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Abstract

We survey applications of pretrained foundation models in robotics. Traditional deep learning models in robotics are

trained on small datasets tailored for specific tasks, which limits their adaptability across diverse applications. In contrast,

foundation models pretrained on internet-scale data appear to have superior generalization capabilities, and in some

instances display an emergent ability to find zero-shot solutions to problems that are not present in the training data.

Foundation models may hold the potential to enhance various components of the robot autonomy stack, from perception to

decision-making and control. For example, large language models can generate code or provide common sense reasoning,

while vision-language models enable open-vocabulary visual recognition. However, significant open research challenges

remain, particularly around the scarcity of robot-relevant training data, safety guarantees and uncertainty quantification,

and real-time execution. In this survey, we study recent papers that have used or built foundation models to solve robotics

problems. We explore how foundation models contribute to improving robot capabilities in the domains of perception,

decision-making, and control. We discuss the challenges hindering the adoption of foundation models in robot autonomy

and provide opportunities and potential pathways for future advancements. The GitHub project corresponding to this

paper can be found here: https://github.com/robotics-survey/Awesome-Robotics-Foundation-Models.
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1. Introduction

Foundation models are pretrained on extensive internet-scale

data and can be fine-tuned for adaptation to a wide range of

downstream tasks. Foundation models have demonstrated

significant breakthroughs in vision and language processing;

examples include BERT (Devlin et al., 2018), GPT-3 (Brown

et al., 2020), GPT-4 (OpenAI, 2023), CLIP (Radford et al.,

2021a), DALL-E (Ramesh et al., 2021a), and PaLM-E

(Driess et al., 2023). Foundation models have the potential

to unlock new possibilities in robotics domains such as

autonomous driving, household robotics, industrial robotics,

assistive robotics, medical robotics, field robotics, and multi-

robot systems. Pretrained Large Language Models (LLMs),

Large Vision-Language Models (VLMs), Large Audio-

Language Models (ALMs), and Large Visual-Navigation

Models (VNMs) can be utilized to improve various tasks

in robotics settings. The integration of foundationmodels into

robotics is a rapidly evolving area, and the robotics com-

munity has very recently started exploring ways to leverage

these large models within the robotics domain for perception,

prediction, planning, and control.

Prior to the emergence of foundation models, traditional

deep learning models for robotics were typically trained on

limited datasets gathered for distinct tasks (Sun et al., 2022a).

Conversely, foundation models are pre-trained on extensive

and diverse data, which has been proven in other domains
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(such as natural language processing, computer vision, and

healthcare) to significantly expand adaptability, generaliza-

tion capability, and overall performance (Qiu et al., 2023).

Ultimately, foundationmodels may hold the potential to yield

these same benefits in robotics. Knowledge transfer from

foundation models may reduce training time and computa-

tional resources compared to task-specific models. Particu-

larly relevant to robotics, multimodal foundation models can

fuse and align multimodal heterogeneous data gathered from

various sensors into compact homogeneous representations

needed for robot understanding and reasoning (Sun et al.,

2023e). These learned representations hold the potential to be

used in any part of the autonomy stack, including perception,

decision-making, and control. Furthermore, foundation

models provide zero-shot capabilities, which refer to the

ability of an AI system to perform tasks without prior ex-

amples or dedicated training data for that specific task. The

would enable robots to generalize their learned knowledge to

novel cases, enhancing adaptability and flexibility for robots

in unstructured settings.

Integrating foundation models into robotic systems may

enable context-aware robotic systems by enhancing the

robot’s ability to perceive and interact with the environment.

For example, in the perception domain, Large Vision-

Language Models (VLMs) have been found to provide

cross-modal understanding by learning associations be-

tween visual and textual data, aiding tasks such as zero-shot

image classification, zero-shot object detection (Zhang

et al., 2023b), and 3D classification (Hong et al., 2023).

As another example, language grounding in the 3D world

(Chen et al., 2022a) (aligning contextual understanding of

VLMs to the 3-dimensional (3D) real world) may enhance a

robot’s spatial awareness by associating words with specific

objects, locations, or actions within the 3D environment.

In the decision-making or planning domain, LLMs and

VLMs have been found to assist robots in task specification for

high-level planning (Yang et al., 2023b). Robots can perform

more complex tasks by leveraging linguistic cues in manipu-

lation, navigation, and interaction. For example, for robot

policy learning techniques like imitation learning (Mandi et al.,

2022) and reinforcement learning (Palo et al., 2023), foundation

models seem to offer the possibility to improve data efficiency

and enhance contextual understanding. In particular, language-

driven rewards can be used to guide RL agents by providing

shaped rewards (Kwon et al., 2023). Also, researchers have

employed language models to provide feedback for policy

learning techniques (Feng et al., 2023). Some works have

shown that a VLM model’s visual question-answering (VQA)

capability can be harnessed in robotics use cases. For example,

researchers have used VLMs to answer questions related to

visual content to aid robots in accomplishing their tasks (Du

et al., 2023a). Also, researchers have stated utilizing VLMs to

help with data annotation, by generating descriptive labels for

visual content (He et al., 2023).

Despite the transformative capabilities of foundation

models in vision and language processing, the generalization

and fine-tuning of foundation models for real-world robotics

tasks remain challenging. These challenges include: (1) Data

Scarcity: how to obtain internet-scale data for robot ma-

nipulation, locomotion, navigation, and other robotics tasks,

and how to perform self-supervised training with this data, (2)

High Variability: how to deal with the large diversity in

physical environments, physical robot platforms, and potential

robot tasks while still maintaining the generality required for a

foundation model, (3) Uncertainty Quantification: how to

deal with (i) instance-level uncertainty such as language

ambiguity or LLM hallucination; (ii) distribution-level un-

certainty; and (iii) distribution-shift, especially resulting from

closed-loop robot deployment, (4) Safety Evaluation:How to

rigorously test for the safety of a foundation model-based

robotic system (i) prior to deployment, (ii) as the model is

updated throughout its lifecycle, and (iii) as the robot operates

in its target environments, (5) Real-Time Performance: how

to deal with the high inference time of some foundation

models, which could hinder their deployment on robots, and

how to accelerate inference in foundation models to the speed

required for online decision-making, and (6)Reproducibility:

how to reproduce research and benchmark robotic-specific

foundation models developed on particular hardware setups.

In this survey, we study the existing literature on the use

of foundation models in robotics. We study current ap-

proaches and applications, present current challenges,

suggest directions for future research to address these

challenges, and identify potential risks exposed by inte-

grating foundation models into robot autonomy. Another

survey on foundation models in robotics appeared simul-

taneously with ours on arXiv (Xiao et al., 2023b). In

comparison with that paper, ours emphasizes future chal-

lenges and opportunities, including safety and risk, and ours

has a stronger emphasis on comparisons in applications,

algorithms, and architectures among the existing papers in

this space. In contrast to some existing surveys that focus on

a specific in-context instruction, such as prompts (Liu et al.,

2023b), vision transformers (Khan et al., 2022), or decision-

making (Wen et al., 2023; Yang et al., 2023b;), we provide a

broader perspective to connect distinct research threads in

foundation models organized around their relevance to and

application to robotics. Conversely, our scope is much

narrower than the paper (Bommasani et al., 2021), which

explores the broad application of foundation models across

many disciplines, of which robotics is one. In another

concurrent work (Hu et al., 2023b), the authors survey

general-purpose robotics using foundation models. Begin-

ning with discussions on classical robotics, including per-

ception, planning, and control, this work addresses the

primary limitations of conventional robotics through the use

of foundation models. Compared to this work, our survey

excludes classical methods and instead offers a more

comprehensive discussion on various components of the

autonomy stack, including in-depth examinations of open-

vocabulary perception and embodied AI. Additionally, our

survey provides detailed discussions on challenges and

future opportunities, such as language ambiguity, real-time

inference, and safety evaluations. We hope this paper can
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provide clarity regarding areas of recent progress and ex-

isting deficiencies in the research, and point the way forward

to future opportunities and challenges facing this research

area. Ultimately, we aim to give a resource for robotics

researchers to learn about this exciting new area.

We limit the scope of this survey to papers that fall into

one of the following categories:

1. BackgroundPapers: Papers that do not explicitly link to

robotics, but are nonetheless required for understanding

foundation models. These papers are discussed in the

background section (Section 2) of the survey paper.

2. Robotics Papers: Papers that integrate a foundation

model into a robotic system in a plug-and-play fashion,

papers that adapt or fine-tune foundation models for

robotic systems, or papers that build new robotic-

specific foundation models.

3. Robotics-Adjacent Papers: Papers that present

methods or techniques applied to areas adjacent to

robotics (e.g., computer vision, embodied AI), with a

clear path to future application in robotics.

This survey is organized as follows: In Section 2,we provide

an introduction to foundation models, including LLMs, vision

transformers, VLMs, embodied multimodal language models,

and visual generative models. In addition, in the last part of this

section, we discuss different training methods used to train

foundation models. In Section 3, we present a review of how

foundation models are integrated into different tasks for

decision-making in robotics. First, we discuss robot policy

learning using language-conditioned imitation learning, and

language-assisted reinforcement learning. Then, we discuss

how to use foundationmodels to design a language-conditioned

value function that can be used for planning purposes. Next,

robot task specification and code generation for task planning

using foundation models are presented. In Section 4, we study

various perception tasks in robotics that have the potential to be

enhanced by employing foundation models. These tasks in-

clude semantic segmentation, 3D scene representation, zero-

shot 3D classification, affordance prediction, and dynamics

prediction. In Section 5, we present papers about Embodied

AI agents, generalist AI agents, as well as simulators and

benchmarks developed for embodied AI research. In Section 6,

we conclude the survey by discussing different challenges for

employing foundationmodels in robotic systems and proposing

potential avenues for future research. Finally, in Section 7, we

offer the concluding remarks. Figure 1 summarizes some ap-

plications of foundation models in robotics.

Figure 1. Overview of robotics tasks leveraging foundation models.
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2. Foundation models background

Foundation models have billions of parameters and are

pretrained on massive internet-scale datasets. Training

models of such scale and complexity involve substantial

costs. Acquiring, processing, and managing data can be

costly. The training process demands significant compu-

tational resources, requiring specialized hardware such as

GPUs or TPUs, as well as software and infrastructure for

model training which requires financial resources. Addi-

tionally, training a foundation model is time-intensive,

which can translate to even higher costs. Hence these

models are often used as plug-and-play modules (which

refers to the integration of foundation models into various

applications without the need for extensive customization).

Table 1 provides details about commonly used foundation

models. In the rest of this section, we introduce LLMs,

vision transformers, VLMs, embodied multi-modal lan-

guage models, and visual generative models. In the last part

of this section, we introduce different training methods that

are used to train foundation models.

2.1. Terminology and

mathematical preliminaries

In this section, we first introduce common terminologies in

the context of foundation models and describe basic

mathematical details and training practices for various types

of foundation models.

2.1.1. Tokenization. Given a sequence of characters, to-

kenization is the process of dividing the sequence into smaller

units, called tokens. Depending on the tokenization strategy,

tokens can be characters, segments of words, complete

words, or portions of sentences. Tokens are represented as 1-

hot vectors of dimension equal to the size of the total vo-

cabulary and aremapped to lower-dimensional vectors of real

numbers through a learned embeddingmatrix. An LLM takes

a sequence of these embedding vectors as raw input, pro-

ducing a sequence of embedding vectors as raw output. These

output vectors are then mapped back to tokens and hence to

text. GPT-3, for example, has a vocabulary of 50,257 dif-

ferent tokens, and an embedding dimension of 12,288.

Table 1. Large Pretrained Models.

Model Architecture Size Training Data What to Pretrain How to Pretrain Hardware

CLIP (Radford et al.,

2021a)

ViT-L/14@336px

and a text encoder

(Radford et al.,

2019)

0.307B 400M image-text

pairs

Zero-shot

image

classification

Contrastive pre-

training

Fine-tuned

CLIP model

is trained for

12 days on

256 V100

GPUs

GPT-3 (Brown et al.,

2020)

Transformer (slight

modification of

GPT-2)

175B Common Crawl

(about a trillion

words)

Text output Autoregressive

model

NPAa

GPT-4 (OpenAI, 2023) NPA NPA NPA Text output NPA NPA

PaLI-X (Chen et al.,

2023c)

Encoder-decoder 55B 10B image-text pairs

from WebLI (Chen

et al., 2022b) and

auxiliary tasks

Text and image

to text output

Autoregressive

model

Runs on multi-

TPU cloud

service

DALL-E (Ramesh

et al., 2021b)

Decoder-only

transformer

12B 250 M text-image

pairs

Zero-shot text-

to-image

generation

Autoregressive

model

NPA

DALL-E2 (Ramesh

et al., 2022)

A prior based on

CLIP+ a decoder

3.5 B CLIP and DALL-E

(Ramesh et al.,

2021b)

Zero-shot text-

to-image

generation

Diffusion NPA

DINOv2 (Oquab et al.,

2023)

ViT-g/14 1.1B LVD-142M (Oquab

et al., 2023)

Visual-features

(image-level

and pixel-

level)

Discriminative 20 nodes

equipped

with 8

V100-32GB

GPUs

SAM (Kirillov et al.,

2023)

MAE (He et al.,

2022) vision

transformer +

CLIP (Radford

et al., 2021b) text

encoder

632M for

ViT-H +

63M for

CLIP

text

encoder

SA-1B dataset

(Kirillov et al.,

2023) that includes

1.1B segmentation

masks on 11M

images

Zero-shot

promptable

image

segmentation

Supervised

learning

256 A100

GPUs for 68

hours

aNPA stands for not publicly available.
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The token decoding (from low-dimension real-valued

embedding vectors to high-dimension 1-hot vectors) is not

deterministic, resulting in a weighting for each possible

token in the vocabulary. These weightings are often used by

LLMs as probabilities over tokens, to introduce randomness

in the text generation process. For example, the temperature

parameter in GPT-3 blends between always choosing the

top-weighted token (temperature of 0) and drawing

the token based on the probability distribution suggested by

the weights (temperature of 1). This source of randomness is

only in the token decoding process, not in the LLM itself. To

the authors’ knowledge, this is, in fact, the only source of

randomness in the GPT family of models.

One of the most common tokenization schemes, which is

used by the GPT family of models, is called byte-pair

encoding (Sennrich et al., 2016). Byte-pair encoding

starts with a token for each individual symbol (e.g., letter,

punctuation), then recursively builds tokens by grouping

pairs of symbols that commonly appear together, building

up to assign tokens to larger and larger groups (pairs of

pairs, etc.) that frequently appear together in a text corpus.

The tokenization process can extend beyond text data to

diverse contexts, encompassing various data modalities like

images, videos, and robot actions. In these scenarios, the

respective data modalities can be treated as sequential data

and tokenized similarly to train generative models. For

example, just as language constitutes a sequence of words,

an image comprises a sequence of image patches, force

sensors yield a sequence of sensory inputs at each time step,

and a series of actions represent the sequential nature of

tasks for a robot.

2.1.2. Generative Models. A generative model is a model

that learns to sample from a probability distribution to create

examples of data that seem to be from the same distribution

as the training data. For example, a face generation model

can produce images of faces that cannot be distinguished

from the set of real images used to train the model. These

models can be trained to be conditional, meaning they

generate samples from a conditional distribution condi-

tioned on a wide range of possible conditioning informa-

tion. For example, a gender conditional face generator can

generate images of female or male faces, where the desired

gender is given as a conditioning input to the model.

2.1.3. Discriminative Models. Discriminative models are

used for regression or classification tasks. In contrast to

generative models, discriminative models are trained to

distinguish between different classes or categories. Their

emphasis lies in learning the boundaries between classes

within the input space. While generative models learn to

sample from the distribution over the data, discriminative

models learn to evaluate the probability distribution of the

output labels given the input features, or (depending on how

the model is trained) learn to evaluate some statistic of the

probability distribution over the outputs, such as the ex-

pected output given an input.

2.1.4. Transformer architecture. Most foundation models

are built on the transformer architecture, which has been

instrumental in the rise of foundation models and large

languagemodels. The following discussion was synthesized

from Vaswani et al. (2017), as well as online blogs, un-

published reports, and Wikipedia (Dugas, 2023; Thickstun,

2023; Wikipedia, 2023). A transformer acts simultaneously

on a collection of embedded token vectors (x1, …, xN)

known as a context window. The key enabling innovation of

the Transformer architecture is the multi-head self-attention

mechanism originally proposed in the seminal work

(Vaswani et al., 2017). In this architecture, each attention

head computes a vector of importance weights that corre-

sponds to how strongly a token in the context window xi
correlates with other tokens in the same window xj. Each

attention head mathematically encodes different notions of

similarity, through different projection matrices used in the

computation of the importance weights. Each head can be

trained (backward pass) and evaluated (forward pass) in

parallel across all tokens and across all heads, leading to

faster training and inference when compared with previous

models based on RNNs or LSTMs.

Mathematically, an attention head maps each token xi in

the context window to a “query” qi ¼ W T
q xi, and each other

token in the context head xj to a “key” kj ¼ W T
k xj. The

similarity between query and key is then measured through

a scaled dot product, qTi kj=
ffiffiffi

d
p

, where d is the dimension of

the query and key vectors. A softmax is then taken over all j

to give weights αij representing how much xi “attends to” xj.

The tokens are then mapped to “values” with vj ¼ W T
v xj,

and the output of the attention for position i is then given as a

sum over values weighted by attention weights,
P

j αijvj.

One of the key reasons for the success of the transformer

attention model is that it can be efficiently computed with

GPUs and TPUs by parallelizing the preceding steps into

matrix computations,

attnðQ,K,VÞ ¼ softmax
QKu

ffiffiffiffiffi

dk
p

� �

V, (1)

where Q, K, V are matrices with rows qTi , k
T
i , and vTi ,

respectively. Each head in the model produces this com-

putation independently, with different Wq, Wk, Wv matrices

to encode different kinds of attention. The outputs from each

head are then concatenated, normalized with a skip con-

nection, passed through a fully connected ReLU layer, and

normalized again with a skip connection to produce the

output of the attention layer. Multiple layers are arranged in

various ways to give “encoders” and “decoders,” which

together make up a transformer.

The size of a transformer model is typically quantified by

(i) the size of the context window, (ii) the number of at-

tention heads per layer, (iii) the size of the attention vectors

in each head, and (iii) the number of stacked attention

layers. For example, GPT-3’s context window is 2048 to-

kens (corresponding to about 1500 words of text), each

attention layer has 96 heads, each head has attention vectors

Firoozi et al. 705



of 128 dimensions, and there are 96 stacked attention layers

in the model.

The basic multi-head attention mechanism does not

impose any inherent sense of sequence or directionality in

the data. However, transformers—especially in natural

language applications—are often used as sequence pre-

dictors by imposing a positional encoding on the input token

sequence. They are then applied to a token sequence au-

toregressively, meaning they predict the next token in the

sequence, add that token to their context window, and re-

peat. This concept is elaborated below.

2.1.5. Autoregressive models. The concept of autore-

gression has been applied in many fields as a representation

of random processes whose outputs depend causally on the

previous outputs. Autoregressive models use a window of

past data to predict the next data point in a sequence. The

window then slides one position forward, recursively in-

gesting the predicted data point into the window and ex-

pelling the oldest data point from the window. The model

again predicts the next data point in the sequence, repeating

this process indefinitely. Classical linear autoregressive

models such as Auto-Regressive Moving Average (ARMA)

and Auto-Regressive Moving Average with eXogenous

input (ARMAX) models are standard statistical tools dating

back to at least the 1970s (Box et al., 2015). These modeling

concepts were adapted to deep learning models first with

RNNs, and later LSTMs, which are both types of learnable

nonlinear autoregressive models. Transformer models, al-

though they are not inherently autoregressive, are often

adapted to an autoregressive framework for text prediction

tasks.

For example, the GPT family (Radford et al., 2018)

builds on the original transformer model by using a mod-

ification introduced in Liu et al. (2018) that removes the

transformer encoder blocks entirely, retaining just the

transformer decoder blocks. This has the advantage of re-

ducing the number of model parameters by close to half

while reducing redundant information that is learned in both

the encoder and decoder. During training, the GPT model

seeks to produce an output token from the tokenized corpus

X ¼ ðx1,…, xnÞ to minimize the negative log-likelihood

within the context window of length N,

LLLM ¼ �
X

i

logP xi j xi�N ,…, xi�1ð Þ: (2)

This results in a large pretrained model that autoregressively

predicts the next likely token given the tokens in the context

window. Although powerful, the unidirectional autore-

gressive nature of the GPT family means that these models

may lag in performance on bidirectional tasks such as

reading comprehension.

2.1.6. Masked Auto-Encoding. To address the unidirec-

tional limitation of the GPT family and allow the model to

make bidirectional predictions, works such as BERT

(Devlin et al., 2018) use masked auto-encoding. This is

achieved through an architectural change, namely the ad-

dition of a bidirectional encoder, as well as a novel pre-

training objective known as masked language modeling

(MLM). The MLM task simply masks a percentage of the

tokens in the corpus and requires the model to predict these

tokens. Through this procedure, the model is encouraged to

learn the context that surrounds a word rather than just the

next likely word in a sequence.

2.1.7. Contrastive learning. Visual-language foundation

models such as CLIP (Radford et al., 2021a) typically rely

on different training methods from the ones used with large

language models, which encourage explicitly predictive

behavior. Visual-language models use contrastive repre-

sentation learning, where the goal is to learn a joint em-

bedding space between input modalities where similar

sample pairs are closer than dissimilar ones. The training

objective for many VLMs is some variation of the objective

function,

l
ðv→ uÞ
i ¼ �log

exp sim vi,uið Þ=τð Þ
PN

k¼1 exp sim vi, ukð Þ=τð Þ
, (3)

l
ðu→ vÞ
i ¼ �log

exp sim ui, við Þ=τð Þ
PN

k¼1 exp sim ui, vkð Þ=τð Þ
, (4)

L ¼ 1

N

X

N

i¼1

λl
ðv→ uÞ
i þ ð1� λÞlðu→ vÞ

i

� �

: (5)

This objective function was popularized for multimodal

input by ConVIRT (Zhang et al., 2022b) and first presented

in prior works (Chen et al., 2020; Oord et al., 2018; Sohn,

2016; Wu et al., 2018). This objective function trains the

image and text encoders to preserve mutual information

between the true text and image pairs. In these equations, ui
and vi are the i

th encoded text and image respectively from

i 2 1, …, N image and text pairs. The sim operation is the

cosine similarity between the text and image embeddings,

and τ is a temperature term. In CLIP (Radford et al., 2021a)

the authors use a symmetric cross-entropy loss, meaning the

final loss is an average of the two loss components where

each is equally weighted (i.e., λ = 0.5).

