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Abstract
We study the asymptotical compatibility of the Fourier
spectral method in multidimensional space for the nonlo-
cal Ohta–Kawasaka model, a more generalized version of
the model proposed in our previous work (Y. Zhao and W.
Luo, Physica D 458 (2024), 133989). By introducing the
Fourier collocation discretization for the spatial variable,
we show that the asymptotical compatibility holds in 2D
and 3D over a periodic domain. For the temporal discretiza-
tion, we adopt the second-order backward differentiation
formula method. We prove that for certain nonlocal kernels,
the proposed time discretization schemes inherit the energy
dissipation law. In the numerical experiments, we verify
the asymptotical compatibility, the second-order temporal
convergence rate, and the energy stability of the proposed
schemes. More importantly, we discover a novel square lat-
tice pattern when certain nonlocal kernel are applied in
the model. In addition, our numerical experiments confirm
the existence of an upper bound for the optimal num-
ber of bubbles in 2D for some specific nonlocal kernels.
Finally, we numerically explore the promotion/demotion
effect induced by the nonlocal horizon !, which is con-
sistent with the theoretical studies presented in our earlier
work (Y. Zhao and W. Luo, Physica D 458 (2024), 133989).
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1 INTRODUCTION

In recent years, the Ohta–Kawasaki (OK) model, introduced in [27], has been used for the study of
phase separation of diblock copolymers. Diblock copolymers are chain molecules composed of two
distinct segment species denoted as species A and B, respectively. These species exhibit a tendency to
undergo phase separation due to their inherent chemical incompatibility, and the behavior has drawn
significant attention within the field of materials science, attributed to their remarkable ability for
self-assembly into nanoscale ordered structures [21].

Block copolymers provide simple and easily controlled materials for exploring self-assembly
phenomena. Mean field theories, accompanied by their corresponding free energy functionals, have
demonstrated substantial utility in understanding and predicting pattern morphologies [3,9]. Both in
experimental investigations and theoretical analyses, the periodic structures from block copolymer
systems have been studied over the past decades [2,3,22,24,33,43]. In addition to the conventional
Ohta–Kawasaki theory, our focus extends to the exploration of a nonlocal Ohta–Kawasaki (NOK)
model which is characterized by a free energy functional [41]:

ENOK[u] = ∫Ω

"
2 ⟩(!)

1
2 u⟩2 + 1

"
W(u) dx + #

2 ∫Ω
⟩(!)−

1
2 (u − $)⟩2 dx, (1.1)

with a volume constraint

∫Ω
(u − $) dx = 0. (1.2)

Here Ω = ⟨%
i=1[−Xi,Xi] ⊂ R% , % = 1, 2, 3 denotes a periodic box and 0 < " ≪ 1 is an interface

parameter that indicates the system is in strong segregation regime. u = u(x) is a phase field labeling
function that indicates the density of species A in the domain, and the density of species B is implicitly
represented by 1 − u(x). Function W(u) = 18(u − u2)2 is a double well potential that enforces the
labeling function u(x) to be 0 or 1 in the domain. The first integral represents the oscillation-inhibiting
term for the phase coarsening, promoting the formation of a larger domain, while the second integral
is the oscillation-forcing term for the phase refinement, favoring multiple smaller domains. Finally,
we choose the parameter $ ∈ (0, 1

2 ) to represent the volume fraction occupied by species A, and take
Ω = [−(,( )% for the remainder of the article. Note that in the NOK model early proposed in [41], the
oscillation-inhibiting term reads

∫Ω

"
2 ⟩∇u⟩2 + 1

"
W(u) dx,

which is the standard Ginzburg–Landau energy functional. In this article, we study this term in a more
general way, by replacing ⟩∇u⟩2 by a nonlocal term ⟩ 1

2
! u⟩2. This treatment has been considered in the

previous work in [14,18].
The non-local diffusion operator ! is defined as:

!u(x) = ∫⟩s⟩≤! )!(s)(u(x) − u(x + s))ds, (1.3)

where the kernel function )!(x) is a nonnegative, radial symmetric with compact support in ⟩x⟩ ≤ !,
and has a bounded second moment [17]. The horizon parameter ! > 0 is used to measure the range of
nonlocal interactions introduced by ! . The operator ! is positive semi-definite. Under some suitable
conditions on )! , we have the weak convergence [11]

lim
!→0+

!u = 0u ∶= −Δu, ∀u ∈ C((Ω).
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For a comprehensive introduction to nonlocal modeling, analysis, and computation, we recommend
interested readers refer to a recent monograph [11] by Du.

To study the microphase separation and pattern formation for the NOK system, we consider the L2

gradient flow dynamics of the NOK model. By incorporating a penalty term into the free energy func-
tional (1.1), we obtain an unconstrained free energy functional designed to accommodate the volume
constraint (1.2) as follows:

EpNOK[u] = ∫Ω

"
2 ⟩(!)

1
2 u⟩2 + 1

"
W(u) dx + #

2 ∫Ω
⟩(!)−

1
2 (u − $)⟩2 dx + M

2

⟩
∫Ω

u − $ dx
‖2
, (1.4)

where M ≫ 1 is the penalty constant to enforce the volume constraint. Then we derive the penalized
nonlocal Allen–Cahn–Ohta–Kawasaki (pNACOK) equation for the time evolution of u(x, t) with a
given initial condition u(x, 0) = u0(x):

+
+t

u(x, t) = −"!u(x, t) − 1
"

W )(u(x, t)) − #−1
! (u(x, t) − $) −∫Ω

(u(x, t) − $) dx, (1.5)

with periodic boundary conditions.
For the discussion of asymptotic compatibility and energy stability in the rest of the article, we mod-

ify the function W(s) quadratically, when ⟩s⟩ > Mcut > 0 for some Mcut. This ensures that W )) has finite
upper bound, which is necessary for the energy stable schemes for Ginzburg–Landau type dynamics
[32]. We adopt the quadratic extension ,W(u) of W(u) as used in [32] and other related citations therein.
For brevity, we will continue to use W(u) to represent ,W(u), and denote LW )) ∶= ⟩⟩W ))⟩⟩L( . Here LW ))

denote the upper bound for ⟩W ))⟩. It is worth noting that for the Allen–Cahn and Cahn–Hilliard dynam-
ics without nonlocal term, the quadratic extension for W(s) guarantees that the solutions always satisfy
the maximum principle [6]. Although the quadratic extension is unnecessary for the solutions to satisfy
the maximum principle in the Allen–Cahn dynamics, it can simplify the analysis and approximation
by avoiding some technical difficulties.

1.1 Previews work and our contribution
Extensive theoretical analysis and numerical methods have been dedicated to the OK model, initially
proposed by Ohka and Kawasaki in [27]. The authors in [26,28] presented a simple analogy of a
binary inhibitory system derived from the OK model for diblock copolymers. Choski [10] conducted
an asymptotic analysis of the OK model, establishing the existence of global minimizers and exploring
their properties. Numerical schemes have also been developed over the past years for the OK model,
with a particular focus on energy-stable approaches using different gradient flow dynamics. Among
these methods, the implicit midpoint spectral approximation in [4], the implicit–explicit quadrature
(IEQ) methods [7,40], and the stabilized semi-implicit methods [32,35] have been designed for the
OK model with the H−1 gradient flow dynamics, or the Cahn–Hilliard type dynamics [32]. For the
L2 gradient flow dynamics of the OK model, both operator-splitting energy stable methods [8,37] and
maximum principle preserving methods [38] have been developed. Additionally, the Nakazawa–Ohta
(NO) model, originally proposed by Nakazawa and Ohta in [25], has garnered much attention in recent
years. Ren and Wei conducted an exploration of a family of local minimizers characterized by a lamel-
lar structure for the NO system [29], and their subsequent work was dedicated to the pattern formation
of ternary systems [30,31]. Despite these efforts, a comprehensive characterization of global mini-
mizers for the NO model remains elusive and under-researched. Gennip and Peletier focused on the
one-dimensional scenario, addressing the global minimizers of the NO model in a degenerate case and
under specific formulations of the long-range interaction parameters [#ij] [20]. On a different note, Du
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and Xu made a pioneering effort to systematically study the characterization of global minimizers of
the NO model in non-degenerate scenarios [39].

In recent years, extensive studies have been dedicated to explore both the mathematical and numer-
ical aspects of nonlocal models. Notably, in [1,5,19], the authors conducted a great deal of rigorous
mathematical analysis of nonlocal models. In 2012, Du et al. [12,13] attempted to develop a general
framework for nonlocal models. Their work involved the investigation of a class of nonlocal diffusion
problems with various possible boundary conditions. Moreover, they presented numerous examples
demonstrating that the nonlocal model finds various applications, ranging from continuum mechanics
to graph theory. Because exact solutions for nonlocal models are rarely available, numerical methods
have become crucial tools for the study of the nonlocal models. For instance, Du and Yang [17,18]
studied the Fourier spectral method for a 1D nonlocal Allen–Cahn (NAC) equation, and designed a fast
and accurate implementation for the Fourier symbols of some nonlocal diffusion operators. Moreover,
Du et al. [14] designed stabilized linear semi-implicit schemes to study the nonlocal Cahn–Hilliard
equation. Remarkably in [34], Tian and Du proposed the concept of asymptotic compatibility, to
study the limiting behavior of the nonlocal model solutions u!

h as !, h → 0. In [17], Du and Yang
showed the asymptotic compatibility of the Fourier spectral collocation approximations for the NAC
equation.

