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Abstract

We survey applications of pretrained foundation models in robotics. Traditional deep learning models in robotics are
trained on small datasets tailored for specific tasks, which limits their adaptability across diverse applications. In contrast,
foundation models pretrained on internet-scale data appear to have superior generalization capabilities, and in some
instances display an emergent ability to find zero-shot solutions to problems that are not present in the training data.
Foundation models may hold the potential to enhance various components of the robot autonomy stack, from perception to
decision-making and control. For example, large language models can generate code or provide common sense reasoning,
while vision-language models enable open-vocabulary visual recognition. However, significant open research challenges
remain, particularly around the scarcity of robot-relevant training data, safety guarantees and uncertainty quantification,
and real-time execution. In this survey, we study recent papers that have used or built foundation models to solve robotics
problems. We explore how foundation models contribute to improving robot capabilities in the domains of perception,
decision-making, and control. We discuss the challenges hindering the adoption of foundation models in robot autonomy
and provide opportunities and potential pathways for future advancements. The GitHub project corresponding to this
paper can be found here: https://github.com/robotics-survey/Awesome-Robotics-Foundation-Models.
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these large models within the robotics domain for perception,
prediction, planning, and control.

Prior to the emergence of foundation models, traditional
deep learning models for robotics were typically trained on
limited datasets gathered for distinct tasks (Sun et al., 2022a).
Conversely, foundation models are pre-trained on extensive
and diverse data, which has been proven in other domains

1. Introduction

Foundation models are pretrained on extensive internet-scale
data and can be fine-tuned for adaptation to a wide range of
downstream tasks. Foundation models have demonstrated
significant breakthroughs in vision and language processing;
examples include BERT (Devlin et al., 2018), GPT-3 (Brown
et al., 2020), GPT-4 (OpenAl, 2023), CLIP (Radford et al.,
2021a), DALL-E (Ramesh et al., 2021a), and PaLM-E
(Driess et al., 2023). Foundation models have the potential
to unlock new possibilities in robotics domains such as
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autonomous driving, household robotics, industrial robotics,
assistive robotics, medical robotics, field robotics, and multi-
robot systems. Pretrained Large Language Models (LLMs),
Large Vision-Language Models (VLMs), Large Audio-
Language Models (ALMs), and Large Visual-Navigation
Models (VNMs) can be utilized to improve various tasks
in robotics settings. The integration of foundation models into
robotics is a rapidly evolving area, and the robotics com-
munity has very recently started exploring ways to leverage
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(such as natural language processing, computer vision, and
healthcare) to significantly expand adaptability, generaliza-
tion capability, and overall performance (Qiu et al., 2023).
Ultimately, foundation models may hold the potential to yield
these same benefits in robotics. Knowledge transfer from
foundation models may reduce training time and computa-
tional resources compared to task-specific models. Particu-
larly relevant to robotics, multimodal foundation models can
fuse and align multimodal heterogeneous data gathered from
various sensors into compact homogeneous representations
needed for robot understanding and reasoning (Sun et al.,
2023e). These learned representations hold the potential to be
used in any part of the autonomy stack, including perception,
decision-making, and control. Furthermore, foundation
models provide zero-shot capabilities, which refer to the
ability of an Al system to perform tasks without prior ex-
amples or dedicated training data for that specific task. The
would enable robots to generalize their learned knowledge to
novel cases, enhancing adaptability and flexibility for robots
in unstructured settings.

Integrating foundation models into robotic systems may
enable context-aware robotic systems by enhancing the
robot’s ability to perceive and interact with the environment.
For example, in the perception domain, Large Vision-
Language Models (VLMs) have been found to provide
cross-modal understanding by learning associations be-
tween visual and textual data, aiding tasks such as zero-shot
image classification, zero-shot object detection (Zhang
et al., 2023b), and 3D classification (Hong et al., 2023).
As another example, language grounding in the 3D world
(Chen et al., 2022a) (aligning contextual understanding of
VLMs to the 3-dimensional (3D) real world) may enhance a
robot’s spatial awareness by associating words with specific
objects, locations, or actions within the 3D environment.

In the decision-making or planning domain, LLMs and
VLMs have been found to assist robots in task specification for
high-level planning (Yang et al., 2023b). Robots can perform
more complex tasks by leveraging linguistic cues in manipu-
lation, navigation, and interaction. For example, for robot
policy learning techniques like imitation learning (Mandi et al.,
2022) and reinforcement learning (Palo et al., 2023), foundation
models seem to offer the possibility to improve data efficiency
and enhance contextual understanding. In particular, language-
driven rewards can be used to guide RL agents by providing
shaped rewards (Kwon et al., 2023). Also, researchers have
employed language models to provide feedback for policy
learning techniques (Feng et al., 2023). Some works have
shown that a VLM model’s visual question-answering (VQA)
capability can be harnessed in robotics use cases. For example,
researchers have used VLMs to answer questions related to
visual content to aid robots in accomplishing their tasks (Du
et al., 2023a). Also, researchers have stated utilizing VLMs to
help with data annotation, by generating descriptive labels for
visual content (He et al., 2023).

Despite the transformative capabilities of foundation
models in vision and language processing, the generalization
and fine-tuning of foundation models for real-world robotics

tasks remain challenging. These challenges include: (1) Data
Scarcity: how to obtain internet-scale data for robot ma-
nipulation, locomotion, navigation, and other robotics tasks,
and how to perform self-supervised training with this data, (2)
High Variability: how to deal with the large diversity in
physical environments, physical robot platforms, and potential
robot tasks while still maintaining the generality required for a
foundation model, (3) Uncertainty Quantification: how to
deal with (i) instance-level uncertainty such as language
ambiguity or LLM hallucination; (ii) distribution-level un-
certainty; and (iii) distribution-shift, especially resulting from
closed-loop robot deployment, (4) Safety Evaluation: How to
rigorously test for the safety of a foundation model-based
robotic system (i) prior to deployment, (ii) as the model is
updated throughout its lifecycle, and (iii) as the robot operates
in its target environments, (5) Real-Time Performance: how
to deal with the high inference time of some foundation
models, which could hinder their deployment on robots, and
how to accelerate inference in foundation models to the speed
required for online decision-making, and (6) Reproducibility:
how to reproduce research and benchmark robotic-specific
foundation models developed on particular hardware setups.

In this survey, we study the existing literature on the use
of foundation models in robotics. We study current ap-
proaches and applications, present current challenges,
suggest directions for future research to address these
challenges, and identify potential risks exposed by inte-
grating foundation models into robot autonomy. Another
survey on foundation models in robotics appeared simul-
taneously with ours on arXiv (Xiao et al., 2023b). In
comparison with that paper, ours emphasizes future chal-
lenges and opportunities, including safety and risk, and ours
has a stronger emphasis on comparisons in applications,
algorithms, and architectures among the existing papers in
this space. In contrast to some existing surveys that focus on
a specific in-context instruction, such as prompts (Liu et al.,
2023b), vision transformers (Khan et al., 2022), or decision-
making (Wen et al., 2023; Yang et al., 2023b;), we provide a
broader perspective to connect distinct research threads in
foundation models organized around their relevance to and
application to robotics. Conversely, our scope is much
narrower than the paper (Bommasani et al., 2021), which
explores the broad application of foundation models across
many disciplines, of which robotics is one. In another
concurrent work (Hu et al., 2023b), the authors survey
general-purpose robotics using foundation models. Begin-
ning with discussions on classical robotics, including per-
ception, planning, and control, this work addresses the
primary limitations of conventional robotics through the use
of foundation models. Compared to this work, our survey
excludes classical methods and instead offers a more
comprehensive discussion on various components of the
autonomy stack, including in-depth examinations of open-
vocabulary perception and embodied Al. Additionally, our
survey provides detailed discussions on challenges and
future opportunities, such as language ambiguity, real-time
inference, and safety evaluations. We hope this paper can
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provide clarity regarding areas of recent progress and ex-
isting deficiencies in the research, and point the way forward
to future opportunities and challenges facing this research
area. Ultimately, we aim to give a resource for robotics
researchers to learn about this exciting new area.

We limit the scope of this survey to papers that fall into
one of the following categories:

1. Background Papers: Papers that do not explicitly link to
robotics, but are nonetheless required for understanding
foundation models. These papers are discussed in the
background section (Section 2) of the survey paper.

2. Robotics Papers: Papers that integrate a foundation
model into a robotic system in a plug-and-play fashion,
papers that adapt or fine-tune foundation models for
robotic systems, or papers that build new robotic-
specific foundation models.

3. Robotics-Adjacent Papers: Papers that present
methods or techniques applied to areas adjacent to
robotics (e.g., computer vision, embodied Al), with a
clear path to future application in robotics.

This survey is organized as follows: In Section 2, we provide
an introduction to foundation models, including LLMs, vision

transformers, VLMs, embodied multimodal language models,
and visual generative models. In addition, in the last part of this
section, we discuss different training methods used to train
foundation models. In Section 3, we present a review of how
foundation models are integrated into different tasks for
decision-making in robotics. First, we discuss robot policy
learning using language-conditioned imitation learning, and
language-assisted reinforcement learning. Then, we discuss
how to use foundation models to design a language-conditioned
value function that can be used for planning purposes. Next,
robot task specification and code generation for task planning
using foundation models are presented. In Section 4, we study
various perception tasks in robotics that have the potential to be
enhanced by employing foundation models. These tasks in-
clude semantic segmentation, 3D scene representation, zero-
shot 3D classification, affordance prediction, and dynamics
prediction. In Section 5, we present papers about Embodied
Al agents, generalist Al agents, as well as simulators and
benchmarks developed for embodied Al research. In Section 6,
we conclude the survey by discussing different challenges for
employing foundation models in robotic systems and proposing
potential avenues for future research. Finally, in Section 7, we
offer the concluding remarks. Figure 1 summarizes some ap-
plications of foundation models in robotics.

Language-Conditioned
Imitation Learning

e.g., CLIPort (Shridhar et al. 2022), Play-LMP (Lynch et al. 2020),
PerAct (Shridhar et al. 2023), Multi-Context Imitation (Lynch and Sermanet 2021),
CACTI (Mandi et al. 2022), Voltron (Karamcheti et al. 2023)

Robot Policy Learning

Language-Assisted
Reinforcement Learning

e.g., Adaptive Agent (AdA) (Team et al. 2023), Palo et al. (2023)

Robot Transformers

LATTE (Bucker et al. 2023)

e.g., RT-1 (Brohan et al. 2023a), RT-2 (Zitkovich et al. 2023), RT-X (Padalkar et al. 2023),
PACT (Bonatti et al. 2023), Xiao et al. (2022), Radosavovic et al. (2023),

Language-Image
Goal-Conditioned
Value Learning

Robotics

VoxPoser (Huang et al. 2023c), Mahmoudieh et al. (2022), VIP (Ma et al. 2023b),
LIV (Ma et al. 2023a), LOREL (Nair et al. 2022a)

High-Level . .
Task Planning e.g., NL2TL (Chen et al. 2023e), Chen et al. (2023d)

e.g., R3M (Nair et al. 2022b), SayCan (Brohan et al. 2023b), Inner Monologue (Huang et al. 2022b), }

LLM-Based e.g., ProgPrompt (Singh et al. 2023), Code-as-Policy (Liang et al. 2023),
Code Generation ChatGPT-Robotics (Vemprala et al. 2023)
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Open-Vocabulary
Object Detection
and 3D classification

Open-Vocabulary
Semantic Segmentation

Open-Vocabulary 3D
Scene Representation

e.g., OWL-ViT (Minderer et al. 2022), GLIP (Li et al. 2022d),
Grounding DINO (Liu et al. 2023c), PointCLIP (Zhang et al. 2022a),
PointBERT (Yu et al. 2022), ULIP (Xue et al. 2022, 2023)

e.g., LSeg (Li et al. 2022a), Segment Anything (Kirillov et al. 2023),
FastSAM (Zhao et al. 2023), MobileSAM (Zhang et al. 2023a),
Track Anything Model (TAM) (Yang et al. 2023a)

e.g., CLIP-NERF (Wang et al. 2022), LERF (Kerr et al. 2023),
DFF (Kobayashi et al. 2022)

e.g., Affordance Diffusion (Ye et al. 2023b), VRB (Bahl et al. 2023)

e.g., Huang et al. (2022a), Statler (Yoneda et al. 2023), EmbodiedGPT (Mu et al. 2023),
Embodied Al MineDojo (Fan et al. 2022), VPT (Baker et al. 2022), Kwon et al. (2023),
Voyager (Wang et al. 2023b), ELLM (Du et al. 2023b)

Figure 1. Overview of robotics tasks leveraging foundation models.
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2. Foundation models background

Foundation models have billions of parameters and are
pretrained on massive internet-scale datasets. Training
models of such scale and complexity involve substantial
costs. Acquiring, processing, and managing data can be
costly. The training process demands significant compu-
tational resources, requiring specialized hardware such as
GPUs or TPUs, as well as software and infrastructure for
model training which requires financial resources. Addi-
tionally, training a foundation model is time-intensive,
which can translate to even higher costs. Hence these
models are often used as plug-and-play modules (which
refers to the integration of foundation models into various
applications without the need for extensive customization).
Table 1 provides details about commonly used foundation
models. In the rest of this section, we introduce LLMs,
vision transformers, VLMs, embodied multi-modal lan-
guage models, and visual generative models. In the last part
of this section, we introduce different training methods that
are used to train foundation models.

Table 1. Large Pretrained Models.

2.1. Terminology and
mathematical preliminaries

In this section, we first introduce common terminologies in
the context of foundation models and describe basic
mathematical details and training practices for various types
of foundation models.

2.1.1. Tokenization. Given a sequence of characters, to-
kenization is the process of dividing the sequence into smaller
units, called tokens. Depending on the tokenization strategy,
tokens can be characters, segments of words, complete
words, or portions of sentences. Tokens are represented as 1-
hot vectors of dimension equal to the size of the total vo-
cabulary and are mapped to lower-dimensional vectors of real
numbers through a learned embedding matrix. An LLM takes
a sequence of these embedding vectors as raw input, pro-
ducing a sequence of embedding vectors as raw output. These
output vectors are then mapped back to tokens and hence to
text. GPT-3, for example, has a vocabulary of 50,257 dif-
ferent tokens, and an embedding dimension of 12,288.

Model Architecture Size Training Data What to Pretrain How to Pretrain Hardware
CLIP (Radford et al., ViT-L/14@336px  0.307B 400M image-text Zero-shot Contrastive pre- Fine-tuned
2021a) and a text encoder pairs image training CLIP model
(Radford et al., classification is trained for
2019) 12 days on
256 V100
GPUs
GPT-3 (Brown et al.,  Transformer (slight 175B Common Crawl Text output Autoregressive  NPA®
2020) modification of (about a trillion model
GPT-2) words)
GPT-4 (OpenAl, 2023) NPA NPA NPA Text output NPA NPA
PaLI-X (Chen et al.,  Encoder-decoder 55B 10B image-text pairs Text and image Autoregressive Runs on multi-
2023c¢) from WebLI (Chen  to text output ~ model TPU cloud
et al., 2022b) and service
auxiliary tasks
DALL-E (Ramesh Decoder-only 12B 250 M text-image Zero-shot text-  Autoregressive  NPA
et al., 2021b) transformer pairs to-image model
generation
DALL-E2 (Ramesh A prior based on 35B CLIP and DALL-E  Zero-shot text- Diffusion NPA
et al., 2022) CLIP+ a decoder (Ramesh et al., to-image
2021b) generation
DINOV2 (Oquab et al., ViT-g/14 1.1B LVD-142M (Oquab  Visual-features Discriminative 20 nodes
2023) et al., 2023) (image-level equipped
and pixel- with 8
level) V100-32GB
GPUs
SAM (Kirillov et al., MAE (He et al., 632M for SA-1B dataset Zero-shot Supervised 256 A100
2023) 2022) vision ViT-H + (Kirillov et al., promptable learning GPUs for 68
transformer + 63M for 2023) that includes ~ image hours
CLIP (Radford CLIP 1.1B segmentation ~ segmentation
et al., 2021b) text  text masks on 11M
encoder encoder images

“NPA stands for not publicly available.
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The token decoding (from low-dimension real-valued
embedding vectors to high-dimension 1-hot vectors) is not
deterministic, resulting in a weighting for each possible
token in the vocabulary. These weightings are often used by
LLMs as probabilities over tokens, to introduce randomness
in the text generation process. For example, the temperature
parameter in GPT-3 blends between always choosing the
top-weighted token (temperature of 0) and drawing
the token based on the probability distribution suggested by
the weights (temperature of 1). This source of randomness is
only in the token decoding process, not in the LLM itself. To
the authors’ knowledge, this is, in fact, the only source of
randomness in the GPT family of models.

One of the most common tokenization schemes, which is
used by the GPT family of models, is called byte-pair
encoding (Sennrich et al., 2016). Byte-pair encoding
starts with a token for each individual symbol (e.g., letter,
punctuation), then recursively builds tokens by grouping
pairs of symbols that commonly appear together, building
up to assign tokens to larger and larger groups (pairs of
pairs, etc.) that frequently appear together in a text corpus.
The tokenization process can extend beyond text data to
diverse contexts, encompassing various data modalities like
images, videos, and robot actions. In these scenarios, the
respective data modalities can be treated as sequential data
and tokenized similarly to train generative models. For
example, just as language constitutes a sequence of words,
an image comprises a sequence of image patches, force
sensors yield a sequence of sensory inputs at each time step,
and a series of actions represent the sequential nature of
tasks for a robot.