2.1.8. Diffusion models. Outside of large language models

and multi-modal models such as VLMs, diffusion models for

image generation (e.g., DALL-E2) (Ramesh et al., 2022) are

another class of foundation models considered in this survey.

Although diffusion models were established in prior work

(Sohl-Dickstein et al., 2015; Song and Ermon, 2019) the

diffusion probabilistic model presented in Ho et al. (2020)

popularized the method. The diffusion probabilistic model is

a deep generative model that is trained in an iterative forward

and reverse process. The forward process adds Gaussian

noise to an input x0 in a Markov chain until xT when the
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result is zero mean isotropic noise. This means the forward

process produces a trajectory of noise q(x1:T | x0) as,

q x1 : T jx0ð Þd∏
T

t¼1

q xtjxt�1ð Þ: (6)

At each time step q(xt|xt�1) is described by a normal dis-

tribution with mean
ffiffiffiffiffiffiffiffiffiffiffiffi

1� βt
p

xt�1 and covariance βtI where

βt is scheduled or a fixed hyperparameter.

The reverse process requires the model to learn to the

transitions that will de-noise the zero-mean Gaussian and

produce the input image. This process is also defined as a

Markov chain where the transition distribution at time t is

pθ xt�1jxtð ÞdN xt�1; μθ xt, tð Þ,Σθ xt, tð Þð Þ. For complete-

ness, the reverse process Markov chain is given by,

pθ x0 : Tð Þdp xTð Þ∏
T

t¼1

pθ xt�1jxtð Þ: (7)

Diffusion models are trained using a reduced form of the

evidence lower bound loss function that is typical of var-

iational generative models like variational autoencoders

(VAEs). The reduced loss function used for training is

L¼Eq

"

DKL q xT j x0ð ÞkpðxT Þð Þ

þ
X

t>1

DKL q xt�1 jxt,x0ð Þk pθ xt�1jxtð Þ� log pθ x0 jx1ð Þð
#

,

(8)

where DKL(qkp) denotes Kullback–Leibler divergence,

which is a measure of how different a distribution q is from a

distribution p.

2.2. Large Language Model (LLM) examples

and historical context

Large Language Models (LLMs) have billions of param-

eters and are trained on trillions of tokens. This large scale

has allowed models such as GPT-2 (Radford et al., 2019)

and BERT (Devlin et al., 2018) to achieve state-of-the-art

performance in the Winograd Schema challenge (Levesque

et al., 2012) and the General Language Understanding

Evaluation (GLUE) (Wang et al., 2018) benchmarks, re-

spectively. Their successors include GPT-3 (Brown et al.,

2020), LLaMA (Touvron et al., 2023a), and PaLM

(Chowdhery et al., 2022) has grown considerably in the

number of parameters (typically now over 100 billion),

the size of the context window (typically now over 1000

tokens), and the size of the training data set (typically

now 10s of terabytes of text). GPT-3 is trained on the

Common Crawl dataset. Common Crawl contains peta-

bytes of publicly available data over 12 years of web

crawling and includes raw web page data, metadata, and

text extracts. LLMs can also be multi-lingual. For ex-

ample, GLM-130B (Zeng et al., 2023a) is a bilingual

(English and Chinese) pretrained language model with

130 billion parameters. LLMs can also be fine-tuned, a

process by which the model parameters are adjusted with

domain-specific data to align the performance of the LLM

to a specific use case. For example, GPT-3 and GPT-4

(OpenAI, 2023) have been fine-tuned using reinforce-

ment learning with human feedback (RLHF).

2.3. Vision transformers

AVision Transformer (ViT) (Dosovitskiy et al., 2021; Han

et al., 2022; Khan et al., 2022) is a transformer architecture

for computer vision tasks including image classification

segmentation, and object detection. AViT treats an image as

a sequence of image patches referred to as tokens. In the

image tokenization process, an image is divided into patches

of fixed size. Then, the patches are flattened into a one-

dimensional vector, which is referred to as linear embed-

ding. To capture the spatial relationships between image

patches, positional information is added to each token. This

process is referred to as position embedding. The image

tokens incorporated with position encoding are fed into the

transformer encoder, and the self-attention mechanism

enables the model to capture long-term dependencies and

global patterns in the input data. In this paper, we focus only

on those ViT models with a large number of parameters.

ViT-G (Zhai et al., 2022) scales up the ViT model and has

2B parameters. Additionally, ViT-e (Chen et al., 2022b) has

4B parameters. ViT-22 B (Dehghani et al., 2023) is a vision

transformer model at 22 billion parameters, which is used in

PaLM-E and PaLI-X (Chen et al., 2023c) and helps with

robotics tasks.

DINO (Caron et al., 2021) is a self-supervised learning

method, for training ViT. DINO is a form of knowledge

distillation with no labels. Knowledge distillation is a

learning framework where a smaller model (student net-

work) is trained to mimic the behavior of a larger more

complex model (teacher network). Both networks share the

same architecture with different sets of parameters. Given a

fixed teacher network, the student network learns its pa-

rameters by minimizing the cross-entropy loss w.r.t. the

student network parameters. The neural network architec-

ture is composed of ViT or ResNet (He et al., 2015)

backbone and a projection head that includes layers of

multi-layer perception (MLP). Self-supervised ViT features

learned using DINO contain explicit information about the

semantic segmentation of an image, including scene layout

and object boundaries, with such clarity that is not achieved

using supervised ViTs or ConvNets.

DINOv2 (Oquab et al., 2023) provides a variety of

pretrained visual models that are trained with different

vision transformers (ViT) on the LVD-142M dataset in-

troduced in Oquab et al. (2023). It is trained using a dis-

criminative self-supervised method on a compute cluster of

20 nodes equipped with 8 V100-32 GB GPUs. DINOv2

provides various visual features at the image (e.g., detec-

tion) or pixel level (e.g., segmentation). SAM (Kirillov
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et al., 2023) provides zero-shot promptable image seg-

mentation. It is discussed in more detail in Section 4.

2.4. Multimodal vision-language models (VLMs)

Multimodal refers to the ability of a model to accept dif-

ferent “modalities” of inputs, for example, images, texts, or

audio signals. Visual-language models (VLM) are a type of

multi-modal model that takes in both images and text. A

commonly used VLM in robotics applications is Contras-

tive Language-Image Pre-training (CLIP) (Radford et al.,

2021a). CLIP offers a method to compare the similarity

between textual descriptions and images. CLIP uses

internet-scale image-text pairs data to capture the semantic

information between images and text. CLIP model archi-

tecture contains a text encoder (Radford et al., 2019) and an

image encoder (a modified version of vision transformer

ViT) that are trained jointly to maximize the cosine simi-

larity of the image and text embeddings. CLIP uses con-

trastive learning together with language models and visual

feature encoders to incorporate models for zero-shot image

classification.

BLIP (Li et al., 2022c) focuses on multimodal learning by

jointly optimizing three objectives during pretraining. These

objectives include Image-Text Contrastive Loss, Image-Text

Matching Loss, and Language Modeling Loss. The method

leverages noisy web data by bootstrapping captions, en-

hancing the training process. CLIP2 (Zeng et al., 2023b) aims

to build well-aligned and instance-based text-image-point

proxies. It learns semantic and instance-level aligned point

cloud representations using a cross-modal contrastive ob-

jective. FILIP (Yao et al., 2022) focuses on achieving finer-

level alignment in multimodal learning. It incorporates a

cross-modal late interaction mechanism that utilizes token-

wise maximum similarity between visual and textual tokens.

This mechanism guides the contrastive objective and im-

proves the alignment between visual and textual information.

FLIP (Li et al., 2023) proposes a simple and more efficient

training method for CLIP. FLIP randomly masks out and

removes a significant portion of image patches during

training. This approach aims to improve the training effi-

ciency of CLIP while maintaining its performance.

2.5. Embodied multimodal language models

An embodied agent is an AI system that interacts with a

virtual or physical world. Examples include virtual assis-

tance or robots. Embodied language models are foundation

models that incorporate real-world sensor and actuation

modalities into pretrained large language models. Typical

vision-language models are trained on general vision-

language tasks such as image captioning or visual

question answering. PaLM-E (Driess et al., 2023) is a

multimodal language model that has been trained on not

only internet-scale general vision-language data, but also on

embodied, robotics data, simultaneously. In order to connect

the model to real-world sensor modalities, PaLM-E’s ar-

chitecture injects (continuous) inputs such as images, low-

level states, or 3D neural scene representations into the

language embedding space of a decoder-only language

model to enable the model to reason about text and other

modalities jointly. The main PaLM-E version is built from

the PaLM LLM (Chowdhery et al., 2022) and a ViT

(Dehghani et al., 2023). The ViT transforms an image into a

sequence of embedding vectors, which are projected into the

language embedding space via an affine transformation. The

whole model is trained end-to-end, starting from a pre-

trained LLM and ViT model. The authors also explore

different strategies, such as freezing the LLM and just

training the ViT, which leads to worse performance. Given

multimodal inputs, the output of PaLM-E is text decoded

auto-regressively. In order to connect this output to a robot

for control, language conditioned short-horizon policies can

be used. In this case, PaLM-E acts as a high-level control

policy. Experiments show that a single PaLM-E, in addition

to being a vision-language generalist, is able to perform

many different robotics tasks over multiple robot em-

bodiments. The model exhibits positive transfer; that is,

simultaneously training on internet-scale language, general

vision-language, and embodied domains leads to higher

performance compared to training the model on single tasks.

2.6. Visual generative models

Web-scale diffusion models such as OpenAI’s DALL-E

(Ramesh et al., 2021b) and DALL-E2 (Ramesh et al.,

2022) provide zero-shot text-to-image generation. They

are trained on hundreds of millions of image-caption pairs

from the internet. These models learn a language-

conditioned distribution over images from which an im-

age can be generated using a given prompt. The DALL-E2

architecture includes a prior that generates a CLIP image

embedding from a text caption, and a decoder that generates

an image conditioned on the image embedding.

3. Robotics

In this section, we delve into robot decision-making,

planning, and control. Within this realm, Large Language

Models (LLMs) and Visual Language Models (VLMs) may

hold the potential to serve as valuable tools for enhancing

robotic capabilities. For instance, LLMs may facilitate the

process of task specification, allowing robots to receive and

interpret high-level instructions from humans. VLMs may

also promise contributions to this field. VLMs specialize in

the analysis of visual data. This visual understanding is a

critical component of informed decision-making and

complex task execution for robots. Robots can now leverage

natural language cues to enhance their performance in tasks

involving manipulation, navigation, and interaction. Vision-

language goal-conditioned policy learning, whether through

imitation learning or reinforcement learning, holds promise

for improvement using foundation models. Language
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models also play a role in offering feedback for policy

learning techniques. This feedback loop fosters continual

improvement in robotic decision-making, as robots can

refine their actions based on the feedback received from an

LLM. This section underscores the potential contributions

of LLMs and VLMs in robot decision-making. Assessing

and comparing the contributions of papers in this section

presents greater challenges compared to the other sections

like the Perception Section (4) or the Embodied AI Section

(5). This is due to the fact that most papers in this section

either rely on hardware experiments, using custom elements

in the low-level control and planning stack that are not

easily transferred to other hardware or other experimental

setups, or they utilize non-physics-based simulators, which

allow these low-level parts of the stack to be ignored, but

leaving open the issue of non-transferability between dif-

ferent hardware implementations. In Section 6, we discuss

the lack of benchmarking and reproducibility that needs to

be addressed in future research.

3.1. Robot policy learning for decision making

and control

In this section, we discuss robot policy learning, including

language-conditioned imitation learning and language-

assisted reinforcement learning.

3.1.1. Language-conditioned imitation learning for

manipulation. In language-conditioned imitation learning,

a goal-conditioned policy πθ(at|st, l) is learned that outputs

actions at 2A conditioned on the current state st 2S and

language instruction l 2L. The loss function is defined as the
maximum likelihood goal-conditioned imitation objective:

LGCIL ¼ Eðτ, lÞ∼D
X

jτj

t¼0

logπθðatjst, lÞ, (9)

where D is the language-annotated demonstration dataset

D ¼ fτigNi . Demonstrations can be represented as trajec-

tories, or sequences of images, RGB-D voxel observations,

etc. Language instructions are paired with demonstrations to

be used as the training dataset. Each language-annotated

demonstration τi consists of τi = {(s1, l1, a1), (s2, l2, a2),…}.

At test time, the robot is given a series of instructions, and

the language-conditioned visuomotor policy πθ provides

actions at in a closed loop given the instruction at each time

step. The main challenges in this domain are: (i) obtaining a

sufficient volume of demonstrations and conditioning labels

to train a policy and (ii) distribution shift under the closed-

loop policy—the feedback of the policy can lead the robot

into regions of the state space that are not well-covered in

the training data, negatively impacting performance. (All

the following papers in this subsection focus on robot

manipulation tasks).

Since generating language-annotated data by pairing

demonstrations with language instruction is an expensive

process, the authors in Play-LMP (Lynch et al., 2020)

propose learning from teleoperated play data. In this setting,

reusable latent plan representations are learned from un-

labeled play data. Also, a goal-conditioned policy is learned

to decode the inferred plan to perform the task specified by

the user. In addition, the distributional shift in imitation

learning is analyzed and it is shown in this setting that the

play data is more robust with respect to perturbation

compared to expert positive demonstrations. Note that

language goal l in (9) can be substituted with any other type

of goal for example goal image, which is another common

choice of goal in goal-conditioned imitation learning.

In a follow-up work (Lynch and Sermanet, 2021), the

authors present multi-context imitation (MCIL), which uses

language-conditioned imitation learning over unstructured

data. The multi-Context imitation framework is based on

relabeled imitation learning and labeled instruction fol-

lowing. MCIL assumes access to multiple contextual imi-

tation datasets, for example, goal image demonstrations,

language goal demonstrations, or one-hot task demonstra-

tions. MCIL trains a single latent goal-conditioned policy

over all datasets simultaneously by encoding contexts in the

shared latent space using the associated encoder for each

context. Then a goal-conditioned imitation loss is computed

by averaging over all datasets. The policy and goal-encoders

are trained end-to-end.

Another approach to tackle the data annotation challenge in

language-conditioned imitation learning involves utilizing

foundation models to offer feedback by labeling demonstra-

tions. In Yuying et al. (2023), the authors propose to use

pretrained foundationmodels to provide feedback. To deploy a

trained policy to a new task or new environment, the policy is

played using randomly generated instructions, and a pretrained

foundation model provides feedback by labeling the dem-

onstration. Also, this paired instruction-demonstration data can

be used for policy fine-tuning. CLIPort (Shridhar et al., 2022)

also presents a language-conditioned imitation learning for

vision-based manipulation. A two-stream architecture is pre-

sented that combines the semantic understanding of CLIP with

the spatial precision of Transporter (Zeng et al., 2020). This

end-to-end framework solves language-specifiedmanipulation

tasks without any explicit representation of the object poses or

instance segmentation. CLIPort grounds semantic concepts in

precise spatial reasoning, but it is limited to 2D observation

and action spaces.

To address this limitation, the authors of PerAct

(Perceiver-Actor) (Shridhar et al., 2023) propose to repre-

sent observation and action spaces with 3D voxels and

employ the 3D structure of voxel patches for efficient

language-conditioned behavioral cloning with transformers

to imitate 6-DoF manipulation tasks from just a few

demonstrations. While 2D behavioral cloning methods such

as CLIPort are limited to single-view observations, 3D

approaches such as PerAct allow for multi-view observa-

tions as well as 6-DoF action spaces. PerAct uses only

CLIP’s language encoder to encode the language goal.

PerAct takes language goals and RGB-D voxel observations
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as inputs to a Perceiver Transformer and outputs discretized

actions by detecting the next best voxel action. PerAct is

trained through supervised learning with discrete-time input

actions from the demonstration dataset. The demonstration

dataset includes voxel observations paired with language

goals and keyframe action sequences. An action consists of

a 6-DoF pose, gripper open state, and collision avoidance

action. During training, a tuple is randomly sampled and the

agent predicts the keyframe action given the observation

and goal.

Grounding semantic representations into a spatial en-

vironment is essential for effective robot interaction.

CLIPort and PerAct utilize CLIP (which is trained based on

contrastive learning) for semantic reasoning and Trans-

porter and Perceiver for spatial reasoning. Voltron

(Karamcheti et al., 2023) presents a framework for

language-driven representation learning in robotics. Voltron

captures semantic, spatial, and temporal representations that

are learned from videos and captions. Contrastive learning

captures semantic representations but loses spatial rela-

tionships, and in contrast, masked autoencoding captures

spatial and not semantic representations. Voltron trades off

language-conditioned visual reconstruction for local spatial

representations and visually grounded language generation

to capture semantic representations. This framework in-

cludes grasp affordance prediction, single-task visuomotor

control, referring expression grounding, language-

conditioned imitation, and intent-scoring tasks. Voltron

models take videos and their associated language captions

as input to a multimodal encoder whose outputs are then

decoded to reconstruct one or more frames from a masked

context. Voltron starts with a masked autoencoding back-

bone and adds a dynamic component to the model by

conditioning the MAE encoder on a language prefix.

Temporal information is captured by conditioning on

multiple frames.

Deploying robot policy learning techniques that leverage

language-conditioned imitation learning with real robots

presents ongoing challenges. These models rely on end-to-

end learning, where the policy maps pixels or voxels to

actions. As they are trained through supervised learning on

demonstration datasets, they are susceptible to issues related

to generalization and distribution shifts. To improve ro-

bustness and adaptability, techniques such as data aug-

mentation and domain adaptation can make the policies

more robust to the distribution shift. CACTI (Mandi et al.,

2022) is a novel framework designed to enhance scalability

in robot learning using foundation models such as Stable

Diffusion (Rombach et al., 2022). CACTI introduces the

four stages of data collection, data augmentation, visual

representation learning, and imitation policy training. In the

data collection stage, limited in-domain expert demon-

stration data is collected. In the data augmentation stage,

CACTI employs visual generative models such as Stable

Diffusion (Rombach et al., 2022) to boost visual diversity

by augmenting the data with scene and layout variations. In

the visual representation learning stage, CACTI leverages

pretrained zero-shot visual representation models trained on

out-of-domain data to improve training efficiency. Finally,

in the imitation policy training stage, a general multi-task

policy is learned using imitation learning on the augmented

dataset with compressed visual representations as input.

CACTI is trained for multi-task and multi-scene manipu-

lation in kitchen environments, both in simulation and the

real world. The use of these techniques enhances the

generalization ability of the framework and enables it to

learn from a wide range of environments.

As an alternative to costly expert demonstrations for

imitation policy training, Ehsani et al. (2024) leverage

shortest path plans for navigation and manipulation as

expert demonstrations in simulation. The expert, with ac-

cess to privileged simulator information, navigates using the

shortest path planner on a collision mesh and manipulates

objects by minimizing the distance between the known pose

of the object and the end effector. Expert trajectories are

generated for ten different tasks across 200,000 procedur-

ally generated homes. The imitation agent consists of input

encoders, a transformer encoder to aggregate the goal and

visual knowledge, and a transformer decoder policy net-

work. The resulting agent can generalize across the ten

household robotics tasks in simulation and enjoys similar

task success rates in real-world experiments.

Beyond language, recent works have investigated other

forms of task specification. Notably, MimicPlay (Wang

et al., 2023a) presents a hierarchical imitation learning al-

gorithm that learns high-level plans in latent spaces from

human play data and low-level motor commands from a

small number of teleoperated demonstrations. By har-

nessing the complementary strengths of these two data

sources, this algorithm can significantly reduce the cost of

training visuomotor policies for long-horizon manipulation

tasks. Once trained, it is capable of performing new tasks

based on one human video demonstration at test time.

MUTEX (Shah et al., 2023c) further explores learning a

unified policy across multimodal task specifications in

video, image, text, and audio, showing improved policy

performances over single-modality baselines through cross-

modal learning.

3.1.2. Language-assisted reinforcement Learning.

Reinforcement learning (RL) is a family of methods that

enable a robot to optimize a policy through interaction with

its environment by optimizing a reward function. These

interactions are usually in a simulation environment,

sometimes augmented with data from physical robot hard-

ware for sim-to-real transfer. RL has close ties to optimal

control. Unlike imitation learning, RL does not require hu-

man demonstrations, and (in theory) has the potential to attain

super-human performance. In the RL problem, the expected

return of a policy is maximized using the collected roll-outs

from interactions with the environment. The feedback re-

ceived from the environment in the form of a reward signal

guides the robot to learn which actions lead to favorable

results and which do not. In this section, we discuss works
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that have incorporated foundation models (LLMs, VLMs,

etc.) into RL problems.

Fast and flexible adaptation is a desired capability of

artificial agents and is essential for progress toward general

intelligence. In Adaptive Agent (AdA) (Team et al., 2023),

the authors present an RL foundation model that is an agent

pretrained on diverse tasks and is designed to quickly adapt

to open-ended embodied 3D problems by using fast in-

context learning from feedback. This work considers

navigation, coordination, and division of labor tasks. Given

a few episodes within an unseen environment at test time,

the agent engages in trial-and-error exploration to refine its

policy toward optimal performance. In AdA a transformer

architecture is trained using model-based RL2 (Duan et al.,

2016) to train agents with large-scale attention-based

memory, which is required for adaptation. Transformer-

XL (Dai et al., 2019) with some modification is used to

enable long and variable-length context windows to in-

crease the model memory to capture long-term dependen-

cies. The agent collects diverse data in the XLand

environment that includes 1040 possible tasks (Team et al.,

2021), in an automated curriculum. In addition, distillation

is used to enable scaling to models with more than 500M

parameters.

Palo et al. (2023) propose an approach to enhance re-

inforcement learning by integrating Large Language

Models (LLMs) and Visual-Language Models (VLMs) to

create a more unified RL framework. This work considers

robot manipulation tasks. Their approach addresses core RL

challenges related to exploration, experience reuse and

transfer, skills scheduling, and learning from observation.