Recently, Xu and Zhao [38] and Zhao and Luo [41] attempt to expand the original OK model into
a more general form. We introduced the NOK model (1.1) by incorporating a nonlocal operator in the
NOK energy functional. Notably, our new model successfully replicated certain unconventional exper-
imental patterns presented in [23,36]. For the 1D case in [41], we explore the influence of nonlocal
parameters on the pattern formation for the diblock copolymer system.

The primary focus of this article centers on the numerical analysis of the NOK model in 2D and
3D. Our contribution to this article lies in several aspects. First, we prove the asymptotic compatibility
of the Fourier spectral collocation approximations applied to the pNACOK equation in 2D and 3D.
The asymptotic compatibility condition is a fundamental component of the numerical analysis of the
nonlocal models. Second, we design a second-order in-time scheme to solve the pNACOK equation,
inheriting the energy dissipative law at the discrete level. Lastly, our numerical experiments reveals
some unusual patterns that are completely different from those generated by the original OK model.
We conduct a sequence of numerical studies on the effect of the nonlocal parameters on the bubble
patterns for the NOK system. One important and novel result shows that the optimal number of bubbles
in the bubble patterns may have an upper bound as the long-range interaction strength # goes to infinity
when considering the NOK model and choosing some proper nonlocal operators in the model. This
result is in contrast to the original OK model, in which the optimal number of bubbles grow to infinity
as # → (.

The rest of the article is organized as follows. In Section 2, we first introduce the continuous (dis-
crete) nonlocal operator ! (!,h) along with its eigenvalues under periodic boundaries, and prove
the asymptotic compatibility of Fourier spectral collocation approximation for linear nonlocal diffu-
sion problems in 2D and 3D cases. Section 3 demonstrates the asymptotic compatibility between the
numerical solutions of pNACOK equations and its local counterpart in 2D and 3D. In Section 4, we
introduce the second-order backward differentiation formula (BDF) scheme for the pNACOK equation
and prove its energy stability. In Section 5, a series of numerical experiments will be presented. These
experiments validate the asymptotical compatibility, the rate of convergence, and the energy stabil-
ity for the proposed numerical scheme. Furthermore several numerical experiments are conducted to
systematically study the effect of the nonlocal parameters on the bubble patterns for the NOK system.
Concluding remarks are given in Section 6.
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2 PRELIMINARIES AND BOUNDS FOR THE FOURIER SYMBOLS

In this section, we explore several useful bounds for the Fourier symbols (Fourier eigenvalues) for some
nonlocal kernels ! in 2D and 3D over periodic domain Ω. The 1D results have been well established
in [17].

2.1 Nonlocal diffusion operator !

For the nonlocal operator ! in (1.3), we consider radially symmetric kernel functions in %-dimension,
% = 1, 2, 3,

)!(⟩x⟩) = 1
!%+2 )

⟨⟩x⟩
!

⟩
,

where )(⋅) is a nonnegative nonincreasing function with a compact support in [0, 1]. Kernel )! satisfies
the bounded second moment condition

1
2 ∫R%

)!(⟩x⟩)⟩x⟩2dx = %, or equivalently ∫
1

0
)(r)r%+1 dr = 2%

S%
, (2.1)

where S% is the area of the unit sphere in R% . Then, for any 0 ≠ k = (k1, … , k%) ∈ Z% , eik⋅x is
an eigenfunction of nonlocal operator ! in Ω = [−(,( )% with the corresponding Fourier symbols
[15,17,18]:

1D ∶ -!(k) = 2∫
!

0
)!(r)(1 − cos(r⟩k⟩)) dr,

2D ∶ -!(k) = 4∫
(
2

0 ∫
!

0
r)!(r)(1 − cos(r⟩k⟩ cos .)) drd.,

3D ∶ -!(k) = 4(∫
(
2

0
sin .∫

!

0
r2)!(r)(1 − cos(r⟩k⟩ cos .)) drd.,

(2.2)

where ⟩k⟩ ∶= ⟩⟩k⟩⟩2.
Moreover, we adopt the notations from [17,37] to define several spaces. Define the space of all

periodic functions in Hs(Ω), s ≥ 0, as Hsper(Ω). Then we denote the subspace consisting of all functions
u ∈ Hsper(Ω) with zero mean as:

H̊s
per(Ω) ∶=

(
u ∈ Hs

per(Ω) ∶ ∫Ω
u(x)%x = 0

)
. (2.3)

We use ⟩⟩ ⋅ ⟩⟩Hs to represent the standard Sobolev norm. When s = 0, Hs(Ω) = L2(Ω) and we take ⟨⋅, ⋅⟩
as the L2 inner product and ⟩⟩ ⋅ ⟩⟩Hs = ⟩⟩ ⋅ ⟩⟩L2 .

We define the inverse nonlocal operator −1
! ∶ L̊2

per(Ω) → H̊1
per(Ω) as −1

! f = u if and only if!u = f . In terms of Fourier series, ! and −1
! read

!u =
∑

k∈Z%⧵{0}
-!(k)ûkeikx, −1

! f =
∑

k∈Z%⧵{0}

1
-!(k)

f̂ keikx, (2.4)

where ûk and f̂ k are the kth Fourier coefficients of u and f , respectively.

2.2 Discrete nonlocal operator !,h

Next, we introduce some notations for the Fourier spectral collocation approximation in space. We
adopt the notations from [14,37]. By choosing a positive even integer N, we take the spatial size h = 2(

N
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and define the discrete domain Ωh = Ω ∩ (
%
⊗
i=1

hZ), % = 1, 2, 3. Two index sets related to the discrete
Fourier transform are given as follows

Sh = {j = (j1, … , j%)T ∈ Z% ; ji = 1 ∶ N, i = 1 ∶ %},

Ŝh = {k = (k1, … , k%)T ∈ Z% ; kl = −N
2 + 1 ∶ N

2 , l = 1 ∶ %}.

Denote by h the collection of periodic grid functions defined on Ωh:

h = {f ∶ Ωh → R⟩ fj+mN = fj, ∀ j ∈ Sh, ∀ m ∈ Z%},

and ̊h ∶= {f ∈ h⟩⟨f , 1⟩h = 0} the collection of functions in h with zero mean. For any
f , g ∈ h and f = (f 1, … , f %)T , g = (g1, … , g%)T ∈ (h)% , we define the discrete L2 inner product
⟨⋅, ⋅⟩h, discrete L2-norm ⟩⟩ ⋅ ⟩⟩L2,h, and discrete L(-norm ⟩⟩ ⋅ ⟩⟩L(,h as follows:

⟨f , g⟩h = h%
∑
j∈Sh

fjgj, ⟩⟩f ⟩⟩L2,h =
√
⟨f , f ⟩h, ⟩⟩f ⟩⟩L(,h = max

j∈Sh
⟩fj⟩,

⟨f, g⟩h = h%
∑
j∈Sh

(
f 1
j g1

j + · · · + f %j g%
j
)
, ⟩⟩f⟩⟩L2,h =

√
⟨f, f⟩h.

For a function f ∈ h, we denote by P the discrete Fourier transform (DFT) f̂ = Pf :

f̂ k = 1
N%

∑
j∈Sh

fje−ik⋅xj , k ∈ Ŝh, xj = −(1% + hj, (2.5)

where 1% is the % dimensional all-one vector, and the corresponding inverse discrete Fourier transform
(iDFT) f = P−1 f̂ is given as

fj =
∑

k∈Ŝh

f̂ keik⋅xj , j ∈ Sh.

We have the Parseval identity holds for any function f ∈ h,

⟩⟩f ⟩⟩2L2,h = h%
∑
j∈Sh

⟩fj⟩2 = (2()%
∑

k∈Ŝh

⟩f̂ k⟩2. (2.6)

By using the definition of P and P−1, we define the discrete nonlocal operator !,h ∶ h → ̊h
through the use of !,h = P−1̂!,hP in which

̂!,hf̂ k ∶= -!(k)f̂ k, k ∈ Ŝh. (2.7)

In other words, for any u ∈ h,

(!,hu)j = (P−1̂!,hPu)j =
∑

k∈Ŝh⧵{0}
̂!,hûkeik⋅xj =

∑

k∈Ŝh⧵{0}
-!(k)ûkeik⋅xj , j ∈ Sh. (2.8)

Then we can naturally define −1
!,h ∶ ̊h → ̊h through the use of −1

!,h = P−1̂−1
!,hP in which

̂−1
!,hf̂ k ∶= 1

-!(k)
f̂ k, k ∈ Ŝh. (2.9)

Namely, for any f ∈ ̊h,

(−1
!,hf )j = (P−1̂−1

!,hPf )j =
∑

k∈Ŝh⧵{0}
̂−1
!,hf̂ keik⋅xj =

∑

k∈Ŝh⧵{0}

1
-!(k)

f̂ keik⋅xj , j ∈ Sh. (2.10)
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Additionally, when −1
! (−1

!,h, respectively) apply to a function f ∈ Hsper (f ∈ h, respectively) which
is NOT of zero mean, we automatically take them as

−1
! f ∶= −1

! (f − f ), −1
!,hf ∶= −1

!,h(f − f ),

in which f represents the mean of f in both continuous and discrete sense.