2.1.2. Generative Models. A generative model is a model
that learns to sample from a probability distribution to create
examples of data that seem to be from the same distribution
as the training data. For example, a face generation model
can produce images of faces that cannot be distinguished
from the set of real images used to train the model. These
models can be trained to be conditional, meaning they
generate samples from a conditional distribution condi-
tioned on a wide range of possible conditioning informa-
tion. For example, a gender conditional face generator can
generate images of female or male faces, where the desired
gender is given as a conditioning input to the model.

2.1.3. Discriminative Models. Discriminative models are
used for regression or classification tasks. In contrast to
generative models, discriminative models are trained to
distinguish between different classes or categories. Their
emphasis lies in learning the boundaries between classes
within the input space. While generative models learn to
sample from the distribution over the data, discriminative
models learn to evaluate the probability distribution of the
output labels given the input features, or (depending on how
the model is trained) learn to evaluate some statistic of the
probability distribution over the outputs, such as the ex-
pected output given an input.

2.1.4. Transformer architecture. Most foundation models
are built on the transformer architecture, which has been
instrumental in the rise of foundation models and large
language models. The following discussion was synthesized
from Vaswani et al. (2017), as well as online blogs, un-
published reports, and Wikipedia (Dugas, 2023; Thickstun,
2023; Wikipedia, 2023). A transformer acts simultaneously
on a collection of embedded token vectors (xi, ..., xy)
known as a context window. The key enabling innovation of
the Transformer architecture is the multi-head self-attention
mechanism originally proposed in the seminal work
(Vaswani et al., 2017). In this architecture, each attention
head computes a vector of importance weights that corre-
sponds to how strongly a token in the context window x;
correlates with other tokens in the same window x;. Each
attention head mathematically encodes different notions of
similarity, through different projection matrices used in the
computation of the importance weights. Each head can be
trained (backward pass) and evaluated (forward pass) in
parallel across all tokens and across all heads, leading to
faster training and inference when compared with previous
models based on RNNs or LSTMs.

Mathematically, an attention head maps each token x; in
the context window to a “query” ¢q; = W;xi, and each other
token in the context head x; to a “key” k; = W}x;. The
similarity between query and key is then measured through
a scaled dot product, g k;/ V/d, where d is the dimension of
the query and key vectors. A softmax is then taken over all j
to give weights a;; representing how much x; “attends to” x;.
The tokens are then mapped to “values” with v; = Wx;,
and the output of the attention for position i is then given as a
sum over values weighted by attention weights, > a;v;.
One of the key reasons for the success of the transformer
attention model is that it can be efficiently computed with
GPUs and TPUs by parallelizing the preceding steps into
matrix computations,

.
attn(Q, K, V) = softmax (%) vV, 1)

where Q, K, V are matrices with rows qiT s le , and vl.T s
respectively. Each head in the model produces this com-
putation independently, with different W,, W, W, matrices
to encode different kinds of attention. The outputs from each
head are then concatenated, normalized with a skip con-
nection, passed through a fully connected ReLU layer, and
normalized again with a skip connection to produce the
output of the attention layer. Multiple layers are arranged in
various ways to give “encoders” and “decoders,” which
together make up a transformer.

The size of a transformer model is typically quantified by
(i) the size of the context window, (ii) the number of at-
tention heads per layer, (iii) the size of the attention vectors
in each head, and (iii) the number of stacked attention
layers. For example, GPT-3’s context window is 2048 to-
kens (corresponding to about 1500 words of text), each
attention layer has 96 heads, each head has attention vectors
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of 128 dimensions, and there are 96 stacked attention layers
in the model.

The basic multi-head attention mechanism does not
impose any inherent sense of sequence or directionality in
the data. However, transformers—especially in natural
language applications—are often used as sequence pre-
dictors by imposing a positional encoding on the input token
sequence. They are then applied to a token sequence au-
toregressively, meaning they predict the next token in the
sequence, add that token to their context window, and re-
peat. This concept is elaborated below.

2.1.5. Autoregressive models. The concept of autore-
gression has been applied in many fields as a representation
of random processes whose outputs depend causally on the
previous outputs. Autoregressive models use a window of
past data to predict the next data point in a sequence. The
window then slides one position forward, recursively in-
gesting the predicted data point into the window and ex-
pelling the oldest data point from the window. The model
again predicts the next data point in the sequence, repeating
this process indefinitely. Classical linear autoregressive
models such as Auto-Regressive Moving Average (ARMA)
and Auto-Regressive Moving Average with eXogenous
input (ARMAX) models are standard statistical tools dating
back to at least the 1970s (Box et al., 2015). These modeling
concepts were adapted to deep learning models first with
RNNSs, and later LSTMs, which are both types of learnable
nonlinear autoregressive models. Transformer models, al-
though they are not inherently autoregressive, are often
adapted to an autoregressive framework for text prediction
tasks.

For example, the GPT family (Radford et al., 2018)
builds on the original transformer model by using a mod-
ification introduced in Liu et al. (2018) that removes the
transformer encoder blocks entirely, retaining just the
transformer decoder blocks. This has the advantage of re-
ducing the number of model parameters by close to half
while reducing redundant information that is learned in both
the encoder and decoder. During training, the GPT model
seeks to produce an output token from the tokenized corpus
X = (x1,...,x,) to minimize the negative log-likelihood
within the context window of length N,

LLLM = —ZlogP(x, |Xl~,N, ...,X,‘,l). (2)

This results in a large pretrained model that autoregressively
predicts the next likely token given the tokens in the context
window. Although powerful, the unidirectional autore-
gressive nature of the GPT family means that these models
may lag in performance on bidirectional tasks such as
reading comprehension.

2.1.6. Masked Auto-Encoding. To address the unidirec-
tional limitation of the GPT family and allow the model to
make bidirectional predictions, works such as BERT

(Devlin et al., 2018) use masked auto-encoding. This is
achieved through an architectural change, namely the ad-
dition of a bidirectional encoder, as well as a novel pre-
training objective known as masked language modeling
(MLM). The MLM task simply masks a percentage of the
tokens in the corpus and requires the model to predict these
tokens. Through this procedure, the model is encouraged to
learn the context that surrounds a word rather than just the
next likely word in a sequence.

2.1.7. Contrastive learning. Visual-language foundation
models such as CLIP (Radford et al., 2021a) typically rely
on different training methods from the ones used with large
language models, which encourage explicitly predictive
behavior. Visual-language models use contrastive repre-
sentation learning, where the goal is to learn a joint em-
bedding space between input modalities where similar
sample pairs are closer than dissimilar ones. The training
objective for many VLMs is some variation of the objective
function,

exp(sim(v;, u;)/7)

v—u)
0 = —log SV exp(sim(v;, ) /7)’ v
) _ 1y SXP(sim(w;, Vi) /7)
(1(' - log Zﬁj:] eXP(Sim(Ui, Vk)/T)’ Y
- 1 vou) u—v)
L=52 (= (1 =24, ®

i=1

This objective function was popularized for multimodal
input by ConVIRT (Zhang et al., 2022b) and first presented
in prior works (Chen et al., 2020; Oord et al., 2018; Sohn,
2016; Wu et al., 2018). This objective function trains the
image and text encoders to preserve mutual information
between the true text and image pairs. In these equations, u;
and v; are the /™ encoded text and image respectively from
i€l,..., Nimage and text pairs. The sim operation is the
cosine similarity between the text and image embeddings,
and 7 is a temperature term. In CLIP (Radford et al., 2021a)
the authors use a symmetric cross-entropy loss, meaning the
final loss is an average of the two loss components where
each is equally weighted (i.e., 2 = 0.5).

2.1.8. Diffusion models. Outside of large language models
and multi-modal models such as VLMs, diffusion models for
image generation (e.g., DALL-E2) (Ramesh et al., 2022) are
another class of foundation models considered in this survey.
Although diffusion models were established in prior work
(Sohl-Dickstein et al., 2015; Song and Ermon, 2019) the
diffusion probabilistic model presented in Ho et al. (2020)
popularized the method. The diffusion probabilistic model is
a deep generative model that is trained in an iterative forward
and reverse process. The forward process adds Gaussian
noise to an input xy in a Markov chain until x7 when the
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result is zero mean isotropic noise. This means the forward
process produces a trajectory of noise g(x;.7 | xo) as,

‘I(X1:T|X0):: H(J(Xt|xt—1)~ (6)

=1

~

At each time step g(x/x,_;) is described by a normal dis-
tribution with mean /1 — f,x,_ and covariance I where
p; is scheduled or a fixed hyperparameter.

The reverse process requires the model to learn to the
transitions that will de-noise the zero-mean Gaussian and
produce the input image. This process is also defined as a
Markov chain where the transition distribution at time ¢ is
Po(%i1[%) =N (X135 (%,2), o X ). For complete-
ness, the reverse process Markov chain is given by,

Po(Xo.7)=p(xr) IZ[PO(X:—I Ix;). @)

t=1

Diffusion models are trained using a reduced form of the
evidence lower bound loss function that is typical of var-
iational generative models like variational autoencoders
(VAEs). The reduced loss function used for training is

L=E, | Dxw(q(xz| xo)[lp(x7))

+ZDKL(C](xt—1 |xt5X0) ||p0(xz—1|xt) - Ingﬁ(XO | xl) s
>1
(®)

where Dyp(qllp) denotes Kullback—Leibler divergence,
which is a measure of how different a distribution ¢ is from a
distribution p.

2.2. Large Language Model (LLM) examples
and historical context

Large Language Models (LLMs) have billions of param-
eters and are trained on trillions of tokens. This large scale
has allowed models such as GPT-2 (Radford et al., 2019)
and BERT (Devlin et al., 2018) to achieve state-of-the-art
performance in the Winograd Schema challenge (Levesque
et al,, 2012) and the General Language Understanding
Evaluation (GLUE) (Wang et al., 2018) benchmarks, re-
spectively. Their successors include GPT-3 (Brown et al.,
2020), LLaMA (Touvron et al., 2023a), and PalLM
(Chowdhery et al., 2022) has grown considerably in the
number of parameters (typically now over 100 billion),
the size of the context window (typically now over 1000
tokens), and the size of the training data set (typically
now 10s of terabytes of text). GPT-3 is trained on the
Common Crawl dataset. Common Crawl contains peta-
bytes of publicly available data over 12 years of web
crawling and includes raw web page data, metadata, and
text extracts. LLMs can also be multi-lingual. For ex-
ample, GLM-130B (Zeng et al., 2023a) is a bilingual
(English and Chinese) pretrained language model with

130 billion parameters. LLMs can also be fine-tuned, a
process by which the model parameters are adjusted with
domain-specific data to align the performance of the LLM
to a specific use case. For example, GPT-3 and GPT-4
(OpenAl, 2023) have been fine-tuned using reinforce-
ment learning with human feedback (RLHF).

2.3. Vision transformers

A Vision Transformer (ViT) (Dosovitskiy et al., 2021; Han
et al., 2022; Khan et al., 2022) is a transformer architecture
for computer vision tasks including image classification
segmentation, and object detection. A ViT treats an image as
a sequence of image patches referred to as tokens. In the
image tokenization process, an image is divided into patches
of fixed size. Then, the patches are flattened into a one-
dimensional vector, which is referred to as linear embed-
ding. To capture the spatial relationships between image
patches, positional information is added to each token. This
process is referred to as position embedding. The image
tokens incorporated with position encoding are fed into the
transformer encoder, and the self-attention mechanism
enables the model to capture long-term dependencies and
global patterns in the input data. In this paper, we focus only
on those ViT models with a large number of parameters.
VIiT-G (Zhai et al., 2022) scales up the ViT model and has
2B parameters. Additionally, ViT-e (Chen et al., 2022b) has
4B parameters. ViT-22 B (Dehghani et al., 2023) is a vision
transformer model at 22 billion parameters, which is used in
PaLM-E and PaLI-X (Chen et al., 2023c) and helps with
robotics tasks.

DINO (Caron et al., 2021) is a self-supervised learning
method, for training ViT. DINO is a form of knowledge
distillation with no labels. Knowledge distillation is a
learning framework where a smaller model (student net-
work) is trained to mimic the behavior of a larger more
complex model (teacher network). Both networks share the
same architecture with different sets of parameters. Given a
fixed teacher network, the student network learns its pa-
rameters by minimizing the cross-entropy loss w.r.t. the
student network parameters. The neural network architec-
ture is composed of ViT or ResNet (He et al., 2015)
backbone and a projection head that includes layers of
multi-layer perception (MLP). Self-supervised ViT features
learned using DINO contain explicit information about the
semantic segmentation of an image, including scene layout
and object boundaries, with such clarity that is not achieved
using supervised ViTs or ConvNets.

DINOv2 (Oquab et al., 2023) provides a variety of
pretrained visual models that are trained with different
vision transformers (ViT) on the LVD-142M dataset in-
troduced in Oquab et al. (2023). It is trained using a dis-
criminative self-supervised method on a compute cluster of
20 nodes equipped with 8 V100-32 GB GPUs. DINOv2
provides various visual features at the image (e.g., detec-
tion) or pixel level (e.g., segmentation). SAM (Kirillov
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et al.,, 2023) provides zero-shot promptable image seg-
mentation. It is discussed in more detail in Section 4.

2.4. Multimodal vision-language models (VLMs)

Multimodal refers to the ability of a model to accept dif-
ferent “modalities” of inputs, for example, images, texts, or
audio signals. Visual-language models (VLM) are a type of
multi-modal model that takes in both images and text. A
commonly used VLM in robotics applications is Contras-
tive Language-Image Pre-training (CLIP) (Radford et al.,
2021a). CLIP offers a method to compare the similarity
between textual descriptions and images. CLIP uses
internet-scale image-text pairs data to capture the semantic
information between images and text. CLIP model archi-
tecture contains a text encoder (Radford et al., 2019) and an
image encoder (a modified version of vision transformer
ViT) that are trained jointly to maximize the cosine simi-
larity of the image and text embeddings. CLIP uses con-
trastive learning together with language models and visual
feature encoders to incorporate models for zero-shot image
classification.

BLIP (Li et al., 2022c) focuses on multimodal learning by
jointly optimizing three objectives during pretraining. These
objectives include Image-Text Contrastive Loss, Image-Text
Matching Loss, and Language Modeling Loss. The method
leverages noisy web data by bootstrapping captions, en-
hancing the training process. CLIP* (Zeng et al., 2023b) aims
to build well-aligned and instance-based text-image-point
proxies. It learns semantic and instance-level aligned point
cloud representations using a cross-modal contrastive ob-
jective. FILIP (Yao et al., 2022) focuses on achieving finer-
level alignment in multimodal learning. It incorporates a
cross-modal late interaction mechanism that utilizes token-
wise maximum similarity between visual and textual tokens.
This mechanism guides the contrastive objective and im-
proves the alignment between visual and textual information.
FLIP (Li et al., 2023) proposes a simple and more efficient
training method for CLIP. FLIP randomly masks out and
removes a significant portion of image patches during
training. This approach aims to improve the training effi-
ciency of CLIP while maintaining its performance.

2.5. Embodied multimodal language models

An embodied agent is an Al system that interacts with a
virtual or physical world. Examples include virtual assis-
tance or robots. Embodied language models are foundation
models that incorporate real-world sensor and actuation
modalities into pretrained large language models. Typical
vision-language models are trained on general vision-
language tasks such as image captioning or visual
question answering. PaLM-E (Driess et al., 2023) is a
multimodal language model that has been trained on not
only internet-scale general vision-language data, but also on
embodied, robotics data, simultaneously. In order to connect

the model to real-world sensor modalities, PaLM-E’s ar-
chitecture injects (continuous) inputs such as images, low-
level states, or 3D neural scene representations into the
language embedding space of a decoder-only language
model to enable the model to reason about text and other
modalities jointly. The main PaLM-E version is built from
the PaLM LLM (Chowdhery et al., 2022) and a ViT
(Dehghani et al., 2023). The ViT transforms an image into a
sequence of embedding vectors, which are projected into the
language embedding space via an affine transformation. The
whole model is trained end-to-end, starting from a pre-
trained LLM and ViT model. The authors also explore
different strategies, such as freezing the LLM and just
training the ViT, which leads to worse performance. Given
multimodal inputs, the output of PaLM-E is text decoded
auto-regressively. In order to connect this output to a robot
for control, language conditioned short-horizon policies can
be used. In this case, PaALM-E acts as a high-level control
policy. Experiments show that a single PaLM-E, in addition
to being a vision-language generalist, is able to perform
many different robotics tasks over multiple robot em-
bodiments. The model exhibits positive transfer; that is,
simultaneously training on internet-scale language, general
vision-language, and embodied domains leads to higher
performance compared to training the model on single tasks.

2.6. Visual generative models

Web-scale diffusion models such as OpenAl’s DALL-E
(Ramesh et al., 2021b) and DALL-E2 (Ramesh et al.,
2022) provide zero-shot text-to-image generation. They
are trained on hundreds of millions of image-caption pairs
from the internet. These models learn a language-
conditioned distribution over images from which an im-
age can be generated using a given prompt. The DALL-E2
architecture includes a prior that generates a CLIP image
embedding from a text caption, and a decoder that generates
an image conditioned on the image embedding.