The authors use an LLM to decompose complex tasks into

simpler sub-tasks, which are then utilized as inputs for a

transformer-based agent to interact with the environment.

The agent is trained using a combination of supervised and

reinforcement learning, enabling it to predict the optimal

sub-task to execute based on the current state of the

environment.

3.2. Robot transformers

Foundation models can be used for end-to-end control of

robots by providing an integrated framework that combines

perception, decision-making, and action generation. Xiao

et al. (2022) demonstrate the effectiveness of self-

supervised visual pretraining using real-world images for

learning motor control tasks directly from pixel inputs. This

work is focused on robot manipulation tasks. They show

that without any task-specific fine-tuning of the pretrained

encoder, the visual representations can be utilized for

various motor control tasks. This approach highlights the

potential of leveraging self-supervised learning from real-

world images to acquire general visual representations that

can be applied across different motor control tasks. Simi-

larly, Radosavovic et al. (2023) investigate the use of self-

supervised visual pretraining on diverse, in-the-wild videos

for real-world robotic tasks. This work considers robot

manipulation tasks. They find that the pretrained repre-

sentations obtained from such videos are effective in a range

of real-world robotic tasks, considering different robotic

embodiments. This suggests that the learned visual repre-

sentations generalize well across various tasks and robot

platforms, demonstrating the broad applicability of self-

supervised pretraining for real-world robotic applications.

Both studies emphasize the advantages of self-supervised

visual pretraining, where models are trained on large

amounts of unlabeled data to learn useful visual repre-

sentations. By leveraging real-world images and videos,

these approaches enable learning from diverse and un-

structured visual data, leading to more robust and trans-

ferable representations for motor control tasks in robotic

systems.

Another example of a Transformer-based policy model is

the work on Robotics Transformer (RT-1) (Brohan et al.,

2023a), where the authors demonstrate a model that shows

promising scalability properties. To train the model, the

authors use a large dataset of over 130k real-world robotic

experiences, comprising more than 700 tasks, that was

collected over 17 months using a fleet of 13 robots. RT-1

receives images and natural language instructions as inputs

and outputs discretized base and arm actions. It can gen-

eralize to new tasks, maintain robustness in changing en-

vironments, and execute long-horizon instructions. The

authors also demonstrate the model’s capability to effec-

tively absorb data from diverse domains, including simu-

lations and different robots.

The follow-up work, called Robotic Transformer 2 (RT-

2) (Zitkovich et al., 2023), demonstrates a vision-language-

action (VLA) model that takes a step further by learning

from both web and robotics data. The model effectively

utilizes this data to generate generalized actions for robotic

control. To do so, the authors use pre-existing vision-

language models and directly co-fine-tune them on robot

trajectories resulting in a single model that operates as a

language model, a vision-language model, and a robot

policy. To make co-fine-tuning possible, the actions are

represented as simple text strings which are then tokenized

using an LLM tokenizer into text tokens. The resulting

model, RT-2, enables vision-language models to output

low-level closed-loop control. Similarly to RT-1, actions are

produced based on robot instructions paired with camera

observations and the action space includes 6-DoF positional

and rotational displacement of the robot end-effector,

gripper extension, and episode termination command. Via

extensive experiments, the authors show that utilizing

VLMs aids in the enhancement of generalization across

visual and semantic concepts and enables the robots to

respond to the so-called chain of thought prompting, where

the agent performs more complex, multi-stage semantic

reasoning. Both RT-1 and RT-2 consider robot manipulation

and navigation tasks using a real-world mobile manipulator

robot from Everyday Robots. One key limitation of RT-2

and other related works in robotics is the fact that the range

of physical skills exhibited by the robot is limited to the
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distribution of skills observed within the robot’s data. While

one way to approach this limitation is to collect more di-

verse and dexterous robotic data, there might be other in-

triguing research directions, such as using motion data in

human videos, robotic simulations, or other robotic

embodiments.

The next work utilizing the Transformer architecture

indeed focuses on learning from data that combines multiple

robotic embodiments. In RT-X (Padalkar et al., 2023), the

authors provide a number of datasets in a standardized data

format and models to make it possible to explore the

possibility of training large cross-embodied robotic models

in the context of robotic manipulation. In particular, they

assembled a dataset from 22 different robots collected

through a collaboration between 21 institutions, demon-

strating 527 skills (160266 tasks). With this unified dataset,

RT-X demonstrates that RT-1- and RT-2-based models

trained on this multi-embodiment, diverse data exhibit

positive transfer across robotic domains and improve the

capabilities of multiple robots by leveraging experience

from other platforms.

Other works have investigated general pretrained

transformers for robot control, trained with self-supervised

trajectory data from multiple robots. For example,

Perception-Action Causal Transformer (PACT) (Bonatti

et al., 2023) is a generative transformer architecture that

builds representations from robot data with self-supervision.

This work considers robot navigation tasks. PACT pretrains

a representation useful for multiple tasks on a given robot.

Similar to how large language models learn from extensive

text data, PACT is trained on abundant safe state-action data

(trajectories) from a robot, learning to predict appropriate

safe actions. By predicting states and actions over time in an

autoregressive manner, the model implicitly captures dy-

namics and behaviors specific to a robot. PACT was tested

in experiments involving mobile agents: a wheeled robot

with a LiDAR sensor (MuSHR) and a simulated agent using

first-person RGB images (Habitat). The results show that

this robot-specific representation can serve as a starting

point for tasks like safe navigation, localization, and

mapping. Additionally, the experiments demonstrated that

fine-tuning smaller task-specific networks on the pre-trained

model leads to significantly better performance compared to

training a single model from scratch for all tasks simulta-

neously, and comparable performance to training a separate

large model for each task independently.

Another work in this space is Self-supervised Multi-task

pretrAining with contRol Transformer (SMART) (Sun

et al., 2023f), which introduces a self-supervised multi-

task pertaining to control transformers, providing a

pretraining-finetuning approach tailored for sequential

decision-making tasks. During the pretraining phase,

SMART captures information essential for both short-term

and long-term control, facilitating transferability across

various tasks. Subsequently, the finetuning process can

adapt to a wide variety of tasks spanning diverse domains.

Experimentation underscores SMART’s ability to enhance

learning efficiency across tasks and domains. This work

considers cart pole-swing-up, cart pole-balance, hopper-

hop, hopper-stand, cheetah-run, walker-stand walker-run,

and walker-walk tasks. The approach demonstrates ro-

bustness against distribution shifts and proves effective with

low-quality pretraining datasets.

Some works have investigated transformer models in

conjunction with classical planning and control layers as

part of a modular robot control architecture. For example, in

Bucker et al. (2023), a multi-modal transformer (LATTE) is

presented that allows a user to reshape robot trajectories

using language instructions. This work considers both robot

manipulation and navigation tasks. LATTE transformer

takes as input geometrical features of an initial trajectory

guess along with the obstacle map configuration, language

instructions from a user, and images of each object in the

environment. The model’s output is modified for each

waypoint in the trajectory so that the final robot motion can

adhere to the user’s language instructions. The initial tra-

jectory plan can be generated using any geometric planner

such as A*, RRT*, or model predictive control. Subse-

quently, this plan is enriched with the semantic objectives

within the model. LATTE leverages pretrained language

and visual-language models to harness semantic represen-

tations of the world.

One key obstacle to incorporating foundation models

into robotics research is the reliance on real-world hardware

experiments. These experiments challenge reproducibility

because replicating the results may require the exact

equipment used in prior studies. Conversely, many recent

studies have employed simulators that do not faithfully

replicate physical interactions, focusing instead on high-

level, long-term tasks and visual modeling. A blend of open

hardware configurations and benchmarking in high-fidelity

physics simulators can enhance reproducibility and address

associated issues.

3.3. Language-image goal-conditioned

value learning

In value learning, the aim is to construct a value function

that aligns goals in different modalities and preserves

temporal coherence due to the recursive nature of the value

function. Reusable Representation for Robotic Manipula-

tions (R3M) (Nair et al., 2022b) provides pretrained visual

representation for robot manipulation using diverse human

video datasets such as Ego4D and can be used as a frozen

perception module for policy learning in robot manipulation

tasks. R3M’s pretrained visual representation is demon-

strated on Franka Emika Panda’s arm and enables different

downstream manipulation tasks. R3M is trained using time-

contrastive learning to capture temporal dependencies,

video-language alignment to capture semantic features of

the scene (such as objects and their relationships), and L1

penalty to encourage sparse and compact representation.

For a batch of videos, using time-contrastive loss, an en-

coder is trained to generate a representation wherein the
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distance between images that are temporally closer is

minimized compared to images that are farther apart in time

or from different videos.

Similar to R3M, Value-Implicit Pretraining (VIP) (Ma

et al., 2023b) employs time-contrastive learning to capture

temporal dependencies in videos, but it does not require

video-language alignment. VIP is also focused on robot

manipulation tasks. VIP is a self-supervised approach for

learning visual goal-conditioned value functions and rep-

resentations from videos. VIP learns visual goal-based re-

wards for downstream tasks and can be used for zero-shot

reward specification. The reward model is derived from

pretrained visual representations. Pretraining involves using

unlabeled human videos. Human videos do not contain any

action information to be used for robot policy learning;

therefore, the learned value function does not explicitly

depend on actions. VIP introduces a novel time contrastive

objective that generates a temporally smooth embedding.

The value function is implicitly defined via distance em-

bedding. The proposed implicit time contrastive learning

attracts the representation of the initial and goal frames in

the same trajectory and repels the representation of inter-

mediate frames by recursive one-step temporal difference

minimization. This representation captures long-term

temporal dependencies across task frames and local tem-

poral smoothness among adjacent frames.

Language-Image Value Learning (LIV) (Ma et al.,

2023a) is a control-centric vision-language representation.

LIV generalizes the prior work VIP by learning multi-modal

vision-language value functions and representations using

language-aligned videos. For tasks specified as language

goals or image goals, a multi-model representation is trained

that encodes a universal value function. LIV is also focused

on robot manipulation tasks. LIV is a pretrained control-

centric vision-language representation based on large hu-

man video datasets such as EPIC-KITCHENS (Damen

et al., 2018). The representations are kept frozen during

policy learning. A simple MLP is used on top of pretrained

representations for the policy network. Policy learning is

decoupled from language-visual representation pretraining.

The LIV model is pretrained on arbitrary video activity da-

tasets with text annotation, and the model can be fine-tuned on

small datasets of in-domain robot data to ground language in a

context-specific way. LIV uses a generalization of the mutual

information-based image-text contrastive representation

learning objective as used in CLIP, so LIV can be considered

as a combination of CLIP and VIP. Both VIP and LIV learn a

self-supervised goal-conditioned value-function objective us-

ing contrastive learning. The LIVextends the VIP framework

tomulti-modal goal specifications. LOREL (Nair et al., 2022a)

learns a language-conditioned reward from offline data and

uses it during model predictive control to complete language-

specified tasks.

Value functions can be used to help ground semantic

information obtained from an LLM to the physical envi-

ronment in which a robot is operating. By leveraging value

functions, a robot can associate the information processed

by the LLM with specific locations and objects in its sur-

roundings. In SayCan (Brohan et al., 2023b), researchers

investigate the integration of large language models with the

physical world through learning. They use the language

model to provide task-grounding (Say), enabling the de-

termination of useful sub-goals based on high-level in-

structions, and a learned affordance function to achieve

world-grounding (Can), enabling the identification of fea-

sible actions to execute the plan. Inner Monologue (Huang

et al., 2022b) studies the role of grounded environment

feedback provided to the LLM, thus closing the loop with

the environment. The feedback is used for robot planning

with large language models by leveraging a collection of

perception models (e.g., scene descriptors and success

detectors) in tandem with pretrained language-conditioned

robot skills. Feedback includes task-specific feedback, such

as success detection, and scene-specific feedback (either

“passive” or “active”). In both SayCan and Inner Mono-

logue, robot manipulation and navigation tasks are con-

sidered using a real-world mobile manipulator robot from

Everyday Robots. Text2Motion (Lin et al., 2023c) is a

language-based planning framework for long-horizon robot

manipulation. Similar to SayCan and Inner Monologue,

Text2Motion computes a score (SLMM) associated with each

skill at each time step. The task planning problem is to find a

sequence of skills by maximizing the likelihood of a skill

sequence given a language instruction and the initial state.

In Text2Motion, the authors propose to verify that the

generated long-horizon plans are symbolically correct and

geometrically feasible. Hence, a geometric feasibility score

(Sgeo) is defined as the probability that all the skills in the

sequence achieve rewards. To compute the overall score, the

LLM score is multiplied by the geometric feasibility score

(SSkill = SLMM � Sgeo).
VoxPoser (Huang et al., 2023c) builds 3D value maps to

ground affordances and constraints into the perceptual

space. VoxPser considers robot manipulation tasks. Given

the RGB-D observation of the environment and language

instruction, VoxPoser utilizes large language models to

generate code, which interacts with vision-language models

to extract a sequence of 3D affordance maps and constraint

maps. These maps are composed together to create 3D value

maps. The value maps are then utilized as objective

functions to guide motion planners to synthesize trajectories

for everyday manipulation tasks without requiring any prior

training or instruction.

In Mahmoudieh et al. (2022), reward shaping using

CLIP is presented. This work considers robot manip-

ulation tasks. The proposed model utilizes CLIP to

ground objects in a scene described by the goal text

paired with spatial relationship rules to shape the re-

ward by using raw pixels as input. They use devel-

opments in building large-scale visuo-lingual models

like CLIP to devise a framework that generates the task

reward signal from just the goal text description and

raw pixel observations. This signal is then used to learn

the task policy.
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In Mees et al. (2023), Hierarchical Universal Language

Conditioned Policies 2.0 (HULC++) is presented. This

work considers robot manipulation tasks. A self-supervised

visuo-lingual affordance model is used to learn general-

purposed language-conditioned robot skills from unstruc-

tured offline data in the real world. This method requires

annotating as little as 1% of the total data with language.

The visuo-lingual affordance model has an encoder-decoder

architecture with two decoder heads. Both heads share the

same encoder and are conditioned on the input language

instruction. One head predicts a distribution over the image,

in which each pixel likelihood is an afforded point. The

other head predicts a Gaussian distribution from which the

corresponding predicted depth is sampled. Given visual

observations and language instructions as input, the af-

fordance model outputs a pixel-wise heat map that repre-

sents affordance regions and the corresponding depth map.

3.4. Robot task planning using large

language models

Large language models (LLMs) can be used to provide

high-level task planning for performing complex long-

horizon robot tasks.

3.4.1. Language instructions for task specification. As

discussed above, SayCan (Brohan et al., 2023b) uses an

LLM for high-level task planning in language, though with

a learned value function to ground these instructions in the

environment.

Temporal logic is useful for imposing temporal speci-

fications in robotic systems. In Chen et al. (2023e), trans-

lation from natural language (NL) to temporal logic (TL) is

proposed. A dataset with 28k NL-TL pairs is created and the

T5 (Raffel et al., 2020) model is finetuned using the dataset.

LLMs are often used to plan task sub-goals. This work

considers robot navigation tasks. In Chen et al. (2023d),

instead of direct task planning, a few-shot translation from a

natural language task description to an intermediary task

representation is performed. This representation is used by a

Task and Motion Planning (TAMP) algorithm to jointly

optimize task and motion plans. Autoregressive re-

prompting is used to correct synthetic and semantic er-

rors. This work also considers robot navigation tasks.

3.4.2. Code generation using language models for task

planning. Classical task planning requires extensive do-

main knowledge and the search space is large (Huang et al.,

2021; Sun et al., 2021a). LLMs can be used to generate

sequences of tasks required to achieve a high-level task. In

ProgPrompt (Singh et al., 2023), the authors introduce a

prompting method that uses LLMs to generate sequences of

actions directly with no additional domain knowledge. The

prompt to the LLM includes specifications of the available

actions, objects in the environment, and example programs

that can be executed. VirtualHome (Puig et al., 2018) is used

as a simulator for demonstration.

Code-as-Policies (Liang et al., 2023) explores the use of

code-writing LLMs to generate robot policy code based on

natural language commands. This work considers robot

manipulation and navigation tasks using a real-world mo-

bile manipulator robot from Everyday Robots. The study

demonstrates that LLMs can be repurposed to write policy

code by expressing functions or feedback loops that process

perception outputs and invoke control primitive APIs. To

achieve this, the authors utilize few-shot prompting, where

example language commands formatted as comments are

provided along with the corresponding policy code.Without

any additional training on this data, they enable the models

to autonomously compose API calls and generate new

policy code when given new commands. The approach

leverages classic logic structures and references third-party

libraries like NumPy and Shapely to perform arithmetic

operations. By chaining these structures and using con-

textual information (behavioral commonsense), the LLMs

can generate robot policies that exhibit spatial-geometric

reasoning, generalize to new instructions, and provide

precise values (e.g., velocities) for ambiguous descriptions

such as “faster.” The concept of “code as policies” for-

malizes the generation of robot policies using language

model-generated programs (LMPs). These policies can

represent reactive policies like impedance controllers, as

well as waypoint-based policies such as vision-based pick

and place or trajectory-based control. The effectiveness of

this approach is demonstrated on multiple real robot plat-

forms. A crucial aspect of this approach is the hierarchical

code generation process, which involves recursively de-

fining undefined functions. This enables the LLMs to

generate more complex code structures to fulfill the desired

policy requirements.

In Vemprala et al. (2023), the authors provide design

principles for using ChatGPT in robotics and demonstrate

how LLMs can help robotic capabilities rapidly generalize

to different form factors. This work considers robot ma-

nipulation and aerial navigation tasks. First, a high-level

robot function library that maps to multiple atomic tasks

executable by the robot is defined. Then, a prompt is crafted

that includes these functions, and the required constraints

along the task description. ChatGPT then provides exe-

cutable code specific to the given robot configuration and

task. The generated code can then be evaluated by a user and

appropriate feedback with modified prompts to LLMs

further help refine and generate programs that are safe and

deployable on the physical robot. The study demonstrated

that such a methodology can be applied to multiple form

factors both in simulation and in the real world.

3.5. In-context learning (ICL)

for decision-making

In-context learning (ICL) (Dong et al., 2022) operates

without the need for parameter optimization, relying instead

on a set of examples included in the prompt (the concept of

prompting). This learning approach is intimately linked
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with prompt engineering and finds extensive use in natural

language processing. The method of Chain-of-Thought

(Wei et al., 2022) is a prominent technique within in-

context learning. It involves executing a sequence of in-

termediate steps to arrive at the final solution for complex,

multi-step problems. This technique allows models to

produce step-by-step explanations that parallel human

cognitive processes. However, despite its numerous bene-

fits, ICL also faces certain challenges, including issues

related to ambiguity and interpretation, domain-specific

knowledge, transparency, and explainability. In-context

learning has had a significant impact on the field of

LLMs in a broad sense, and many robotics works have used

it to apply LLMs to specific domains. Investigating this,

Mirchandani et al. (2023) illustrate that Large Language

Models (LLMs) possess remarkable pattern recognition

abilities. They reveal that, through in-context learning,

LLMs can effectively handle general patterns that extend

beyond standard language-based prompts. This capability

allows for the application of LLMs in scenarios such as

offline trajectory optimization and online, in-context rein-

forcement learning. Additionally, Jia and the team in their

work on Chain-of-Thought Predictive Control (Jia et al.,

2023) suggest a method to identify specific brief sequences

within demonstrations, termed as ’chain-of-thought’. They

focus on understanding and representing the hierarchical

structure of these sequences, highlighting the achievement

of subgoals within tasks. This work considers robot policy

learning from demonstrations for contact-rich object ma-

nipulation tasks.

3.6. Open-vocabulary robot navigation

and manipulation

3.6.1. Open-vocabulary navigation. Open-vocabulary

navigation addresses the challenge of navigating through

unseen environments. The open-vocabulary capability

signifies that the robot possesses the capacity to compre-

hend and respond to language cues, instructions, or se-

mantic information, without being restricted to a predefined

dataset. In this section, we explore papers that examine the

integration of LLMs, VLMs, or a combination of both in a

plug-and-play manner for robot navigation tasks. Addi-

tionally, we discuss papers that take a different approach by

constructing foundation models explicitly tailored for robot

navigation tasks.

In VLN-BERT (Majumdar et al., 2020), the authors

present a visual-linguistic transformer-based model that

leverages multi-modal visual and language representations

for visual navigation using web data. The model is designed

to score the compatibility between an instruction, such as

“…stop at the brown sofa,” and a sequence of panoramic

RGB images captured by the agent. Similarly, LM-Nav

(Shah et al., 2023a) considers visual navigation tasks. LM-

Nav is a system that utilizes pretrained models of images

and language to provide a textual interface to visual

navigation. LM-Nav demonstrates visual navigation in a

real-world outdoor environment from natural language

instructions. LM-Nav utilizes an LLM (GPT-3, Brown et al.,

2020), a VLM (CLIP, Radford et al., 2021a), and a VNM

(Visual Navigation Model). First, LM-Nav constructs a

topological graph of the environment via the VNM esti-

mating the distance between images. The LLM is then used

to translate the natural instructions to sequences of inter-

mediate language landmarks. The VLM is used to ground

the visual observations in landmark descriptions via a joint

probability distribution over landmarks and images. Using

the VLM’s probability distribution, the LLM instructions,

and the VNM’s graph connectivity, the optimal path is

planned using the search algorithm. Then the plan is exe-

cuted by the goal-conditioned policy of VNM.

While LM-Nav makes use of LLMs and VLMs as plug-

and-play for visual navigation tasks, the authors of ViNT

(Shah et al., 2023b) propose to build a foundation model for

visual navigation tasks. ViNT is an image goal-conditioned

navigation policy trained on diverse training data and can

control different robots in zero-shot. It can be fine-tuned to

be adapted for different robotic platforms and various

downstream tasks. ViNT is trained on various navigation

datasets from different robotic platforms. It is trained with

goal-reaching objectives and utilizes a Transformer-based

architecture to learn navigational affordances. ViNT en-

codes visual observations and visual goals using an Effi-

cientNet CNN and predicts temporal distance and

normalized actions in an embodiment-agnostic manner.