2.3 Estimates of some bounds of Fourier symbols "!(k)
In this subsection, we will present several estimates for the bounds of Fourier symbols -!(k). These
estimates will be critical for proving the asymptotical compatibility and the energy stability of our
numerical schemes for solving the gradient flow dynamics of the NOK model. To this end, we consider
the stationary linear problems

!u!(x) = f (x), (2.11)
and its local counterpart

0u0(x) = f (x), (2.12)
over the periodic domain Ω = [−(,( )% , % = 2, 3. For the sake of simplicity, we assume that u! and
u0 are of zero mean. We use the Fourier collocation approximations defined in Section 2.2 to solve the
above two equations numerically, which gives

!,hu!
h = fh, 0,hu0

h = fh.

Here fh ∶= f (x)⟩Ωh ∈ h. By the definition of −1
!,h in (2.10), we have

u!
h − u0

h = (−1
!,h − −1

0,h)fh = P−1(̂−1
!,h − ̂−1

0,h)Pfh.

Lemma 2.1. Assuming that u!h and u0
h respectively are the Fourier collocation approxi-

mate solutions of the stationary linear problems (2.11) and (2.12) in the periodic domain
Ω = [−(,( )% , % = 2, 3, we have

⟩⟩u!
h − u0

h⟩⟩L2,h ≤ C!2⟩⟩fh⟩⟩L2,h, (2.13)
where C is a constant independent of both ! and h.

Proof. Thanks to the Parseval identity in (2.6), we have

⟩⟩u!
h − u0

h⟩⟩2L2,h = ⟩⟩P−1(̂−1
!,h − ̂−1

0,h)Pfh⟩⟩2L2,h = (2()%
∑

0≠k∈Ŝh

||||
1

-!(k)
− 1

-0(k)
||||
2
⟩f̂ k⟩2,

⟩⟩fh⟩⟩L2,h = (2()%
∑

0≠k∈Ŝh

⟩f̂ k⟩2.

The proof for the 1D case was provided in [17]. We aim to prove the asymptotic com-
patibility of the Fourier collocation approximations in 2D and 3D. Following the similar
techniques in Lemma 1 of [17], our task is simply to show the following bound

1
!2

||||
1

-!(k)
− 1

-0(k)
|||| ∶= Ck ≤ C, ∀ 0 ≠ k ∈ Z% .

In the remainder of this proof, we will mainly focus on the 2D case, while the 3D case
employs similar techniques.
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In 2D case, the Fourier symbol -!(k) in (2.2) can be rewritten as

-!(k) = 4∫
(
2

0 ∫
!

0
r)!(r)(1 − cos(r⟩k⟩ cos .)) drd.

= 4
!2 ∫

(
2

0 ∫
1

0
r)(r)(1 − cos(r!⟩k⟩ cos .)) drd..

Since 1 − cos s ≤ s2

2 , we have

!2⟩-!(k)⟩ = 4∫
(
2

0 ∫
1

0
r)(r)(1 − cos(r!⟩k⟩ cos .)) drd.

≤ 4∫
(
2

0 ∫
1

0
r)(r)

⟨
!2r2⟩k⟩2cos2.

2

⟩
drd.

= 4!2⟩k⟩2∫
(
2

0

cos2.
2 d.∫

1

0
r3)(r) dr

= 4!2⟩k⟩2 (8
2
(

= !2⟩k⟩2 = !2⟩-0(k)⟩,

in which the evaluation of ∫ 1
0 r3)(r)dr is due to (2.1). Using 1 − cos s ≥ s2

2 − s4

24 , we also
have

!2⟩-!(k)⟩ ≥ 4∫
(
2

0 ∫
1

0
r)(r)

⟨
!2r2⟩k⟩2cos2.

2 − !4r4⟩k⟩4cos4.
24

⟩
drd.

= !2⟩k⟩2 − 4!4⟩k⟩4∫
1

0
r5)(r)dr∫

(
2

0

cos4.
24 d.

≥ !2⟩k⟩2 − 4!4⟩k⟩4∫
1

0
r3)(r)dr∫

(
2

0

cos4.
24 d.

= !2⟩k⟩2 − 4!4⟩k⟩4 2
(

(
128

= !2⟩k⟩2 − !4⟩k⟩4
16 .

Thus, for !⟩k⟩ ≤ (, it follows that

Ck = 1
!2

||||
1

-!(k)
− 1

-0(k)
|||| ≤

1
!2⟩k⟩2 − !4⟩k⟩4

16

− 1
!2⟩k⟩2 = 1

16 − !2⟩k⟩2 ≤ 1
16 − (2 .

When !⟩k⟩ > (, the situation becomes more complicated. We need to distinguish between
four cases,

• Case I: r)(r) initially decreases, reaching a minimum at r+ ∈ (0, 1];
• Case II: r)(r) initially increases, reaching a maximum at r+ ∈ (0, 1].

For Case I in which r)(r) initially decreases, reaching a minimum at r+ ∈ (0, 1], we
first fix . ∈ [ (3 , cos−1( 1

3 )] and ( ≤ !⟩k⟩ ≤ (
r+ , then we have

r+!⟩k⟩ cos . ≤ (
2 , !⟩k⟩ cos . ≥ (

3 > 1,
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which implies that

∫
r+

0
r)(r) cos(r!⟩k⟩ cos .)dr ≤ ∫

r+

0
r)(r) cos(r)dr. (2.14)

Therefore when ( ≤ !⟩k⟩ ≤ (
r+ , we have the bound

!2⟩-!(k)⟩ ≥ 4∫
cos−1( 1

3 )

(
3

∫
r+

0
r)(r)(1 − cos(r!⟩k⟩ cos .)) drd.

≥ 4∫
cos−1( 1

3 )

(
3

∫
r+

0
r)(r)(1 − cos(r)) drd. = C1 > 0,

(2.15)

where C1 is a generic constant independent of ! and N.
Now for r+!⟩k⟩ ≥ (, we take . ∈ [0, (4 ], and then r+!⟩k⟩ cos . ≥ (√

2
. Note that for a

decreasing function g over [0, h], we always have

∫
h

0
g(r) cos(r)dr ≤ ∫

(
2

0
g(r) cos(r)dr, ∀h ≥ (

2 .

By the decrease of r)(r) over [0, r+], and r+!⟩k⟩ cos . ≥ (√
2
≥ (

2 , it follows that

∫
r+

0
r)(r) cos(r!⟩k⟩ cos .)dr ≤ ∫

(∕2
!⟩k⟩ cos .

0
r)(r) cos(r!⟩k⟩ cos .)dr

≤ ∫
(∕2

!⟩k⟩ cos .

0
r)(r)dr ≤ ∫

r+√
2

0
r)(r)dr.

Therefore when r+!⟩k⟩ ≥ (, we have the bound

!2⟩-!(k)⟩ ≥ 4∫
(
4

0 ∫
r+

0
r)(r)(1 − cos(r!⟩k⟩ cos .)) drd.

≥ 4
[

∫
(
4

0 ∫
r+

0
r)(r)drd. − ∫

(
4

0 ∫
r+√

2

0
r)(r) drd.

]
,

= 4∫
(
4

0 ∫
r+

r+√
2

r)(r) drd. = C2 > 0,

(2.16)

where C2 is a generic constant independent of ! and N.
Combining the two bounds (2.15) and (2.16) for Case I, we get that

Case I ∶ !2⟩-!(k)⟩ ≥ min{C3,C4} > 0, for !⟩k⟩ ≥ (. (2.17)

For Case II in which r)(r) initially increases, reaching a maximum at r+ ∈ (0, 1], we
first fix . ∈ [ (3 , cos−1( 1

3 )] and ( ≤ !⟩k⟩ ≤ (
r+ . Then we have

r+!⟩k⟩ cos . ≤ (
2 , !⟩k⟩ cos . ≥ (

3 > 1,

which implies that

∫
r+

0
r)(r) cos(r!⟩k⟩ cos .)dr ≤ ∫

r+

0
r)(r) cos(r)dr. (2.18)
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Therefore when ( ≤ !⟩k⟩ ≤ (
r+ , we have the bound,

!2⟩-!(k)⟩ ≥ 4∫
cos−1( 1

3 )

(
3

∫
r+

0
r)(r)(1 − cos(r!⟩k⟩ cos .)) drd.