3. Robotics

In this section, we delve into robot decision-making,
planning, and control. Within this realm, Large Language
Models (LLMs) and Visual Language Models (VLMs) may
hold the potential to serve as valuable tools for enhancing
robotic capabilities. For instance, LLMs may facilitate the
process of task specification, allowing robots to receive and
interpret high-level instructions from humans. VLMs may
also promise contributions to this field. VLMs specialize in
the analysis of visual data. This visual understanding is a
critical component of informed decision-making and
complex task execution for robots. Robots can now leverage
natural language cues to enhance their performance in tasks
involving manipulation, navigation, and interaction. Vision-
language goal-conditioned policy learning, whether through
imitation learning or reinforcement learning, holds promise
for improvement using foundation models. Language
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models also play a role in offering feedback for policy
learning techniques. This feedback loop fosters continual
improvement in robotic decision-making, as robots can
refine their actions based on the feedback received from an
LLM. This section underscores the potential contributions
of LLMs and VLMs in robot decision-making. Assessing
and comparing the contributions of papers in this section
presents greater challenges compared to the other sections
like the Perception Section (4) or the Embodied Al Section
(5). This is due to the fact that most papers in this section
either rely on hardware experiments, using custom elements
in the low-level control and planning stack that are not
easily transferred to other hardware or other experimental
setups, or they utilize non-physics-based simulators, which
allow these low-level parts of the stack to be ignored, but
leaving open the issue of non-transferability between dif-
ferent hardware implementations. In Section 6, we discuss
the lack of benchmarking and reproducibility that needs to
be addressed in future research.

3.1. Robot policy learning for decision making
and control

In this section, we discuss robot policy learning, including
language-conditioned imitation learning and language-
assisted reinforcement learning.

3.1.1. Language-conditioned imitation learning for
manipulation. In language-conditioned imitation learning,
a goal-conditioned policy 7y(as, ) is learned that outputs
actions a; € A conditioned on the current state s; €S and
language instruction / € L. The loss function is defined as the
maximum likelihood goal-conditioned imitation objective:

[

Laen, = Een~p Z 10g7T0(at|Sn 1), )

t=0

where D is the language-annotated demonstration dataset

D= {r,»}ﬁv . Demonstrations can be represented as trajec-
tories, or sequences of images, RGB-D voxel observations,
etc. Language instructions are paired with demonstrations to
be used as the training dataset. Each language-annotated
demonstration z; consists of ;= {(s1, [1, a1), (52, >, a2), ...}.
At test time, the robot is given a series of instructions, and
the language-conditioned visuomotor policy 7y provides
actions a, in a closed loop given the instruction at each time
step. The main challenges in this domain are: (i) obtaining a
sufficient volume of demonstrations and conditioning labels
to train a policy and (ii) distribution shift under the closed-
loop policy—the feedback of the policy can lead the robot
into regions of the state space that are not well-covered in
the training data, negatively impacting performance. (All
the following papers in this subsection focus on robot
manipulation tasks).

Since generating language-annotated data by pairing
demonstrations with language instruction is an expensive

process, the authors in Play-LMP (Lynch et al., 2020)
propose learning from teleoperated play data. In this setting,
reusable latent plan representations are learned from un-
labeled play data. Also, a goal-conditioned policy is learned
to decode the inferred plan to perform the task specified by
the user. In addition, the distributional shift in imitation
learning is analyzed and it is shown in this setting that the
play data is more robust with respect to perturbation
compared to expert positive demonstrations. Note that
language goal / in (9) can be substituted with any other type
of goal for example goal image, which is another common
choice of goal in goal-conditioned imitation learning.

In a follow-up work (Lynch and Sermanet, 2021), the
authors present multi-context imitation (MCIL), which uses
language-conditioned imitation learning over unstructured
data. The multi-Context imitation framework is based on
relabeled imitation learning and labeled instruction fol-
lowing. MCIL assumes access to multiple contextual imi-
tation datasets, for example, goal image demonstrations,
language goal demonstrations, or one-hot task demonstra-
tions. MCIL trains a single latent goal-conditioned policy
over all datasets simultaneously by encoding contexts in the
shared latent space using the associated encoder for each
context. Then a goal-conditioned imitation loss is computed
by averaging over all datasets. The policy and goal-encoders
are trained end-to-end.

Another approach to tackle the data annotation challenge in
language-conditioned imitation learning involves utilizing
foundation models to offer feedback by labeling demonstra-
tions. In Yuying et al. (2023), the authors propose to use
pretrained foundation models to provide feedback. To deploy a
trained policy to a new task or new environment, the policy is
played using randomly generated instructions, and a pretrained
foundation model provides feedback by labeling the dem-
onstration. Also, this paired instruction-demonstration data can
be used for policy fine-tuning. CLIPort (Shridhar et al., 2022)
also presents a language-conditioned imitation learning for
vision-based manipulation. A two-stream architecture is pre-
sented that combines the semantic understanding of CLIP with
the spatial precision of Transporter (Zeng et al., 2020). This
end-to-end framework solves language-specified manipulation
tasks without any explicit representation of the object poses or
instance segmentation. CLIPort grounds semantic concepts in
precise spatial reasoning, but it is limited to 2D observation
and action spaces.

To address this limitation, the authors of PerAct
(Perceiver-Actor) (Shridhar et al., 2023) propose to repre-
sent observation and action spaces with 3D voxels and
employ the 3D structure of voxel patches for efficient
language-conditioned behavioral cloning with transformers
to imitate 6-DoF manipulation tasks from just a few
demonstrations. While 2D behavioral cloning methods such
as CLIPort are limited to single-view observations, 3D
approaches such as PerAct allow for multi-view observa-
tions as well as 6-DoF action spaces. PerAct uses only
CLIP’s language encoder to encode the language goal.
PerAct takes language goals and RGB-D voxel observations



710

The International Journal of Robotics Research 44(5)

as inputs to a Perceiver Transformer and outputs discretized
actions by detecting the next best voxel action. PerAct is
trained through supervised learning with discrete-time input
actions from the demonstration dataset. The demonstration
dataset includes voxel observations paired with language
goals and keyframe action sequences. An action consists of
a 6-DoF pose, gripper open state, and collision avoidance
action. During training, a tuple is randomly sampled and the
agent predicts the keyframe action given the observation
and goal.

Grounding semantic representations into a spatial en-
vironment is essential for effective robot interaction.
CLIPort and PerAct utilize CLIP (which is trained based on
contrastive learning) for semantic reasoning and Trans-
porter and Perceiver for spatial reasoning. Voltron
(Karamcheti et al., 2023) presents a framework for
language-driven representation learning in robotics. Voltron
captures semantic, spatial, and temporal representations that
are learned from videos and captions. Contrastive learning
captures semantic representations but loses spatial rela-
tionships, and in contrast, masked autoencoding captures
spatial and not semantic representations. Voltron trades off
language-conditioned visual reconstruction for local spatial
representations and visually grounded language generation
to capture semantic representations. This framework in-
cludes grasp affordance prediction, single-task visuomotor
control, referring expression grounding, language-
conditioned imitation, and intent-scoring tasks. Voltron
models take videos and their associated language captions
as input to a multimodal encoder whose outputs are then
decoded to reconstruct one or more frames from a masked
context. Voltron starts with a masked autoencoding back-
bone and adds a dynamic component to the model by
conditioning the MAE encoder on a language prefix.
Temporal information is captured by conditioning on
multiple frames.

Deploying robot policy learning techniques that leverage
language-conditioned imitation learning with real robots
presents ongoing challenges. These models rely on end-to-
end learning, where the policy maps pixels or voxels to
actions. As they are trained through supervised learning on
demonstration datasets, they are susceptible to issues related
to generalization and distribution shifts. To improve ro-
bustness and adaptability, techniques such as data aug-
mentation and domain adaptation can make the policies
more robust to the distribution shift. CACTI (Mandi et al.,
2022) is a novel framework designed to enhance scalability
in robot learning using foundation models such as Stable
Diffusion (Rombach et al., 2022). CACTI introduces the
four stages of data collection, data augmentation, visual
representation learning, and imitation policy training. In the
data collection stage, limited in-domain expert demon-
stration data is collected. In the data augmentation stage,
CACTI employs visual generative models such as Stable
Diffusion (Rombach et al., 2022) to boost visual diversity
by augmenting the data with scene and layout variations. In
the visual representation learning stage, CACTI leverages

pretrained zero-shot visual representation models trained on
out-of-domain data to improve training efficiency. Finally,
in the imitation policy training stage, a general multi-task
policy is learned using imitation learning on the augmented
dataset with compressed visual representations as input.
CACTI is trained for multi-task and multi-scene manipu-
lation in kitchen environments, both in simulation and the
real world. The use of these techniques enhances the
generalization ability of the framework and enables it to
learn from a wide range of environments.

As an alternative to costly expert demonstrations for
imitation policy training, Ehsani et al. (2024) leverage
shortest path plans for navigation and manipulation as
expert demonstrations in simulation. The expert, with ac-
cess to privileged simulator information, navigates using the
shortest path planner on a collision mesh and manipulates
objects by minimizing the distance between the known pose
of the object and the end effector. Expert trajectories are
generated for ten different tasks across 200,000 procedur-
ally generated homes. The imitation agent consists of input
encoders, a transformer encoder to aggregate the goal and
visual knowledge, and a transformer decoder policy net-
work. The resulting agent can generalize across the ten
household robotics tasks in simulation and enjoys similar
task success rates in real-world experiments.

Beyond language, recent works have investigated other
forms of task specification. Notably, MimicPlay (Wang
et al., 2023a) presents a hierarchical imitation learning al-
gorithm that learns high-level plans in latent spaces from
human play data and low-level motor commands from a
small number of teleoperated demonstrations. By har-
nessing the complementary strengths of these two data
sources, this algorithm can significantly reduce the cost of
training visuomotor policies for long-horizon manipulation
tasks. Once trained, it is capable of performing new tasks
based on one human video demonstration at test time.
MUTEX (Shah et al., 2023c) further explores learning a
unified policy across multimodal task specifications in
video, image, text, and audio, showing improved policy
performances over single-modality baselines through cross-
modal learning.

3.1.2. Language-assisted reinforcement Learning.

Reinforcement learning (RL) is a family of methods that
enable a robot to optimize a policy through interaction with
its environment by optimizing a reward function. These
interactions are usually in a simulation environment,
sometimes augmented with data from physical robot hard-
ware for sim-to-real transfer. RL has close ties to optimal
control. Unlike imitation learning, RL does not require hu-
man demonstrations, and (in theory) has the potential to attain
super-human performance. In the RL problem, the expected
return of a policy is maximized using the collected roll-outs
from interactions with the environment. The feedback re-
ceived from the environment in the form of a reward signal
guides the robot to learn which actions lead to favorable
results and which do not. In this section, we discuss works
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that have incorporated foundation models (LLMs, VLMs,
etc.) into RL problems.

Fast and flexible adaptation is a desired capability of
artificial agents and is essential for progress toward general
intelligence. In Adaptive Agent (AdA) (Team et al., 2023),
the authors present an RL foundation model that is an agent
pretrained on diverse tasks and is designed to quickly adapt
to open-ended embodied 3D problems by using fast in-
context learning from feedback. This work considers
navigation, coordination, and division of labor tasks. Given
a few episodes within an unseen environment at test time,
the agent engages in trial-and-error exploration to refine its
policy toward optimal performance. In AdA a transformer
architecture is trained using model-based RL? (Duan et al.,
2016) to train agents with large-scale attention-based
memory, which is required for adaptation. Transformer-
XL (Dai et al., 2019) with some modification is used to
enable long and variable-length context windows to in-
crease the model memory to capture long-term dependen-
cies. The agent collects diverse data in the XLand
environment that includes 10*° possible tasks (Team et al.,
2021), in an automated curriculum. In addition, distillation
is used to enable scaling to models with more than S00M
parameters.

Palo et al. (2023) propose an approach to enhance re-
inforcement learning by integrating Large Language
Models (LLMs) and Visual-Language Models (VLMs) to
create a more unified RL framework. This work considers
robot manipulation tasks. Their approach addresses core RL
challenges related to exploration, experience reuse and
transfer, skills scheduling, and learning from observation.
The authors use an LLM to decompose complex tasks into
simpler sub-tasks, which are then utilized as inputs for a
transformer-based agent to interact with the environment.
The agent is trained using a combination of supervised and
reinforcement learning, enabling it to predict the optimal
sub-task to execute based on the current state of the
environment.

3.2. Robot transformers

Foundation models can be used for end-to-end control of
robots by providing an integrated framework that combines
perception, decision-making, and action generation. Xiao
et al. (2022) demonstrate the effectiveness of self-
supervised visual pretraining using real-world images for
learning motor control tasks directly from pixel inputs. This
work is focused on robot manipulation tasks. They show
that without any task-specific fine-tuning of the pretrained
encoder, the visual representations can be utilized for
various motor control tasks. This approach highlights the
potential of leveraging self-supervised learning from real-
world images to acquire general visual representations that
can be applied across different motor control tasks. Simi-
larly, Radosavovic et al. (2023) investigate the use of self-
supervised visual pretraining on diverse, in-the-wild videos
for real-world robotic tasks. This work considers robot

manipulation tasks. They find that the pretrained repre-
sentations obtained from such videos are effective in a range
of real-world robotic tasks, considering different robotic
embodiments. This suggests that the learned visual repre-
sentations generalize well across various tasks and robot
platforms, demonstrating the broad applicability of self-
supervised pretraining for real-world robotic applications.
Both studies emphasize the advantages of self-supervised
visual pretraining, where models are trained on large
amounts of unlabeled data to learn useful visual repre-
sentations. By leveraging real-world images and videos,
these approaches enable learning from diverse and un-
structured visual data, leading to more robust and trans-
ferable representations for motor control tasks in robotic
systems.

Another example of a Transformer-based policy model is
the work on Robotics Transformer (RT-1) (Brohan et al.,
2023a), where the authors demonstrate a model that shows
promising scalability properties. To train the model, the
authors use a large dataset of over 130k real-world robotic
experiences, comprising more than 700 tasks, that was
collected over 17 months using a fleet of 13 robots. RT-1
receives images and natural language instructions as inputs
and outputs discretized base and arm actions. It can gen-
eralize to new tasks, maintain robustness in changing en-
vironments, and execute long-horizon instructions. The
authors also demonstrate the model’s capability to effec-
tively absorb data from diverse domains, including simu-
lations and different robots.

The follow-up work, called Robotic Transformer 2 (RT-
2) (Zitkovich et al., 2023), demonstrates a vision-language-
action (VLA) model that takes a step further by learning
from both web and robotics data. The model effectively
utilizes this data to generate generalized actions for robotic
control. To do so, the authors use pre-existing vision-
language models and directly co-fine-tune them on robot
trajectories resulting in a single model that operates as a
language model, a vision-language model, and a robot
policy. To make co-fine-tuning possible, the actions are
represented as simple text strings which are then tokenized
using an LLM tokenizer into text tokens. The resulting
model, RT-2, enables vision-language models to output
low-level closed-loop control. Similarly to RT-1, actions are
produced based on robot instructions paired with camera
observations and the action space includes 6-DoF positional
and rotational displacement of the robot end-effector,
gripper extension, and episode termination command. Via
extensive experiments, the authors show that utilizing
VLMs aids in the enhancement of generalization across
visual and semantic concepts and enables the robots to
respond to the so-called chain of thought prompting, where
the agent performs more complex, multi-stage semantic
reasoning. Both RT-1 and RT-2 consider robot manipulation
and navigation tasks using a real-world mobile manipulator
robot from Everyday Robots. One key limitation of RT-2
and other related works in robotics is the fact that the range
of physical skills exhibited by the robot is limited to the
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distribution of skills observed within the robot’s data. While
one way to approach this limitation is to collect more di-
verse and dexterous robotic data, there might be other in-
triguing research directions, such as using motion data in
human videos, robotic simulations, or other robotic
embodiments.

The next work utilizing the Transformer architecture
indeed focuses on learning from data that combines multiple
robotic embodiments. In RT-X (Padalkar et al., 2023), the
authors provide a number of datasets in a standardized data
format and models to make it possible to explore the
possibility of training large cross-embodied robotic models
in the context of robotic manipulation. In particular, they
assembled a dataset from 22 different robots collected
through a collaboration between 21 institutions, demon-
strating 527 skills (160266 tasks). With this unified dataset,
RT-X demonstrates that RT-1- and RT-2-based models
trained on this multi-embodiment, diverse data exhibit
positive transfer across robotic domains and improve the
capabilities of multiple robots by leveraging experience
from other platforms.

Other works have investigated general pretrained
transformers for robot control, trained with self-supervised
trajectory data from multiple robots. For example,
Perception-Action Causal Transformer (PACT) (Bonatti
et al., 2023) is a generative transformer architecture that
builds representations from robot data with self-supervision.
This work considers robot navigation tasks. PACT pretrains
a representation useful for multiple tasks on a given robot.
Similar to how large language models learn from extensive
text data, PACT is trained on abundant safe state-action data
(trajectories) from a robot, learning to predict appropriate
safe actions. By predicting states and actions over time in an
autoregressive manner, the model implicitly captures dy-
namics and behaviors specific to a robot. PACT was tested
in experiments involving mobile agents: a wheeled robot
with a LIDAR sensor (MuSHR) and a simulated agent using
first-person RGB images (Habitat). The results show that
this robot-specific representation can serve as a starting
point for tasks like safe navigation, localization, and
mapping. Additionally, the experiments demonstrated that
fine-tuning smaller task-specific networks on the pre-trained
model leads to significantly better performance compared to
training a single model from scratch for all tasks simulta-
neously, and comparable performance to training a separate
large model for each task independently.