Additionally, ViNT can be augmented with diffusion-based

sub-goal proposals to help explore environments not en-

countered during training. An image-to-image diffusion

generates sub-goal images, which the ViNT then navigates

toward while building a topological map in the background.

Another work that considers zero-shot navigation tasks is

Audio Visual Language Maps (AVLMaps) (Huang et al.,

2023a). AVLMaps presents a 3D spatial map representation

for cross-modal information from audio, visual, and lan-

guage cues. AVLMaps receives multi-modal prompts and

performs zero-shot navigation tasks in the real world. The

inputs are depth and RGB images, camera pose, and audio.

Visual features are encoded using pretrained foundation

models. Visual localization features like NetVLAD

(Arandjelovic et al., 2016) and SuperPoint (DeTone et al.,

2018), visual-language features like LSeg (Li et al., 2022a),

and audio-language features like AudioCLIP (Guzhov et al.,

2022) are computed and predictions from different mo-

dalities are combined into 3D heatmaps. The pixel-wise

joint probability of the heatmap is computed and used for

planning. Additionally, navigation policies are generated as

executable codes with the help of GPT-3. Finally, 3D

heatmaps are predicted indicating the location of multi-

modal concepts such as objects, sounds, and images.

Many roboticists may wonder about the comparative

strengths of classical modular robot navigation systems

versus end-to-end learned systems. Semantic navigation

(Gervet et al., 2023) seeks to address this question by

presenting an empirical analysis of semantic visual
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navigation methods. The study compares representative

approaches from classical, modular, and end-to-end learn-

ing paradigms across six different homes, without any prior

knowledge, maps, or instrumentation. The findings of the

study reveal that modular learning methods perform well in

real-world scenarios. In contrast, the end-to-end learning

approaches face challenges due to a significant domain gap

between simulated and real-world images. This domain gap

hinders the effectiveness of end-to-end learning methods in

real-world navigation tasks. For practitioners, the study

emphasizes that modular learning is a reliable approach to

object navigation. The modularity and abstraction in policy

design enable successful transfer from simulation to reality,

making modular learning an effective choice for practical

implementations. For researchers, the study also highlights

two critical issues that limit the reliability of current sim-

ulators as evaluation benchmarks. Firstly, there exists a

substantial Sim-to-Real gap in images, which hampers the

transferability of learned policies from simulation to the real

world. Secondly, there is a disconnect between simulation

and real-world error modes, which further complicates the

evaluation process.

Another line of work in open-vocabulary navigation is

object navigation tasks. In this task, the robot must be able

to find the object described by humans and navigate towards

the object. The navigation task is decomposed into ex-

ploration when the language target is not detected, and

exploitation when the target is detected and the robot

navigates toward the target. As the robot moves in the

environment, it creates a top-down map using RGB-D

observations and poses estimates. In Gadre et al. (2023),

the authors introduce a zero-shot object navigation setting

that uses an open-vocabulary classifier such as CLIP

(Radford et al., 2021a) to compute the cosine similarity

between an image and a user-specified description.

Common datasets and benchmarks for these types of

problems are Matterport3D (Anderson et al., 2018; Chang

et al., 2017), Gibson (Li et al., 2021) and Habitat (Szot et al.,

2021). L3MVN (Bangguo et al., 2023) enhances visual

target navigation by constructing an environment map and

selecting long-term goals using the inference capabilities of

large language models. The system can determine appro-

priate long-term goals for navigation by leveraging pretrained

language models such as RoBERTa-large (Liu et al., 2019),

enabling efficient exploration and searching. Chen et al.

(Chen et al., 2023a) presents a training-free and modular

system for object goal navigation, which constructs a

structured scene representation through active exploration.

The system utilizes semantic information in the scene graphs

to deduce the location of the target object and integrates

semantics with the geometric frontiers to enable the agent to

navigate effectively to the most promising areas for object

search while avoiding detours in unfamiliar environments.

HomeRobot (Yenamandra et al., 2023) introduces a

benchmark for the Open-Vocabulary Mobile Manipulation

(OVMM) task. OVMM task is the problem of finding an

object in any unseen environment, navigating towards the

object, picking it up, and navigating towards a goal location

to place the object. HomeRobot provides a benchmark in

simulation and the real world for OVMM tasks.

3.6.2. Open-vocabulary manipulation. Open-vocabulary

manipulation refers to the problem of manipulating any

object in a previously unseen environment. VisuoMotor

Attention Agent (VIMA) (Jiang et al., 2023) learns robot

manipulation from multi-modal prompts. VIMA is a

transformer-based agent that predicts motor commands

conditioned on a task prompt and a history of interactions. It

introduces a new form of task specifications that combines

textual and visual tokens. Multi-modal prompting converts

different robot manipulation tasks, such as visual goal-

reaching, learning from visual demonstrations, and novel

concept grounding into one sequence modeling problem. It

offers the training of a unified policy across diverse tasks,

potentially allowing for zero-shot generalization to previ-

ously unseen ones. VIMA-BENCH is introduced as a

benchmark for multi-modal robot learning. The VIMA-

BENCH simulator supports collections of objects and tex-

tures that can be utilized in multi-modal prompting. RoboCat

(Bousmalis et al., 2023) is a self-improvingAI agent. It uses a

1.18B-parameter decoder-only transformer. It learns to op-

erate different robotic arms, solves tasks from as few as 100

demonstrations, and improves from self-generated data.

RoboCat is based onGato (Reed et al., 2022) architecture and

is trained with a self-improvement cycle.

For robots to operate effectively in the real world, they must

be able to manipulate previously unseen objects. Liu et al.

present StructDiffusion (Liu et al., 2023d), which seeks to

enable robots to use partial viewpoint clouds and natural

language instructions to construct a goal configuration for

objects that were previously seen or unseen. They accomplish

this by first using segmentation to break up the scene into

objects. Then they use a multi-model transformer to combine

word and point cloud embeddings and output a 6-DoF goal

pose prediction. The predictions are iteratively refined via

diffusion and a discriminator that is trained to determine if a

sampled configuration is feasible.Manipulation of Open-World

Objects (MOO) (Stone et al., 2023) leverages a pretrained

vision-language model to extract object-centric information

from the language command and the image and conditions the

robot policy on the current image, the instructions, and the

extracted object information in a form of a single-pixel overlaid

onto the image. MOO uses Owl-ViT for object detection and

RT-1 for language-conditioned policy learning.

Another task in robot manipulation involves autonomous

scene rearrangement and in-painting. DALL-E-Bot

(Kapelyukh et al., 2023) performs zero-shot autonomous

rearrangement in the scene in a human-like way using

pretrained image diffusion model DALL-E2 (Ramesh et al.,

2022). DALL-E-Bot autonomous object rearrangement

does not require any further data collection or training. First,

the initial observation image (of the disorganized scene) is

converted into a per-object representation, including a

segmentation mask usingMask R-CNN (He et al., 2017), an
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object caption, and a CLIP visual feature vector. Then a text

prompt is generated by describing the object in the scene

and is given to DALL-E to create a goal image for the

rearrangement task (the objects should be rearranged in a

human-like way). Next, the objects in the initial and gen-

erated images are matched using their CLIP visual features.

Poses are estimated by aligning their segmentation masks.

The robot rearranges the scene based on the estimated poses

to create the generated arrangement.

3.6.3. Open-vocabulary grasping. Open-vocabulary robot

grasping refers to a robot’s capability to execute grasping

tasks for objects described in natural language even if the

objects or descriptions were not encountered during train-

ing. Roboticists have started utilizing these language-

embedded 3D fields to facilitate robot grasping and

manipulation of 3D objects and interaction with 3D scenes.

Semantic features encoded by pretrained foundation models

such as CLIP or DINO are used to be embedded into 3D

field representations such as NeRFs or Gaussian Splatting

fields. For example, LERF (Kerr et al., 2023) is a language-

embedded NeRF scene representation, and LangSplat (Qin

et al., 2023) is a language-embedded 3D Gaussian Splatting

environment representation. These language-embedded

fields enable open-vocabulary grasping and manipulation.

In LERF-TOGO (Rashid et al., 2023), the authors present a

zero-shot open-vocabulary grasping framework that gen-

erates grasp proposals over an object given a natural lan-

guage instruction. First, a 3D object mask is created using

DINO features, and then LERF is conditionally queried on

this mask to obtain a 3D semantic relevancy map. This

relevancy map extracts parts of the object suitable for

grasping (affordance) based on the given text. The rele-

vancy map is input to an off-the-shelf grasp planner (Fang

et al., 2020) to rank grasp proposals. Similarly, F3RM

presents few-shot language-guided robot manipulation

(Shen et al., 2023b) that leverages a NeRF-based distilled

feature field (Zhou et al., 2022) to embed task-specific

features into the 3D scene field. These features are

learned and extracted from human demonstrations, em-

bedded into the field, and then utilized to generate, rank, and

refine grasps. Both LERF-TOGO and F3RM rely on NeRF

scene representation. However, NeRF training and ren-

dering are computationally intensive and can be infeasible

for real-time robotic applications. Moreover, editing NeRFs

is both challenging and resource-demanding. To address

these limitations, the authors of Splat-MOVER (Shorinwa

et al., 2024) propose using a language-embedded Gaussian

Splatting 3D field. Gaussian Splatting (Kerbl et al., 2023) is

a recently developed technique that excels in providing real-

time performance for rendering and editing. Splat-MOVER

capitalizes on the flexibility of Gaussian Splatting to dy-

namically modify the scene as the robot operates and in-

teracts with its environment. Compared to LERF-TOGO

and F3RM, Splat-MOVER supports multi-stage open-

vocabulary manipulation, a feature enabled by the real-

time scene editability of Gaussian Splatting.

In Table 2, some robotic-specific foundation models are

reported along with information about their size and archi-

tecture, pretrained task, inference time, and hardware setup.

3.7. Challenges and perspectives

Empowering robots with foundation model capabilities

brings significant versatility and adaptability across a range

of downstream tasks. These models enable robots to gen-

eralize across platforms, environments, tasks, and open-

vocabulary settings. Moreover, they introduce emergent

capabilities that allow robots to devise novel solutions be-

yond what is explicitly present in their training data. Al-

though there have been exciting advancements in creating

generalizable solutions in robotics with the help of foun-

dation models, several challenges continue to exist. One of

the main advantages of foundation models is their ability to

generalize across various tasks. However, there are inherent

limitations. For instance, a robot transformer trained spe-

cifically for manipulators may not be effective when applied

to drones or humanoid robots. This limitation is not ade-

quately addressed in the existing literature. While current

research highlights impressive cross-embodiment and gen-

eralization capabilities, these achievements are often dem-

onstrated within the context of single-arm tabletop

manipulation in controlled and predictable environments. In

contrast, real-world applications, such as open-world navi-

gation, dealing with dynamic obstacles, and evolving tasks,

require more sophisticated adaptability, including the ability

to retrain online based on new experiences. In robot policy

learning using imitation learning, key challenges are (i)

obtaining a sufficient number of demonstrations along with

conditioning labels necessary for policy training, and (ii)

addressing distribution shifts during closed-loop policy op-

eration, which can cause the robot to enter poorly represented

areas of the state space in the training data, thereby degrading

its performance. Robot transformers have been recently

developed and can provide unprecedented generalization

capabilities. However, their reliance on real-world hardware

limits their reproducibility. To enhance benchmarking and

ensure reproducibility, it is essential to develop open

hardware platforms and high-fidelity, photorealistic, physics-

based simulators. In robot planning, incorporating multi-

modal information, including audio cues, has the potential

to enhance planning performance. However, there are cur-

rently few works that utilize audio for prediction and plan-

ning purposes. While current robotic-specific foundation

models primarily focus on single-arm pick-and-place tasks

andmobile robot navigation, there is a need for more research

in areas such as precise grasping and dexterity (that capture a

wide range of actions like tossing, pushing, and chopping),

flying robots, and collaborative multi-robot systems. Ac-

cording to Table 2, the substantial hardware requirements of

somemodels, as well as their high inference time, may hinder

their feasibility for training and deployment in real-time

robotics applications. Thus more research should be con-

ducted to improve these aspects.
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4. Perception

Robots interacting with their surrounding environments re-

ceive raw sensory information in different modalities such as

images, video, audio, and language. This high-dimensional

data is crucial for robots to understand, reason, and interact in

their environments. Foundation models, including those that

have been developed in the vision and NLP domains, are

promising tools for converting these high-dimensional inputs

into abstract, structured representations that can be more

easily interpreted and manipulated. Particularly, multi-modal

foundation models enable robots to integrate different sen-

sory inputs into a unified representation encompassing se-

mantic, spatial, temporal, and affordance information. These

multi-modal models reflect cross-modal interactions, often by

aligning elements across modalities to ensure coherence and

correspondence. For example, text and image data are aligned

for image captioning tasks. This section will explore a range

of tasks related to robot perception that are improved through

aligning modalities using foundation models, with a focus on

vision and language. There is an extensive body of literature

studying multi-modality in the machine learning community,

and an interested reader is referred to the survey paper

(Baltrusaitis et al., 2019) that presents a taxonomy of multi-

modal learning. We focus on applications of multi-modal

models to robotics.

4.1. Open-vocabulary object detection and

3D classification

In this section, we discuss zero-shot open-vocabulary object

detection and classification.

4.1.1. Object detection. Zero-shot object detection allows

robots to identify and locate objects they have never en-

countered previously. Grounded Language-Image Pre-

Table 2. Pretrained Models for Robotics.

Paper Backbone

Size

(Parameters) Pretrained Task

Inference

Speed Hardwarea

RoboCat (Bousmalis

et al., 2023)

Decoder-only transformer 1.18B manipulation 10-20 Hz

Gato (Reed et al., 2022) Decoder-only transformer 1.2B Generalist agent 20 Hz 4 days on 16x16 TPU v3

slice

PaLM-E-562B (Driess

et al., 2023)

Decoder-only transformer 562B 1 Hz for Language

subgoals + 5 Hz

low-level control

policies

5-6 Hz Runs on multi-TPU cloud

service

ViNT (Shah et al.,

2023b)

EfficientNet+decoder

transformer

31M Visual navigation 4 Hz Variety of GPU

configurations is used

including 2× 4090, 3×

Titan Xp, 4× P100, 8×

1080Ti, 8× V100, and

8× A100

VPT (Baker et al.,

2022)

A temporal convolution layer, a

ResNet 62 image processing

stack, and residual unmasked

attention layers,

0.5 B Embodied agent in

Minecraft

20 Hz 9 days on 720 V100 GPUs

RT-1 (Brohan et al.,

2023a)

Conditioned EfficientNet +

TokenLearner + decoder-

only transformer

35M Real-world

robotics tasks

3 Hz

RT-2 (Zitkovich et al.,

2023)

PaLI-X 55B Real-world

robotics tasks

1-3 Hz Runs on multi-TPU cloud

service

RT-2-X (Padalkar et al.,

2023)

ViT and Language model UL2

(Yi et al., 2023)

55B Real-world

robotics tasks

1-3 Hz Runs on multi-TPU cloud

service

LIV (Ma et al., 2023a) CLIP reward learning 15 Hz 8 NVIDIA V100 GPUs

SMART (Sun et al.,

2023f)

Decoder-only transformer 11M Bidirectional

dynamics

prediction and

masked

hindsight control

1 Hz 8 Nvidia V100 GPUs

COMPASS (Ma et al.,

2022)

3D-Resnet encoder 20M Contrastive loss 30 Hz 8 Nvidia V100 GPUs

PACT (Bonatti et al.,

2023)

Decoder-only transformer 12M Forward dynamics

and next action

prediction

10 Hz

(edge)/

50 Hz

Nvidia Xavier NX (edge)/8

Nvidia V100 GPUs

aEmpty fields in the table denote no data is reported.
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training (GLIP) (Li et al., 2022d) integrates object detection

and grounding by redefining object detection as phrase

grounding. This reformulation enables the learning of a

visual representation that is both language-aware and se-

mantically rich at the object level. In this framework, the

input to the detection model comprises not only an image

but also a text prompt that describes all the potential cat-

egories for the detection task. To train GLIP, a dataset of 27

million grounding instances was compiled, consisting of 3

million human-annotated pairs and 24 million image-text

pairs obtained by web crawling. The results of the study

demonstrate the remarkable zero-shot and few-shot trans-

ferability of GLIP to a wide range of object-level recog-

nition tasks. Recently, PartSLIP (Liu et al., 2023a)

demonstrated that GLIP can be used for low-shot part

segmentation on 3D objects. PartSLIP renders a 3D point

cloud of an object from multiple views and combines 2D

bounding boxes in these views to detect object parts. To deal

with noisy 2D bounding boxes from different views,

PartSLIP runs a voting and grouping method on super

points from 3D, assigns multi-view 2D labels to super

points, and finally groups super points to obtain a precise

part segmentation. To enable few-shot learning of 3D part

segmentation, prompt tuning, and multi-view feature ag-

gregation are proposed to improve performance.

OWL-ViT (Minderer et al., 2022) is an open-vocabulary

object detector. OWL-ViT uses a vision transformer ar-

chitecture with contrastive image-text pre-training and

detection end-to-end fine-tuning. Unlike GLIP, which

frames detection as a phrase grounding problem with a

single text query and limits the number of possible object

categories, OWL-ViT can handle multiple text-based or

image-driven queries. OWL-ViT has been applied to robot

learning for example in VoxPoser (Huang et al., 2023c) as

the open-vocabulary object detector to find “entities of

interest” (e.g., vase or drawer handles) and ultimately define

value maps for optimizing manipulation trajectories.

Grounding DINO (Liu et al., 2023c) combines DINO

(Caron et al., 2021) with grounded pre-training, extending

the closed-set DINO model to open-set detection by fusing

vision and language. Grounding DINO outperforms GLIP

in open-set object detection. This superior performance is

mainly due to the transformer architecture of Grounding

DINO, which facilitates multi-modal feature fusion at

multiple stages.

4.1.2. 3D classification. Zero-shot 3D classifiers can enable

robots to classify objects in their environments without

explicit training data. Foundation models are strong can-

didates for performing 3D classification. PointCLIP (Zhang

et al., 2022a) transfers CLIP’s pre-trained knowledge of 2D

images to 3D point cloud understanding by aligning point

clouds with text. The authors propose to project each point

onto a series of pre-defined image planes to generate depth

maps. Then, the CLIP visual encoder is used to encode

multi-view features of the point cloud and predict labels in

natural language for each view. The final prediction for the

point cloud is computed via weighted aggregation of the

predictions for each view. PointBERT (Yu et al., 2022) uses

a transformer-based architecture to extract features from

point clouds, generalizing the concept of BERT into 3D

point clouds.

Unlike PointCLIP, which converts the task of matching

point clouds and text to image-text alignment, ULIP (Xue

et al., 2022, 2023) is a Unified representation of Language,

Images, and Point clouds for 3D understanding. It achieves

this by pre-training with object triplets (image, text, point

cloud). The model is trained using a small number of au-

tomatically synthesized triplets from ShapeNet (Chang

et al., 2015), which is a large-scale 3D model repository.

ULIP uses CLIP as the vision-language model. During

pretraining, the CLIP model is kept frozen and a 3D encoder

is trained by aligning the 3D features of an object with its

associated textual and visual features from CLIP using

contrastive learning. The pretraining process allows ULIP to

learn a joint embedding space where the three modalities are

aligned. One of the major advantages of ULIP is that it can

substantially improve the recognition ability of 3D back-

bone models. This is because the pretraining process allows

ULIP to learn more robust and discriminative features for

each modality, which can then be used to improve the

performance of 3D models. Another advantage of ULIP is

that it is agnostic to the 3D model architecture, and thus can

be easily integrated into the pretraining process of existing

3D pipelines. ULIP adopts masked language modeling from

BERT to 3D by tokenizing 3D patches, randomly masking

out 3D tokens, and predicting them back during pretraining.

ULIP (Xue et al., 2022, 2023) has shown that the perfor-

mance of recognition capability of models such as Point-

BERT can be improved by using a unified multimodal

representation of ULIP.

4.2. Open-vocabulary semantic segmentation

Semantic segmentation classifies each pixel in an image into

semantic classes. This provides fine-grained information

about object boundaries and locations within an image and

enables embodied agents to understand and interact with the

environment at a more granular level. Several works explore

how foundation models such as CLIP can enhance the

generalizability and flexibility of semantic segmentation

tasks.

LSeg is a language-driven semantic segmentation model

(Li et al., 2022a) that associates semantically similar labels

to similar regions in an embedding space. LSeg uses a text

encoder based on the CLIP architecture to compute text

embeddings and an image encoder with the underlying

architecture of Dense Prediction Transformer (DPT) (Ranftl

et al., 2021). Similar to CLIP, LSeg creates a joint em-

bedding space using text and image embeddings. LSeg

freezes the text encoder at training time and trains the image

encoder to maximize the correlation between the text em-

bedding and the image pixel embedding of the ground-truth

pixel class. It allows users to arbitrarily shrink, expand, or
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rearrange the label set (with unseen categories) for any

image at test time.

Segment Anything Model (SAM) (Kirillov et al., 2023)

introduces a framework for promptable segmentation

consisting of the task definition for promptable segmenta-

tion, a segmentation foundation model (the Segment

Anything Model, or SAM), and a data engine. SAM adapts

a pretrained Vision Transformer from Masked Auto-

Encoder (MAE) (He et al., 2022) as an image encoder

while using a text encoder from CLIP (Radford et al.,

2021b) for sparse prompts (points, boxes, and text) and a

separate dense prompt encoder for masks. In contrast to

other foundation models that are trained in an unsupervised

manner on web-scale data, SAM is trained using supervised

learning with data engines that help scale the number of

available annotations. Along with the model, the authors

released the Segment Anything 1 Billion (SA-1B) dataset. It

consists of 11M images and 1.1 B segmentation masks. In

the work, the authors conducted experiments on five zero-

shot transfer tasks, including point-valid mask evaluation,

edge detection, object proposal, instance segmentation, and

text-to-mask. The system’s composable design, facilitated

by prompt engineering techniques, enables a broader range

of applications compared to systems trained specifically for

fixed task sets. However, one limitation of this work that is

particularly relevant to robotic applications is that SAM

cannot run in real time.