≥ 4∫
cos−1( 1

3 )

(
3

∫
r+

0
r)(r)(1 − cos(r)) drd. = C3 > 0,

(2.19)

where C3 is a generic constant independent of ! and N.
Before moving to the discussion for r+!⟩k⟩ ≥ (, we need the following inequalities

∫
h

0
r)(r) cos(r)dr ≤ ∫

(
2

0
r)(r) cos(r)dr, ∀h ∈

[(
2 ,

3(
2
]
, (2.20)

and

∫
3(
2

0
r)(r) cos(r)dr ≤ 0, ∫

7(
2 +2n(

3(
2 +2n(

r)(r) cos(r)dr ≤ 0, n = 0, 1, 2, … . (2.21)

Next, we choose . ∈ [0, (4 ] and ( ≤ r+!⟩k⟩ ≤ 3(
2 , and then (√

2
≤ r+!⟩k⟩ cos . ≤ 3(

2 .
Using the inequality (2.20), it follows that

∫
r+

0
r)(r) cos(r!⟩k⟩ cos .)dr ≤ ∫

(∕2
!⟩k⟩ cos .

0
r)(r) cos(r!⟩k⟩ cos .)dr

≤ ∫
(∕2

!⟩k⟩ cos .

0
r)(r)dr ≤ ∫

r+√
2

0
r)(r)dr.

(2.22)

For . ∈ [0, (4 ] and ( ≤ r+!⟩k⟩ ≤ 7(
2 + 2n(, n = 0, 1, 2, … , we prove the existence

of the upper bound of ∫ r+
0 r)(r) cos(r!⟩k⟩ cos .)dr by induction. When n = 0, we have

( ≤ r+!⟩k⟩ ≤ 7(
2 , and (√

2
≤ r+!⟩k⟩ cos . ≤ 7(

2 . Note that for r+!⟩k⟩ cos . ∈ [ (√
2
, 3(

2 ], the
upper bound is given by the estimate (2.22). For r+!⟩k⟩ cos . ∈ [ 3(

2 , 7(
2 ], using the first

inequality in (2.21), we have

∫
r+

0
r)(r) cos(r!⟩k⟩ cos .)dr ≤ ∫

r+

3(∕2
!⟩k⟩ cos .

r)(r) cos(r!⟩k⟩ cos .)dr

≤ ∫
r+

3(∕2
!⟩k⟩ cos .

r)(r)dr ≤ ∫
r+

r+ 3(∕2
7(∕2

r)(r)dr = ∫
r+

3
7 r+

r)(r)dr.
(2.23)

Combining the estimates (2.22) and (2.23), we have that for r+!⟩k⟩ ∈ [(, 7(
2 ] or

r+!⟩k⟩ cos . ∈ [ (√
2
, 7(

2 ],

∫
r+

0
r)(r) cos(r!⟩k⟩ cos .)dr ≤ max

{

∫
r+√

2

0
r)(r)dr,∫

r+

3
7 r+

r)(r)dr
}

. (2.24)

Assume that for r+!⟩k⟩ ∈ [(, 7(
2 + 2(n − 1)(] or r+!⟩k⟩ cos . ∈ [ (√

2
, 7(

2 + 2(n − 1)(],

estimate (2.24) holds. Then for the case of n, we consider r+!⟩k⟩ ∈
[
(, 7(

2 + 2n(
]
, or

r+!⟩k⟩ cos . ∈
[

(√
2
, 7(

2 + 2n(
]
. For r+!⟩k⟩ cos . ∈

[
(√

2
, 7(

2 + 2(n − 1)(
]
, estimate (2.24)
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still holds owning to the induction hypothesis. For r+!⟩k⟩ cos . ∈
[

3(
2 + 2n(, 7(

2 + 2n(
]
,

using the second inequality in (2.21), we have that

∫
r+

0
r)(r) cos(r!⟩k⟩ cos .)dr ≤ ∫

r+

3(∕2+2n(
!⟩k⟩ cos .

r)(r) cos(r!⟩k⟩ cos .)dr

≤ ∫
r+

3(∕2+2n(
!⟩k⟩ cos .

r)(r)dr ≤ ∫
r+

r+ 3(∕2+2n(
7(∕2+2n(

r)(r)dr ≤ ∫
r+

3
7 r+

r)(r)dr.

Therefore, estimate (2.24) holds for any . ∈ [0, (4 ] and r+!⟩k⟩ ≥ (. This estimate leads to

!2⟩-!(k)⟩ ≥ 4∫
(
4

0 ∫
r+

0
r)(r)(1 − cos(r!⟩k⟩ cos .)) drd.

≥ 4
[

∫
(
4

0 ∫
r+

0
r)(r)drd. − max

{

∫
(
4

0 ∫
r+√

2

0
r)(r) drd.,∫

(
4

0 ∫
r+

3
7 r+

r)(r) drd.
}]

,

= 4 min
⎧
⎪
⎨
⎪⎩
∫

(
4

0 ∫
r+

r+√
2

r)(r) drd., ∫
(
4

0 ∫
3
7 r+

0
r)(r) drd.

⎫
⎪
⎬
⎪⎭
= C4 > 0,

(2.25)
where C4 is a generic constant independent of ! and N.

Combining the two bounds (2.19) and (2.25) for Case II, we get that

Case II ∶ !2⟩-!(k)⟩ ≥ min{C3,C4} > 0, for !⟩k⟩ ≥ (. (2.26)

Finally after a long discussion for Cases I and II, we obtain that

Ck = 1
!2

||||
1

-!(k)
− 1

-0(k)
|||| ≤

1
!2-!(k)

≤ max
(

1
C1

, … , 1
C4

)
, for !⟩k⟩ ≥ (.

Therefore, by choosing C = max{ 1
16−(2 ,

1
C1
, … , 1

C4
}, we obtain (2.13) in 2D.

For the 3D case, Fourier symbol -!(k) in (2.2) becomes

-!(k) = 4(∫
(
2

0
sin .∫

!

0
r2)!(r)(1 − cos(r⟩k⟩ cos .)) drd.

= 4(
!2 ∫

(
2

0
sin .∫

1

0
r2)(r)(1 − cos(r!⟩k⟩ cos .)) drd..

The proof in 3D employs the same tricks as that in 2D. The key differences between 3D and
2D lie in that we need to distinguish the non-increment and non-decrement of r2)(r) rather
than r)(r), and additionally consider the weight function sin ., which does not introduce
any new challenges. The proof is finally completed. ▪

Remark 2.1. While the authors finish the proof, we note that [16] provide a similar proof
for the estimate (2.13), more specifically the upper bound of Ck. The only difference is
that when dealing with the double integrals for -!(k), our method is to fix the angular
variable and then manipulate the radial variable, while the method in [16] fix the radial
variable, and perform estimate on the angular variable. Indeed the proof in [16] is shorter
than ours. Interesting readers can refer to [16] for the details.
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To prove the asymptotic compatibility of the Fourier collocation approximation for the pNACOK
equation later in the next section, we reformulate the result of the above lemma as a corollary, which
provides several estimates related to the nonlocal operator.

Corollary 2.1. We have the following estimates in %-dimension, % = 1, 2, 3 [17,37,41]:
⟩⟩−1

!,h − −1
0,h⟩⟩L2,h ≤ C!2,

⟩⟩−2
0,h(!,h − 0,h)fh⟩⟩L2,h ≤ C!2⟩⟩fh⟩⟩L2,h,

⟩⟩−1
!,h⟩⟩L2,h ≤ C!2 + A, ! ≥ 0.

where A and C are constants independent of !.
Noth that the second estimate in the corollary is a direct consequence of Lemma 2.1. One can refer

to Corollary 2 in [17] for the details.

3 ASYMPTOTIC COMPATIBILITY FOR THE PNACOK EQUATIONS

In this section, our primary objective is to prove the asymptotic compatibility for the Fourier colloca-
tion approximate solutions of the pNACOK equation to the true solutions of the pLACOK equation.
The penalized local and nonlocal ACOK equations read:

pNACOK: +u!

+t
= −"!u! − 1

"
W )(u!) − #−1

!
(
u! − $

)
− M ∫Ω

[
u! − $

]
dx, (3.1)

pLACOK: +u0

+t
= −"0u0 − 1

"
W )(u0) − #−1

0
(
u0 − $

)
− M ∫Ω

[
u0 − $

]dx. (3.2)

where 0 = −Δ and −1
0 = (−Δ)−1 represent the local operator and its inverse, and u! and u0 denote

the true solutions of the pNACOK and pLACOK equations, respectively. We denote by u!
h and u0

h
the Fourier collocation approximate solutions of the pNACOK and pLACOK equations, respectively,
which satisfy

+u!
h

+t
= −"!,hu!

h −
1
"

W )(u!
h) − #−1

!,h(u!
h − $) − M

⟨
u!

h − $, 1
⟩

h, (3.3)

+u0
h

+t
= −"0,hu0

h −
1
"

W )(u0
h) − #−1

0,h(u0
h − $) − M

⟨
u0

h − $, 1
⟩

h. (3.4)

Building upon the framework outlined in [34], we say that a numerical method for some nonlocal
model is asymptotically compatible if

⟩⟩u!
h − u0⟩⟩L2,h → 0 as ! → 0, N → (.

To study the asymptotic compatibility for the pNACOK model, we apply the triangle inequality

⟩⟩u!
h − u0⟩⟩L2,h ≤ ⟩⟩u!

h − u0
h⟩⟩L2,h + ⟩⟩u0

h − u0⟩⟩L2,h,

and aim to show that respectively ⟩⟩u!
h − u0

h⟩⟩L2,h, ⟩⟩u0
h − u0⟩⟩L2,h → 0 as ! → 0, N → (.