Another work in this space is Self-supervised Multi-task
pretrAining with contRol Transformer (SMART) (Sun
et al., 2023f), which introduces a self-supervised multi-
task pertaining to control transformers, providing a
pretraining-finetuning approach tailored for sequential
decision-making tasks. During the pretraining phase,
SMART captures information essential for both short-term
and long-term control, facilitating transferability across
various tasks. Subsequently, the finetuning process can
adapt to a wide variety of tasks spanning diverse domains.
Experimentation underscores SMART’s ability to enhance

learning efficiency across tasks and domains. This work
considers cart pole-swing-up, cart pole-balance, hopper-
hop, hopper-stand, cheetah-run, walker-stand walker-run,
and walker-walk tasks. The approach demonstrates ro-
bustness against distribution shifts and proves effective with
low-quality pretraining datasets.

Some works have investigated transformer models in
conjunction with classical planning and control layers as
part of a modular robot control architecture. For example, in
Bucker et al. (2023), a multi-modal transformer (LATTE) is
presented that allows a user to reshape robot trajectories
using language instructions. This work considers both robot
manipulation and navigation tasks. LATTE transformer
takes as input geometrical features of an initial trajectory
guess along with the obstacle map configuration, language
instructions from a user, and images of each object in the
environment. The model’s output is modified for each
waypoint in the trajectory so that the final robot motion can
adhere to the user’s language instructions. The initial tra-
jectory plan can be generated using any geometric planner
such as A*, RRT* or model predictive control. Subse-
quently, this plan is enriched with the semantic objectives
within the model. LATTE leverages pretrained language
and visual-language models to harness semantic represen-
tations of the world.

One key obstacle to incorporating foundation models
into robotics research is the reliance on real-world hardware
experiments. These experiments challenge reproducibility
because replicating the results may require the exact
equipment used in prior studies. Conversely, many recent
studies have employed simulators that do not faithfully
replicate physical interactions, focusing instead on high-
level, long-term tasks and visual modeling. A blend of open
hardware configurations and benchmarking in high-fidelity
physics simulators can enhance reproducibility and address
associated issues.

3.3. Language-image goal-conditioned
value learning

In value learning, the aim is to construct a value function
that aligns goals in different modalities and preserves
temporal coherence due to the recursive nature of the value
function. Reusable Representation for Robotic Manipula-
tions (R3M) (Nair et al., 2022b) provides pretrained visual
representation for robot manipulation using diverse human
video datasets such as Ego4D and can be used as a frozen
perception module for policy learning in robot manipulation
tasks. R3M’s pretrained visual representation is demon-
strated on Franka Emika Panda’s arm and enables different
downstream manipulation tasks. R3M is trained using time-
contrastive learning to capture temporal dependencies,
video-language alignment to capture semantic features of
the scene (such as objects and their relationships), and L1
penalty to encourage sparse and compact representation.
For a batch of videos, using time-contrastive loss, an en-
coder is trained to generate a representation wherein the
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distance between images that are temporally closer is
minimized compared to images that are farther apart in time
or from different videos.

Similar to R3M, Value-Implicit Pretraining (VIP) (Ma
et al., 2023b) employs time-contrastive learning to capture
temporal dependencies in videos, but it does not require
video-language alignment. VIP is also focused on robot
manipulation tasks. VIP is a self-supervised approach for
learning visual goal-conditioned value functions and rep-
resentations from videos. VIP learns visual goal-based re-
wards for downstream tasks and can be used for zero-shot
reward specification. The reward model is derived from
pretrained visual representations. Pretraining involves using
unlabeled human videos. Human videos do not contain any
action information to be used for robot policy learning;
therefore, the learned value function does not explicitly
depend on actions. VIP introduces a novel time contrastive
objective that generates a temporally smooth embedding.
The value function is implicitly defined via distance em-
bedding. The proposed implicit time contrastive learning
attracts the representation of the initial and goal frames in
the same trajectory and repels the representation of inter-
mediate frames by recursive one-step temporal difference
minimization. This representation captures long-term
temporal dependencies across task frames and local tem-
poral smoothness among adjacent frames.

Language-Image Value Learning (LIV) (Ma et al.,
2023a) is a control-centric vision-language representation.
LIV generalizes the prior work VIP by learning multi-modal
vision-language value functions and representations using
language-aligned videos. For tasks specified as language
goals or image goals, a multi-model representation is trained
that encodes a universal value function. LIV is also focused
on robot manipulation tasks. LIV is a pretrained control-
centric vision-language representation based on large hu-
man video datasets such as EPIC-KITCHENS (Damen
et al.,, 2018). The representations are kept frozen during
policy learning. A simple MLP is used on top of pretrained
representations for the policy network. Policy learning is
decoupled from language-visual representation pretraining.
The LIV model is pretrained on arbitrary video activity da-
tasets with text annotation, and the model can be fine-tuned on
small datasets of in-domain robot data to ground language in a
context-specific way. LIV uses a generalization of the mutual
information-based image-text contrastive representation
learning objective as used in CLIP, so LIV can be considered
as a combination of CLIP and VIP. Both VIP and LIV learn a
self-supervised goal-conditioned value-function objective us-
ing contrastive learning. The LIV extends the VIP framework
to multi-modal goal specifications. LOREL (Nair et al., 2022a)
learns a language-conditioned reward from offline data and
uses it during model predictive control to complete language-
specified tasks.

Value functions can be used to help ground semantic
information obtained from an LLM to the physical envi-
ronment in which a robot is operating. By leveraging value
functions, a robot can associate the information processed

by the LLM with specific locations and objects in its sur-
roundings. In SayCan (Brohan et al., 2023b), researchers
investigate the integration of large language models with the
physical world through learning. They use the language
model to provide task-grounding (Say), enabling the de-
termination of useful sub-goals based on high-level in-
structions, and a learned affordance function to achieve
world-grounding (Can), enabling the identification of fea-
sible actions to execute the plan. Inner Monologue (Huang
et al., 2022b) studies the role of grounded environment
feedback provided to the LLM, thus closing the loop with
the environment. The feedback is used for robot planning
with large language models by leveraging a collection of
perception models (e.g., scene descriptors and success
detectors) in tandem with pretrained language-conditioned
robot skills. Feedback includes task-specific feedback, such
as success detection, and scene-specific feedback (either
“passive” or “active”). In both SayCan and Inner Mono-
logue, robot manipulation and navigation tasks are con-
sidered using a real-world mobile manipulator robot from
Everyday Robots. Text2Motion (Lin et al., 2023c) is a
language-based planning framework for long-horizon robot
manipulation. Similar to SayCan and Inner Monologue,
Text2Motion computes a score (Spnv) associated with each
skill at each time step. The task planning problem is to find a
sequence of skills by maximizing the likelihood of a skill
sequence given a language instruction and the initial state.
In Text2Motion, the authors propose to verify that the
generated long-horizon plans are symbolically correct and
geometrically feasible. Hence, a geometric feasibility score
(Sgeo) is defined as the probability that all the skills in the
sequence achieve rewards. To compute the overall score, the
LLM score is multiplied by the geometric feasibility score
(Sskin = Stmm - Sgeo)~

VoxPoser (Huang et al., 2023c¢) builds 3D value maps to
ground affordances and constraints into the perceptual
space. VoxPser considers robot manipulation tasks. Given
the RGB-D observation of the environment and language
instruction, VoxPoser utilizes large language models to
generate code, which interacts with vision-language models
to extract a sequence of 3D affordance maps and constraint
maps. These maps are composed together to create 3D value
maps. The value maps are then utilized as objective
functions to guide motion planners to synthesize trajectories
for everyday manipulation tasks without requiring any prior
training or instruction.

In Mahmoudieh et al. (2022), reward shaping using
CLIP is presented. This work considers robot manip-
ulation tasks. The proposed model utilizes CLIP to
ground objects in a scene described by the goal text
paired with spatial relationship rules to shape the re-
ward by using raw pixels as input. They use devel-
opments in building large-scale visuo-lingual models
like CLIP to devise a framework that generates the task
reward signal from just the goal text description and
raw pixel observations. This signal is then used to learn
the task policy.
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In Mees et al. (2023), Hierarchical Universal Language
Conditioned Policies 2.0 (HULC++) is presented. This
work considers robot manipulation tasks. A self-supervised
visuo-lingual affordance model is used to learn general-
purposed language-conditioned robot skills from unstruc-
tured offline data in the real world. This method requires
annotating as little as 1% of the total data with language.
The visuo-lingual affordance model has an encoder-decoder
architecture with two decoder heads. Both heads share the
same encoder and are conditioned on the input language
instruction. One head predicts a distribution over the image,
in which each pixel likelihood is an afforded point. The
other head predicts a Gaussian distribution from which the
corresponding predicted depth is sampled. Given visual
observations and language instructions as input, the af-
fordance model outputs a pixel-wise heat map that repre-
sents affordance regions and the corresponding depth map.

3.4. Robot task planning using large
language models

Large language models (LLMs) can be used to provide
high-level task planning for performing complex long-
horizon robot tasks.

3.4.1. Language instructions for task specification. As
discussed above, SayCan (Brohan et al., 2023b) uses an
LLM for high-level task planning in language, though with
a learned value function to ground these instructions in the
environment.

Temporal logic is useful for imposing temporal speci-
fications in robotic systems. In Chen et al. (2023e), trans-
lation from natural language (NL) to temporal logic (TL) is
proposed. A dataset with 28k NL-TL pairs is created and the
T5 (Raffel et al., 2020) model is finetuned using the dataset.
LLMs are often used to plan task sub-goals. This work
considers robot navigation tasks. In Chen et al. (2023d),
instead of direct task planning, a few-shot translation from a
natural language task description to an intermediary task
representation is performed. This representation is used by a
Task and Motion Planning (TAMP) algorithm to jointly
optimize task and motion plans. Autoregressive re-
prompting is used to correct synthetic and semantic er-
rors. This work also considers robot navigation tasks.

3.4.2. Code generation using language models for task
planning. Classical task planning requires extensive do-
main knowledge and the search space is large (Huang et al.,
2021; Sun et al., 2021a). LLMs can be used to generate
sequences of tasks required to achieve a high-level task. In
ProgPrompt (Singh et al., 2023), the authors introduce a
prompting method that uses LLMs to generate sequences of
actions directly with no additional domain knowledge. The
prompt to the LLM includes specifications of the available
actions, objects in the environment, and example programs
that can be executed. VirtualHome (Puig et al., 2018) is used
as a simulator for demonstration.

Code-as-Policies (Liang et al., 2023) explores the use of
code-writing LLMs to generate robot policy code based on
natural language commands. This work considers robot
manipulation and navigation tasks using a real-world mo-
bile manipulator robot from Everyday Robots. The study
demonstrates that LLMs can be repurposed to write policy
code by expressing functions or feedback loops that process
perception outputs and invoke control primitive APIs. To
achieve this, the authors utilize few-shot prompting, where
example language commands formatted as comments are
provided along with the corresponding policy code. Without
any additional training on this data, they enable the models
to autonomously compose API calls and generate new
policy code when given new commands. The approach
leverages classic logic structures and references third-party
libraries like NumPy and Shapely to perform arithmetic
operations. By chaining these structures and using con-
textual information (behavioral commonsense), the LLMs
can generate robot policies that exhibit spatial-geometric
reasoning, generalize to new instructions, and provide
precise values (e.g., velocities) for ambiguous descriptions
such as “faster.” The concept of “code as policies” for-
malizes the generation of robot policies using language
model-generated programs (LMPs). These policies can
represent reactive policies like impedance controllers, as
well as waypoint-based policies such as vision-based pick
and place or trajectory-based control. The effectiveness of
this approach is demonstrated on multiple real robot plat-
forms. A crucial aspect of this approach is the hierarchical
code generation process, which involves recursively de-
fining undefined functions. This enables the LLMs to
generate more complex code structures to fulfill the desired
policy requirements.

In Vemprala et al. (2023), the authors provide design
principles for using ChatGPT in robotics and demonstrate
how LLMs can help robotic capabilities rapidly generalize
to different form factors. This work considers robot ma-
nipulation and aerial navigation tasks. First, a high-level
robot function library that maps to multiple atomic tasks
executable by the robot is defined. Then, a prompt is crafted
that includes these functions, and the required constraints
along the task description. ChatGPT then provides exe-
cutable code specific to the given robot configuration and
task. The generated code can then be evaluated by a user and
appropriate feedback with modified prompts to LLMs
further help refine and generate programs that are safe and
deployable on the physical robot. The study demonstrated
that such a methodology can be applied to multiple form
factors both in simulation and in the real world.

3.5. In-context learning (ICL)
for decision-making

In-context learning (ICL) (Dong et al., 2022) operates
without the need for parameter optimization, relying instead
on a set of examples included in the prompt (the concept of
prompting). This learning approach is intimately linked
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with prompt engineering and finds extensive use in natural
language processing. The method of Chain-of-Thought
(Wei et al.,, 2022) is a prominent technique within in-
context learning. It involves executing a sequence of in-
termediate steps to arrive at the final solution for complex,
multi-step problems. This technique allows models to
produce step-by-step explanations that parallel human
cognitive processes. However, despite its numerous bene-
fits, ICL also faces certain challenges, including issues
related to ambiguity and interpretation, domain-specific
knowledge, transparency, and explainability. In-context
learning has had a significant impact on the field of
LLM:s in a broad sense, and many robotics works have used
it to apply LLMs to specific domains. Investigating this,
Mirchandani et al. (2023) illustrate that Large Language
Models (LLMs) possess remarkable pattern recognition
abilities. They reveal that, through in-context learning,
LLMs can effectively handle general patterns that extend
beyond standard language-based prompts. This capability
allows for the application of LLMs in scenarios such as
offline trajectory optimization and online, in-context rein-
forcement learning. Additionally, Jia and the team in their
work on Chain-of-Thought Predictive Control (Jia et al.,
2023) suggest a method to identify specific brief sequences
within demonstrations, termed as ’chain-of-thought’. They
focus on understanding and representing the hierarchical
structure of these sequences, highlighting the achievement
of subgoals within tasks. This work considers robot policy
learning from demonstrations for contact-rich object ma-
nipulation tasks.

3.6. Open-vocabulary robot navigation
and manipulation

3.6.1. Open-vocabulary navigation. Open-vocabulary
navigation addresses the challenge of navigating through
unseen environments. The open-vocabulary capability
signifies that the robot possesses the capacity to compre-
hend and respond to language cues, instructions, or se-
mantic information, without being restricted to a predefined
dataset. In this section, we explore papers that examine the
integration of LLMs, VLMs, or a combination of both in a
plug-and-play manner for robot navigation tasks. Addi-
tionally, we discuss papers that take a different approach by
constructing foundation models explicitly tailored for robot
navigation tasks.

In VLN-BERT (Majumdar et al., 2020), the authors
present a visual-linguistic transformer-based model that
leverages multi-modal visual and language representations
for visual navigation using web data. The model is designed
to score the compatibility between an instruction, such as
“...stop at the brown sofa,” and a sequence of panoramic
RGB images captured by the agent. Similarly, LM-Nav
(Shah et al., 2023a) considers visual navigation tasks. LM-
Nav is a system that utilizes pretrained models of images
and language to provide a textual interface to visual
navigation. LM-Nav demonstrates visual navigation in a

real-world outdoor environment from natural language
instructions. LM-Nav utilizes an LLM (GPT-3, Brown et al.,
2020), a VLM (CLIP, Radford et al., 2021a), and a VNM
(Visual Navigation Model). First, LM-Nav constructs a
topological graph of the environment via the VNM esti-
mating the distance between images. The LLM is then used
to translate the natural instructions to sequences of inter-
mediate language landmarks. The VLM is used to ground
the visual observations in landmark descriptions via a joint
probability distribution over landmarks and images. Using
the VLM’s probability distribution, the LLM instructions,
and the VNM’s graph connectivity, the optimal path is
planned using the search algorithm. Then the plan is exe-
cuted by the goal-conditioned policy of VNM.

While LM-Nav makes use of LLMs and VLMs as plug-
and-play for visual navigation tasks, the authors of VINT
(Shah et al., 2023b) propose to build a foundation model for
visual navigation tasks. VINT is an image goal-conditioned
navigation policy trained on diverse training data and can
control different robots in zero-shot. It can be fine-tuned to
be adapted for different robotic platforms and various
downstream tasks. VINT is trained on various navigation
datasets from different robotic platforms. It is trained with
goal-reaching objectives and utilizes a Transformer-based
architecture to learn navigational affordances. VINT en-
codes visual observations and visual goals using an Effi-
cientNet CNN and predicts temporal distance and
normalized actions in an embodiment-agnostic manner.
Additionally, VINT can be augmented with diffusion-based
sub-goal proposals to help explore environments not en-
countered during training. An image-to-image diffusion
generates sub-goal images, which the ViNT then navigates
toward while building a topological map in the background.

Another work that considers zero-shot navigation tasks is
Audio Visual Language Maps (AVLMaps) (Huang et al.,
2023a). AVLMaps presents a 3D spatial map representation
for cross-modal information from audio, visual, and lan-
guage cues. AVLMaps receives multi-modal prompts and
performs zero-shot navigation tasks in the real world. The
inputs are depth and RGB images, camera pose, and audio.
Visual features are encoded using pretrained foundation
models. Visual localization features like NetVLAD
(Arandjelovic et al., 2016) and SuperPoint (DeTone et al.,
2018), visual-language features like LSeg (Li et al., 2022a),
and audio-language features like AudioCLIP (Guzhov et al.,
2022) are computed and predictions from different mo-
dalities are combined into 3D heatmaps. The pixel-wise
joint probability of the heatmap is computed and used for
planning. Additionally, navigation policies are generated as
executable codes with the help of GPT-3. Finally, 3D
heatmaps are predicted indicating the location of multi-
modal concepts such as objects, sounds, and images.