FastSAM (Zhao et al., 2023) and MobileSAM (Zhang

et al., 2023a) achieve comparable performance to SAM at

faster inference speeds. The Track Anything Model (TAM)

(Yang et al., 2023a) combines SAM and XMem (Cheng and

Schwing, 2022), an advanced video object segmentation

(VOS) model, to achieve interactive video object tracking

and segmentation. Anything-3D (Shen et al., 2023a) em-

ploys a collection of visual-language models and SAMs to

elevate objects into the realm of 3D. It uses BLIP (Li et al.,

2022c) to generate textual descriptions while using SAM to

extract objects of interest from visual input. Then,

Anything-3D lifts the extracted objects into a Neural Ra-

diance Field (NeRF) (Mildenhall et al., 2021) representation

using a text-to-image diffusion model, enabling their in-

tegration into 3D scenes.

Amidst these remarkable advancements, achieving fine-

grained detection with real-time performance still remains

challenging. For example, LSeg (Li et al., 2022a) reports

failure cases related to misclassification, when the test time

input labels do not include the true label for the pixel, and

the model thus assigns the highest probability to the closest

label. Another failure case occurs when multiple labels can

be correct for a particular pixel, and the model must classify

it as just one of the categories. For example “window” and

“house”may both be defined as labels, but during inference,

a pixel representing a “window” may be labeled instead as

“house.” SAM also does not provide precise segmentation

for fine structures and often fails to produce crisp bound-

aries. All models that use SAM as a sub-component may

encounter similar limitations. In the future, fine-grained

semantic segmentation models that can assign multiple

labels to a pixel when there are multiple correct descriptions

should be considered. Additionally, developing models that

can run in real time will be critical for robotics applications.

4.3. Open-vocabulary 3D scene and

object representations

Scene representations allow robots to understand their

surroundings, facilitate spatial reasoning, and provide

contextual awareness. Language-driven scene representa-

tions align textual descriptions with visual scenes, enabling

robots to associate words with objects, locations, and re-

lationships. In this section, we study recent works that use

foundation models to enhance scene representations.

4.3.1. Language grounding in 3D scene. Language

grounding refers to combining geometric and semantic

representations of an environment. One type of representa-

tion that can provide an agent with a strong geometric prior is

an implicit representation. One example of an implicit rep-

resentation is a Neural Radiance Field (NeRF, Mildenhall

et al., 2021; Sun et al., 2023d,c). NeRF creates high-quality

3D reconstructions of scenes and objects from a set of 2D

images captured from different viewpoints (without the need

for explicit depth information). The NeRF neural network

takes camera poses as input and predicts the 3D geometry of

the scene as well as color and intensity. Most NeRF-based

models memorize the light field in a single environment and

are not pre-trained on a large data set, hence they are not

foundation models. However, foundation models such as

CLIP can be combined with NeRFs to extract semantic in-

formation from an agent’s environment.

Kerr et al. (2023) propose language-embedded radiance

fields (LERFs) that ground CLIP embeddings into a dense

multi-scale 3D field. This results in a 3D representation of

the environment that can be queried to produce semantic

relevancy maps. The LERF model takes 3D position (x, y,

z), viewing direction (f, θ), and a scaling factor as input and

outputs an RGB value, density (σ), as well as DINO (Caron

et al., 2021) and CLIP features. The LERF is optimized in

two stages: initially, a multi-scale feature pyramid of CLIP

embeddings over training views is computed; then, the

pyramid is interpolated using the image scale and pixel

location to obtain the CLIP embedding; and finally, the

CLIP embeddings are supervised through cosine similarity,

and the RGB and density are supervised using the standard

mean squared-error.

Models such as LERF inherit the shortcomings of CLIP

and NeRF. For example, CLIP exhibits difficulty in cap-

turing spatial relationships between objects. In addition,

language queries from CLIP can highlight a significant issue

similar to the bag-of-words model, which struggles to

distinguish terms with opposite sentiments. Also, NeRF

relies on known camera poses associated with pre-captured

multi-view images.
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In CLIP-Fields (Shafiullah et al., 2023), an implicit scene

representation gðx, y, zÞ :R3
→Rd is trained by decoding a

d-dimensional latent vector to different modality-specific

outputs. The model distills information from pretrained

image models by back-projecting the pixel labels to 3D

space and training the output heads to predict semantic

labels from an open-vocab object detector called Detic, the

CLIP visual representation, and one-hot instance labels

using a contrastive loss. The scene representation can then

be used as a spatial database for segmentation, instance

identification, semantic search over space, and 3D view

localization from images.

Another related work is VLMaps (Huang et al., 2023b),

which projects pixel embeddings from LSeg to grid cells in

a top-down grid map. This method does not require training

and instead directly backprojects pixel embeddings to grid

cells and averages the values in overlapping regions. By

combining a VLMap with a code-writing LLM, the authors

demonstrate spatial goal navigation using landmarks (e.g.,

move to the plant) or spatial references with respect to

landmarks (between the keyboard and the bowl). Semantic

Abstraction (SemAbs) (Ha and Song, 2022) presents an-

other approach for 3D scene understanding by decoupling

visual-semantic reasoning and 3D reasoning. In SemAbs,

given an RGB-D image of a scene, a semantic-aware 2D

VLM extracts 2D relevancy maps for each queried object,

while semantic-abstracted 3D modules predict the 3D oc-

cupancy of each object using the relevancy maps. Because

the 3Dmodules are trained irrespective of the specific object

labels, the system demonstrates strong generalization ca-

pabilities, including generalization to new object categories

and from simulation to the real world.

Current VLMs can reason about 2D images; however,

they are not grounded in the 3D world. The main challenge

for building 3D VLM foundation models is the scarcity of

3D data. Particularly, 3D data paired with language de-

scription is scarce. One strategy to circumvent this issue is to

take advantage of 2D models trained on large-scale data to

supervise 3D models. For instance, the authors of Featur-

eNeRF (Ye et al., 2023a) propose to learn 3D semantic

representations by distilling 2D vision foundation models

(i.e., DINO or Latent Diffusion) into 3D space via neural

rendering. FeatureNeRF predicts a continuous 3D semantic

feature volume from a single or few images, which can be

used for downstream tasks such as key-point transfer or

object part co-segmentation.

In 3D-LLM (Hong et al., 2023), the authors propose to

use 2D VLMs as backbones to train a 3D-LLM that can take

3D representations (i.e., 3D point clouds with their features)

as inputs and accomplish a series of diverse 3D-related

tasks. The 3D features are extracted from 2D multi-view

images and mapped to the feature space of 2D pretrained

VLMs. To overcome 3D data scarcity, the authors propose

an efficient prompting procedure for ChatGPT to generate

3D-language data encompassing a diverse set of tasks.

These tasks include 3D captioning, dense captioning, 3D

question answering, 3D task decomposition, 3D grounding,

3D-assisted dialog, and navigation. Also, to capture 3D

spatial information, the authors propose a 3D localization

mechanism by (1) augmenting 3D features with position

embedding and (2) augmenting LLM vocabularies with 3D

location tokens. In the first part, the position embeddings of

the three dimensions are generated and concatenated with

3D features. In the second part, the coordinates of the

bounding box representing the grounded region are dis-

cretized to voxel integers as location tokens

< xmin, ymin, zmin, xmax, ymax, zmax > . It is important to high-

light that, typically, creating 3D representations necessitates

the use of 2D multi-view images and camera matrices.

These resources are not as readily available as the vast

amounts of internet-scale text and image data that current

foundation models are trained on.

In general, integrating these high-fidelity scene repre-

sentations such as LERF (Kerr et al., 2023) into robotics is

challenging due to prolonged training and rendering times,

as well as a lack of capability to accurately update changes

in dynamic scenes. Unlike NeRF, which requires sampling-

based neural network evaluations, Gaussian Splatting (GS)

(Kerbl et al., 2023) provides efficient real-time rendering.

Gaussian Splatting is a recently developed technique for 3D

scene representation and rendering using 3D Gaussian

functions and fast rasterization for image rendering. Besides

real-time rendering performance, GS provides real-time

scene editing, a beneficial capability for robotics applica-

tions with visual feedback. Recent studies (Hu et al., 2024;

Liao et al., 2024; Qin et al., 2023; Shorinwa et al., 2024;

Zhou et al., 2023; Zuo et al., 2024) have investigated the

integration of semantic features into 3D Gaussian Splatting.

Roboticists have started using these language-embedded

fields for open-vocabulary robot planning, as discussed in

Section 3.6.3.

4.3.2. Scene editing. When an embodied agent relies on an

implicit representation of the world, the capability to edit

and update this representation enhances the robot’s adapt-

ability. For instance, consider a scenario where a robot

utilizes a pretrained NeRF model of an environment for

navigation and manipulation. If a portion of the environ-

ment changes, being able to adjust the NeRF without re-

training the model from scratch saves time and resources.

In the case of NeRFs, Wang et al. (2022) propose a text

and image-driven method for manipulating NeRFs called

CLIP-NeRF. This approach uses CLIP to disentangle the

dependence between shape and appearance in conditional

neural radiance fields. CLIP-NeRF facilitates the editing of

the shape and appearance of NeRFs using either image or

text prompts. It is composed of two modules: the disen-

tangled conditional NeRF and CLIP-driven manipulation.

The former takes the positional encoding γ(x, y, z), a shape

code zs, viewing direction v(f, θ), and appearance code za as

an input and outputs color and density. The disentanglement

is achieved using a deformation network that is appended as
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input to the traditional NeRF MLP that produces density,

and by taking the output from this MLP and concatenating it

with an appearance code to attain the color value. The CLIP-

driven manipulation module takes an image example or text

prompt as an input and outputs a shape deformation Δzs and

an appearance deformation Δza, from shape mapping and

appearance mapping MLPs, respectively. These deforma-

tion values aim to perturb the shape code and appearance

code in the disentangled conditional NeRF module to

produce the desired output.

A key limitation of the CLIP-NeRF approach is that

prompting can impact the entire scene rather than a selected

region. For example, prompting to change the color of a

flower’s petals might also impact the shape and color of its

leaves. To address this limitation, Kobayashi et al. propose

to train distilled feature fields (DFFs) (Kobayashi et al.,

2022) and then manipulate DFFs through query-based scene

decomposition and editing. Pre-trained 2D VLMs such as

LSeg (Li et al., 2022a) and DINO (Caron et al., 2021) are

employed as teacher networks and distilled into 3D distilled

feature fields via volume rendering. Editing is achieved by

alpha compositing the density and color values of the two

NeRF scenes. When combined with CLIP-NeRF, this

method enables CLIP-NeRF to selectively edit specific

regions of multi-object scenes. Tschernezki et al. (2022)

explore a similar approach, showing that enforcing the 3D

consistency of features in the NeRF embedding improved

segmentation performance compared to using features from

the original 2D images.

Another approach to more controlled 3D scene editing is

to use structured 3D scene representations. Nerflets (Zhang

et al., 2023c) represent a 3D scene as a combination of local

neural radiance fields where each maintains its own spatial

position, orientation, and dimension. Instead of employing a

single large MLP to predict colors and densities as standard

NeRF, individual Nerflets are combined to predict these

values, modulated by their weights. After optimizing posed

2D images and segmentations, Nerflets reflect the decom-

posed scene and support more controlled editing.

One application of image editing in robotics is for data

augmentation during policy learning. ROSIE (Yu et al.,

2023) uses the Imagen editor (Wang et al., 2023c) to modify

training images to add additional distractors and unseen

objects and backgrounds to train robust imitation learning

policies. GenAug (Chen et al., 2023f) similarly generates

images with in-category and cross-category object substi-

tutions, visual distractors, and diverse backgrounds. The

CACTI (Mandi et al., 2022) pipeline includes a step in-

painting different plausible objects via Stable-Diffusion

(Rombach et al., 2022) onto training images. These ap-

proaches generate photorealistic images for training robust

policies; however, generating images with sufficient di-

versity while also maintaining physical realism, for ex-

ample, for object contacts, remains a challenge. Existing

approaches use learned or provided masks to specify areas

of the image to keep, or heuristics based on the particular

robotic task.

Another direction is to use generative models to define

goal images for planning. DALL-E-Bot (Kapelyukh et al.,

2023) uses DALL-E 2 to define a goal image of human-like

arrangements from observations.

4.3.3. Object representations. Learning correspondences

between objects can facilitate manipulation by enabling skill

transfer from trained objects to novel object instances in

known categories or novel object categories at test time.

Traditionally, object correspondences have been learned

using strong supervision, such as keypoints and keyframes.

Neural descriptor fields (NDFs) (Simeonov et al., 2022)

remove the need for dense annotation by leveraging layer-

wise activations from an occupancy network; however, this

approach still requires many training shapes for each target

object category. Additional works have started to build object

representations directly from image features of pretrained

vision models. Feature Fields for Robotic Manipulation

(F3RM) (Shen et al., 2023c) builds on DFF to develop scene

representations that support finding corresponding object

regions. F3RM uses a similar feature representation for 6-

DoF poses relative to objects (e.g., a grasp on the handle of

the mug) to NDF. Besides allowing corresponding 6-DoF

poses to be found from a few demonstrations, the pose

embeddings can also be directly compared to text embed-

dings fromCLIP to leverage language guidance (e.g., pick up

the bowl). Correspondences between objects have also been

directly extracted from DINO features (Goodwin et al.,

2022a) without training. This method first extracts dense

ViT feature maps of two objects using multiple views.

Similar regions on the two objects are found by computing

the cyclical distance metric (Goodwin et al., 2022b) on the

feature maps.With the 2D patch correspondences, a 7-D rigid

body transform (i.e., a SO(3) pose, a translation, and a scaling

scalar) between the objects can be solved together with

RANSAC and Umeyama’s method (Umeyama, 1991).

4.4. Learned affordances

Affordances refer to the potential of objects, environments,

or entities to offer specific functions or interactions to an

agent. They can include actions such as pushing, pulling,

sitting, or grasping. Detecting affordances bridges the gap

between perception and action.

Affordance Diffusion (Ye et al., 2023b) synthesizes

complex interactions of, for example, an articulated hand

with a given object. Given an RGB image, Affordance

Diffusion aims to generate images of human hands for hand-

object interaction (HOI). The authors propose a two-step

generative approach based on large-scale pretrained diffu-

sion models based on where to interact (layout) and how to

interact (content). The layout network generates a 2D spatial

arrangement of hand and object. The content network then

synthesizes images of a hand grasping the object condi-

tioned on the given object and the sampled HOI layout.

Affordance Diffusion outputs both hand articulation and

approach orientation.
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Vision-Robotic Bridge (VRB) (Bahl et al., 2023) trains a

visual affordance model on internet videos of human be-

havior. Particularly, it estimates the likely location and

manner in which a human interacts within a scene. This

model captures the structural information of these behav-

ioral affordances. The authors seamlessly integrate the af-

fordance model with four different robot learning

paradigms. Firstly, they apply offline imitation learning,

where the robot learns by imitating the observed human

interactions from the videos. Secondly, they use exploration

techniques to enable the robot to actively discover and learn

new affordances in its environment. Thirdly, the authors

incorporate goal-conditioned learning, allowing the robot to

learn how to achieve specific objectives by leveraging the

estimated affordances. Finally, they integrate action pa-

rameterization for reinforcement learning, enabling the

robot to learn complex behaviors by optimizing its actions

based on the estimated affordances.

4.5. Predictive models

Predictive dynamics models, or world models, predict how

the state of the world changes given particular agent actions,

that is, they attempt to model the state transition function of

the world (Sun et al., 2021b). When applied to visual ob-

servations, dynamics modeling can be formulated as a video

prediction problem (Sun et al., 2022b; 2023b). While video

generation and prediction, particularly over long horizons,

is a longstanding challenge with many prior efforts, recent

models based on vision transformers and diffusion models

have demonstrated improvements (Janner et al., 2022; Sun

et al., 2023a). For instance, the Phenaki model (Villegas

et al., 2023) generates variable length video up to minutes in

length conditioned on text prompts.

Several approaches apply these models to robotics in the

literature. Note that while learned dynamics or world

models in robotics have been explored in constrained or

smaller-data regimes, we focus in this section on works that

train on a diversity or volume of data that is characteristic of

foundation models. One strategy is to learn an action-

conditioned model that may be used directly for down-

stream planning by optimizing an action sequence (Dasari

et al., 2019), for example, performing model-predictive

control, or for policy learning via training on simulated

rollouts. One example is the GAIA-1 model, which gen-

erates predictions of driving video conditioned on arbitrary

combinations of video, action, and text (Hu et al., 2023a). It

was trained on 4700 hours of proprietary driving data.

Another approach is to use a video prediction model to

generate a plan of future states, and then learn a separate

goal-conditioned policy or inverse dynamics model to infer

control actions based on the current and target state. One

line of work instantiates this by combining text-conditioned

video diffusion models with image-goal-conditioned poli-

cies to solve manipulation tasks in simulated and real ta-

bletop settings (Du et al., 2023c). This approach has been

extended to longer-horizon object manipulation tasks by

using the PaLM-E VLM to break down a high-level lan-

guage goal into smaller substeps, leveraging feedback be-

tween the VLM and video generation models (Du et al.,

2023d). Another example is COMPASS (Ma et al., 2022),

which first constructs a comprehensive multimodal graph to

capture crucial relational information across diverse mo-

dalities. The graph is then used to construct a rich spatio-

temporal and semantic representation. Pretrained on the

TartanAir multimodal dataset, COMPASS was demon-

strated to address multiple robotic tasks, including drone

navigation, vehicle racing, and visual odometry.

4.6. Challenges and perspectives

While significant advances have been made toward gen-

eralizable methods for perception via foundation models,

many challenges remain. For open-vocabulary object de-

tection and 3D classification, the granularity at which objects

should be detected and whether object parts should be

considered separate or combined can often lead to incom-

patibilities with the rest of the system. Additionally, semantic

alignment (e.g., prompting) is often still unintuitive and

practically challenging when performing segmentation for

arbitrary in-the-wild objects. Efficiently and consistently

updating 3D scene representations, including implicit scene

representations, is critical for dynamic robotic tasks while

existing works primarily focus on static scenes and grasping

tasks. Existing affordance models trained on large-scale data,

largely due to data quality and quantity limitations and

embodied gaps, mostly provide information on how a robot

should make initial contact with an object rather than how it

should be manipulated. In the realm of predictive models,

there are few to no open-sourced predictivemodels trained on

large-scale robotic datasets, due to data scarcity and com-

putational cost. Training video models on diverse datasets

remains generally challenging, although models such as

OpenAI’s Sora (Brooks et al., 2024) provide a glimpse of

future possibilities.

5. Embodied AI

Recently, researchers have shown that the success of LLMs

can be extended to embodied AI domains (Brohan et al.,

2023b; Huang et al., 2022b; Liang et al., 2023; Zeng et al.,

2022), where “embodied” typically refers to a virtual em-

bodiment in a world simulator, not a physical robot em-

bodiment. Statler (Yoneda et al., 2023) is a framework that

endows LLMs with an explicit representation of the world

state as a form of “memory” that is maintained over time.

Statler uses two instances of general LLMs: a world-model

reader and a world-model writer, that interface with and

maintain the world state. Statler improves the ability of

existing LLMs to reason over longer time horizons without

the constraint of context length.

Large Scale Language Models (LSLMs) have exhibited

strong reasoning ability and the ability to adapt to new tasks

through in-context learning. Dasgupta et al. (2022) combine
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these complementary abilities in a single system consisting

of three parts: a Planner, an Actor, and a Reporter. The

Planner is a pretrained language model that can issue

commands to a simple embodied agent (the Actor), while

the Reporter communicates with the Planner to inform its

next command. Mu et al. (2023) build EgoCOT, a dataset

consisting of carefully selected videos from the Ego4D

dataset, along with corresponding high-quality language

instructions. EmbodiedGPT (Mu et al., 2023) utilizes prefix

adapters to augment the 7B language model’s capacity to

generate high-quality planning, training it on the EgoCOT

dataset to avoid overly divergent language model responses.

Comprehensive experiments were conducted, demonstrat-

ing that the model effectively enhances the performance of

embodied tasks such as Embodied Planning, Embodied

Control, Visual Captioning, and Visual Q&A. Embodied

agents should autonomously and endlessly explore the

environment. They should actively seek new experiences,

acquire new skills, and improve themselves.

The game of Minecraft (Engelbrecht and Schiele, 2014)

provides a platform for designing intelligent agents capable

of operating in the open world. MineDojo (Fan et al., 2022)

is a framework for developing generalist agents in the game

ofMinecraft. MineDojo offers thousands of open-ended and

language-prompted tasks, where the agent can navigate in a

progressively generated 3D environment to mine, craft

tools, and build structures. As part of this work, the authors

introduce MiniCLIP, a video-language model that learns to

capture the correlations between a video clip and its time-

aligned text that describes the video. The MineCLIP model,

trained on YouTube videos, can be used as a reward function

to train the agent with reinforcement learning. By maxi-

mizing this reward function, it incentivizes the agent to

make progress toward solving tasks specified in natural

language.

Voyager (Wang et al., 2023b) introduces an LLM-

powered embodied lifelong learning agent in the realm of

Minecraft. Voyager uses GPT-4 to continuously explore the

environment. It interacts with GPT-4 through in-context

prompting and does not require model parameter fine-

tuning. Exploration is maximized by querying GPT-4 to

provide a stream of new tasks and challenges based on the

agent’s interaction history and current situations. Also, the

iterative prompting mechanism generates code as the action

space to control the Minecraft agent. Iterative prompting

incorporates environment feedback provided by Minecraft,

execution errors, and a self-verification scheme. For self-

verification, GPT-4 acts as a critic by checking task success

and providing suggestions for task completion in the case of

failure. The GPT-4 critic can be replaced by a human critic

to provide on-the-fly human feedback during task execu-

tion. Ghost in the Minecraft (GITM) (Zhu et al., 2023)

leverages LLM to break down goals into sub-goals and map

them to structured actions for generating control signals.

GITM consists of three components: an LLM Decomposer,

an LLM Planner, and an LLM Interface. The LLM De-

composer is responsible for dividing the given Minecraft

goal into a sub-goal tree. The LLM Planner then plans an

action sequence for each sub-goal. Finally, the LLM In-

terface executes each action in the environment using

keyboard and mouse operations.