The convergence ⟩⟩u0
h − u0⟩⟩L2,h → 0 has been established in [37]. In this work, the authors apply

the Fourier collocation approximation in space to study the pLACOK equation and have the error
estimate:

⟩⟩u0
h − u0⟩⟩L2 ≤ CN−m, (3.5)
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where u0 ∈ Hm(Ω) and C is constant independent of N. Therefore, it suffices to verify that
⟩⟩u!h − u0

h⟩⟩L2,h → 0, as ! → 0, N → (. (3.6)
To this end, we first need a lemma for the L2 bound of u!

h.
Lemma 3.1 (L2 bound for u!

h). Assuming that u!h is the Fourier collocation approximate
solution of the pNACOK Equation (3.3), we have

⟩⟩u!
h − $⟩⟩L2,h ≤ C, (3.7)

where C is a constant independent of both ! and h.

Proof. The Equation (3.3) can be reformulated as
+(u!h − $)

+t
= −"!,h(u!

h − $) − 1
"

W )(u!
h) − #−1

!,h(u!
h − $) − M

⟨
u!

h − $, 1
⟩

h. (3.8)

Defining the function F(t) = ⟩⟩u!
h(t, ⋅) − $⟩⟩L2,h, we have

1
2
%
%t

F2 = F%F
%t

=
⟨
+(u!

h − $)
+t

, u!h − $
⟩

h
.

Using Equation (3.8), it follows that

F%F
%t

= −"
‖‖‖‖

1
2
!,h(u!

h − $)
‖‖‖‖

2

L2,h
− 1

"
⟨

W )(u!
h), u!

h − $
⟩

h − #
‖‖‖‖

− 1
2

!,h (u!
h − $)

‖‖‖‖
2

L2,h
−⟨

u!
h − $, 1

⟩2
h

≤ −1
"
⟨

W )(u!
h) − W )($) + W )($), u!

h − $
⟩

h

≤ LW ))

"
⟩⟩u!

h − $⟩⟩2L2,h +
W )($)

"
⟩⟩u!

h − $⟩⟩L2,h

= LW ))

"
F2 + W )($)

"
F,

which yields
%F
%t

≤ LW ))

"
F + W )($)

"
.

Finally, using the Gronwall’s inequality, we conclude that
F = ⟩⟩u!

h − $⟩⟩L2,h ≤ C,

where C is a generic constant independent of both ! and N. ▪

Now we are ready to present the result regarding the convergence (3.6).
Lemma 3.2. Assume that u!

h and u0
h are the Fourier collocation approximate solutions of

the pNACOK equation (3.1) and the pLACOK equation (3.2), then we have

⟩⟩u!
h − u0

h⟩⟩L2,h ≤ C!2,

where C is a generic constant independent of ! and N.

Proof. Following the similar method from [17], define the error function
E(t) = ⟩⟩u!

h(t, ⋅) − u0
h(t, ⋅)⟩⟩L2,h,

then
E2(t) = ⟩⟩u!

h − u0
h⟩⟩2L2,h =

⟨
u!

h − u0
h, u!

h − u0
h
⟩

h.
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Taking the derivative with respect to t, it becomes:
1
2
%
%t

E2 = E%E
%t

=
⟨ +
+t

u!
h −

+
+t

u0
h, u!

h − u0
h

⟩
h
.

Using the Equations (3.3) and (3.4), we have

E%E
%t

=−"
⟨!,hu!

h − 0,hu0
h, u!

h − u0
h
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

−1
"
⟨(

W )(u!
h) − W )(u0

h)
)
, u!

h − u0
h
⟩

h
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

II

−#
⟨(−1

!,h[u!
h − $] − −1

0,h[u0
h − $]

)
, u!

h − u0
h
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
III

−⟨
u!

h − u0
h, 1

⟩
h
⟨

1, u!h − u0
h
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
IV

.

For term I, since the discrete nonlocal operator !,h is positive semi-definite,
I = −"

⟨!,hu!
h − !,hu0

h + !,hu0
h − 0,hu0

h, u!
h − u0

h
⟩

h

= "
⟨
−!,h[u!

h − u0
h], u!

h − u0
h
⟩

h − "
⟨
(!,h − 0,h)u0

h, u!
h − u0

h
⟩

h≤ "⟩⟩(!,h − 0,h)u0
h⟩⟩L2,h⟩⟩u!

h − u0
h⟩⟩L2,h

= "⟩⟩(!,h − 0,h)u0
h⟩⟩L2,hE,

Note that ⟩⟩(!,h − 0,h)u0
h⟩⟩L2,h = ⟩⟩−2

0,h(!,h − 0,h)2
0,hu0

h⟩⟩L2,h, we can use Corollary 2.1
to get

I ≤ "⟩⟩−2
0,h(!,h − 0,h)2

0,hu0
h⟩⟩L2,h ≤ "C!2⟩⟩2

0,hu0
h⟩⟩L2,hE,

where ⟩⟩2
0,hu0

h⟩⟩L2,h is bounded independent of ! and N by Theorem 4 in [17].
For term II, consider the Taylor expansion

W )(u!
h) = W )(u0

h) + (u!h − u0
h)W ))(6),

where 6 is between u!
h and u0

h, then

II = −1
"
⟨
(u!

h − u0
h)W ))(6)), u!

h − u0
h
⟩

h ≤ LW ))

"
E2.

For term III, we have that
⟨(−1

!,h[u!
h − $] − −1

0,h[u0
h − $]

)
, u!

h − u0
h
⟩

h

=
⟨
(−1

!,h − −1
0,h)[u!

h − $], u!
h − u0

h
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
a

+
⟨−1

0,h[u!
h − u0

h], u!
h − u0

h
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
b

.

From Corollary 2.1, Lemma 3.1, we have
⟩III(a)⟩ ≤ ⟩⟩(−1

!,h − −1
0,h)[u!

h − $]⟩⟩L2,h⟩⟩u!
h − u0

h⟩⟩L2,h ≤ C!2E,
⟩III(b)⟩ ≤ ⟩⟩−1

0,h[u!
h − u0

h]⟩⟩L2,h⟩⟩u!
h − u0

h⟩⟩L2,h = ⟩⟩−1
0,h⟩⟩L2,hE2.

Thus, the estimate for term III follows:
III ≤ #⟩⟩−1

0,h⟩⟩L2,hE2 + #C!2E.

For term IV, we have
IV ≤ ⟨

u!h − u0
h, 1

⟩2
h ≤ ⟩Ω⟩⟩⟩u!h − u0

h⟩⟩2L2,h = ⟩Ω⟩E2, ⟩Ω⟩ = (2()% .
Combining I–IV, it follows

E%E
%t

≤ (C1 + C2)!2E + C3E2.
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Here

C1 = "C⟩⟩2
0,hu0

N⟩⟩L2,h, C2 = #C, C3 = LW ))

"
+ #⟩⟩−1

0,h⟩⟩L2,h +⟩Ω⟩,

are all independent of ! and N. Then the inequality becomes
%E
%t

≤ C3E + (C1 + C2)!2. (3.9)

Applying Gronwall’s inequality to (3.9), that leads to

E ≤ C4!2,

where C4 is a constant independent of ! and N. ▪

Then, the existing result (3.5) and Lemma 3.2 imply the asymptotic compatibility.
Theorem 3.1. Assume that u!

h is the Fourier collocation approximate solution to the pNA-
COK Equation (3.3), u0 ∈ Hm(Ω) is the exact solution to the pLACOK Equation (3.2),
then we have

⟩⟩u!
h − u0⟩⟩L2 ≤ C(!2 + N−m),

where C is a generic constant independent of ! and N.

4 SECOND ORDER TIME-DISCRETE ENERGY STABLE SCHEMES

In this section, we consider the second order BDF discretization in time for the pNACOK
Equation (1.5). With the space being discretized by Fourier collocation approximation, we now have
a fully-discrete scheme. Subsequently, we will explore the energy stability at the fully-discrete level.
The energy stability analysis has been extensively studied in the past decade, so we will only verify it
briefly here.

Given a time interval [0, T] and an integer N > 0, we take the uniform time step size 7 = T
N and

tn = n7 for n = 0, 1, … ,N. we denote by Un
! ∈ h ∶ (Un

! )j ≈ u!(xj; tn) the approximate solution at
xj ∈ Ωh and time tn. Given initial conditions U−1

! = U0
! = u!(x, t0), we aim to seek Un+1

! ∈ h such
that

3Un+1
! − 4Un

! + Un−1
!

27 = −"!,hUn+1
! − 1

"
[
2W )(Un

! ) − W )(Un−1
! )

]

− #Bh−1
!,h
(
Un+1

! − 2Un
! + Un−1

!
)
− Ah

(
Un+1

! − 2Un
! + Un−1

!
)

− #−1
!,h
[
2Un

! − Un−1
! − $

]
− M

[⟨2Un
! − Un−1

! , 1⟩h − $⟩Ω⟩],

(4.1)

where Ah, Bh are stabilization constants, the stabilizer Ah
(
Un+1

! − 2Un
! + Un−1

!
)

controls the growth of
W ), and the stabilizer #Bh−1

!,h
(
Un+1

! − 2Un
! + Un−1

!
)

dominates the behavior of −1
!,h.