Many roboticists may wonder about the comparative
strengths of classical modular robot navigation systems
versus end-to-end learned systems. Semantic navigation
(Gervet et al., 2023) seeks to address this question by
presenting an empirical analysis of semantic visual
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navigation methods. The study compares representative
approaches from classical, modular, and end-to-end learn-
ing paradigms across six different homes, without any prior
knowledge, maps, or instrumentation. The findings of the
study reveal that modular learning methods perform well in
real-world scenarios. In contrast, the end-to-end learning
approaches face challenges due to a significant domain gap
between simulated and real-world images. This domain gap
hinders the effectiveness of end-to-end learning methods in
real-world navigation tasks. For practitioners, the study
emphasizes that modular learning is a reliable approach to
object navigation. The modularity and abstraction in policy
design enable successful transfer from simulation to reality,
making modular learning an effective choice for practical
implementations. For researchers, the study also highlights
two critical issues that limit the reliability of current sim-
ulators as evaluation benchmarks. Firstly, there exists a
substantial Sim-to-Real gap in images, which hampers the
transferability of learned policies from simulation to the real
world. Secondly, there is a disconnect between simulation
and real-world error modes, which further complicates the
evaluation process.

Another line of work in open-vocabulary navigation is
object navigation tasks. In this task, the robot must be able
to find the object described by humans and navigate towards
the object. The navigation task is decomposed into ex-
ploration when the language target is not detected, and
exploitation when the target is detected and the robot
navigates toward the target. As the robot moves in the
environment, it creates a top-down map using RGB-D
observations and poses estimates. In Gadre et al. (2023),
the authors introduce a zero-shot object navigation setting
that uses an open-vocabulary classifier such as CLIP
(Radford et al., 2021a) to compute the cosine similarity
between an image and a user-specified description.

Common datasets and benchmarks for these types of
problems are Matterport3D (Anderson et al., 2018; Chang
etal.,2017), Gibson (Li et al., 2021) and Habitat (Szot et al.,
2021). L3MVN (Bangguo et al., 2023) enhances visual
target navigation by constructing an environment map and
selecting long-term goals using the inference capabilities of
large language models. The system can determine appro-
priate long-term goals for navigation by leveraging pretrained
language models such as RoBERTa-large (Liu et al., 2019),
enabling efficient exploration and searching. Chen et al.
(Chen et al., 2023a) presents a training-free and modular
system for object goal navigation, which constructs a
structured scene representation through active exploration.
The system utilizes semantic information in the scene graphs
to deduce the location of the target object and integrates
semantics with the geometric frontiers to enable the agent to
navigate effectively to the most promising areas for object
search while avoiding detours in unfamiliar environments.
HomeRobot (Yenamandra et al, 2023) introduces a
benchmark for the Open-Vocabulary Mobile Manipulation
(OVMM) task. OVMM task is the problem of finding an
object in any unseen environment, navigating towards the

object, picking it up, and navigating towards a goal location
to place the object. HomeRobot provides a benchmark in
simulation and the real world for OVMM tasks.

3.6.2. Open-vocabulary manipulation. Open-vocabulary
manipulation refers to the problem of manipulating any
object in a previously unseen environment. VisuoMotor
Attention Agent (VIMA) (Jiang et al., 2023) learns robot
manipulation from multi-modal prompts. VIMA is a
transformer-based agent that predicts motor commands
conditioned on a task prompt and a history of interactions. It
introduces a new form of task specifications that combines
textual and visual tokens. Multi-modal prompting converts
different robot manipulation tasks, such as visual goal-
reaching, learning from visual demonstrations, and novel
concept grounding into one sequence modeling problem. It
offers the training of a unified policy across diverse tasks,
potentially allowing for zero-shot generalization to previ-
ously unseen ones. VIMA-BENCH is introduced as a
benchmark for multi-modal robot learning. The VIMA-
BENCH simulator supports collections of objects and tex-
tures that can be utilized in multi-modal prompting. RoboCat
(Bousmalis et al., 2023) is a self-improving Al agent. It uses a
1.18B-parameter decoder-only transformer. It learns to op-
erate different robotic arms, solves tasks from as few as 100
demonstrations, and improves from self-generated data.
RoboCat is based on Gato (Reed et al., 2022) architecture and
is trained with a self-improvement cycle.

For robots to operate effectively in the real world, they must
be able to manipulate previously unseen objects. Liu et al.
present StructDiffusion (Liu et al., 2023d), which seeks to
enable robots to use partial viewpoint clouds and natural
language instructions to construct a goal configuration for
objects that were previously seen or unseen. They accomplish
this by first using segmentation to break up the scene into
objects. Then they use a multi-model transformer to combine
word and point cloud embeddings and output a 6-DoF goal
pose prediction. The predictions are iteratively refined via
diffusion and a discriminator that is trained to determine if a
sampled configuration is feasible. Manipulation of Open-World
Objects (MOO) (Stone et al., 2023) leverages a pretrained
vision-language model to extract object-centric information
from the language command and the image and conditions the
robot policy on the current image, the instructions, and the
extracted object information in a form of a single-pixel overlaid
onto the image. MOO uses Owl-ViT for object detection and
RT-1 for language-conditioned policy learning.

Another task in robot manipulation involves autonomous
scene rearrangement and in-painting. DALL-E-Bot
(Kapelyukh et al., 2023) performs zero-shot autonomous
rearrangement in the scene in a human-like way using
pretrained image diffusion model DALL-E2 (Ramesh et al.,
2022). DALL-E-Bot autonomous object rearrangement
does not require any further data collection or training. First,
the initial observation image (of the disorganized scene) is
converted into a per-object representation, including a
segmentation mask using Mask R-CNN (He et al., 2017), an



Firoozi et al.

717

object caption, and a CLIP visual feature vector. Then a text
prompt is generated by describing the object in the scene
and is given to DALL-E to create a goal image for the
rearrangement task (the objects should be rearranged in a
human-like way). Next, the objects in the initial and gen-
erated images are matched using their CLIP visual features.
Poses are estimated by aligning their segmentation masks.
The robot rearranges the scene based on the estimated poses
to create the generated arrangement.

3.6.3. Open-vocabulary grasping. Open-vocabulary robot
grasping refers to a robot’s capability to execute grasping
tasks for objects described in natural language even if the
objects or descriptions were not encountered during train-
ing. Roboticists have started utilizing these language-
embedded 3D fields to facilitate robot grasping and
manipulation of 3D objects and interaction with 3D scenes.
Semantic features encoded by pretrained foundation models
such as CLIP or DINO are used to be embedded into 3D
field representations such as NeRFs or Gaussian Splatting
fields. For example, LERF (Kerr et al., 2023) is a language-
embedded NeRF scene representation, and LangSplat (Qin
et al., 2023) is a language-embedded 3D Gaussian Splatting
environment representation. These language-embedded
fields enable open-vocabulary grasping and manipulation.
In LERF-TOGO (Rashid et al., 2023), the authors present a
zero-shot open-vocabulary grasping framework that gen-
erates grasp proposals over an object given a natural lan-
guage instruction. First, a 3D object mask is created using
DINO features, and then LERF is conditionally queried on
this mask to obtain a 3D semantic relevancy map. This
relevancy map extracts parts of the object suitable for
grasping (affordance) based on the given text. The rele-
vancy map is input to an off-the-shelf grasp planner (Fang
et al., 2020) to rank grasp proposals. Similarly, F3RM
presents few-shot language-guided robot manipulation
(Shen et al., 2023b) that leverages a NeRF-based distilled
feature field (Zhou et al., 2022) to embed task-specific
features into the 3D scene field. These features are
learned and extracted from human demonstrations, em-
bedded into the field, and then utilized to generate, rank, and
refine grasps. Both LERF-TOGO and F3RM rely on NeRF
scene representation. However, NeRF training and ren-
dering are computationally intensive and can be infeasible
for real-time robotic applications. Moreover, editing NeRFs
is both challenging and resource-demanding. To address
these limitations, the authors of Splat-MOVER (Shorinwa
et al., 2024) propose using a language-embedded Gaussian
Splatting 3D field. Gaussian Splatting (Kerbl et al., 2023) is
arecently developed technique that excels in providing real-
time performance for rendering and editing. Splat-MOVER
capitalizes on the flexibility of Gaussian Splatting to dy-
namically modify the scene as the robot operates and in-
teracts with its environment. Compared to LERF-TOGO
and F3RM, Splat-MOVER supports multi-stage open-
vocabulary manipulation, a feature enabled by the real-
time scene editability of Gaussian Splatting.

In Table 2, some robotic-specific foundation models are
reported along with information about their size and archi-
tecture, pretrained task, inference time, and hardware setup.

3.7. Challenges and perspectives

Empowering robots with foundation model capabilities
brings significant versatility and adaptability across a range
of downstream tasks. These models enable robots to gen-
eralize across platforms, environments, tasks, and open-
vocabulary settings. Moreover, they introduce emergent
capabilities that allow robots to devise novel solutions be-
yond what is explicitly present in their training data. Al-
though there have been exciting advancements in creating
generalizable solutions in robotics with the help of foun-
dation models, several challenges continue to exist. One of
the main advantages of foundation models is their ability to
generalize across various tasks. However, there are inherent
limitations. For instance, a robot transformer trained spe-
cifically for manipulators may not be effective when applied
to drones or humanoid robots. This limitation is not ade-
quately addressed in the existing literature. While current
research highlights impressive cross-embodiment and gen-
eralization capabilities, these achievements are often dem-
onstrated within the context of single-arm tabletop
manipulation in controlled and predictable environments. In
contrast, real-world applications, such as open-world navi-
gation, dealing with dynamic obstacles, and evolving tasks,
require more sophisticated adaptability, including the ability
to retrain online based on new experiences. In robot policy
learning using imitation learning, key challenges are (i)
obtaining a sufficient number of demonstrations along with
conditioning labels necessary for policy training, and (ii)
addressing distribution shifts during closed-loop policy op-
eration, which can cause the robot to enter poorly represented
areas of the state space in the training data, thereby degrading
its performance. Robot transformers have been recently
developed and can provide unprecedented generalization
capabilities. However, their reliance on real-world hardware
limits their reproducibility. To enhance benchmarking and
ensure reproducibility, it is essential to develop open
hardware platforms and high-fidelity, photorealistic, physics-
based simulators. In robot planning, incorporating multi-
modal information, including audio cues, has the potential
to enhance planning performance. However, there are cur-
rently few works that utilize audio for prediction and plan-
ning purposes. While current robotic-specific foundation
models primarily focus on single-arm pick-and-place tasks
and mobile robot navigation, there is a need for more research
in areas such as precise grasping and dexterity (that capture a
wide range of actions like tossing, pushing, and chopping),
flying robots, and collaborative multi-robot systems. Ac-
cording to Table 2, the substantial hardware requirements of
some models, as well as their high inference time, may hinder
their feasibility for training and deployment in real-time
robotics applications. Thus more research should be con-
ducted to improve these aspects.
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Table 2. Pretrained Models for Robotics.

Size Inference
Paper Backbone (Parameters) Pretrained Task Speed Hardware®
RoboCat (Bousmalis ~ Decoder-only transformer 1.18B manipulation 10-20 Hz
et al., 2023)
Gato (Reed etal., 2022) Decoder-only transformer 1.2B Generalist agent 20 Hz 4 days on 16x16 TPU v3
slice
PaLM-E-562B (Driess Decoder-only transformer 562B 1 Hz for Language 5-6 Hz Runs on multi-TPU cloud
et al., 2023) subgoals + 5 Hz service
low-level control
policies
VINT (Shah et al., EfficientNet+decoder 31IM Visual navigation 4 Hz Variety of GPU
2023b) transformer configurations is used
including 2x 4090, 3x
Titan Xp, 4x P100, 8%
1080Ti, 8% V100, and
8x A100
VPT (Baker et al., A temporal convolution layer, a 0.5 B Embodied agent in 20 Hz 9 days on 720 V100 GPUs
2022) ResNet 62 image processing Minecraft
stack, and residual unmasked
attention layers,
RT-1 (Brohan et al., Conditioned EfficientNet + 35M Real-world 3 Hz
2023a) TokenLearner + decoder- robotics tasks
only transformer
RT-2 (Zitkovich et al., PaLI-X 55B Real-world 1-3 Hz Runs on multi-TPU cloud
2023) robotics tasks service
RT-2-X (Padalkar et al., ViT and Language model UL2 55B Real-world 1-3 Hz Runs on multi-TPU cloud
2023) (Yi et al., 2023) robotics tasks service
LIV (Ma et al., 2023a) CLIP reward learning 15 Hz 8 NVIDIA V100 GPUs
SMART (Sun et al., Decoder-only transformer 11IM Bidirectional 1 Hz 8 Nvidia V100 GPUs
2023¢%) dynamics
prediction and
masked
hindsight control
COMPASS (Ma et al., 3D-Resnet encoder 20M Contrastive loss 30 Hz 8 Nvidia V100 GPUs
2022)
PACT (Bonatti et al., Decoder-only transformer 12M Forward dynamics 10 Hz Nvidia Xavier NX (edge)/8
2023) and next action (edge)/ Nvidia V100 GPUs
prediction 50 Hz

“Empty fields in the table denote no data is reported.

4. Perception

Robots interacting with their surrounding environments re-
ceive raw sensory information in different modalities such as
images, video, audio, and language. This high-dimensional
data is crucial for robots to understand, reason, and interact in
their environments. Foundation models, including those that
have been developed in the vision and NLP domains, are
promising tools for converting these high-dimensional inputs
into abstract, structured representations that can be more
easily interpreted and manipulated. Particularly, multi-modal
foundation models enable robots to integrate different sen-
sory inputs into a unified representation encompassing se-
mantic, spatial, temporal, and affordance information. These
multi-modal models reflect cross-modal interactions, often by
aligning elements across modalities to ensure coherence and
correspondence. For example, text and image data are aligned
for image captioning tasks. This section will explore a range

of tasks related to robot perception that are improved through
aligning modalities using foundation models, with a focus on
vision and language. There is an extensive body of literature
studying multi-modality in the machine learning community,
and an interested reader is referred to the survey paper
(Baltrusaitis et al., 2019) that presents a taxonomy of multi-
modal learning. We focus on applications of multi-modal
models to robotics.

4.1. Open-vocabulary object detection and
3D classification

In this section, we discuss zero-shot open-vocabulary object
detection and classification.

4.1.1. Object detection. Zero-shot object detection allows
robots to identify and locate objects they have never en-
countered previously. Grounded Language-Image Pre-
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training (GLIP) (Li et al., 2022d) integrates object detection
and grounding by redefining object detection as phrase
grounding. This reformulation enables the learning of a
visual representation that is both language-aware and se-
mantically rich at the object level. In this framework, the
input to the detection model comprises not only an image
but also a text prompt that describes all the potential cat-
egories for the detection task. To train GLIP, a dataset of 27
million grounding instances was compiled, consisting of 3
million human-annotated pairs and 24 million image-text
pairs obtained by web crawling. The results of the study
demonstrate the remarkable zero-shot and few-shot trans-
ferability of GLIP to a wide range of object-level recog-
nition tasks. Recently, PartSLIP (Liu et al., 2023a)
demonstrated that GLIP can be used for low-shot part
segmentation on 3D objects. PartSLIP renders a 3D point
cloud of an object from multiple views and combines 2D
bounding boxes in these views to detect object parts. To deal
with noisy 2D bounding boxes from different views,
PartSLIP runs a voting and grouping method on super
points from 3D, assigns multi-view 2D labels to super
points, and finally groups super points to obtain a precise
part segmentation. To enable few-shot learning of 3D part
segmentation, prompt tuning, and multi-view feature ag-
gregation are proposed to improve performance.

OWL-VIiT (Minderer et al., 2022) is an open-vocabulary
object detector. OWL-VIiT uses a vision transformer ar-
chitecture with contrastive image-text pre-training and
detection end-to-end fine-tuning. Unlike GLIP, which
frames detection as a phrase grounding problem with a
single text query and limits the number of possible object
categories, OWL-VIiT can handle multiple text-based or
image-driven queries. OWL-ViT has been applied to robot
learning for example in VoxPoser (Huang et al., 2023c) as
the open-vocabulary object detector to find “entities of
interest” (e.g., vase or drawer handles) and ultimately define
value maps for optimizing manipulation trajectories.

Grounding DINO (Liu et al., 2023c) combines DINO
(Caron et al., 2021) with grounded pre-training, extending
the closed-set DINO model to open-set detection by fusing
vision and language. Grounding DINO outperforms GLIP
in open-set object detection. This superior performance is
mainly due to the transformer architecture of Grounding
DINO, which facilitates multi-modal feature fusion at
multiple stages.

4.1.2. 3D classification. Zero-shot 3D classifiers can enable
robots to classify objects in their environments without
explicit training data. Foundation models are strong can-
didates for performing 3D classification. PointCLIP (Zhang
et al., 2022a) transfers CLIP’s pre-trained knowledge of 2D
images to 3D point cloud understanding by aligning point
clouds with text. The authors propose to project each point
onto a series of pre-defined image planes to generate depth
maps. Then, the CLIP visual encoder is used to encode
multi-view features of the point cloud and predict labels in
natural language for each view. The final prediction for the

point cloud is computed via weighted aggregation of the
predictions for each view. PointBERT (Yu et al., 2022) uses
a transformer-based architecture to extract features from
point clouds, generalizing the concept of BERT into 3D
point clouds.