Reinforcement learning in embodied AI virtual envi-

ronments has the potential to improve the capabilities of

real-world robotics by providing efficient training and

optimizing control policies in a safe and controlled setting.

Reward design is a crucial aspect of RL that influences the

robot’s learning process. Rewards should be aligned with

the task’s objective and guide the robot to achieve the

desired task. Foundation models can be leveraged to design

rewards. Kwon et al. (2023) investigate the simplification of

reward design by utilizing a large language model (LLM),

such as GPT-3, as a proxy reward function. In this approach,

users provide a textual prompt that contains a few examples

(few-shots) or a description (zero-shot) of the desired be-

havior. The proposed method incorporates this proxy re-

ward function within a reinforcement learning framework.

Users specify a prompt at the start of the training process.

During training, the LLM evaluates the RL agent’s behavior

against the desired behavior outlined in the prompt, re-

sulting in a corresponding reward signal generated by the

LLM. Subsequently, the RL agent employs this reward to

update its behavior through the learning process.

In Du et al. (2023b), the authors propose a method called

Exploring with LLMs (ELLM) that rewards an agent for

achieving goals suggested by a language model. The lan-

guage model is prompted with a description of the agent’s

current state. Therefore, without having a human in the

loop, ELMM guides agents toward meaningful behavior.

Zhang et al. (2022c) explore the potential relationship

between offline reinforcement learning and language

modeling. They hypothesize that RL and LM share simi-

larities in predicting future states based on current and past

states, considering both local and long-range dependencies

across states. To validate this assumption, the authors pre-

train Transformer models on different offline RL tasks and

assess their performance on various language-related tasks.

Tarasov et al. (2022) present an approach to harness pre-

trained language models in deep offline reinforcement

learning scenarios that are not inherently compatible with

textual representations. The authors suggest a method that

involves transforming the RL states into human-readable

text and performing fine-tuning of the pretrained language

model during training with deep offline RL algorithms.

Advances in model architecture (e.g., transformer) for

foundation models allow the model to effectively model and

predict sequences. To harness the power of these models,

some recent studies investigate exploiting these architec-

tures for sequence modeling in RL problems. Reid et al.

(2022) explore the potential of leveraging the sequence

modeling formulation of reinforcement learning and ex-

amine the transferability of pretrained sequence models

across different domains, such as vision and language. They

specifically focus on the effectiveness of fine-tuning these

pretrained models on offline RL tasks, including control and
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games. In addition to investigating the transferability of

pretrained sequence models, the authors propose techniques

to enhance the transfer of knowledge between these do-

mains. These techniques aim to improve the adaptability

and performance of the pretrained models when applied to

new tasks or domains.

High-level task planning using LLMs is demonstrated in

embodied AI environments. Huang et al. (2022a) propose

employing pretrained Language Models (LMs) as zero-shot

planners. The approach is evaluated in the VirtualHome

(Puig et al., 2018) environment. In this work, first, an au-

toregressive LLM such as GPT-3 (Brown et al., 2020) or

Codex (Chen et al., 2021) is quarried to generate action

plans for high-level tasks. Some of these action plans might

not be executable by the agent due to ambiguity in language

or referring to objects that are not present or grounded in the

environment. So, to select the admissible action plans,

admissible environment actions, and generated actions by

the causal LLM are embedded using a BERT-style LM.

Then for each admissible environment action, its semantic

distance to the generated action is computed using cousin

similarity.

Chain of thought reasoning and action generation are

proposed for embodied agents as well. ReAct (Yao et al.,

2023) combines reasoning (e.g., chain of thought) and

acting (e.g., sequence of action generation) within LLM.

Reasoning traces enhance the model’s ability to deduce,

monitor, and revise action plans, along with managing

exceptions effectively. Actions facilitate interaction with

external resources, like knowledge bases or environments,

enabling it to acquire supplementary information. ReAct

showcases its proficiency across a wide array of language

and decision-making tasks, including question-answering

and fact verification. It enhances interpretability and trust

for users by transparently illustrating the process through

which it searches for evidence and formulates conclusions.

Unlike prior methods that depend on a singular chain of

thought, ReAct engages with a Wikipedia API for pertinent

information retrieval and belief updating. This strategy

effectively mitigates the issues commonly associated with

chain-of-thought reasoning, such as hallucination and error

propagation.

VPT (Baker et al., 2022) presents video pretraining in

which the agent learns to act by watching unlabeled online

videos. It is shown that an inverse dynamic model can be

trained with a small labeled dataset and the model can be

used to label a huge unlabeled data of the internet. Videos of

people who have played Minecraft are used to train an

embodied AI agent to play Minecraft. The model exhibits

zero-shot performance and can be fine-tuned for more

complex skills using imitation learning or reinforcement

learning. The VPT model is trained with a standard be-

havioral cloning loss (9) (negative log-likelihood) while the

actions are drawn from the inverse dynamic model. Lin et al.

(2023a) presents an agent, Dynalang, that learns a multi-

modal world model to predict the future text and image

representations. The world model is trained using a replay

buffer of the agent’s past interactions with the environment.

Actions are selected by training an actor-critic model on a

sequence of representations generated by the world model.

5.1. Generalist AI

A long-standing challenge in robotics research is deploying

robots or embodied AI agents in various non-factory real-

world applications to perform a range of tasks. To make

generalist robots that can operate in diverse environments

with diverse tasks, some researchers have proposed gen-

erative simulators for robot learning. For example, Gen-

erative Agents (Park et al., 2023a) discusses how generative

agents can produce realistic imitations of human behavior

for interactive applications, creating a miniature community

of agents similar to those found in games like The Sims. The

authors connect their architecture with the ChatGPT large

language model to create a game environment with 25

agents. The study includes two evaluations, a controlled

evaluation and an end-to-end evaluation, which demon-

strate the causal effects of the various components of their

architecture. Xian et al. (2023) propose a fully automated

generative pipeline, known as a generative simulation for

robot learning, which utilizes models to generate diverse

tasks, scenes, and training guidance on a large scale. This

approach can facilitate the scaling up of low-level skill

learning, ultimately leading to a foundational model for

robotics that empowers generalist robots.

An alternative method for developing generalist AI in-

volves using generalizable multi-modal representations.

Gato (Reed et al., 2022) is a generalist agent that works as a

multi-modal, multi-task, multi-embodiment generalist

policy. Using the same neural network with the same set of

weights, Gato can sense and act with different embodiments

in various environments across different tasks. Gato can

play Atari, chat, caption images, stack blocks with a real

robot arm, navigate in a 3D simulated environment, and

more. Gato is trained on 604 different tasks with various

modalities, observations, and actions. In this setting, lan-

guage acts as a common grounding across different em-

bodiments. Gato has 1.2B parameters and is trained offline

in a supervised way. Positioned at the confluence of rep-

resentation learning and reinforcement learning (RL), RRL

(Shah and Kumar, 2021) learns behaviors directly from

proprioceptive inputs. By harnessing pre-trained visual

representations, RRL is able to learn from visual inputs,

which typically pose challenges in conventional RL

settings.

5.2. Simulators

High-quality simulators or benchmarks are crucial for ro-

botics development. Hence, we put the “simulator” section

here to highlight its essential role. To facilitate generalization

from simulation to the real world, Gibson (Xia et al., 2018)

emphasizes real-world perception for embodied agents.

To bridge the gap between simulation and real-world,
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iGibson (Li et al., 2021) and BEHAVIOR-1K (Li et al.,

2022b) further support the simulation of a more diverse set

of household tasks and reach high levels of simulation

realism. As a simulation platform for research in Embodied

AI, Habitat (Savva et al., 2019) consists of Habitat-Sim and

Habitat-API. Habitat-Sim can achieve several thousand

frames per second (fps) running single-threaded. Rather

than modeling into low-level physics, Habitat-Lab (Szot

et al., 2021), is a high-level library for embodied AI, giving

a modular framework for end-to-end development. It fa-

cilitates the definition of embodied AI tasks, such as nav-

igation, interaction, instruction following, and question

answering. Additionally, it enables the configuration of

embodied agents, encompassing their physical form, sen-

sors, and capabilities. The library supports various training

methodologies for these agents, including imitation learn-

ing, reinforcement learning, and traditional non-learning

approaches like the SensePlanAct pipelines. Furthermore, it

provides standard metrics for evaluating agent performance

across these tasks. In line with this, the recent release of

Habitat 3.0 (Puig et al., 2023) further expands these

capabilities.

Similarly, RoboTHOR (Deitke et al., 2020) serves as a

platform for the development and evaluation of embodied

AI agents, offering environments in both simulated and

physical settings. Currently, RoboTHOR includes a training

and validation set comprising 75 simulated scenes. Addi-

tionally, there are 14 scenes each for test-dev and test-

standard in the simulation, with corresponding physical

counterparts. Key features of RoboTHOR include its re-

configurability and benchmarking capabilities. The physical

environments are constructed using modular, movable

components, enabling the creation of diverse scene layouts

and furniture configurations in a single physical area.

Another simulator, VirtualHome (Puig et al., 2018), models

complex activities that occur in a typical household. It

supports program descriptions for a variety of activities that

happen in people’s homes. Huang et al. (2022b) use Vir-

tualHome to evaluate the robot planning ability with lan-

guage models. These simulators have the potential to be

applied for evaluating LLMs on robotics tasks.

5.3. Challenges and perspectives

As robot learning in the real world can lead to unsafe

scenarios, embodied AI facilitates adaptable robot learning

through interactions with objects and scenes in virtual

environments. Developing high-fidelity, physics-based 3D

simulators that are highly photorealistic and accurately

represent real-world counterparts can accelerate robot

learning and lead to generalized robotic solutions capable of

interacting with diverse objects and scenarios. Thus, a

natural extension of embodied AI research in robotics ap-

plications involves replacing game environments with high-

fidelity physics-based simulators. Current embodied AI

simulators, as discussed in 5.2, are not physics-based.

Therefore, efforts should be directed towards developing

these 3D simulators to include physics-based modeling.

Additionally, embodied AI enables long-horizon planning

and lifelong learning for robots. For example, analogous to

the Voyager agent that learns to play in the open-world

environment of Minecraft game, a robot can learn long-

horizon planning in an open-world environment.

6. Challenges and future directions

In this section, we examine challenges related to integrating

foundation models into robotics settings. We also explore

potential future avenues to address some of these challenges.

6.1. Overcoming data scarcity in training

foundation models for robotics

One main challenge is that compared to the internet-scale text

and image data that large models are trained on, robotic-

specific data is scarce. We discuss various techniques to

overcome data scarcity. For example, to scale up robot

learning, some recent works suggest the use of play data

instead of expert data for imitation learning. Another tech-

nique is data augmentation using in-painting techniques.

6.1.1. Scaling robot learning using unstructured play data

and unlabeled videos of humans. Language-conditioned

learning, such as language-conditioned behavioral clon-

ing or language-conditioned affordance learning, requires

having access to large annotated datasets. To scale up

learning, in Play-LMP (Lynch et al., 2020), the authors

suggest using teleoperated human-provided play data in-

stead of fully annotated expert demonstrations. Play data is

unstructured, unlabeled, cheap to collect, but rich. Col-

lecting play data does not require scene staging, task seg-

menting, or resetting to an initial state. Also, in MimicPlay

(Wang et al., 2023a), a goal-conditioned trajectory gener-

ation model is trained based on human-play data. The play

data includes unlabeled video sequences of humans inter-

acting with the environment with their hands. Recently

works such as Mees et al. (2023) have shown a very small

percentage (as little as 1%) of language-annotated data is

needed to train a visuo-lingual affordance model for robot

manipulation tasks.

6.1.2. Data augmentation using inpainting. Collecting

robotics data requires the robot to interact with the real

physical world. This data collection process can be asso-

ciated with significant costs and potential safety concerns.

One way to tackle this challenge is to use generative AI,

such as text-to-image diffusion models, for data augmen-

tation. For example, ROSIE (Scaling Robot Learning with

Semantically Imagined Experience) (Yu et al., 2023)

presents a diffusion-based data augmentation. Given a robot

manipulation dataset, they use inpainting to create various

unseen objects, backgrounds, and distractors with textual

guidance. One important challenge for these methods is
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developing inpainting strategies that can generate sufficient

semantically and visually diverse data, while at the same

time ensuring that this data is physically feasible and ac-

curate. For instance, using inpainting to modify an image of

an object within a robot’s gripper may result in an image

with a physically unrealistic grasp, leading to poor down-

stream training performance. Additional investigation into

generative foundation models that are evaluated not only for

visual quality but also for physical realism may improve the

generality of these methods.

6.1.3. Overcoming 3D data scarcity for training 3D

foundation models. Currently, multi-modal Vision-and-

Language Models (VLMs) can analyze 2D images, but

they lack a connection to the 3D world, which encompasses

3D spatial relationships, 3D planning, 3D affordances, and

more. The primary obstacle in developing foundational 3D

VLM models lies in the scarcity of 3D data, especially data

that is paired with language descriptions. As discussed,

language-driven perception tasks such as language-driven

3D scene representation, language-driven 3D scene editing,

language-driven 3D scene or shape generation, language-

driven 3D classification, and affordance prediction require

access to 3D data or multi-view images with camera ma-

trices which are not readily available data types. New da-

tasets or data generation methods need to be created in the

future to overcome data scarcity in the 3D domain.

6.1.4. Synthetic data generation via high-fidelity

simulation. High-fidelity simulation via gaming engines

can provide an efficient means to collect data, especially to

solve multimodal and 3D perception tasks on robots. For

example, TartanAir (Wang et al., 2020), a dataset for robot

navigation tasks, was collected in Shah et al. (2017) with the

presence of moving objects, changing light, and various

weather conditions. By collecting data in simulations, it was

possible to obtain multi-modal sensor data and precise

ground truth labels such as the stereo RGB image, depth

image, segmentation, optical flow, camera poses, and Li-

DAR point cloud. A large number of environments were set

up with various styles and scenes, covering challenging

viewpoints and diverse motion patterns that are difficult to

achieve by using physical data collection platforms. An

extension TartanAir-V2 (https://tartanair.org) furthers the

dataset by incorporating additional environments and mo-

dalities, such as fisheye, panoramas, and pinholes, with

arbitrary camera intrinsic and rotations.

6.1.5. Sim-to-real transfer. Robotics policies trained in

simulated environments can be transferred to and deployed

on robots in the real world. While sim-to-real transfer holds

promise for addressing data scarcity in robotics, the sim-to-

real gap poses a significant challenge for foundation models

trained using simulated data. There are examples before the

appearance of foundation models that sim-to-real has

been studied in Margolis and Agrawal (2023) propose

the multiplicity of behavior (MoB) to promote policy

generalization by conditioning on a behavior parameter.

These policies are trained with tuned auxiliary reward

components that promote sim-to-real transfer. Kumar et al.

(2021) focuses on real-time policy adaptation by training an

adaptation module to estimate an extrinsic vector that en-

codes the environment the robot is operating in. To reduce

the sim-to-real gap, Kumar et al. (2021) introduces an

additional component of the reward function in addition to

altering the terrain of the physics simulator used for training.

Chen et al. (2023b) seek to train policies for in-hand re-

orientation of novel objects by training a teacher policy with

reinforcement learning in a physics simulator and a student

policy through imitation learning. To reduce the sim-to-real

gap the student policies take as input a point cloud from a

partial rendering from the physics simulator. Methodologies

from these works can be used to guide sim-to-real from the

world of foundation models.

6.1.6. Data augmentation using VLMs. Data augmentation

can be provided using Visual-Language Models (VLMs). In

DIAL (Xiao et al., 2023a), Data-driven Instruction Aug-

mentation for Language-conditioned control is introduced.

DIAL uses VLM to label offline datasets for language-

conditioned policy learning. DIAL performs instruction

augmentation using VLMs to weakly relabel offline control

datasets. DIAL consists of three steps: (1) Contrastive fine-

tuning of a VLM such as CLIP (Radford et al., 2021a) on a

small robot manipulation dataset of trajectories with crowd-

sourced annotation, (2) producing new instruction labels by

using the fine-tuned VLM to score relevancy of crowd-

sourced annotations against a larger dataset of trajectories,

and (3) training a language-conditioned policy using be-

havior cloning on both, the original and re-annotated dataset.

6.1.7. Robot physical skills are limited to distribution of

skills. One key limitation of the existing robot transformers

and other related works in robotics is that robot physical

skills are limited to the distribution of skills observed within

the robot data. Using these transformers, the robot lacks the

capability to generate new movements. To address this

constraint, an approach involves using motion data from

videos that humans performing various tasks. The inherent

motion information within these videos can then be em-

ployed to facilitate the acquisition of physical skills in

robotics.

6.2. Real time performance (high inference time

of foundation models)

Another bottleneck for deploying foundation models on

robots is the inference time of these models. In Table 2, the

inference time for some of these models is reported. As

seen, the inference time for some of the models still needs to

be improved for reliable real-time deployment of the robotic

systems. As real-time capability is an essential requirement

for any robotic system, more research needs to be performed
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to improve the computational efficiency of foundation

models.

Furthermore, foundation models are most often stored

and run in remote data centers, and accessed through APIs

that require network connectivity. Many foundation models

(e.g., the GPT models, the Dall-E models) can only be

accessed this way, while others are usually accessed this

way, but can also be downloaded and run locally with

sufficient local computing power, such as SAM (Kirillov

et al., 2023), LLaMA (Touvron et al., 2023b), and DINOv2

(Oquab et al., 2023). Given this cloud-service paradigm, the

latencies and service times in response to an API call for a

foundation model depend on the underlying network over

which the data is routed and the data center where the

computation takes place—factors that are beyond the

control of a robot. So network reliability should be taken

into account before integrating a foundation model into a

robot’s autonomy stack.

For some robotics domains, reliance on the network and

3rd party computing may not be a safe or realistic operating

paradigm. In autonomous driving, autonomous aircraft,

search and rescue or emergency response applications, and

defense applications the robot cannot rely on network

connectivity for time-critical perception or control com-

putations. One option is to have a safe fall-back mode that

relies on classical autonomy tools using only local com-

putation, which can take over if access to the cloud is in-

terrupted for some reason. Another potential longer-term

solution for network-free autonomy is the distillation of

large foundation models into smaller-sized specialized

models that run on onboard robot hardware. Some recent

work has attempted this approach (though without an ex-

plicit link to robotics) (Lin et al., 2023b). Such distilled

models would likely give up some aspect of the full model,

for example, restricting operation to a certain limited

context, in exchange for smaller size and faster computa-

tion. This could be an interesting future direction for

bringing the power of foundation models to safety-critical

robotics systems.

6.3. Limitations in multimodal representation

Multimodal interaction implicitly assumes that the modality

is tokenizable and can be standardized into input sequences

without losing information. The Multimodal models pro-

vide information sharing between multiple modalities and

are some variation of multimodal transformers with cross-

modal attention between every pair of inputs. In multimodal

representation learning, it is assumed that cross-modal in-

teractions and the dimension of heterogeneity between

different modalities can all be captured by simple embed-

dings. In other words, a simple embedding is assumed to be

sufficient to identify the modality or, for example, how

different language is from vision. In the realm of multi-

modal representation learning, the question of whether a

single multimodal model can accommodate all modalities

remains an open challenge.

Additionally, when paired data between a modality and

text is available one can embed that modality into text

directly. In robotics applications, there are some modalities

for which sufficient data is not available, and to be able to

align them with other modalities, they need to be first

converted to other modalities and then used. For example,

3D point cloud data have various applications in robotics,

but training a foundation model using this type of data is

challenging since data is scarce and is not aligned with text.

So, one way to overcome this challenge is first converting

this 3D point cloud data to other modalities such as images

and, subsequently, images to text as the secondary step of

alignment. Then they can be used in foundation model

training. As another example, in Socratic models (Zeng

et al., 2022), each modality, whether visual or auditory, is

initially translated into language, after which language

models attempt to respond to these modalities.

6.4. Uncertainty quantification

How can we provide assurances on the reliability of

foundation models when they are deployed in potentially

safety-critical robotics applications (Sun et al., 2023a)?

Current foundation models such as LLMs often hallucinate,

for example, produce outputs that are factually incorrect,

logically inconsistent, or physically infeasible. While such

failures may be acceptable in applications where the outputs

from the model can be checked by a human in real-time

(e.g., as is often the case for LLM-based conversational

agents), they are not acceptable when deploying autono-

mous robots that use the outputs of foundation models in

order to act in human-centered environments. Rigorous

uncertainty quantification is a key step toward addressing

this challenge and safely integrating foundation models into

robotic systems. Below, we highlight challenges and recent

progress in uncertainty quantification for foundation models

in robotics.

6.4.1. Instance-level uncertainty quantification. How can

we quantify the uncertainty in the output of a foundation

model for a particular input? As an example, consider the

problem of image classification; given a particular image,

one may quantify uncertainty in the output by producing a

set of object labels that the model is uncertain among or a

distribution over object labels. Instance-level uncer-

tainty quantification can inform the robot’s decisions at

runtime. For example, if an image classification model

running on an autonomous vehicle produces a prediction

set fPedestrian,Bicyclistg representing that it is

uncertain whether a particular agent is a pedestrian or a

bicyclist, the autonomous vehicle can take actions that

consider both possibilities.

6.4.2. Distribution-level uncertainty quantification. How

can we quantify the uncertainty in the correctness of a

foundation model that will be deployed on a distribution of

possible future inputs? For the problem of image

728 The International Journal of Robotics Research 44(5)



classification, one may want to compute or limit the

probability of errors over the distribution of inputs that a

robot may encounter when deployed. Distribution-level

uncertainty quantification allows us to decide whether a

given model is sufficiently reliable to deploy in our target

distribution of scenarios. For example, we may want to

collect additional data or fine-tune the model if the com-

puted probability of error is too high.

6.4.3. Calibration. In order to be useful, estimates of un-

certainty (both at the instance-level and distribution level)

should be calibrated. If we perform instance-level uncer-

tainty quantification using prediction sets, calibration asks

for the prediction set to contain the true label with a user-

specified probability (e.g., 95%) over future inputs. If

instance-level uncertainty is quantified using a distribution

over outputs, it should be the case that outputs that are

assigned confidence p are, in fact, correct with probability p

over future inputs. Similarly, distribution-level uncertainty

estimates should limit the true probability of errors when

encountering inputs from the target distribution.