Now we briefly verify the energy stability for the proposed scheme. Taking L2 inner product with
respect to Un+1

! − Un
! on the two sides of (4.1) yields

LHS = 1
27

⟨
2(Un+1

! − Un
! ),Un+1

! − Un
!
⟩

h +
1

27
⟨

Un+1
! − 2Un

! + Un−1
! ,Un+1

! − Un
!
⟩

h,

RHS = −"
⟨!,hUn+1

! ,Un+1
! − Un

!
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

−1
"
⟨

2W )(Un
! ) − W )(Un−1

! ),Un+1
! − Un

!
⟩

h
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

II
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−Ah
⟨

Un+1
! − 2Un

! + Un−1
! ,Un+1

! − Un
!
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
III

−#Bh
⟨−1

!,h(Un+1
! − 2Un

! + Un−1
! ),Un+1

! − Un
!
⟩

h

IV

−#
⟨−1

!,h[2Un
! − Un−1

! − $],Un+1
! − Un

!
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
V

−M
(⟨

2Un
! − Un−1

! , 1
⟩

h − $⟩Ω⟩)⟨1,Un+1
! − Un

!
⟩

h⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
VI

.

(4.2)

Then, using the identities a ⋅ (a− b) = 1
2 a2 − 1

2 b2 + 1
2 (a − b)2 and b ⋅ (a− b) = 1

2 a2 − 1
2 b2 − 1

2 (a − b)2,
with a = Un+1

! − Un
! , b = Un

! − Un−1
! , (4.2) can be reformulated as

LHS = 1
7
⟩⟩Un+1

! − Un
! ⟩⟩2L2,h +

1
47

(⟩⟩Un+1
! − Un

! ⟩⟩2L2,h − ⟩⟩Un
! − Un−1

! ⟩⟩2L2 + ⟩⟩Un+1
! − 2Un

! + Un−1
! ⟩⟩2L2,h

)
.

Term I becomes:
I = − "

2
⟨!,hUn+1

! ,Un+1
!

⟩
h +

"
2⟨!,hUn

! ,Un
!⟩h −

"
2
⟨!,h(Un+1

! − Un
! ),Un+1

! − Un
!
⟩

h.

For term II, by Taylor expansion, we have

W )(Un
! )(Un+1

! − Un
! ) = W(Un+1

! ) − W(Un
! ) −

W ))(6n
h )

2 (Un+1
! − Un

! )2,

W )(Un
! ) − W )(Un−1

! ) = W ))(8n
h)(Un

! − Un−1
! ),

where 6n
h is between Un+1

! and Un
! , 8n

h is between Un−1
! and Un

! . Then term II becomes

II = −1
"
⟨

1,W )(Un
! )(Un+1

! − Un
! )
⟩

h −
1
"
⟨

W )(Un
! ) − W )(Un−1

! ),Un+1
! − Un

!
⟩

h

= −1
"
⟨

1,W(Un+1
! )

⟩
h +

1
"
⟨1,W(Un

! )⟩h +
W ))(6n

h )
2" ⟩⟩Un+1

! − Un
! ⟩⟩2L2,h

− W ))(8n
h)

"
⟨

Un
! − Un−1

! ,Un+1
! − Un

!
⟩

h.

Moreover, terms III and IV becomes

III = −Ah
2 ⟩⟩Un+1

! − Un
! ⟩⟩2L2,h +

Ah
2 ⟩⟩Un

! − Un−1
! ⟩⟩2L2,h −

Ah
2 ⟩⟩Un+1

! − 2Un
! + Un−1

! ⟩⟩2L2,h,

IV = −#Bh
2

⟨−1
!,h(Un+1

! − Un
! ),Un+1

! − Un
!
⟩

h +
#Bh

2
⟨−1

!,h(Un
! − Un−1

! ),Un
! − Un−1

!
⟩

h

− #Bh
2

⟨−1
!,h(Un+1

! − 2Un
! + Un−1

! ),Un+1
! − 2Un

! + Un−1
!

⟩
h,

and terms V and VI change into
V = −#

⟨−1
!,h[Un

! − $],Un+1
! − Un

!
⟩

h − #
⟨−1

!,h[Un
! − Un−1

! ],Un+1
! − Un

!
⟩

h

= −#
2
⟨−1

!,h[Un+1
! − $],Un+1

! − $
⟩

h +
#
2
⟨−1

!,h[Un
! − $],Un

! − $
⟩

h

+ #
2
⟨−1

!,h[Un+1
! − Un

! ],Un+1
! − Un

!
⟩

h − #
⟨−1

!,h[Un
! − Un−1

! ],Un+1
! − Un

!
⟩

h,

VI = −M⟨Un
! − $, 1⟩h

⟨
1,Un+1

! − Un
!
⟩

h − M
⟨

Un
! − Un−1

! , 1
⟩

h
⟨

1,Un+1
! − Un

!
⟩

h

= −M
2
⟨

Un+1
! − $, 1

⟩2
h +

M
2 ⟨Un

! − $, 1⟩2
h

+ M
2
⟨

1,Un+1
! − Un

!
⟩2

h − M
⟨

Un
! − Un−1

! , 1
⟩

h
⟨

1,Un+1
! − Un

!
⟩

h.

Introducing the discrete counterpart of the penalized NOK energy (1.4),

EpNOK
h (Un

! ) =
"
2
⟨!,hUn

! ,Un
!
⟩

h +
1
"

⟨
W(Un

! ), 1
⟩

h +
#
2
⟨−1

!,h[Un
! − $],Un

! − $
⟩

h +
M
2
⟨

Un
! , 1

⟩2
h, (4.3)
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and reordering terms from the two sides, then we have
[
EpNOK

h (Un+1
! ) +

(Ah
2 + 1

47
)
⟩⟩Un+1

! − Un
! ⟩⟩2L2,h +

#Bh
2

⟨−1
!,h(Un+1

! − Un
! ),Un+1

! − Un
!
⟩

h

]

−
[
EpNOK

h (Un
! ) +

(Ah
2 + 1

47
)
⟩⟩Un

! − Un−1
! ⟩⟩2L2,h +

#Bh
2

⟨−1
!,h(Un

! − Un−1
! ),Un

! − Un−1
!

⟩
h

]

+ 1
7
⟩⟩Un+1

! − Un
! ⟩⟩2L2,h +

(Ah
2 + 1

47
)
⟩⟩Un+1

! − 2Un
! + Un−1

! ⟩⟩2L2,h

+ #Bh
2

⟨−1
!,h(Un+1

! − 2Un
! + Un−1

! ),Un+1
! − 2Un

! + Un−1
!

⟩
h

+ "
2
⟨!,h(Un+1

! − Un
! ),Un+1

! − Un
!
⟩

h

= W ))(6n
h )

2" ⟩⟩Un+1
! − Un

! ⟩⟩2L2,h −
W ))(8n

h)
"

⟨
Un

! − Un−1
! ,Un+1

! − Un
!
⟩

h

+ #
2
⟨−1

!,h[Un+1
! − Un

! ],Un+1
! − Un

!
⟩

h − #
⟨−1

!,h[Un
! − Un−1

! ],Un+1
! − Un

!
⟩

h

+ M
2
|||
⟨

Un+1
! − Un

! , 1
⟩

h
|||
2
− M

⟨
Un

! − Un−1
! , 1

⟩
h
⟨

Un+1
! − Un

! , 1
⟩

h

≤ LW ))

2" ⟩⟩Un+1
! − Un

! ⟩⟩2L2,h +
LW ))

2"
(⟩⟩Un

! − Un−1
! ⟩⟩2L2,h + ⟩⟩Un+1

! − Un
! ⟩⟩2L2,h

)

+ #
2 ⟩⟩−1

!,h⟩⟩L2,h⟩⟩Un+1
! − Un

! ⟩⟩2L2,h +
#
2 ⟩⟩−1

!,h⟩⟩L2,h
(⟩⟩Un

! − Un−1
! ⟩⟩2L2,h + ⟩⟩Un+1

! − Un
! ⟩⟩2L2,h

)

+ M
2 ⟩Ω⟩⟩⟩Un+1

! − Un
! ⟩⟩2L2,h +

M
2 ⟩Ω⟩(⟩⟩Un

! − Un−1
! ⟩⟩2L2,h + ⟩⟩Un+1

! − Un
! ⟩⟩2L2,h

)

= Ch
(⟩⟩Un

! − Un−1
! ⟩⟩2L2,h + 2⟩⟩Un+1

! − Un
! ⟩⟩2L2,h

)
,

where the constant C is given by

Ch = LW ))

2" + #
2 ⟩⟩−1

!,h⟩⟩L2,h +
M
2 ⟩Ω⟩.