Unlike PointCLIP, which converts the task of matching
point clouds and text to image-text alignment, ULIP (Xue
et al., 2022, 2023) is a Unified representation of Language,
Images, and Point clouds for 3D understanding. It achieves
this by pre-training with object triplets (image, text, point
cloud). The model is trained using a small number of au-
tomatically synthesized triplets from ShapeNet (Chang
et al., 2015), which is a large-scale 3D model repository.
ULIP uses CLIP as the vision-language model. During
pretraining, the CLIP model is kept frozen and a 3D encoder
is trained by aligning the 3D features of an object with its
associated textual and visual features from CLIP using
contrastive learning. The pretraining process allows ULIP to
learn a joint embedding space where the three modalities are
aligned. One of the major advantages of ULIP is that it can
substantially improve the recognition ability of 3D back-
bone models. This is because the pretraining process allows
ULIP to learn more robust and discriminative features for
each modality, which can then be used to improve the
performance of 3D models. Another advantage of ULIP is
that it is agnostic to the 3D model architecture, and thus can
be easily integrated into the pretraining process of existing
3D pipelines. ULIP adopts masked language modeling from
BERT to 3D by tokenizing 3D patches, randomly masking
out 3D tokens, and predicting them back during pretraining.
ULIP (Xue et al., 2022, 2023) has shown that the perfor-
mance of recognition capability of models such as Point-
BERT can be improved by using a unified multimodal
representation of ULIP.

4.2. Open-vocabulary semantic segmentation

Semantic segmentation classifies each pixel in an image into
semantic classes. This provides fine-grained information
about object boundaries and locations within an image and
enables embodied agents to understand and interact with the
environment at a more granular level. Several works explore
how foundation models such as CLIP can enhance the
generalizability and flexibility of semantic segmentation
tasks.

LSeg is a language-driven semantic segmentation model
(Li et al., 2022a) that associates semantically similar labels
to similar regions in an embedding space. LSeg uses a text
encoder based on the CLIP architecture to compute text
embeddings and an image encoder with the underlying
architecture of Dense Prediction Transformer (DPT) (Ranftl
et al.,, 2021). Similar to CLIP, LSeg creates a joint em-
bedding space using text and image embeddings. LSeg
freezes the text encoder at training time and trains the image
encoder to maximize the correlation between the text em-
bedding and the image pixel embedding of the ground-truth
pixel class. It allows users to arbitrarily shrink, expand, or
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rearrange the label set (with unseen categories) for any
image at test time.

Segment Anything Model (SAM) (Kirillov et al., 2023)
introduces a framework for promptable segmentation
consisting of the task definition for promptable segmenta-
tion, a segmentation foundation model (the Segment
Anything Model, or SAM), and a data engine. SAM adapts
a pretrained Vision Transformer from Masked Auto-
Encoder (MAE) (He et al., 2022) as an image encoder
while using a text encoder from CLIP (Radford et al.,
2021b) for sparse prompts (points, boxes, and text) and a
separate dense prompt encoder for masks. In contrast to
other foundation models that are trained in an unsupervised
manner on web-scale data, SAM is trained using supervised
learning with data engines that help scale the number of
available annotations. Along with the model, the authors
released the Segment Anything 1 Billion (SA-1B) dataset. It
consists of 11M images and 1.1 B segmentation masks. In
the work, the authors conducted experiments on five zero-
shot transfer tasks, including point-valid mask evaluation,
edge detection, object proposal, instance segmentation, and
text-to-mask. The system’s composable design, facilitated
by prompt engineering techniques, enables a broader range
of applications compared to systems trained specifically for
fixed task sets. However, one limitation of this work that is
particularly relevant to robotic applications is that SAM
cannot run in real time.

FastSAM (Zhao et al., 2023) and MobileSAM (Zhang
et al., 2023a) achieve comparable performance to SAM at
faster inference speeds. The Track Anything Model (TAM)
(Yang et al., 2023a) combines SAM and XMem (Cheng and
Schwing, 2022), an advanced video object segmentation
(VOS) model, to achieve interactive video object tracking
and segmentation. Anything-3D (Shen et al., 2023a) em-
ploys a collection of visual-language models and SAMs to
elevate objects into the realm of 3D. It uses BLIP (Li et al.,
2022c¢) to generate textual descriptions while using SAM to
extract objects of interest from visual input. Then,
Anything-3D lifts the extracted objects into a Neural Ra-
diance Field (NeRF) (Mildenhall et al., 2021) representation
using a text-to-image diffusion model, enabling their in-
tegration into 3D scenes.

Amidst these remarkable advancements, achieving fine-
grained detection with real-time performance still remains
challenging. For example, LSeg (Li et al., 2022a) reports
failure cases related to misclassification, when the test time
input labels do not include the true label for the pixel, and
the model thus assigns the highest probability to the closest
label. Another failure case occurs when multiple labels can
be correct for a particular pixel, and the model must classify
it as just one of the categories. For example “window” and
“house” may both be defined as labels, but during inference,
a pixel representing a “window” may be labeled instead as
“house.” SAM also does not provide precise segmentation
for fine structures and often fails to produce crisp bound-
aries. All models that use SAM as a sub-component may
encounter similar limitations. In the future, fine-grained

semantic segmentation models that can assign multiple
labels to a pixel when there are multiple correct descriptions
should be considered. Additionally, developing models that
can run in real time will be critical for robotics applications.

4.3. Open-vocabulary 3D scene and
object representations

Scene representations allow robots to understand their
surroundings, facilitate spatial reasoning, and provide
contextual awareness. Language-driven scene representa-
tions align textual descriptions with visual scenes, enabling
robots to associate words with objects, locations, and re-
lationships. In this section, we study recent works that use
foundation models to enhance scene representations.

4.3.1. Language grounding in 3D scene. Language
grounding refers to combining geometric and semantic
representations of an environment. One type of representa-
tion that can provide an agent with a strong geometric prior is
an implicit representation. One example of an implicit rep-
resentation is a Neural Radiance Field (NeRF, Mildenhall
et al., 2021; Sun et al., 2023d,c). NeRF creates high-quality
3D reconstructions of scenes and objects from a set of 2D
images captured from different viewpoints (without the need
for explicit depth information). The NeRF neural network
takes camera poses as input and predicts the 3D geometry of
the scene as well as color and intensity. Most NeRF-based
models memorize the light field in a single environment and
are not pre-trained on a large data set, hence they are not
foundation models. However, foundation models such as
CLIP can be combined with NeRFs to extract semantic in-
formation from an agent’s environment.

Kerr et al. (2023) propose language-embedded radiance
fields (LERFs) that ground CLIP embeddings into a dense
multi-scale 3D field. This results in a 3D representation of
the environment that can be queried to produce semantic
relevancy maps. The LERF model takes 3D position (x, y,
z), viewing direction (¢, 8), and a scaling factor as input and
outputs an RGB value, density (o), as well as DINO (Caron
et al., 2021) and CLIP features. The LERF is optimized in
two stages: initially, a multi-scale feature pyramid of CLIP
embeddings over training views is computed; then, the
pyramid is interpolated using the image scale and pixel
location to obtain the CLIP embedding; and finally, the
CLIP embeddings are supervised through cosine similarity,
and the RGB and density are supervised using the standard
mean squared-error.

Models such as LERF inherit the shortcomings of CLIP
and NeRF. For example, CLIP exhibits difficulty in cap-
turing spatial relationships between objects. In addition,
language queries from CLIP can highlight a significant issue
similar to the bag-of-words model, which struggles to
distinguish terms with opposite sentiments. Also, NeRF
relies on known camera poses associated with pre-captured
multi-view images.
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In CLIP-Fields (Shafiullah et al., 2023), an implicit scene
representation g(x, y,z) : R> — R is trained by decoding a
d-dimensional latent vector to different modality-specific
outputs. The model distills information from pretrained
image models by back-projecting the pixel labels to 3D
space and training the output heads to predict semantic
labels from an open-vocab object detector called Detic, the
CLIP visual representation, and one-hot instance labels
using a contrastive loss. The scene representation can then
be used as a spatial database for segmentation, instance
identification, semantic search over space, and 3D view
localization from images.

Another related work is VLMaps (Huang et al., 2023b),
which projects pixel embeddings from LSeg to grid cells in
a top-down grid map. This method does not require training
and instead directly backprojects pixel embeddings to grid
cells and averages the values in overlapping regions. By
combining a VLMap with a code-writing LLM, the authors
demonstrate spatial goal navigation using landmarks (e.g.,
move to the plant) or spatial references with respect to
landmarks (between the keyboard and the bowl). Semantic
Abstraction (SemAbs) (Ha and Song, 2022) presents an-
other approach for 3D scene understanding by decoupling
visual-semantic reasoning and 3D reasoning. In SemAbs,
given an RGB-D image of a scene, a semantic-aware 2D
VLM extracts 2D relevancy maps for each queried object,
while semantic-abstracted 3D modules predict the 3D oc-
cupancy of each object using the relevancy maps. Because
the 3D modules are trained irrespective of the specific object
labels, the system demonstrates strong generalization ca-
pabilities, including generalization to new object categories
and from simulation to the real world.

Current VLMs can reason about 2D images; however,
they are not grounded in the 3D world. The main challenge
for building 3D VLM foundation models is the scarcity of
3D data. Particularly, 3D data paired with language de-
scription is scarce. One strategy to circumvent this issue is to
take advantage of 2D models trained on large-scale data to
supervise 3D models. For instance, the authors of Featur-
eNeRF (Ye et al., 2023a) propose to learn 3D semantic
representations by distilling 2D vision foundation models
(i.e., DINO or Latent Diffusion) into 3D space via neural
rendering. FeatureNeRF predicts a continuous 3D semantic
feature volume from a single or few images, which can be
used for downstream tasks such as key-point transfer or
object part co-segmentation.

In 3D-LLM (Hong et al., 2023), the authors propose to
use 2D VLMs as backbones to train a 3D-LLM that can take
3D representations (i.e., 3D point clouds with their features)
as inputs and accomplish a series of diverse 3D-related
tasks. The 3D features are extracted from 2D multi-view
images and mapped to the feature space of 2D pretrained
VLMs. To overcome 3D data scarcity, the authors propose
an efficient prompting procedure for ChatGPT to generate
3D-language data encompassing a diverse set of tasks.
These tasks include 3D captioning, dense captioning, 3D

question answering, 3D task decomposition, 3D grounding,
3D-assisted dialog, and navigation. Also, to capture 3D
spatial information, the authors propose a 3D localization
mechanism by (1) augmenting 3D features with position
embedding and (2) augmenting LLM vocabularies with 3D
location tokens. In the first part, the position embeddings of
the three dimensions are generated and concatenated with
3D features. In the second part, the coordinates of the
bounding box representing the grounded region are dis-
cretized to voxel integers as location tokens
< Xomins Ymin> Zmin> Xmax> Ymaxs Zmax > - 1t 18 important to high-
light that, typically, creating 3D representations necessitates
the use of 2D multi-view images and camera matrices.
These resources are not as readily available as the vast
amounts of internet-scale text and image data that current
foundation models are trained on.

In general, integrating these high-fidelity scene repre-
sentations such as LERF (Kerr et al., 2023) into robotics is
challenging due to prolonged training and rendering times,
as well as a lack of capability to accurately update changes
in dynamic scenes. Unlike NeRF, which requires sampling-
based neural network evaluations, Gaussian Splatting (GS)
(Kerbl et al., 2023) provides efficient real-time rendering.
Gaussian Splatting is a recently developed technique for 3D
scene representation and rendering using 3D Gaussian
functions and fast rasterization for image rendering. Besides
real-time rendering performance, GS provides real-time
scene editing, a beneficial capability for robotics applica-
tions with visual feedback. Recent studies (Hu et al., 2024;
Liao et al., 2024; Qin et al., 2023; Shorinwa et al., 2024;
Zhou et al., 2023; Zuo et al., 2024) have investigated the
integration of semantic features into 3D Gaussian Splatting.
Roboticists have started using these language-embedded
fields for open-vocabulary robot planning, as discussed in
Section 3.6.3.

4.3.2. Scene editing. When an embodied agent relies on an
implicit representation of the world, the capability to edit
and update this representation enhances the robot’s adapt-
ability. For instance, consider a scenario where a robot
utilizes a pretrained NeRF model of an environment for
navigation and manipulation. If a portion of the environ-
ment changes, being able to adjust the NeRF without re-
training the model from scratch saves time and resources.

In the case of NeRFs, Wang et al. (2022) propose a text
and image-driven method for manipulating NeRFs called
CLIP-NeRF. This approach uses CLIP to disentangle the
dependence between shape and appearance in conditional
neural radiance fields. CLIP-NeRF facilitates the editing of
the shape and appearance of NeRFs using either image or
text prompts. It is composed of two modules: the disen-
tangled conditional NeRF and CLIP-driven manipulation.
The former takes the positional encoding y(x, y, z), a shape
code z,, viewing direction v(¢p, 8), and appearance code z,, as
an input and outputs color and density. The disentanglement
is achieved using a deformation network that is appended as
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input to the traditional NeRF MLP that produces density,
and by taking the output from this MLP and concatenating it
with an appearance code to attain the color value. The CLIP-
driven manipulation module takes an image example or text
prompt as an input and outputs a shape deformation Az, and
an appearance deformation Az,, from shape mapping and
appearance mapping MLPs, respectively. These deforma-
tion values aim to perturb the shape code and appearance
code in the disentangled conditional NeRF module to
produce the desired output.

A key limitation of the CLIP-NeRF approach is that
prompting can impact the entire scene rather than a selected
region. For example, prompting to change the color of a
flower’s petals might also impact the shape and color of its
leaves. To address this limitation, Kobayashi et al. propose
to train distilled feature fields (DFFs) (Kobayashi et al.,
2022) and then manipulate DFFs through query-based scene
decomposition and editing. Pre-trained 2D VLMs such as
LSeg (Li et al., 2022a) and DINO (Caron et al., 2021) are
employed as teacher networks and distilled into 3D distilled
feature fields via volume rendering. Editing is achieved by
alpha compositing the density and color values of the two
NeRF scenes. When combined with CLIP-NeRF, this
method enables CLIP-NeRF to selectively edit specific
regions of multi-object scenes. Tschernezki et al. (2022)
explore a similar approach, showing that enforcing the 3D
consistency of features in the NeRF embedding improved
segmentation performance compared to using features from
the original 2D images.

Another approach to more controlled 3D scene editing is
to use structured 3D scene representations. Nerflets (Zhang
et al., 2023c¢) represent a 3D scene as a combination of local
neural radiance fields where each maintains its own spatial
position, orientation, and dimension. Instead of employing a
single large MLP to predict colors and densities as standard
NeRF, individual Nerflets are combined to predict these
values, modulated by their weights. After optimizing posed
2D images and segmentations, Nerflets reflect the decom-
posed scene and support more controlled editing.

One application of image editing in robotics is for data
augmentation during policy learning. ROSIE (Yu et al,,
2023) uses the Imagen editor (Wang et al., 2023¢) to modify
training images to add additional distractors and unseen
objects and backgrounds to train robust imitation learning
policies. GenAug (Chen et al., 2023f) similarly generates
images with in-category and cross-category object substi-
tutions, visual distractors, and diverse backgrounds. The
CACTI (Mandi et al., 2022) pipeline includes a step in-
painting different plausible objects via Stable-Diffusion
(Rombach et al., 2022) onto training images. These ap-
proaches generate photorealistic images for training robust
policies; however, generating images with sufficient di-
versity while also maintaining physical realism, for ex-
ample, for object contacts, remains a challenge. Existing
approaches use learned or provided masks to specify areas
of the image to keep, or heuristics based on the particular
robotic task.

Another direction is to use generative models to define
goal images for planning. DALL-E-Bot (Kapelyukh et al.,
2023) uses DALL-E 2 to define a goal image of human-like
arrangements from observations.

4.3.3. Object representations. Learning correspondences
between objects can facilitate manipulation by enabling skill
transfer from trained objects to novel object instances in
known categories or novel object categories at test time.
Traditionally, object correspondences have been learned
using strong supervision, such as keypoints and keyframes.
Neural descriptor fields (NDFs) (Simeonov et al., 2022)
remove the need for dense annotation by leveraging layer-
wise activations from an occupancy network; however, this
approach still requires many training shapes for each target
object category. Additional works have started to build object
representations directly from image features of pretrained
vision models. Feature Fields for Robotic Manipulation
(F3RM) (Shen et al., 2023c) builds on DFF to develop scene
representations that support finding corresponding object
regions. F3RM uses a similar feature representation for 6-
DoF poses relative to objects (e.g., a grasp on the handle of
the mug) to NDF. Besides allowing corresponding 6-DoF
poses to be found from a few demonstrations, the pose
embeddings can also be directly compared to text embed-
dings from CLIP to leverage language guidance (e.g., pick up
the bowl). Correspondences between objects have also been
directly extracted from DINO features (Goodwin et al.,
2022a) without training. This method first extracts dense
ViT feature maps of two objects using multiple views.
Similar regions on the two objects are found by computing
the cyclical distance metric (Goodwin et al., 2022b) on the
feature maps. With the 2D patch correspondences, a 7-D rigid
body transform (i.e., a SO(3) pose, a translation, and a scaling
scalar) between the objects can be solved together with
RANSAC and Umeyama’s method (Umeyama, 1991).