We highlight a subtle but important point that is often

overlooked when performing uncertainty quantification in

robotics: it can be crucial to pay attention to the distinction

between Frequentist and Bayesian interpretations of prob-

abilities. In many robotics contexts—particularly safety-

critical ones—the desired interpretation is often Frequentist

in nature. For example, if we produce a bound ϵ for the

probability of collision of an autonomous vehicle, this

should limit the actual observed rate of collisions when the

vehicle is deployed. Bayesian techniques (e.g., Gaussian

processes or Bayesian ensembles) do not necessarily pro-

duce estimates of uncertainty that are calibrated in this

Frequentist sense (since the estimates depend on the specific

prior that is used to produce the estimates). Trusting the

resulting uncertainty estimates may lead one astray if the

goal is to provide statistical guarantees on the safety or

performance of the robotic system when it is deployed.

6.4.4. Distribution shift. An important challenge in per-

forming calibrated uncertainty quantification is distribution

shift. A foundation model trained on a particular distribution

of inputs may not produce calibrated estimates of uncer-

tainty when deployed on a different distribution for a

downstream task. A more subtle cause of distribution shift

in robotics arises from closed-loop deployment of a model.

For example, imagine an autonomous vehicle that chooses

actions using the output of a perception system that relies on

a pretrained foundation model; since the robot’s actions

influence future states and observations, the distribution of

inputs the perception system receives can be potentially

very different from the one it was trained on.

6.4.5. Case study: uncertainty quantification for language-

instructed robots. Recently, there has been exciting prog-

ress in performing rigorous uncertainty quantification for

language-instructed robots (Ren et al., 2023). This work

proposes an approach called KNOWNO for endowing

language-instructed robots with the ability to know when

they don’t know and to ask for help or clarification from

humans in order to resolve uncertainty. KNOWNO performs

both instance-level and distribution-level uncertainty

quantification in a calibrated manner using the theory of

conformal prediction. In particular, given a language in-

struction (and a description of the robot’s environment

generated using its sensors), conformal prediction is used to

generate a prediction set of candidate actions. If this set is a

singleton, the robot executes the corresponding action;

otherwise, the robot seeks help from a human by asking

them to choose an action from the generated set. Using

conformal prediction, KNOWNO ensures that asking for help

in this manner results in a statistically guaranteed level of

task success (i.e., distribution-level uncertainty quantifica-

tion). KNOWNO tackles potential challenges with distribution

shift by collecting a small amount of calibration data from

the target distribution of environments, tasks, and language

instructions, and using this as part of the conformal pre-

diction calibration procedure. While KNOWNO serves as an

example of calibrated instance-level and distribution-level

uncertainty quantification for LLMs, future research should

also explore assessing and ensuring the reliability of various

other foundation models, such as vision-language models,

vision-navigation models, and vision-language-action

models, commonly employed in robotics. In addition, ex-

ploring how Bayesian uncertainty quantification tech-

niques, such as ensembling (Park et al., 2023b; Sun et al.,

2022c), can be combined with approaches such as con-

formal prediction to produce calibrated estimates of

instance-level and distribution-level uncertainty is a

promising direction.

6.5. Safety evaluation

The problem of safety evaluation is closely related to un-

certainty quantification. How can we rigorously test for the

safety of a foundation model-based robotic system (i) before

deployment, (ii) as the model is updated during its lifecycle,

and (iii) as the robot operates in its target environments? We

highlight challenges and research opportunities related to

these problems below.

6.5.1. Pre-deployment safety tests. Rigorous pre-

deployment testing is crucial for ensuring the safety of

any robotic system. However, this can be particularly

challenging for robots that incorporate foundation models.

First, foundation models are trained on vast amounts of data;

thus, a rigorous testing procedure should ensure that the

model does not see test scenarios during training. Second,

foundation models often commit errors in ways that are hard

to predict a priori; thus, tests need to cover a diverse enough

range of scenarios to uncover flaws. Third, foundation

models such as LLMs are often used to produce open-ended

outputs (e.g., a plan for a robot described in natural lan-

guage). The correctness of such outputs can be challenging
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to evaluate in an automated manner if these outputs are

evaluated in isolation from the entire system.

The deployment cycle of current foundation models (in

non-robotics applications) involves thorough red-teaming

by human evaluators (Ganguli et al., 2022; OpenAI, 2023).

Recent work has also considered partially automating this

process by using foundation models themselves to perform

red-teaming (Perez et al., 2022; Tong et al., 2023). De-

veloping ways to perform red-teaming (both by humans and

in a partially automated way) for foundation models in

robotics is an exciting direction for future research.

In addition to evaluating the foundation model in iso-

lation, it is also critical to assess the safety of the end-to-end

robotic system. Simulation can play a critical role here and

already does so for current field-deployed systems such as

autonomous vehicles (Kusano et al., 2022; Webb et al.,

2020). The primary challenges are to ensure that (i) the

simulator has high enough fidelity for results to meaning-

fully transfer to the real world, and (ii) test scenarios

(manually specified, replicated from real-world scenarios,

or automatically generated via adversarial methods (Ding

et al., 2023)) are representative of real-world scenarios and

are diverse enough to expose flaws in the underlying

foundation models. In addition, finding ways to augment

large-scale simulation-based testing with smaller-scale real-

world testing is an important direction for future work. We

emphasize the need for performing such testing throughout

the lifecycle of a field-deployed robotic system, especially

as updates are made to different components (which may

interact in unpredictable ways with foundation models).

6.5.2. Runtime monitoring and out-of-distribution

detection. In addition to performing rigorous testing off-

line, robots with foundation model-based components

should also perform runtime monitoring. This can take the

form of failure prediction in a given scenario, which can

allow the robot to deploy a safety-preserving fallback policy

(Luo et al., 2022; Farid et al., 2022a, 2022b; Hsu et al.,

2023b, 2023a). Alternately, the robot can perform out-of-

distribution (OOD) detection using experiences collected

from a small batch of scenarios in a novel distribution (Cai

and Koutsoukos, 2020; Farid et al., 2021; Greenberg and

Mannor, 2021; Sinha et al., 2022); this can potentially

trigger the robot to cease its operations and collect addi-

tional training data in the novel distribution in order to re-

train its policy. Developing techniques that perform runtime

monitoring and OOD detection with statistical guarantees

on false positive/negative error rates in a data-efficient

manner remains an important research direction.

6.5.3. Performance evaluation. Given the high complexity

of the robot policies themselves and in general foundation

models, we anticipate a greater reliance on statistical per-

formance evaluation methods that remain independent of

the policy’s complexity. For example, some early works in

this area include Vincent et al. (2023, 2024).

6.6. Using existing foundation models “plug-

and-play” vs. building new foundation models

for robotics

To incorporate foundation models into robotics, either

existing pretrained large models can be employed as plug-

and-play, or new foundation models can be built using

robotics data. Using foundation models “plug-and-play”

refers to integrating foundation models into various ap-

plications without extensive customization. A large body of

the existing literature on foundation models in robotics is

centered around the use of foundation models from other

domains, such as language or vision. The “plug-and-play”

approach simplifies and facilitates the integration of recent

AI advances into the robotics domain. However, these

models are not always customized to specific applications.

When specific domain expertise is needed, it is necessary to

build a foundation model from scratch or fine-tune the

existing models. Building a foundation model from scratch

is resource-intensive and demands significant computa-

tional power. However, it provides fine-grained control over

the architecture, training parameters, and overall behavior.

Below, we speculate on potential foundation models that

could be built specifically for robotics applications in the

future.

6.6.1. Incorporating tactile and audio sensing. Tactile and

audio sensing are less commonly utilized today but are

critical for human manipulation. Because the data captured

in these modalities is often very sensor-specific, it is

challenging to deploy pretrained models and leverage prior

datasets for a new hardware setup. Early efforts toward

developing unified and grounded representations for touch

and audio in the context of robotics (Clarke, 2019; Fu et al.,

2024; Gao et al., 2022; Yang et al., 2024) may eventually

lead to foundational models that can learn from and be

deployed on heterogeneous hardware setups, making these

modalities easy to integrate and unlocking their potential.

6.6.2. Foundation models for high-level reasoning and task

planning. In addition to building foundational models for

low-level skills, another significant direction is the devel-

opment of robot-specific models for planning. Planning

problems in robotics often require reasoning over both

discrete decisions and continuous actions, also known as the

task and motion planning problem (Garrett et al., 2021;

Zhao et al., 2024). Current solutions typically depend on

known object models, computationally intensive search

procedures, and domain-specific planning definitions cre-

ated by experts. Recent methods have demonstrated that

foundational models, fine-tuned on domain-specific data,

can reason about the physical properties of objects (Gao

et al., 2023), understand spatial relations in 3D (Chen et al.,

2024), and address planning-related questions from videos

(Sermanet et al., 2023). These reasoning abilities are all

important for robot planning and can collectively contribute
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to establishing a foundation model for long-horizon robot

planning.

6.7. End-to-end vs. modular systems

It is an open question of how much structure should be

imposed on a robotic system based on learning from large-

scale data. Similarly, there is no definitive answer to whether

a robotic system should be built on a single foundation

model or composed of multiple modular models. On one

side of the spectrum are end-to-end systems such as Ro-

botics Transformers (Brohan et al., 2022; Zitkovich et al.,

2023), which directly provide raw observations and task

specifications to a neural network that outputs low-level

actions such as changes in end-effector pose. Toward the

other side are methods that build explicit modules with

structured inputs and outputs. For instance, such a method

may have a module specifically for perception that performs

object detection, or action planning within a scene graph.

Many learning-based robotic systems do not fall clearly into

one of these categories; rather, they are hybrid approaches.

End-to-end approaches may yield stronger performance

in the long term, particularly if the quantity of real-world

robotics data grows rapidly. Because they avoid imposing

structure or making assumptions about how a particular task

or physical system works and instead learn this directly

from the data, end-to-end methods tend to be more general;

that is, they can be deployed to a range of tasks without

much modification. For example, a system that includes a

perception module that performs object pose detection may

need to be modified to allow a robot to solve a task in-

volving fluid manipulation, where it is unclear how to

represent the pose of the fluid. In contrast, an end-to-end

model that directly produces actions based on pixels or point

clouds may require fewer changes. When trained on real-

world robotics data, end-to-end approaches have shown

strong deployment performance with minimal error due to

domain gaps.

On the other hand, more modular approaches could be

the key to improved generalization capabilities, better

sample efficiency, and more easily inheriting improvements

from computer vision and natural language processing.

Structure in intermediate representations can provide

powerful priors for improved generalization capabilities.

For instance, an object-centric representation of a scene may

provide positional or permutation invariance to a down-

stream planning module, while end-to-end methods must

learn such rules from additional data. This has the potential

to improve the sample efficiency of these models, which is

critical while real robot data remains scarce. Intermediate

structured representations such as language or feature fields

offer an interface between these models that have been

trained on large-scale robot-free data and modules specif-

ically trained for robotic settings. Jointly optimizing all

components based on downstream task performance could

be a promising approach to overcoming compatibility issues

when combining individually trained models.

6.8. High variability in real-world

robotic settings

Another challenge is the high variability in robotic settings.

Robot platforms are inherently diverse, with different

physical characteristics, configurations, and capabilities.

Real-world environments that robots operate in are also

diverse and uncertain, with a wide range of variations. Due

to all these variabilities, robotic solutions are usually tai-

lored to specific robot platforms with specific layouts,

environments, and objects for specific tasks. These solu-

tions are not generalizable across various embodiments,

environments, or tasks. Hence, to build general-purpose

pretrained robotic foundation models, a key factor is to pre-

train large models that are task-agnostic, cross-embodiment,

and open-ended and capture diverse robotic data. In ROSIE

(Yu et al., 2023), a diverse dataset is generated for robot

learning by performing inpainting of various unseen ob-

jects, backgrounds, and distractors with semantic textual

guidance. To overcome variability in robotic settings and

improve generalization, another solution as ViNT (Shah

et al., 2023b) presents is to train foundation models on

diverse robotic data across various embodiments. RT-X

(Padalkar et al., 2023) also investigates the possibility of

training large cross-embodied robotic models in the domain

of robotic manipulation. RT-X is trained using a multi-

embodiment dataset called Open X-Embodiment dataset,

which is created by collecting data from different robot

platforms collected through a collaboration between 21

institutions, demonstrating 160266 tasks. RT-X demon-

strates transfer across embodiment improves robot capa-

bilities by employing experience from diverse robotic

platforms.

6.9. Benchmarking and reproducibility in

robotics settings

Another significant obstacle in incorporating foundation

models into robotics research is the necessity of real-world

hardware experiments. This creates challenges for repro-

ducibility, as replicating results obtained from hardware

experiments may require access to the exact equipment

employed in prior work. Conversely, many recent works

have relied on non-physics-based simulators (e.g., ignoring

or greatly simplifying contact physics in gasping) that in-

stead focus on high-level, long-term tasks and visual en-

vironment models. Examples of this class of simulators are

common and include many of the simulators described

above in Section 5. For example the Gibson family of

simulators (Li et al., 2021; Xia et al., 2018), the Habitat

family (Puig et al., 2023; Savva et al., 2019; Szot et al.,

2021), RobotTHOR (Deitke et al., 2020), and VirtualHome

(Puig et al., 2018) all neglect low-level physics in favor of

simulating higher level tasks with high visual fidelity. This

leads to a large sim-to-real gap and introduces variability in

real-world performance based on how low-level planning

and control modules handle the true physics of the scenario.
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Even when physics-based simulators are used (e.g., Py-

Bullet or MuJoCo), the absence of standardized simulation

settings, computing environments, and a persistent sim-to-

real gap impede efforts to benchmark and compare per-

formance across various research endeavors.

A combination of open hardware, benchmarking in

physics-based simulators, and promoting transparency in

experimental and simulation setups can significantly alle-

viate the challenges associated with reproducibility in the

integration of foundation models into robotics research.

Generally, defining evaluation metrics in robotics research

is challenging because each embodiment (robot) and

research context is unique. This diversity makes it difficult

to establish metrics that are universally applicable across

different research groups. This challenge is not new and is

not specific to foundation models; it is a well-recognized

issue in benchmarking progress within the field of robotics.

With a standardized uniform hardware platform, it be-

comes easier to conceptualize competition-based evaluation

metrics. For instance, task-based evaluation metrics could

be established where the challenge is to complete a specific

task with a given robot and dataset while allowing re-

searchers to choose their own architectures and approaches.

Such competitions hold the potential to provide objective

measures of progress in robotics. They can serve as

benchmarks to assess whether the field is advancing. By

recording the outcomes of these competitions, we can gain

valuable insights into the trajectory of innovation and de-

velopment in robotics. These practices contribute to the

development of a more robust and collaborative research

ecosystem within the field.

6.10. Envisioning the impact of foundation

models in robotics

In this section, we examine the potential answers to the

following questions: What is the ultimate power of foun-

dation models in robotics, and what could be achieved in the

best-case scenario? The ultimate goal is to develop foun-

dation models that enable robots to safely and efficiently

perform a wide range of everyday tasks with a high success

rate. These models could operate through simple interfaces,

such as natural language text input, similar to how GPT-3

functions. As example applications, household robots could

safely navigate indoor spaces, accurately grasp and ma-

nipulate objects, and perform various chores. Autonomous

vehicles might achieve human-level contextual reasoning,

especially in response to safety threats or anomalous situ-

ations. They would accurately predict the motion of other

agents, facilitating safe real-time planning. Furthermore,

robots with open-world navigation capabilities could be

used for exploration purposes, such as space rovers or deep-

sea explorers. Humanoid robots could be deployed in open-

world environments to provide human-level navigation,

manipulation, and dexterity. These robots could work

alongside humans and other robots to accomplish diverse

tasks in warehouses and industrial manufacturing.

7. Conclusion

Through examination of the recent literature, we have

surveyed the diverse and promising applications of foun-

dation models in robotics. We have delved into how these

models have enhanced the capabilities of robots in areas

such as decision-making, planning and control, and per-

ception. We also discussed the literature on embodied AI

and generalist AI, with an eye toward opportunities for

roboticists to extend the concepts in that research field to

real-world robotic applications. Generalization, zero-shot

capabilities, multimodal capabilities, and scalability of

foundation models have the potential to transform robotics.

However, as we navigate through this paradigm shift in

incorporating foundation models in robotics applications, it

is imperative to recognize the challenges and potential risks

that must be addressed in future research. Data scarcity in

robotics applications, high variability in robotics settings,

uncertainty quantification, safety evaluation, and real-time

performance remain significant concerns that demand future

research. We have delved into some of these challenges and

have discussed potential avenues for improvement.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-

spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: The

first author was supported on an ASEE e-Fellows postdoctoral

fellowship. J.T. and S.T. were partially supported by NSF Graduate

Research Fellowships. This project was also partially supported by

DARPA project HR001120C0107 and by a gift from Meta. We are

grateful for this support. AnirudhaMajumdar was supported by the

NSF CAREER Award [#2044149] and the Office of Naval

Research [N00014-23-1-2148].

References

Anderson P, Wu Q, Teney D, et al. (2018) Vision-and-language

navigation: interpreting visually-grounded navigation in-

structions in real environments. In: CVPR, pp. 3674–3683.

IEEE.

Arandjelovic R, Gronat P, Torii A, et al. (2016) NetVLAD: CNN

architecture for weakly supervised place recognition. In:

CVPR, pp. 5297–5307. IEEE.

Bahl S, Mendonca R, Chen L, et al. (2023) Affordances from

human videos as a versatile representation for robotics. In:

CVPR. IEEE.

Baker B, Akkaya I, Zhokov P, et al. (2022) Video PreTraining

(VPT): Learning to act by watching unlabeled online videos.

In: NeurIPS. IEEE.

Baltrusaitis T, Ahuja C and Morency LP (2019) Multimodal

machine learning: a survey and taxonomy. IEEE Transactions

on Pattern Analysis and Machine Intelligence 41(2):

423–443. DOI: 10.1109/TPAMI.2018.2798607.

732 The International Journal of Robotics Research 44(5)



Bangguo Y, Hamidreza K and Ming C (2023) LL3MVN:

leveraging large language models for visual target navigation.

arXiv preprint arXiv:2304.05501.

Bommasani R, Hudson DA, Adeli E, et al. (2021) On the op-

portunities and risks of foundation models. arXiv preprint

arXiv:2108.07258.

Bonatti R, Vemprala S, Ma S, et al. (2023) PACT: perception-

action causal transformer for autoregressive robotics pre-

training. In: IROS. IEEE.

Bousmalis K, Vezzani G, Rao D, et al. (2023) RoboCat: a self-

improving foundation agent for robotic manipulation. arXiv

preprint arXiv:2306.11706.

Box GE, Jenkins GM, Reinsel GC, et al. (2015) Time Series

Analysis: Forecasting and Control. Hoboken, New Jersey:

John Wiley & Sons.

Brohan A, Brown N, Carbajal J, et al. (2022) Rt-1: robotics

transformer for real-world control at scale arXiv Preprint

arXiv:2212.06817.

Brohan A, Brown N, Carbajal J, et al. (2023a) RT-1: robotics

transformer for real-world control at scale. In: RSS.

Brohan A, Chebotar Y, Finn C, et al. (2023b) Do as I can, not as I

say: grounding language in robotic affordances. In: CoRL,

pp. 287–318. PMLR.

Brooks T, Peebles B, Holmes C, et al. (2024) Video generation

models as world simulators. URL: https://Openai.Com/

Research/Video-Generation-Models-As-World-Simulators

Brown T, Mann B, Ryder N, et al. (2020) Language models are

few-shot learners. NeurIPS 33: 1877–1901.

Bucker A, Figueredo L, Haddadin S, et al. (2023) LATTE: LAnguage

trajectory TransformEr. In: ICRA, pp. 7287–7294. IEEE.

Cai F and Koutsoukos X (2020) Real-time out-of-distribution

detection in learning-enabled cyber-physical systems. In:

ICCPS. IEEE.

Caron M, Touvron H, Misra I, et al. (2021) Emerging properties in

self-supervised vision transformers. In: ICCV. IEEE.

Chang AX, Funkhouser T, Guibas L, et al. (2015) ShapeNet: an

information-rich 3D model repository. arXiv preprint arXiv:

1512.03012.

Chang A, Dai A, Funkhouser T, et al. (2017) Matterport3D:

learning from RGB-D data in indoor environments. In: 3DV,

pp. 667–676. DOI: 10.1109/3DV.2017.00081.

Chen T, Kornblith S, Norouzi M, et al. (2020) A simple framework

for contrastive learning of visual representations. In: ICML.

Chen M, Tworek J, Jun H, et al. (2021) Evaluating large language

models trained on code. arXiv preprint arXiv:2107.03374.

Chen W, Hu S, Talak R, et al. (2022a) Leveraging large language

models for robot 3D scene understanding. arXiv preprint

arXiv:2209.05629.

Chen X, Wang X, Changpinyo S, et al. (2022b) PaLI: a jointly-

scaled multilingual language-image model. In NeurIPS.

IEEE.

Chen J, Li G, Kumar S, et al. (2023a) How to not train your dragon:

training-free embodied object goal navigation with semantic

frontiers. arXiv preprint arXiv:2305.16925.

Chen T, Tippur M, Wu S, et al. (2023b) Visual dexterity: in-hand

reorientation of novel and complex object shapes. Science

Robotics 8(84): eadc9244.

Chen X, Djolonga J, Padlewski P, et al. (2023c) PaLI-X: on scaling

up a multilingual vision and language model. arXiv preprint

arXiv:2305.18565.

Chen Y, Arkin J, Zhang Y, et al. (2023d) AutoTAMP: autore-

gressive task and motion planning with llms as translators and

checkers. arXiv preprint arXiv:2306.06531.

Chen Y, Gandhi R, Zhang Y, et al. (2023e) NL2TL: transforming

natural languages to temporal logics using large language

models. arXiv preprint arXiv:2305.07766.

Chen Z, Kiami S, Gupta A, et al. (2023f) GenAug: retargeting

behaviors to unseen situations via generative augmentation.

In: RSS.

Chen B, Xu Z, Kirmani S, et al. (2024) Spatialvlm: endowing

vision-language models with spatial reasoning capabilities. In

CVPR. IEEE.