Note that ⟩⟩−1
!,h⟩⟩L2,h denote the L2-bound of −1

!,h, which is provided in Corollary 2.1. Adding
Ch(⟩⟩Un+1

! − Un
! ⟩⟩2L2,h − ⟩⟩Un

! − Un−1
! ⟩⟩2L2,h) to both side of the above inequality, we further have

LHS + Ch
(⟩⟩Un+1

! − Un
! ⟩⟩2L2,h − ⟩⟩Un

! − Un−1
! ⟩⟩2L2,h

) ≤ RHS + 3Ch⟩⟩Un+1
! − Un

! ⟩⟩2L2,h.

Subsequently,
[
Eh(Un+1

! ) +
(Ah

2 + 1
47 + Ch

)
⟩⟩Un+1

! − Un
! ⟩⟩2L2,h +

#Bh
2 ⟨−1

!,h(Un+1
! − Un

! ),Un+1
! − Un

!⟩h

]

−
[
Eh(Un

! ) +
(Ah

2 + 1
47 + Ch

)
⟩⟩Un

! − Un−1
! ⟩⟩2L2,h +

#Bh
2 ⟨−1

!,h(Un
! − Un−1

! ),Un
! − Un−1

! ⟩h

]

+ 1
7
⟩⟩Un+1

! − Un
! ⟩⟩2L2,h +

(Ah
2 + 1

47
)
⟩⟩Un+1

! − 2Un
! + Un−1

! ⟩⟩2L2,h

+ #Bh
2

⟨−1
!,h(Un+1

! − 2Un
! + Un−1

! ),Un+1
! − 2Un

! + Un−1
!

⟩
h

+ "
2
⟨!,h(Un+1

! − Un
! ),Un+1

! − Un
!
⟩

h

≤ 3Ch⟩⟩Un+1
! − Un

! ⟩⟩2L2,h.

(4.4)

Let us define

,EpNOK
h (Un

! ,Un−1
! ) = EpNOK

h (Un
! ) +

(Ah
2 + 1

47 + Ch

)
⟩⟩Un

! − Un−1
! ⟩⟩2L2 + #Bh

2 ⟩⟩− 1
2

!,h
(
Un

! − Un−1
!

)⟩⟩L2,h.
(4.5)
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By observing the two sides of (4.4), we note that when Ah
2 + 1

47 ≥ 0, Bh ≥ 0, and 1
7
≥ 3Ch, it yields

the discrete energy stability: ,EpNOK
h (Un+1

! ,Un
! ) ≤ ,EpNOK

h (Un
! ,Un−1

! ).
We summarize the above discussion as a theorem.

Theorem 4.1. For the second-order fully-discrete BDF scheme in (4.1), define a modified
energy functional as in (4.5) with Ch given by

Ch = LW ))

2" + #
2 ⟩⟩−1

!,h⟩⟩L2,h +
M
2 ⟩Ω⟩.

Then we have the energy stability
,EpNOK

h (Un+1
! ,Un

! ) ≤ ,EpNOK
h (Un

! ,Un−1
! ),

provided that Ah ≥ 0,Bh ≥ 0 and 7 ≤ 1
3Ch

. In particular, if the stabilizers Ah = Bh = 0,
we have the energy stability in a simpler form:
EpNOK

h (Un+1
! ) +

( 1
47 + Ch

)
⟩⟩Un+1

! − Un
! ⟩⟩2L2 ≤ EpNOK

h (Un
! ) +

( 1
47 + Ch

)
⟩⟩Un

! − Un−1
! ⟩⟩2L2 .

Remark 4.1. Though there is no influence on the discrete energy stability whether or not
we incorporate the stabilizers Ah and Bh in the 2nd-order BDF scheme, we find in the
numerical implementation that adding two stabilizers in the scheme will allow us to take
a much larger time step 7 in practice. Therefore in Section 5, we will pick Ah > 0 and
Bh > 0 for all the numerical simulations.

5 NUMERICAL EXPERIMENTS

In this section, we use the second-order BDF scheme (4.1) to solve the pNACOK Equation (1.5) with
periodic boundary conditions. In our numerical experiments, we apply the ODE solver proposed in
[18] to numerically compute the Fourier symbols {-!(k)} for the nonlocal operator ! . We consider
two special kernel functions for the nonlocal operator:

Power kernel ∶ )!(s) =
C9

!%+2−9⟩s⟩9 , s ∈ [−!, 0) ∪ (0, !], where 9 ∈ [0, % + 2), (5.1)

Gaussian kernel ∶ )!(s) =
4

(%∕2!%+2 e−
s2
!2 , (5.2)

in which C9 is the normalization constant for the power kernel.
In the numerical experiments, we mainly focus on the 2D examples as they are more relevant to

the diblock copolymer system. Therefore, we fix the domain Ω = [−(,(]2 ∈ R2. Unless otherwise
specified, we fix N = Nx = Ny = 512, the mesh size is given by h = hx = hy = (

256 , " = 10h, step size
7 = 10−3 and M = 1000. Other parameters, such as $, # , 9, !, Ah and Bh vary in different simulations.

5.1 Asymptotic compatibility
In this subsection, we numerically validate the asymptotic compatibility for the pNACOK equation.
To this end, we take a small disk centered at origin as the initial data:

u(0)(x, y) =
{

1 if x2 + y2 < 4$∕(,
0 otherwise,

We take $ = 0.1, # = 100, Ah = 5000 and Bh = 5. The nonlocal operator ! is chosen to be with the
power kernel 9 = 0 and nonlocal horizon ! = 0.5. We numerically test the errors between nonlocal
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and local models by taking a small time step size 7 = 10−3 and various values of !. We simulate the
pNACOK equation up to time T = 0.01, 1 and 10.

Table 1 presents the errors and corresponding convergence rate at a fixed time T = 0.01, 1 and
10. It can be observed that the numerical convergence rate is approximately O(!2), which is consistent
with the theoretical prediction of asymptotic compatibility of the pNACOK equation.

In Figure 1, we present a numerical example to compare the solutions of the pNACOK and pLA-
COK equations in 1D. In this example, the initial data is u(0)(x) = 0.2 sin( (x

4 ), time step is Δt = 10−3.
The nonlocal operator is with power-law kernel and 9 = 0, ! = 0.5. We take a finer mesh resolution
N = 2048, and solve the pNACOK and pLACOK equations with various value ! = 1.0, 1.5, 2.0, 2.5
up to time T = 100. Figure 1 shows that as ! becomes smaller, the numerical solution of the pNACOK
equation becomes closer to that of the pLACOK equation.

5.2 Temporal convergence rate
Now we numerically verify the temporal rate of convergence for the 2nd-order BDF scheme (4.1). To
this end, we consider the 1D pNACOK equation and take the initial data

u0(x) =
{

1 if (x − 0.1)2 < $∕(2() + 0.03,
0 otherwise,

TABLE 1 Errors between numerical solutions of the pNACOK and pLACOK equations at time T = 0.01, 1 and 10.

T = 0.01 T = 1 T = 10
! = 1 ||u!

h − u0
h||2 Rate ||u!

h − u0
h||2 Rate ||u!

h − u0
h||2 Rate

! 3.6365e−3 - 9.9332e−1 - 1.0534 -
!∕2 8.8995e−4 2.0268 2.0916e−1 2.2476 2.2437e−1 2.2311
!∕4 2.1714e−4 2.0351 4.4585e−2 2.2300 4.8252e−2 2.2172
!∕8 5.1960e−5 2.0633 8.5567e−3 2.3814 9.2525e−3 2.3827

Note: Other parameters are $ = 0.1, # = 100, 9 = 0, ! = 0.5, Ah = 5000 and Bh = 5.

FIGURE 1 Comparison between the numerical solutions of pNACOK and pLACOK equations for vary values of nonlocal
horizon ! = 1.0, 1.5, 2.0, 2.5. Other parameters are $ = 0.3, # = 200, 9 = 0, ! = 0.5, Ah = 2000 and Bh = 0.
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TABLE 2 The convergence rate for the 2nd-order BDF scheme (4.1) at time T = 0.02.

# = 10h # = 20h
"t = 1e − 3 Error Rate Error Rate
Δt 1.157598 - 0.672051 -
Δt∕2 0.164550 2.814531 0.325463 1.046075
Δt∕4 0.106904 0.622206 0.066833 2.283852
Δt∕8 0.032665 1.710477 0.013439 2.314069
Δt∕16 0.008102 2.011280 0.003056 2.136332
Δt∕32 0.001811 2.161469 0.000647 2.238881
1e−6 (benchmark) - - - -

Note: Other parameters are $ = 0.3, # = 200, 9 = 2, ! = 0.5, Ah = 2000, and Bh = 0.

and run the numerical simulation up to time T = 0.02. we fix $ = 0.3, # = 200, Ah = 2000,
Bh = 0. Taking the nonlocal operator ! be with the power kernel, we fix 9 = 2 and ! = 0.5. We
generate a benchmark solution by the 2nd-order BDF scheme (4.1) with a tiny time step 7 = 1e − 6.
then we compute the discrete L2 error between the numerical solutions with larger step sizes and the
benchmark one.