4.4. Learned affordances

Affordances refer to the potential of objects, environments,
or entities to offer specific functions or interactions to an
agent. They can include actions such as pushing, pulling,
sitting, or grasping. Detecting affordances bridges the gap
between perception and action.

Affordance Diffusion (Ye et al.,, 2023b) synthesizes
complex interactions of, for example, an articulated hand
with a given object. Given an RGB image, Affordance
Diffusion aims to generate images of human hands for hand-
object interaction (HOI). The authors propose a two-step
generative approach based on large-scale pretrained diffu-
sion models based on where to interact (layout) and how to
interact (content). The layout network generates a 2D spatial
arrangement of hand and object. The content network then
synthesizes images of a hand grasping the object condi-
tioned on the given object and the sampled HOI layout.
Affordance Diffusion outputs both hand articulation and
approach orientation.
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Vision-Robotic Bridge (VRB) (Bahl et al., 2023) trains a
visual affordance model on internet videos of human be-
havior. Particularly, it estimates the likely location and
manner in which a human interacts within a scene. This
model captures the structural information of these behav-
ioral affordances. The authors seamlessly integrate the af-
fordance model with four different robot learning
paradigms. Firstly, they apply offline imitation learning,
where the robot learns by imitating the observed human
interactions from the videos. Secondly, they use exploration
techniques to enable the robot to actively discover and learn
new affordances in its environment. Thirdly, the authors
incorporate goal-conditioned learning, allowing the robot to
learn how to achieve specific objectives by leveraging the
estimated affordances. Finally, they integrate action pa-
rameterization for reinforcement learning, enabling the
robot to learn complex behaviors by optimizing its actions
based on the estimated affordances.

4.5. Predictive models

Predictive dynamics models, or world models, predict how
the state of the world changes given particular agent actions,
that is, they attempt to model the state transition function of
the world (Sun et al., 2021b). When applied to visual ob-
servations, dynamics modeling can be formulated as a video
prediction problem (Sun et al., 2022b; 2023b). While video
generation and prediction, particularly over long horizons,
is a longstanding challenge with many prior efforts, recent
models based on vision transformers and diffusion models
have demonstrated improvements (Janner et al., 2022; Sun
et al.,, 2023a). For instance, the Phenaki model (Villegas
etal., 2023) generates variable length video up to minutes in
length conditioned on text prompts.

Several approaches apply these models to robotics in the
literature. Note that while learned dynamics or world
models in robotics have been explored in constrained or
smaller-data regimes, we focus in this section on works that
train on a diversity or volume of data that is characteristic of
foundation models. One strategy is to learn an action-
conditioned model that may be used directly for down-
stream planning by optimizing an action sequence (Dasari
et al.,, 2019), for example, performing model-predictive
control, or for policy learning via training on simulated
rollouts. One example is the GAIA-1 model, which gen-
erates predictions of driving video conditioned on arbitrary
combinations of video, action, and text (Hu et al., 2023a). It
was trained on 4700 hours of proprietary driving data.

Another approach is to use a video prediction model to
generate a plan of future states, and then learn a separate
goal-conditioned policy or inverse dynamics model to infer
control actions based on the current and target state. One
line of work instantiates this by combining text-conditioned
video diffusion models with image-goal-conditioned poli-
cies to solve manipulation tasks in simulated and real ta-
bletop settings (Du et al., 2023c). This approach has been
extended to longer-horizon object manipulation tasks by

using the PaLM-E VLM to break down a high-level lan-
guage goal into smaller substeps, leveraging feedback be-
tween the VLM and video generation models (Du et al.,
2023d). Another example is COMPASS (Ma et al., 2022),
which first constructs a comprehensive multimodal graph to
capture crucial relational information across diverse mo-
dalities. The graph is then used to construct a rich spatio-
temporal and semantic representation. Pretrained on the
TartanAir multimodal dataset, COMPASS was demon-
strated to address multiple robotic tasks, including drone
navigation, vehicle racing, and visual odometry.

4.6. Challenges and perspectives

While significant advances have been made toward gen-
eralizable methods for perception via foundation models,
many challenges remain. For open-vocabulary object de-
tection and 3D classification, the granularity at which objects
should be detected and whether object parts should be
considered separate or combined can often lead to incom-
patibilities with the rest of the system. Additionally, semantic
alignment (e.g., prompting) is often still unintuitive and
practically challenging when performing segmentation for
arbitrary in-the-wild objects. Efficiently and consistently
updating 3D scene representations, including implicit scene
representations, is critical for dynamic robotic tasks while
existing works primarily focus on static scenes and grasping
tasks. Existing affordance models trained on large-scale data,
largely due to data quality and quantity limitations and
embodied gaps, mostly provide information on how a robot
should make initial contact with an object rather than how it
should be manipulated. In the realm of predictive models,
there are few to no open-sourced predictive models trained on
large-scale robotic datasets, due to data scarcity and com-
putational cost. Training video models on diverse datasets
remains generally challenging, although models such as
OpenAl’s Sora (Brooks et al., 2024) provide a glimpse of
future possibilities.

5. Embodied Al

Recently, researchers have shown that the success of LLMs
can be extended to embodied Al domains (Brohan et al.,
2023b; Huang et al., 2022b; Liang et al., 2023; Zeng et al.,
2022), where “embodied” typically refers to a virtual em-
bodiment in a world simulator, not a physical robot em-
bodiment. Statler (Yoneda et al., 2023) is a framework that
endows LLMs with an explicit representation of the world
state as a form of “memory” that is maintained over time.
Statler uses two instances of general LLMs: a world-model
reader and a world-model writer, that interface with and
maintain the world state. Statler improves the ability of
existing LLMs to reason over longer time horizons without
the constraint of context length.

Large Scale Language Models (LSLMs) have exhibited
strong reasoning ability and the ability to adapt to new tasks
through in-context learning. Dasgupta et al. (2022) combine
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these complementary abilities in a single system consisting
of three parts: a Planner, an Actor, and a Reporter. The
Planner is a pretrained language model that can issue
commands to a simple embodied agent (the Actor), while
the Reporter communicates with the Planner to inform its
next command. Mu et al. (2023) build EgoCOT, a dataset
consisting of carefully selected videos from the Ego4D
dataset, along with corresponding high-quality language
instructions. EmbodiedGPT (Mu et al., 2023) utilizes prefix
adapters to augment the 7B language model’s capacity to
generate high-quality planning, training it on the EgoCOT
dataset to avoid overly divergent language model responses.
Comprehensive experiments were conducted, demonstrat-
ing that the model effectively enhances the performance of
embodied tasks such as Embodied Planning, Embodied
Control, Visual Captioning, and Visual Q&A. Embodied
agents should autonomously and endlessly explore the
environment. They should actively seek new experiences,
acquire new skills, and improve themselves.

The game of Minecraft (Engelbrecht and Schiele, 2014)
provides a platform for designing intelligent agents capable
of operating in the open world. MineDojo (Fan et al., 2022)
is a framework for developing generalist agents in the game
of Minecraft. MineDojo offers thousands of open-ended and
language-prompted tasks, where the agent can navigate in a
progressively generated 3D environment to mine, craft
tools, and build structures. As part of this work, the authors
introduce MiniCLIP, a video-language model that learns to
capture the correlations between a video clip and its time-
aligned text that describes the video. The MineCLIP model,
trained on YouTube videos, can be used as a reward function
to train the agent with reinforcement learning. By maxi-
mizing this reward function, it incentivizes the agent to
make progress toward solving tasks specified in natural
language.

Voyager (Wang et al., 2023b) introduces an LLM-
powered embodied lifelong learning agent in the realm of
Minecraft. Voyager uses GPT-4 to continuously explore the
environment. It interacts with GPT-4 through in-context
prompting and does not require model parameter fine-
tuning. Exploration is maximized by querying GPT-4 to
provide a stream of new tasks and challenges based on the
agent’s interaction history and current situations. Also, the
iterative prompting mechanism generates code as the action
space to control the Minecraft agent. Iterative prompting
incorporates environment feedback provided by Minecratft,
execution errors, and a self-verification scheme. For self-
verification, GPT-4 acts as a critic by checking task success
and providing suggestions for task completion in the case of
failure. The GPT-4 critic can be replaced by a human critic
to provide on-the-fly human feedback during task execu-
tion. Ghost in the Minecraft (GITM) (Zhu et al., 2023)
leverages LLM to break down goals into sub-goals and map
them to structured actions for generating control signals.
GITM consists of three components: an LLM Decomposer,
an LLM Planner, and an LLM Interface. The LLM De-
composer is responsible for dividing the given Minecraft

goal into a sub-goal tree. The LLM Planner then plans an
action sequence for each sub-goal. Finally, the LLM In-
terface executes each action in the environment using
keyboard and mouse operations.

Reinforcement learning in embodied Al virtual envi-
ronments has the potential to improve the capabilities of
real-world robotics by providing efficient training and
optimizing control policies in a safe and controlled setting.
Reward design is a crucial aspect of RL that influences the
robot’s learning process. Rewards should be aligned with
the task’s objective and guide the robot to achieve the
desired task. Foundation models can be leveraged to design
rewards. Kwon et al. (2023) investigate the simplification of
reward design by utilizing a large language model (LLM),
such as GPT-3, as a proxy reward function. In this approach,
users provide a textual prompt that contains a few examples
(few-shots) or a description (zero-shot) of the desired be-
havior. The proposed method incorporates this proxy re-
ward function within a reinforcement learning framework.
Users specify a prompt at the start of the training process.
During training, the LLM evaluates the RL agent’s behavior
against the desired behavior outlined in the prompt, re-
sulting in a corresponding reward signal generated by the
LLM. Subsequently, the RL agent employs this reward to
update its behavior through the learning process.

In Du et al. (2023D), the authors propose a method called
Exploring with LLMs (ELLM) that rewards an agent for
achieving goals suggested by a language model. The lan-
guage model is prompted with a description of the agent’s
current state. Therefore, without having a human in the
loop, ELMM guides agents toward meaningful behavior.

Zhang et al. (2022¢) explore the potential relationship
between offline reinforcement learning and language
modeling. They hypothesize that RL and LM share simi-
larities in predicting future states based on current and past
states, considering both local and long-range dependencies
across states. To validate this assumption, the authors pre-
train Transformer models on different offline RL tasks and
assess their performance on various language-related tasks.
Tarasov et al. (2022) present an approach to harness pre-
trained language models in deep offline reinforcement
learning scenarios that are not inherently compatible with
textual representations. The authors suggest a method that
involves transforming the RL states into human-readable
text and performing fine-tuning of the pretrained language
model during training with deep offline RL algorithms.

Advances in model architecture (e.g., transformer) for
foundation models allow the model to effectively model and
predict sequences. To harness the power of these models,
some recent studies investigate exploiting these architec-
tures for sequence modeling in RL problems. Reid et al.
(2022) explore the potential of leveraging the sequence
modeling formulation of reinforcement learning and ex-
amine the transferability of pretrained sequence models
across different domains, such as vision and language. They
specifically focus on the effectiveness of fine-tuning these
pretrained models on offline RL tasks, including control and
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games. In addition to investigating the transferability of
pretrained sequence models, the authors propose techniques
to enhance the transfer of knowledge between these do-
mains. These techniques aim to improve the adaptability
and performance of the pretrained models when applied to
new tasks or domains.

High-level task planning using LLMs is demonstrated in
embodied Al environments. Huang et al. (2022a) propose
employing pretrained Language Models (LMs) as zero-shot
planners. The approach is evaluated in the VirtualHome
(Puig et al., 2018) environment. In this work, first, an au-
toregressive LLM such as GPT-3 (Brown et al., 2020) or
Codex (Chen et al., 2021) is quarried to generate action
plans for high-level tasks. Some of these action plans might
not be executable by the agent due to ambiguity in language
or referring to objects that are not present or grounded in the
environment. So, to select the admissible action plans,
admissible environment actions, and generated actions by
the causal LLM are embedded using a BERT-style LM.
Then for each admissible environment action, its semantic
distance to the generated action is computed using cousin
similarity.

Chain of thought reasoning and action generation are
proposed for embodied agents as well. ReAct (Yao et al.,
2023) combines reasoning (e.g., chain of thought) and
acting (e.g., sequence of action generation) within LLM.
Reasoning traces enhance the model’s ability to deduce,
monitor, and revise action plans, along with managing
exceptions effectively. Actions facilitate interaction with
external resources, like knowledge bases or environments,
enabling it to acquire supplementary information. ReAct
showcases its proficiency across a wide array of language
and decision-making tasks, including question-answering
and fact verification. It enhances interpretability and trust
for users by transparently illustrating the process through
which it searches for evidence and formulates conclusions.
Unlike prior methods that depend on a singular chain of
thought, ReAct engages with a Wikipedia API for pertinent
information retrieval and belief updating. This strategy
effectively mitigates the issues commonly associated with
chain-of-thought reasoning, such as hallucination and error
propagation.

VPT (Baker et al., 2022) presents video pretraining in
which the agent learns to act by watching unlabeled online
videos. It is shown that an inverse dynamic model can be
trained with a small labeled dataset and the model can be
used to label a huge unlabeled data of the internet. Videos of
people who have played Minecraft are used to train an
embodied Al agent to play Minecraft. The model exhibits
zero-shot performance and can be fine-tuned for more
complex skills using imitation learning or reinforcement
learning. The VPT model is trained with a standard be-
havioral cloning loss (9) (negative log-likelihood) while the
actions are drawn from the inverse dynamic model. Lin et al.
(2023a) presents an agent, Dynalang, that learns a multi-
modal world model to predict the future text and image
representations. The world model is trained using a replay

buffer of the agent’s past interactions with the environment.
Actions are selected by training an actor-critic model on a
sequence of representations generated by the world model.

5.1. Generalist Al

A long-standing challenge in robotics research is deploying
robots or embodied Al agents in various non-factory real-
world applications to perform a range of tasks. To make
generalist robots that can operate in diverse environments
with diverse tasks, some researchers have proposed gen-
erative simulators for robot learning. For example, Gen-
erative Agents (Park et al., 2023a) discusses how generative
agents can produce realistic imitations of human behavior
for interactive applications, creating a miniature community
of agents similar to those found in games like The Sims. The
authors connect their architecture with the ChatGPT large
language model to create a game environment with 25
agents. The study includes two evaluations, a controlled
evaluation and an end-to-end evaluation, which demon-
strate the causal effects of the various components of their
architecture. Xian et al. (2023) propose a fully automated
generative pipeline, known as a generative simulation for
robot learning, which utilizes models to generate diverse
tasks, scenes, and training guidance on a large scale. This
approach can facilitate the scaling up of low-level skill
learning, ultimately leading to a foundational model for
robotics that empowers generalist robots.

An alternative method for developing generalist Al in-
volves using generalizable multi-modal representations.
Gato (Reed et al., 2022) is a generalist agent that works as a
multi-modal, multi-task, multi-embodiment generalist
policy. Using the same neural network with the same set of
weights, Gato can sense and act with different embodiments
in various environments across different tasks. Gato can
play Atari, chat, caption images, stack blocks with a real
robot arm, navigate in a 3D simulated environment, and
more. Gato is trained on 604 different tasks with various
modalities, observations, and actions. In this setting, lan-
guage acts as a common grounding across different em-
bodiments. Gato has 1.2B parameters and is trained offline
in a supervised way. Positioned at the confluence of rep-
resentation learning and reinforcement learning (RL), RRL
(Shah and Kumar, 2021) learns behaviors directly from
proprioceptive inputs. By harnessing pre-trained visual
representations, RRL is able to learn from visual inputs,
which typically pose challenges in conventional RL
settings.

5.2. Simulators

High-quality simulators or benchmarks are crucial for ro-
botics development. Hence, we put the “simulator” section
here to highlight its essential role. To facilitate generalization
from simulation to the real world, Gibson (Xia et al., 2018)
emphasizes real-world perception for embodied agents.
To bridge the gap between simulation and real-world,
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iGibson (Li et al., 2021) and BEHAVIOR-1K (Li et al.,
2022b) further support the simulation of a more diverse set
of household tasks and reach high levels of simulation
realism. As a simulation platform for research in Embodied
Al, Habitat (Savva et al., 2019) consists of Habitat-Sim and
Habitat-API. Habitat-Sim can achieve several thousand
frames per second (fps) running single-threaded. Rather
than modeling into low-level physics, Habitat-Lab (Szot
et al., 2021), is a high-level library for embodied Al, giving
a modular framework for end-to-end development. It fa-
cilitates the definition of embodied Al tasks, such as nav-
igation, interaction, instruction following, and question
answering. Additionally, it enables the configuration of
embodied agents, encompassing their physical form, sen-
sors, and capabilities. The library supports various training
methodologies for these agents, including imitation learn-
ing, reinforcement learning, and traditional non-learning
approaches like the SensePlanAct pipelines. Furthermore, it
provides standard metrics for evaluating agent performance
across these tasks. In line with this, the recent release of
Habitat 3.0 (Puig et al.,, 2023) further expands these
capabilities.

Similarly, RoboTHOR (Deitke et al., 2020) serves as a
platform for the development and evaluation of embodied
Al agents, offering environments in both simulated and
physical settings. Currently, RoboTHOR includes a training
and validation set comprising 75 simulated scenes. Addi-
tionally, there are 14 scenes each for test-dev and test-
standard in the simulation, with corresponding physical
counterparts. Key features of RoboTHOR include its re-
configurability and benchmarking capabilities. The physical
environments are constructed using modular, movable
components, enabling the creation of diverse scene layouts
and furniture configurations in a single physical area.
Another simulator, VirtualHome (Puig et al., 2018), models
complex activities that occur in a typical household. It
supports program descriptions for a variety of activities that
happen in people’s homes. Huang et al. (2022b) use Vir-
tualHome to evaluate the robot planning ability with lan-
guage models. These simulators have the potential to be
applied for evaluating LLMs on robotics tasks.