Cheng HK and Schwing AG (2022) XMem: long-term video

object segmentation with an atkinson-shiffrin memory model.

In: ECCV, pp. 640–658. Springer.

Chowdhery A, Narang S, Devlin J, et al. (2022) PaLM: scaling

language modeling with pathways. arXiv preprint arXiv:

2204.02311.

Clarke S (2019) Robot Learning for Manipulation of Granular

Materials Using Vision and Sound. Master’s Thesis. Carnegie

Mellon University.

Dai Z, Yang Z, Yang Y, et al. (2019) Transformer-XL: attentive

language models beyond a fixed-length context. In: ACL.

Damen D, Doughty H, Farinella GM, et al. (2018) Scaling ego-

centric vision: the EPIC-KITCHENS dataset. In: ECCV.

Springer.

Dasari S, Ebert F, Tian S, et al. (2019) RoboNet: large-scale multi-

robot learning. In: CoRL.

Dasgupta I, Kaeser-Chen C, Marino K, et al. (2022) Collaborating

with language models for embodied reasoning. In: Second

Workshop on Language and Reinforcement Learning.

Dehghani M, Djolonga J, Mustafa B, et al. (2023) Scaling vision

transformers to 22 billion parameters. In: ICML.

Deitke M, Han W, Herrasti A, et al. (2020) RoboTHOR: an open

simulation-to-real embodied AI platform. In: CVPR. IEEE.

DeTone D, Malisiewicz T and Rabinovich A (2018) Superpoint:

self-supervised interest point detection and description. In:

CVPR deep learning for visual SLAM workshop. IEEE.

Devlin J, Chang MW, Lee K, et al. (2018) BERT: pre-training of

deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805.

Ding W, Xu C, Arief M, et al. (2023) A survey on safety-critical

driving scenario generation—a methodological perspective.

IEEE ITSC 99: 1–19.

Dong Q, Li L, Dai D, et al. (2022) A survey for in-context learning.

arXiv preprint arXiv:2301.00234.

Dosovitskiy A, Beyer L, Kolesnikov A, et al. (2021) An image is

worth 16x16 words: transformers for image recognition at

scale. In: ICLR.

Driess D, Xia F, Sajjadi MSM, et al. (2023) PaLM-E: an embodied

multimodal languagemodel. arXiv preprint arXiv:2303.03378.

Du Y, Li J, Tang T, et al. (2023a) Zero-shot visual question an-

swering with language model feedback. arXiv preprint arXiv:

2305.17006.

Firoozi et al. 733



Du Y, Watkins O, Wang Z, et al. (2023b) Guiding pretraining in

reinforcement learning with large language models. In:

ICML, pp. 8657–8677. PMLR.

Du Y, YangM, Dai B, et al. (2023c) Learning universal policies via

text-guided video generation. In: NeurIPS.

Du Y, YangM, Florence P, et al. (2023d) Video language planning.

arXiv preprint arXiv:2310.10625.

Duan Y, Schulman J, Chen X, et al. (2016) RL̂2: fast reinforcement

learning via slow reinforcement learning. arXiv preprint

arXiv:1611.02779.

Dugas D (2023) The gpt-3 architecture, on a napkin. URL: https://

dugas.ch/artificial_curiosity/GPT_architecture.html ([Online;

accessed 28-November-2023]).

Ehsani K, Gupta T, Hendrix R, et al. (2024) Spoc: imitating

shortest paths in simulation enables effective navigation and

manipulation in the real world. In: Proceedings of the IEEE/

CVF Conference on Computer Vision and Pattern Recog-

nition, pp. 16238–16250. IEEE.

Engelbrecht HA and Schiele G (2014) Transforming minecraft into

a research platform. In: IEEE CCNC. IEEE.

Fan L, Wang G, Jiang Y, et al. (2022) MineDojo: building open-

ended embodied agents with internet-scale knowledge. In:

NeurIPS Datasets and Benchmarks Track.

Fang HS, Wang C, Gou M, et al. (2020) Graspnet-1billion: a large-

scale benchmark for general object grasping. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 11444–11453. IEEE.

Farid A, Veer S and Majumdar A (2021) Task-driven out-of-

distribution detection with statistical guarantees for robot

learning. In: CoRL.

Farid A, Snyder D, Ren AZ, et al. (2022a) Failure prediction with

statistical guarantees for vision-based robot control. arXiv

preprint arXiv:2202.05894.

Farid A, Veer S, Ivanovic B, et al. (2022b) Task-relevant failure

detection for trajectory predictors in autonomous vehicles. In:

CoRL.

Feng X, Luo Y, Wang Z, et al. (2023) ChessGPT: bridging policy

learning and language modeling. arXiv preprint arXiv:

2306.09200.

Fu L, Datta G, Huang H, et al. (2024) A touch, vision, and lan-

guage dataset for multimodal alignment. arXiv preprint ar-

Xiv:2402.13232.

Gadre SY, Wortsman M, Ilharco G, et al. (2023) CoWs on pasture:

baselines and benchmarks for language-driven zero-shot

object navigation. In: CVPR, pp. 23171–23181. IEEE.

Ganguli D, Lovitt L, Kernion J, et al. (2022) Red teaming language

models to reduce harms: methods, scaling behaviors, and

lessons learned. arXiv preprint arXiv:2209.07858.

Gao R, Si Z, Chang YY, et al. (2022) Objectfolder 2.0: a multi-

sensory object dataset for sim2real transfer. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 10598–10608. IEEE.

Gao J, Sarkar B, Xia F, et al. (2023) Physically grounded vision-

language models for robotic manipulation. In: CoRL.

Garrett CR, Chitnis R, Holladay R, et al. (2021) Integrated task and

motion planning. Annual review of control, robotics, and

autonomous systems 4: 265–293.

Gervet T, Chintala S, Batra D, et al. (2023) Navigating to objects in

the real world. arXiv preprint arXiv:2212.00922.

GoodwinW, Havoutis I and Posner I (2022a) You only look at one:

category-level object representations for pose estimation from

a single example. In: CoRL.

GoodwinW, Vaze S, Havoutis I, et al. (2022b) Zero-shot category-

level object pose estimation. In: ECCV.

Greenberg I and Mannor S (2021) Detecting rewards deterioration

in episodic reinforcement learning. In: ICML.

Guzhov A, Raue F, Hees J, et al. (2022) AudioCLIP: extending

clip to image, text and audio. In: ICASSP, pp. 976–980.

IEEE.

Ha H and Song S (2022) Semantic abstraction: open-world 3D

scene understanding from 2D vision-language models. In:

CoRL.

Han K, Wang Y, Chen H, et al. (2022) A survey on vision

transformer. IEEE Transactions on Pattern Analysis and

Machine Intelligence 99, 1.

He K, Zhang X, Ren S, et al. (2015) Deep residual learning for

image recognition. arXiv preprint arXiv:1512.03385.

He K, Gkioxari G, Dollár P, et al. (2017) Mask R-CNN. In: ICCV,

pp. 2980–2988. DOI: 10.1109/ICCV.2017.322.

He K, Chen X, Xie S, et al. (2022) Masked autoencoders are

scalable vision learners. In: CVPR, pp. 16000–16009.

He X, Lin Z, Gong Y, et al. (2023) AnnoLLM: making large

language models to be better crowdsourced annotators. arXiv

preprint arXiv:2303.16854.

Ho J, Jain A and Abbeel P (2020) Denoising diffusion probabilistic

models. In: NeurIPS.

Hong Y, Zhen H, Chen P, et al. (2023) 3D-LLM: injecting the 3D

world into large language models. arXiv preprint arXiv:

2307.12981.

Hsu KC, Hu H and Fisac JF (2023a) The safety filter: a unified

view of safety-critical control in autonomous systems. arXiv

preprint arXiv:2309.05837.

Hsu KC, Ren AZ, Nguyen DP, et al. (2023b) Sim-to-Lab-to-Real:

safe reinforcement learning with shielding and generalization

guarantees. Artificial Intelligence 314: 103811.

Hu A, Russell L, Yeo H, et al. (2023a) GAIA-1: a generative world

model for autonomous driving. arXiv preprint arXiv:

2309.17080.

Hu Y, Xie Q, Jain V, et al. (2023b) Toward general-purpose robots

via foundation models: a survey and meta-analysis. arXiv

preprint arXiv:2312.08782.

Hu X, Wang Y, Fan L, et al. (2024) Semantic anything in 3d

Gaussians. arXiv preprint arXiv:2401.17857.

Huang J, Xie S, Sun J, et al. (2021) Learning a decision module by

imitating driver’s control behaviors. In: CoRL, pp. 1–10.

PMLR.

Huang W, Abbeel P, Pathak D, et al. (2022a) Language models as

zero-shot planners: extracting actionable knowledge for

embodied agents. In: ICML.

Huang W, Xia F, Xiao T, et al. (2022b) Inner monologue: em-

bodied reasoning through planning with language models.

arXiv preprint arXiv:2207.05608.

Huang C, Mees O, Zeng A, et al. (2023a) Audio visual language

maps for robot navigation. arXiv preprint arXiv:2303.07522.

734 The International Journal of Robotics Research 44(5)



Huang C,Mees O, Zeng A, et al. (2023b) Visual language maps for

robot navigation. In: 2023 IEEE International Conference on

Robotics and Automation (ICRA), pp. 10608–10615. IEEE.

Huang W, Wang C, Zhang R, et al. (2023c) VoxPoser: composable

3D value maps for robotic manipulation with language

models. In: CoRL.

Janner M, Du Y, Tenenbaum J, et al. (2022) Planning with dif-

fusion for flexible behavior synthesis. In: ICML.

Jia Z, Liu F, Thumuluri V, et al. (2023) Chain-of-thought predictive

control. arXiv preprint arXiv:2304.00776.

Jiang Y, Gupta A, Zhang Z, et al. (2023) VIMA: general robot

manipulation with multimodal prompts. In: ICML.

Kapelyukh I, Vosylius V and Johns E (2023) DALL-E-Bot: in-

troducing web-scale diffusion models to robotics. IEEE

Robotics and Automation Letters 8(7): 3956–3963. DOI: 10.

1109/LRA.2023.3272516.

Karamcheti S, Nair S, Chen AS, et al. (2023) Language-driven

representation learning for robotics. In: RSS.

Kerbl B, Kopanas G, Leimkuehler T, et al. (2023) 3D Gaussian

splatting for real-time radiance field rendering. ACM

Transactions on Graphics 42(4): 1–14.

Kerr J, Kim CM, Goldberg K, et al. (2023) LERF: language

embedded radiance fields. In: ICCV, pp. 19729–19739.

Khan S, Naseer M, Hayat M, et al. (2022) Transformers in vision: a

survey. ACM Computing Surveys 54(10s): 1–41.

Kirillov A, Mintun E, Ravi N, et al. (2023) Segment anything. In:

ICCV, pp. 4015–4026.

Kobayashi S, Matsumoto E and Sitzmann V (2022) Decomposing

NeRF for editing via feature field distillation. In: NeurIPS.

Kumar A, Fu Z, Pathak D, et al. (2021) Rma: rapid motor ad-

aptation for legged robots. arXiv preprint arXiv:2107.04034.

Kusano KD, Beatty K, Schnelle S, et al. (2022) Collision

avoidance testing of the waymo automated driving system.

arXiv preprint arXiv:2212.08148.

Kwon M, Xie SM, Bullard K, et al. (2023) Reward design with

language models. In: ICLR.

Levesque H, Davis E and Morgenstern L (2012) The Winograd

schema challenge. In: KR.

Li C, Xia F, Martı́n-Martı́n R, et al. (2021) iGibson 2.0: object-

centric simulation for robot learning of everyday household

tasks. In: CoRL.

Li B, Weinberger KQ, Belongie S, et al. (2022a) Language-driven

semantic segmentation. In: ICLR.

Li C, Zhang R, Wong J, et al. (2022b) BEHAVIOR-1K: a

benchmark for embodied AI with 1,000 everyday activities

and realistic simulation. In: CoRL.

Li J, Li D, Xiong C, et al. (2022c) BLIP: bootstrapping language-

image pre-training for unified vision-language understanding

and generation. In: ICML.

Li LH, Zhang P, Zhang H, et al. (2022d) Grounded language-image

pre-training. In: CVPR,pp. 10965–10975.

Li Y, Fan H, Hu R, et al. (2023) Scaling language-image pre-

training via masking. In: CVPR.

Liang J, Huang W, Xia F, et al. (2023) Code as Policies: language

model programs for embodied control. In: ICRA,

pp. 9493–9500. IEEE.

Liao G, Li J, Bao Z, et al. (2024) Clip-gs: clip-informed gaussian

splatting for real-time and view-consistent 3d semantic un-

derstanding. arXiv preprint arXiv:2404.14249.

Lin J, Du Y, Watkins O, et al. (2023a) Learning to model the world

with language. arXiv preprint arXiv:2308.01399.

Lin J, Tang J, Tang H, et al. (2023b) AWQ: activation-aware

weight quantization for llm compression and acceleration.

arXiv preprint arXiv:2306.00978.

Lin K, Agia C, Migimatsu T, et al. (2023c) Text2Motion: from

natural language instructions to feasible plans. In: Special

Issue: Large Language Models in Robotics. Autonomous

Robots.

Liu PJ, Saleh M, Pot E, et al. (2018) Generating Wikipedia by

summarizing long sequences. In: ICLR.

Liu Y, Ott M, Goyal N, et al. (2019) RoBERTa: a robustly op-

timized BERT pretraining approach. arXiv preprint arXiv:

1907.11692.

Liu M, Zhu Y, Cai H, et al. (2023a) Partslip: low-shot part seg-

mentation for 3d point clouds via pretrained image-language

models. CVPR: 21736–21746.

Liu P, YuanW, Fu J, et al. (2023b) Pre-train, prompt, and predict: a

systematic survey of prompting methods in natural language

processing. ACM Computing Surveys 55(9): 1–35.

Liu S, Zeng Z, Ren T, et al. (2023c) Grounding DINO: marrying

DINO with grounded pre-training for open-set object de-

tection. arXiv preprint arXiv:2303.05499.

Liu W, Du Y, Hermans T, et al. (2023d) StructDiffusion: language-

guided creation of physically-valid structures using unseen

objects. In: RSS.

Luo R, Zhao S, Kuck J, et al. (2022) Sample-efficient safety as-

surances using conformal prediction. In: WAFR.

Lynch C and Sermanet P (2021) Language conditioned imitation

learning over unstructured data. In: Robotics: Science and

Systems.

Lynch C, Khansari M, Xiao T, et al. (2020) Learning latent plans

from play. In: CoRL, pp. 1113–1132. PMLR.

Ma S, Vemprala S, Wang W, et al. (2022) COMPASS: contrastive

multimodal pretraining for autonomous systems. In: IROS,

pp. 1000–1007. IEEE.

Ma YJ, Kumar V, Zhang A, et al. (2023a) LIV: language-image

representations and rewards for robotic control. In: ICML.

Ma YJ, Sodhani S, Jayaraman D, et al. (2023b) VIP: towards

universal visual reward and representation via value-implicit

pre-training. In:ICLR.

Mahmoudieh P, Pathak D and Darrell T (2022) Zero-shot reward

specification via grounded natural language. In ICML,

pp. 14743–14752. PMLR.

Majumdar A, Shrivastava A, Lee S, et al. (2020) Improving vision-

and-language navigation with image-text pairs from the web.

In: ECCV, pp. 259–274. Springer.

Mandi Z, Bharadhwaj H, Moens V, et al. (2022) CACTI: a

framework for scalable multi-task multi-scene visual imita-

tion learning. arXiv preprint arXiv:2212.05711.

Margolis GB and Agrawal P (2023) Walk these ways: tuning robot

control for generalization with multiplicity of behavior. In:

Conference on Robot Learning, pp. 22–31. PMLR.

Firoozi et al. 735



Mees O, Borja-Diaz J and Burgard W (2023) Grounding language

with visual affordances over unstructured data. In: ICRA,

pp. 11576–11582. IEEE.

Mildenhall B, Srinivasan PP, Tancik M, et al. (2021) Nerf: rep-

resenting scenes as neural radiance fields for view synthesis.

Communications of the ACM 65(1): 99–106.

Minderer M, Gritsenko A, Stone A, et al. (2022) Simple open-

vocabulary object detection with vision transformers. In:

ECCV, pp. 728–755. Springer.

Mirchandani S, Xia F, Florence P, et al. (2023) Large language

models as general pattern machines. arXiv preprint arXiv:

2307.04721.

Mu Y, Zhang Q, Hu M, et al. (2023) EmbodiedGPT: vision-

language pre-training via embodied chain of thought. arXiv

preprint arXiv:2305.15021.

Nair S, Mitchell E, Chen K, et al. (2022a) Learning language-

conditioned robot behavior from offline data and crowd-

sourced annotation. In: CoRL, pp. 1303–1315. PMLR.

Nair S, Rajeswaran A, Kumar V, et al. (2022b) R3M: a universal

visual representation for robot manipulation. arXiv preprint

arXiv:2203.12601.

Oord A, Li Y and Vinyals O (2018) Representation learning with

contrastive predictive coding. arXiv preprint arXiv:

1807.03748.

OpenAI (2023) GPT-4 technical report. arXiv preprint arXiv:

2303.08774.

Oquab M, Darcet T, Moutakanni T, et al. (2023) DINOv2: learning

robust visual features without supervision. arXiv preprint

arXiv:2304.07193.

Padalkar A, Pooley A, Jain A, et al. (2023) Open X-Embodiment:

robotic learning datasets and RT-X models. arXiv preprint

arXiv:2310.08864.

Palo ND, Byravan A, Hasenclever L, et al. (2023) Towards a

unified agent with foundation models. In: Workshop on

Reincarnating Reinforcement Learning at ICLR 2023.

Park JS, O’Brien JC, Cai CJ, et al. (2023a) Generative Agents:

interactive simulacra of human behavior. In: ACM Sympo-

sium on User Interface Software and Technology. ACM.

Park YJ, Wang H, Ardeshir S, et al. (2023b) Representation re-

liability and its impact on downstream tasks. arXiv preprint

arXiv:2306.00206.

Perez E, Huang S, Song F, et al. (2022) Red teaming language

models with language models. In: EMNLP.

Puig X, Ra K, Boben M, et al. (2018) VirtualHome: simulating

household activities via programs. In: CVPR, pp. 8494–8502.

Puig X, Undersander E, Szot A, et al. (2023) Habitat 3.0: a co-

habitat for humans, avatars and robots. arXiv preprint arXiv:

2310.13724.

Qin M, Li W, Zhou J, et al. (2023) Langsplat: 3d language

Gaussian splatting. arXiv preprint arXiv:2312.16084.

Qiu J, Li L, Sun J, et al. (2023) Large ai models in health in-

formatics: applications, challenges, and the future. IEEE

Journal of Biomedical and Health Informatics 27(12):

6074–6087. DOI: 10.1109/JBHI.2023.3316750.

Radford A, Narasimhan K, Salimans T et al. (2018) Improving

language understanding by generative pre-training. https://

openai.com/research/language-unsupervised

Radford A, Wu J, Child R, et al. (2019) Language Models Are

Unsupervised Multitask Learners. OpenAI Blog.

Radford A, Kim JW, Hallacy C, et al. (2021a) Learning trans-

ferable visual models from natural language supervision. In:

M Meila and T Zhang (eds) ICML, Proceedings of Machine

Learning Research, Vol. 139, 8748–8763. PMLR.

Radford A, Kim JW, Hallacy C, et al. (2021b) Learning trans-

ferable visual models from natural language supervision. In:

ICML, pp. 8748–8763.

Radosavovic I, Xiao T, James S, et al. (2023) Real-world robot

learning with masked visual pre-training. In: CoRL,

pp. 416–426. PMLR.

Raffel C, Shazeer N, Roberts A, et al. (2020) Exploring the limits

of transfer learning with a unified text-to-text transformer.

Journal of Machine Learning Research 21(1): 5485–5551.

Ramesh A, Pavlov M, Goh G, et al. (2021a) Zero-shot text-to-

image generation. In: ICML, pp. 8821–8831. PMLR.

Ramesh A, Pavlov M, Goh G, et al. (2021b) Zero-shot text-to-

image generation. In: MMeila and T Zhang (eds) Proceedings

of the 38th International Conference on Machine Learning,

Proceedings of Machine Learning Research, Vol. 139,

pp. 8821–8831. PMLR.

Ramesh A, Dhariwal P, Nichol A, et al. (2022) Hierarchical text-

conditional image generation with CLIP latents. arXiv pre-

print arXiv:2204.06125.

Ranftl R, Bochkovskiy A and Koltun V (2021) Vision transformers

for dense prediction. In: ICCV, pp. 12179–12188. PMLR.

Rashid A, Sharma S, Kim CM, et al. (2023) Language embedded

radiance fields for zero-shot task-oriented grasping. In: 7th

Annual Conference on Robot Learning (CoRL), pp. 178–200.

PMLR.

Reed S, Zolna K, Parisotto E, et al. (2022) A generalist agent. arXiv

preprint arXiv:2205.06175.

Reid M, Yamada Y and Gu SS (2022) Can Wikipedia help offline

reinforcement learning? arXiv preprint arXiv:2201.12122.

Ren AZ, Dixit A, Bodrova A, et al. (2023) Robots that ask for help:

uncertainty alignment for large language model planners. In:

CoRL.

Rombach R, Blattmann A, Lorenz D, et al. (2022) High-resolution

image synthesis with latent diffusion models. In: CVPR.

Savva M, Kadian A, Maksymets O, et al. (2019) Habitat: a

platform for embodied AI research. In: ICCV.

Sennrich R, Haddow B and Birch A (2016) Neural machine

translation of rare words with subword units. In: ACL.

Sermanet P, Ding T, Zhao J, et al. (2023) Robovqa: multimodal

long-horizon reasoning for robotics. arXiv:2311.00899.

Shafiullah NMM, Paxton C, Pinto L, et al. (2023) CLIP-fields:

weakly supervised semantic fields for robotic memory. In:

RSS.

Shah R and Kumar V (2021) RRL: resnet as representation for

reinforcement learning. In: ICML.

Shah S, Dey D, Lovett C, et al. (2017) AirSim: high-fidelity visual

and physical simulation for autonomous vehicles. In: Field

and Service Robotics.
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