Table 2 shows the errors and the convergence rates of second-order BDF scheme (4.1) based on
the data at T = 0.02 with the time steps 7 = 10−3

1 , 10−3

2 , 10−3

4 , … , 10−3

32 . We verify the convergence rates
for two different values of " = 10h and 20h with h = 2(

N and N = 512. From the table, we can observe
that the numerical rates tend to approach the theoretical value 2.

5.3 Coarsening dynamics and energy stability
In this subsection, we focus on the coarsening dynamics and the energy stability of the pNACOK
equation implementing by the BDF scheme (4.1).

In our numerical experiments, we take a random initial which is generated on a uniform mesh over
the domain Ω with mesh size being 16h. This can be achieved in Matlab by the command

repelem(rand(N∕ratio,N∕ratio),ratio,ratio)

with ratio = 16. Meanwhile, we choose the time step 7 = 10−3 and terminate the implementation
by the stopping condition (5.3). For the other parameters, we fix $ = 0.1, # = 7000, Ah = 5000, and
Bh = 5. The stopping criteria for the time iteration are set to be

⟩⟩Un+1
! − Un

! ⟩⟩h,L(

7
≤ 10−5, (5.3)

and this criteria is also used in the following subsections.
We simulate the pNACOK equation for two different nonlocal operators. One is with the power-law

kernel and 9 = 0, the other is with the power-law kernel and 9 = 1.5. We fix the nonlocal horizon
! = 0.5.

The coarsening dynamics and the energy stability for the pNACOK equation and its equilibria
are shown in Figure 2. For each subfigure, starting from the random initial, we insert the snapshots
taken at four different times t, with colored titles corresponding to the colored marker on the monotone
decreasing energy curve. The phase separations arise in a very short time period and a group of bubbles
with different sizes appear, then the small bubbles disappear, other bubbles evolves into being of equal
size. Eventually all the equally-sized bubbles become equally distanced, and form different bubble
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FIGURE 2 Two coarsening dynamic processes show the energy stability for the BDF schemes (4.1) and different patterns at
equilibria. (Top) Square lattice is formed at equilibrium. Here 9 = 0; (Bottom) Hexagonal lattice is formed at equilibrium.
Here 9 = 1.5. Other parameter values are ! = 0.5, $ = 0.1, # = 7000, Ah = 5000, and Bh = 5.

structures in the 2D domain Ω. In the top subfigure, with 9 = 0, the equilibria becomes square lattice;
while in the bottom subfigure, with 9 = 1.5, it forms a hexagonal pattern. A more detailed study on
the different patterns of the equilibria for the nonlocal OK model is systematically explored in our
ongoing work [42]. In addition, the energy curve clearly shows the energy stability of the BDF scheme
(4.1) for the pNACOK equation.

5.4 The $-effect on the equilibria for the nonlocal operator with power-law kernels
Now we study the system equilibria for the nonlocal operator with power-law kernels, but with various
long-range interaction strength # . Different from the original OK model in [27], in which the number
of bubbles increase as # → (, the nonlocal OK model gives a upper bound for the number of bubbles
even when # → (.

Here we take power-law kernel with 9 = 0 and ! = 0.5. We fix the parameters $ = 0.1, Ah = 5000,
Bh = 5, and various # values from 500 to 12,000. Figure 3 shows that as # increases, the optimal
number N+(#) of bubbles increases. When # exceeds certain threshold, N+(#) stop growing and stay
as a constant.
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FIGURE 3 The effect of # on the optimal number N+ of bubbles for the NOK system. Here we take the nonlocal operator to
be with the power-law kernel, and 9 = 0, ! = 0.5. For various # = 500, 1000, 2000, 4000, 6000, 8000, 10,000, 12,000, the
corresponding optimal number of bubbles are N+ = 2, 3, 4, 6, 8, 8, 8, 8, respectively. The four insets are equilibrium states for
# = 500, 2000, 6000, 12,000. Other parameter values are $ = 0.1, Ah = 5000, and Bh = 5.

FIGURE 4 The 9-effect on the optimal number of bubbles N+. Here the nonlocal operator is with the power-law kernel. For
various 9 = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, the optimal number of bubbles at equilibria is N+ = 4, 4, 5, 5, 6, 6, 7, 7,
respectively. We fix # = 2000. Other parameter values are the same as the previous example.

Figure 3 shows that there exists an upper bound N for the optimal number of bubbles at equilibria
when # → (. In the next numerical experiment, we study the influence of 9 on the optimal number
N+. Here we use the same parameter values for ",Ah,Bh,$ and !, but consider the power-law kernels
with various 9 = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. For a fixed # = 2000, Figure 4 shows that the optimal
number of bubbles increases as 9 increases.

Figure 4 shows that for a fixed # , the optimal number of bubbles N+ increases as 9 increases. In
the next numerical experiment, we further study how 9 influences the upper bound N for the optimal
number of bubbles. For each value of 9, we also find the critical value #+, beyond which the optimal
number of bubbles will remain N. This result is shown in Figures 5 and 6. In Figure 5, we see that
when 9 increases, the upper bound N is nondecreasing. In Figure 6, we still take the same set of
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FIGURE 5 The 9-effect on the upper bound N of the optimal number of bubbles at equilibria. For 9 = 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8 and corresponding upper bound N = 8, 8, 8, 9, 9, 9, 10, 10, 10, respectively. We fix $ = 0.1 and ! = 0.5. For each
simulation, we take sufficient large # so that the optimal number of bubbles reaches the upper bound. Other parameters remain
the same as the previous example.

FIGURE 6 The 9-effect on the critical value of the long-range interaction strength #+.

values for 9, but calculate the critical value #+. Interestingly, we find that though the upper bound N is
nondecreasing, but in the range of 9 when N is unchanged (say, for instance 0 ≤ 9 ≤ 0.2), the critical
value #+ decreases.

In the previous figures, we observe that for some values of 9, the equilibria becomes a square
lattice pattern; while for other values of 9, the system displays a hexagonal lattice pattern. In the next
example, we numerically verify that for various values of 9, both square and hexagonal lattice patterns
are (local) minima. When 9 is small, the system prefers a square lattice as the global minimum; while
when 9 is relatively large, the system favors the hexagonal lattice as the global minimum. Figure 7
present this result. When 9 = 0, the system favors square lattice over hexagonal lattice. When 9 = 1.5,
it is the other way around. When 9 = 0.8, both square lattice and hexagonal lattice are global minima.

5.5 The !-effect on the bubble assembly at equilibria
In this subsection, we explore the influence of the nonlocal horizon ! on the bubble pattern at equilibria.
Here we choose two nonlocal operators. One is with the power-law kernel and 9 = 3.5, the other is
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FIGURE 7 The 9-effect on the pattern: Square lattice or hexagonal lattice?

FIGURE 8 Top: The nonlocal horizon ! demotes the bubble splitting for the Gaussian kernel case. Bottom: The nonlocal
horizon ! promotes the bubble splitting for the Power-law kernel case.

with the Gaussian kernel. We fix $ = 0.1, # = 5000, Ah = 5000, and Bh = 5. In the top row of
Figure 8, we increase the value of ! = 0.1, 0.3, 0.5, and observe that the optimal number of bubbles
N+ = 18, 12, 8, respectively, in a decreasing order. This phenomenon implies that the nonlocal horizon
! for the Gaussian kernel demotes the bubble splitting. On the other hand, in the bottom row of Figure 8,
as we increase the value of ! = 0.1, 0.4, 0.7, the optimal number of bubbles N+ increases, indicating that
! promotes the bubble splitting in the power-law kernel case when 9 = 3.5. These numerical findings
of the !-effect on the promotion/demotion of the bubble splitting are consistent with the theoretical
results in our previous work [41].

6 CONCLUDING REMARKS
In this work, we study the asymptotic compatibility of the spectral collocation methods for the penal-
ized nonlocal ACOK equation in 2D and 3D and the energy stability of the 2nd-order fully-discrete
BDF scheme (4.1).
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Meanwhile, we numerically justify the asymptotic compatibility, the convergence rate, and the
energy stability of the pNACOK equation by using the proposed scheme (4.1). Meanwhile, by taking
the nonlocal operator as the one with power-law kernel, we examine the 9-effect on the pattern of
bubble assemblies at equilibria for the NOK system. The numerical results indicates that for some
values of 9, the NOK displays a square lattice pattern; for other values of 9, it favors a hexagonal lattice
pattern. Meanwhile, for some 9, the bubble assembly for the NOK system may have an upper bound
on the optimal number of bubbles. These new numerical findings are consistent with our theoretical
study in [41].

There are several directions along which we can extend our work in the future. One possible direc-
tion is to perform a systematic study on the pattern formation of the NOK model in 2D. We can examine
how the parameter ! and 9 affect the pattern formation, either a square lattice or a hexagonal lattice.
Another direction is to extend the NOK model to the nonlocal Nakazawa–Ohta (NNO) model. This
model is worth comprehensive theoretical and numerical studies. Theoretically, we can conduct 1D
analysis on various patterns and understand how the system parameters influence the patterns. Numer-
ically, we can simulate the NNO system and find some possible novel patterns on either square domain
or on disk domain. Besides, OK/NOK/NO/NNO models on spherical domain are another important
extension, which may be relevant to the deformation of the biomembrane in math biology.
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