fig. 1(top) with
¥ =2500, Fig. 1(middle) with v =3500 and Fig. 1(bottom) with v =4000. In Fig. 1(top),
starting from the random initial, the phase separation arises in a very short time period
and a group of bubbles with different sizes appear as shown in t = 0.5, then the small
bubbles disappear and other bubbles in the interior of the disk grow into the same size
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Figure 1: Coarsening dynamics in binary system on
v=4000 (bottom).

a unit disk with ¥ =2500 (top), ¥ =3500 (middle), and

which is shown in t = 3,10,50, similar to those in the square domain [10]. Interestingly,
different from the square domain, we can observe half bubbles appearing as an interac-
tion with the boundary of the disk, which can also be found from Ren and Shoup’s recent

work [36].

4.3 Coarsening dynamics of NO model

In this subsection, we numerically study the dynamics and equilibrium of the pACNO
equations. While using the suggested scheme (3.14) and taking w < 1 and relatively
large -y, we can observe the dynamics and equilibria as several types of double bubble
assemblies by choosing different long-range strengths (7;;); j—1,2 in pACNO equations. In
our numerical experiments, we take the long-range repulsive force 11 =722 and y12="21.
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While choosing the random initial similar to the binary system, the phase separation
of the ternary system costs several days in the experiments. Therefore, to avoid the long
time consumption and study the equilibrium of the pattern formation on the interior
of the domain, we construct the initial configuration in the ternary system in the disk
domain by random circles on the interior of the disk with random centers and radius,
each random circle is allowed overlapping with others. We call it a "semi-random initial’
in our following work. Moreover, we fix time step T=>5x 1074, relative area w; =w,=0.09,
stabilized constants x; =« =2000, 1 = B2 =0 and M; = M, =2000.

4.3.1 Coarsening dynamics and pattern formation in the disk domain

The coarsening dynamics of the ternary system in the disk domain are shown in Fig. 2.
Similar to the binary system, the insets are snapshots taken at four different times ¢. In
Fig. 2(top), we take 11 =722 = 6000, 12 = 721 = 0. Starting from the initial generated by
random circles, in a very short period of time, the phase separation takes place, leading
to the coexistence of double-bubbles and single-bubble patterns (t =0.5). Next, some
tiny single bubbles disappear (f=15) and others begin merging into the double-bubbles

120

60 80 100 120 140 160 180
Time

Figure 2: Coarsening dynamics in ternary system on a unit disk with 717 =22 =6000, 12 =21 =0 (top), and
Y11 =22 =15000, 12 =21 =0 (bottom).
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pattern (t=40). Finally, a pattern of all double bubbles is formed and composed of two
circular layers, in which two double bubbles stay in the middle layer, surrounded by a
layer of nine double bubbles, each with the head pointing to the tail of another, forming
a circle, which we call the "head-to-tail” pattern (f=90).

While increasing the repulsive force 11 =722=15000, and fixing other parameters, the
repulsive interaction between the same component becomes stronger and leads to more
double-bubbles as shown in Fig. 2(bottom). Moreover, the larger repulsive force induces
three circular layers, in which one double bubble lies within the inner layer (the center
of the disk domain), surround by six double bubbles forming a "head-to-tail circle in the
middle layer, and the outside layer contains thirteen double bubbles with the "head-to-
tail” circle.

This is the most important numerical finding from our model system. To our best
knowledge, it is the first time that the "'head-to-tail” pattern is numerically discovered in
the study of the pACNO equations in the disk domain.

4.3.2 The effect of 1,

The effect of 12 =21 can be found in Figs. 2 and 3. While the long-range force 11 (722,
respectively) is dedicated to splitting the same component (red and yellow respectively),
the repulsive strength 1, = 71 can be viewed as the splitting force between red and
yellow components, namely, for fixed 711 = y22, the increase of 1, tends to separate the
red and yellow constituents.

While taking 711 = y22 =6000, we increase the value of 71, from 0 (Fig. 2(top)) to 3000
(Fig. 3(top)), 6000 (Fig. 3(middle)) and 8000 (Fig. 3(bottom)). By taking 12 =921 =0
in Fig. 2(top), there is no strength to separate the red and yellow components, thus
they adhere together which results in all-double-bubble assembly. While increasing
Y12 =21 =3000, some of the double bubbles separate into single red and yellow bubbles,
which lead to the coexistence of double-bubbles and single-bubble patterns as shown in
Fig. 3(top). In Fig. 3(middle), the strengths 12 = 721 = 6000 become larger and break
all double bubbles, therefore the bubble assembly tends to be purely single bubbles.
Fig. 3(bottom) shows that with even larger repulsive strength 12 = 721 = 8000, the red
bubbles are completely separated away from yellow bubbles. Although there are no the-
oretical studies of the NO model in the disk domain, our numerical results are consistent
with the experiments in the square domain from Wang, Ren, and Zhao’s work [53].

4.3.3 Equilibrium of the ternary system: ‘Head-to-tail” pattern

Due to the nonconvexity of the energy functional of the NO model, pACNO system may
display multiple equilibra with the same parameter values. For the experiment as shown
in Fig. 4, we take 711 = 722 = 6000 and y12 = 21 =0 for each subfigure. Starting from
several different semi-random initials, we observe two equilibria as shown in Fig. 4. In
Fig. 4(top), the equilibrium has two "head-to-tail’ circles, with two double bubbles in the
inside circle, and nine double bubbles in the outside circle and its energy is approximately
E (a) = 15.7645. With another semi-random initial, we can also observe two "head-to-tail’
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Figure 3: Coarsening dynamics in ternary system on a unit disk with 11 =22 =6000, 12 =21 =3000 (top),
Y11 ="Y22=6000, Y12 =21 =6000 (middle), and 11 =22 =6000, 12 =21 =8000 (bottom).

circles as the equilibrium in Fig. 4(bottom), but different from the top one, the inside
circle has three double bubbles and the outside circle has nine double bubbles, and the
energy approximately is E ;) =15.8156. Comparing the equilibrium energy for each sub-
figure, it’s easy to see that E,) <E;), which indicates that the equilibrium on top is more
energetically favorable than the one at bottom.
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Time
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Time

Figure 4: different equilibrium in the ternary system on a unit disk with 11 =22 =6000, 12 =721 =0, and the
equilibrium energy: Eq,y <E(y,).

5 Concluding remarks

In this paper, we introduce a numerical method for studying the dynamics and equilib-
rium states of the OK and NO models in the disk domain. While applying the second-
order BDF scheme in time and the ultraspherical spectral collocation method for spatial
variables, we develop an energy stable scheme for the pACOK and pACNO equations in
the disk domain with the Neumann boundary condition.

In the numerical experiments, we notice the phase separation and single bubble for-
mation on both the interior and boundary of the disk by pACOK dynamics for the binary
system when one species has a much smaller volume than the other. With the pACNO
dynamics in the disk domain, the repulsive force between different species leads to vari-
ous types of bubble assembly on the interior of the unit disk, the most important observa-
tion from the experiments is the all-double-bubbles pattern with the "head-to-tail” circles
for the ternary system on unit disk.

In the furture work, we will focus on a systematic study of the bubble assemblies
for the binary system over disk domain. More specifically, we will explore all possible
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equilibria, each of which contains interior bubbles and boundary half-bubbles. This nu-
merical investigation will be compared to the theoretical findings in Ren and Shoup’s
work [36]. For the ternary system, this work can be extended to the double-bubble pat-
terns both in the interior and on the boundary of the disk. Another possible direction is
to thoretically analyze the "head-to-tail” pattern and study the parameter dependence of
the patterns.
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