5.3. Challenges and perspectives

As robot learning in the real world can lead to unsafe
scenarios, embodied Al facilitates adaptable robot learning
through interactions with objects and scenes in virtual
environments. Developing high-fidelity, physics-based 3D
simulators that are highly photorealistic and accurately
represent real-world counterparts can accelerate robot
learning and lead to generalized robotic solutions capable of
interacting with diverse objects and scenarios. Thus, a
natural extension of embodied Al research in robotics ap-
plications involves replacing game environments with high-
fidelity physics-based simulators. Current embodied Al
simulators, as discussed in 5.2, are not physics-based.
Therefore, efforts should be directed towards developing

these 3D simulators to include physics-based modeling.
Additionally, embodied Al enables long-horizon planning
and lifelong learning for robots. For example, analogous to
the Voyager agent that learns to play in the open-world
environment of Minecraft game, a robot can learn long-
horizon planning in an open-world environment.

6. Challenges and future directions

In this section, we examine challenges related to integrating
foundation models into robotics settings. We also explore
potential future avenues to address some of these challenges.

6.1. Overcoming data scarcity in training
foundation models for robotics

One main challenge is that compared to the internet-scale text
and image data that large models are trained on, robotic-
specific data is scarce. We discuss various techniques to
overcome data scarcity. For example, to scale up robot
learning, some recent works suggest the use of play data
instead of expert data for imitation learning. Another tech-
nique is data augmentation using in-painting techniques.

6.1.1. Scaling robot learning using unstructured play data
and unlabeled videos of humans. Language-conditioned
learning, such as language-conditioned behavioral clon-
ing or language-conditioned affordance learning, requires
having access to large annotated datasets. To scale up
learning, in Play-LMP (Lynch et al., 2020), the authors
suggest using teleoperated human-provided play data in-
stead of fully annotated expert demonstrations. Play data is
unstructured, unlabeled, cheap to collect, but rich. Col-
lecting play data does not require scene staging, task seg-
menting, or resetting to an initial state. Also, in MimicPlay
(Wang et al., 2023a), a goal-conditioned trajectory gener-
ation model is trained based on human-play data. The play
data includes unlabeled video sequences of humans inter-
acting with the environment with their hands. Recently
works such as Mees et al. (2023) have shown a very small
percentage (as little as 1%) of language-annotated data is
needed to train a visuo-lingual affordance model for robot
manipulation tasks.

6.1.2. Data augmentation using inpainting. Collecting
robotics data requires the robot to interact with the real
physical world. This data collection process can be asso-
ciated with significant costs and potential safety concerns.
One way to tackle this challenge is to use generative Al,
such as text-to-image diffusion models, for data augmen-
tation. For example, ROSIE (Scaling Robot Learning with
Semantically Imagined Experience) (Yu et al., 2023)
presents a diffusion-based data augmentation. Given a robot
manipulation dataset, they use inpainting to create various
unseen objects, backgrounds, and distractors with textual
guidance. One important challenge for these methods is
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developing inpainting strategies that can generate sufficient
semantically and visually diverse data, while at the same
time ensuring that this data is physically feasible and ac-
curate. For instance, using inpainting to modify an image of
an object within a robot’s gripper may result in an image
with a physically unrealistic grasp, leading to poor down-
stream training performance. Additional investigation into
generative foundation models that are evaluated not only for
visual quality but also for physical realism may improve the
generality of these methods.

6.1.3. Overcoming 3D data scarcity for training 3D
foundation models. Currently, multi-modal Vision-and-
Language Models (VLMs) can analyze 2D images, but
they lack a connection to the 3D world, which encompasses
3D spatial relationships, 3D planning, 3D affordances, and
more. The primary obstacle in developing foundational 3D
VLM models lies in the scarcity of 3D data, especially data
that is paired with language descriptions. As discussed,
language-driven perception tasks such as language-driven
3D scene representation, language-driven 3D scene editing,
language-driven 3D scene or shape generation, language-
driven 3D classification, and affordance prediction require
access to 3D data or multi-view images with camera ma-
trices which are not readily available data types. New da-
tasets or data generation methods need to be created in the
future to overcome data scarcity in the 3D domain.

6.1.4. Synthetic data generation via high-fidelity
simulation. High-fidelity simulation via gaming engines
can provide an efficient means to collect data, especially to
solve multimodal and 3D perception tasks on robots. For
example, TartanAir (Wang et al., 2020), a dataset for robot
navigation tasks, was collected in Shah et al. (2017) with the
presence of moving objects, changing light, and various
weather conditions. By collecting data in simulations, it was
possible to obtain multi-modal sensor data and precise
ground truth labels such as the stereo RGB image, depth
image, segmentation, optical flow, camera poses, and Li-
DAR point cloud. A large number of environments were set
up with various styles and scenes, covering challenging
viewpoints and diverse motion patterns that are difficult to
achieve by using physical data collection platforms. An
extension TartanAir-V2 (https://tartanair.org) furthers the
dataset by incorporating additional environments and mo-
dalities, such as fisheye, panoramas, and pinholes, with
arbitrary camera intrinsic and rotations.

6.1.5. Sim-to-real transfer. Robotics policies trained in
simulated environments can be transferred to and deployed
on robots in the real world. While sim-to-real transfer holds
promise for addressing data scarcity in robotics, the sim-to-
real gap poses a significant challenge for foundation models
trained using simulated data. There are examples before the
appearance of foundation models that sim-to-real has
been studied in Margolis and Agrawal (2023) propose
the multiplicity of behavior (MoB) to promote policy

generalization by conditioning on a behavior parameter.
These policies are trained with tuned auxiliary reward
components that promote sim-to-real transfer. Kumar et al.
(2021) focuses on real-time policy adaptation by training an
adaptation module to estimate an extrinsic vector that en-
codes the environment the robot is operating in. To reduce
the sim-to-real gap, Kumar et al. (2021) introduces an
additional component of the reward function in addition to
altering the terrain of the physics simulator used for training.
Chen et al. (2023b) seek to train policies for in-hand re-
orientation of novel objects by training a teacher policy with
reinforcement learning in a physics simulator and a student
policy through imitation learning. To reduce the sim-to-real
gap the student policies take as input a point cloud from a
partial rendering from the physics simulator. Methodologies
from these works can be used to guide sim-to-real from the
world of foundation models.

6.1.6. Data augmentation using VLMs. Data augmentation
can be provided using Visual-Language Models (VLMs). In
DIAL (Xiao et al., 2023a), Data-driven Instruction Aug-
mentation for Language-conditioned control is introduced.
DIAL uses VLM to label offline datasets for language-
conditioned policy learning. DIAL performs instruction
augmentation using VLMs to weakly relabel offline control
datasets. DIAL consists of three steps: (1) Contrastive fine-
tuning of a VLM such as CLIP (Radford et al., 2021a) on a
small robot manipulation dataset of trajectories with crowd-
sourced annotation, (2) producing new instruction labels by
using the fine-tuned VLM to score relevancy of crowd-
sourced annotations against a larger dataset of trajectories,
and (3) training a language-conditioned policy using be-
havior cloning on both, the original and re-annotated dataset.

6.1.7. Robot physical skills are limited to distribution of
skills. One key limitation of the existing robot transformers
and other related works in robotics is that robot physical
skills are limited to the distribution of skills observed within
the robot data. Using these transformers, the robot lacks the
capability to generate new movements. To address this
constraint, an approach involves using motion data from
videos that humans performing various tasks. The inherent
motion information within these videos can then be em-
ployed to facilitate the acquisition of physical skills in
robotics.

6.2. Real time performance (high inference time
of foundation models)

Another bottleneck for deploying foundation models on
robots is the inference time of these models. In Table 2, the
inference time for some of these models is reported. As
seen, the inference time for some of the models still needs to
be improved for reliable real-time deployment of the robotic
systems. As real-time capability is an essential requirement
for any robotic system, more research needs to be performed
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to improve the computational efficiency of foundation
models.

Furthermore, foundation models are most often stored
and run in remote data centers, and accessed through APIs
that require network connectivity. Many foundation models
(e.g., the GPT models, the Dall-E models) can only be
accessed this way, while others are usually accessed this
way, but can also be downloaded and run locally with
sufficient local computing power, such as SAM (Kirillov
et al., 2023), LLaMA (Touvron et al., 2023b), and DINOv2
(Oquab et al., 2023). Given this cloud-service paradigm, the
latencies and service times in response to an API call for a
foundation model depend on the underlying network over
which the data is routed and the data center where the
computation takes place—factors that are beyond the
control of a robot. So network reliability should be taken
into account before integrating a foundation model into a
robot’s autonomy stack.

For some robotics domains, reliance on the network and
3rd party computing may not be a safe or realistic operating
paradigm. In autonomous driving, autonomous aircraft,
search and rescue or emergency response applications, and
defense applications the robot cannot rely on network
connectivity for time-critical perception or control com-
putations. One option is to have a safe fall-back mode that
relies on classical autonomy tools using only local com-
putation, which can take over if access to the cloud is in-
terrupted for some reason. Another potential longer-term
solution for network-free autonomy is the distillation of
large foundation models into smaller-sized specialized
models that run on onboard robot hardware. Some recent
work has attempted this approach (though without an ex-
plicit link to robotics) (Lin et al., 2023b). Such distilled
models would likely give up some aspect of the full model,
for example, restricting operation to a certain limited
context, in exchange for smaller size and faster computa-
tion. This could be an interesting future direction for
bringing the power of foundation models to safety-critical
robotics systems.

6.3. Limitations in multimodal representation

Multimodal interaction implicitly assumes that the modality
is tokenizable and can be standardized into input sequences
without losing information. The Multimodal models pro-
vide information sharing between multiple modalities and
are some variation of multimodal transformers with cross-
modal attention between every pair of inputs. In multimodal
representation learning, it is assumed that cross-modal in-
teractions and the dimension of heterogeneity between
different modalities can all be captured by simple embed-
dings. In other words, a simple embedding is assumed to be
sufficient to identify the modality or, for example, how
different language is from vision. In the realm of multi-
modal representation learning, the question of whether a
single multimodal model can accommodate all modalities
remains an open challenge.

Additionally, when paired data between a modality and
text is available one can embed that modality into text
directly. In robotics applications, there are some modalities
for which sufficient data is not available, and to be able to
align them with other modalities, they need to be first
converted to other modalities and then used. For example,
3D point cloud data have various applications in robotics,
but training a foundation model using this type of data is
challenging since data is scarce and is not aligned with text.
So, one way to overcome this challenge is first converting
this 3D point cloud data to other modalities such as images
and, subsequently, images to text as the secondary step of
alignment. Then they can be used in foundation model
training. As another example, in Socratic models (Zeng
et al., 2022), each modality, whether visual or auditory, is
initially translated into language, after which language
models attempt to respond to these modalities.

6.4. Uncertainty quantification

How can we provide assurances on the reliability of
foundation models when they are deployed in potentially
safety-critical robotics applications (Sun et al., 2023a)?
Current foundation models such as LLMs often Aallucinate,
for example, produce outputs that are factually incorrect,
logically inconsistent, or physically infeasible. While such
failures may be acceptable in applications where the outputs
from the model can be checked by a human in real-time
(e.g., as is often the case for LLM-based conversational
agents), they are not acceptable when deploying autono-
mous robots that use the outputs of foundation models in
order to act in human-centered environments. Rigorous
uncertainty quantification is a key step toward addressing
this challenge and safely integrating foundation models into
robotic systems. Below, we highlight challenges and recent
progress in uncertainty quantification for foundation models
in robotics.

6.4.1. Instance-level uncertainty quantification. How can
we quantify the uncertainty in the output of a foundation
model for a particular input? As an example, consider the
problem of image classification; given a particular image,
one may quantify uncertainty in the output by producing a
set of object labels that the model is uncertain among or a
distribution over object labels. Instance-level uncer-
tainty quantification can inform the robot’s decisions at
runtime. For example, if an image classification model
running on an autonomous vehicle produces a prediction
set {Pedestrian,Bicyclist} representing that it is
uncertain whether a particular agent is a pedestrian or a
bicyclist, the autonomous vehicle can take actions that
consider both possibilities.

6.4.2. Distribution-level uncertainty quantification. How
can we quantify the uncertainty in the correctness of a
foundation model that will be deployed on a distribution of
possible future inputs? For the problem of image
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classification, one may want to compute or limit the
probability of errors over the distribution of inputs that a
robot may encounter when deployed. Distribution-level
uncertainty quantification allows us to decide whether a
given model is sufficiently reliable to deploy in our target
distribution of scenarios. For example, we may want to
collect additional data or fine-tune the model if the com-
puted probability of error is too high.

6.4.3. Calibration. In order to be useful, estimates of un-
certainty (both at the instance-level and distribution level)
should be calibrated. 1f we perform instance-level uncer-
tainty quantification using prediction sets, calibration asks
for the prediction set to contain the true label with a user-
specified probability (e.g., 95%) over future inputs. If
instance-level uncertainty is quantified using a distribution
over outputs, it should be the case that outputs that are
assigned confidence p are, in fact, correct with probability p
over future inputs. Similarly, distribution-level uncertainty
estimates should limit the true probability of errors when
encountering inputs from the target distribution.

We highlight a subtle but important point that is often
overlooked when performing uncertainty quantification in
robotics: it can be crucial to pay attention to the distinction
between Frequentist and Bayesian interpretations of prob-
abilities. In many robotics contexts—particularly safety-
critical ones—the desired interpretation is often Frequentist
in nature. For example, if we produce a bound € for the
probability of collision of an autonomous vehicle, this
should limit the actual observed rate of collisions when the
vehicle is deployed. Bayesian techniques (e.g., Gaussian
processes or Bayesian ensembles) do not necessarily pro-
duce estimates of uncertainty that are calibrated in this
Frequentist sense (since the estimates depend on the specific
prior that is used to produce the estimates). Trusting the
resulting uncertainty estimates may lead one astray if the
goal is to provide statistical guarantees on the safety or
performance of the robotic system when it is deployed.

6.4.4. Distribution shift. An important challenge in per-
forming calibrated uncertainty quantification is distribution
shift. A foundation model trained on a particular distribution
of inputs may not produce calibrated estimates of uncer-
tainty when deployed on a different distribution for a
downstream task. A more subtle cause of distribution shift
in robotics arises from closed-loop deployment of a model.
For example, imagine an autonomous vehicle that chooses
actions using the output of a perception system that relies on
a pretrained foundation model; since the robot’s actions
influence future states and observations, the distribution of
inputs the perception system receives can be potentially
very different from the one it was trained on.

6.4.5. Case study: uncertainty quantification for language-
instructed robots. Recently, there has been exciting prog-
ress in performing rigorous uncertainty quantification for
language-instructed robots (Ren et al., 2023). This work

proposes an approach called knowNo for endowing
language-instructed robots with the ability to know when
they don't know and to ask for help or clarification from
humans in order to resolve uncertainty. KNOWNO performs
both instance-level and distribution-level uncertainty
quantification in a calibrated manner using the theory of
conformal prediction. In particular, given a language in-
struction (and a description of the robot’s environment
generated using its sensors), conformal prediction is used to
generate a prediction set of candidate actions. If this set is a
singleton, the robot executes the corresponding action;
otherwise, the robot seeks help from a human by asking
them to choose an action from the generated set. Using
conformal prediction, KNOWNO ensures that asking for help
in this manner results in a statistically guaranteed level of
task success (i.e., distribution-level uncertainty quantifica-
tion). KNOWNo tackles potential challenges with distribution
shift by collecting a small amount of calibration data from
the target distribution of environments, tasks, and language
instructions, and using this as part of the conformal pre-
diction calibration procedure. While KNOWNO serves as an
example of calibrated instance-level and distribution-level
uncertainty quantification for LLMs, future research should
also explore assessing and ensuring the reliability of various
other foundation models, such as vision-language models,
vision-navigation models, and vision-language-action
models, commonly employed in robotics. In addition, ex-
ploring how Bayesian uncertainty quantification tech-
niques, such as ensembling (Park et al., 2023b; Sun et al.,
2022c), can be combined with approaches such as con-
formal prediction to produce calibrated estimates of
instance-level and distribution-level uncertainty is a
promising direction.

6.5. Safety evaluation

The problem of safety evaluation is closely related to un-
certainty quantification. How can we rigorously fest for the
safety of a foundation model-based robotic system (i) before
deployment, (ii) as the model is updated during its lifecycle,
and (iii) as the robot operates in its target environments? We
highlight challenges and research opportunities related to
these problems below.

6.5.1.  Pre-deployment safety tests. Rigorous pre-
deployment testing is crucial for ensuring the safety of
any robotic system. However, this can be particularly
challenging for robots that incorporate foundation models.
First, foundation models are trained on vast amounts of data;
thus, a rigorous testing procedure should ensure that the
model does not see test scenarios during training. Second,
foundation models often commit errors in ways that are hard
to predict a priori; thus, tests need to cover a diverse enough
range of scenarios to uncover flaws. Third, foundation
models such as LLMs are often used to produce open-ended
outputs (e.g., a plan for a robot described in natural lan-
guage). The correctness of such outputs can be challenging
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to evaluate in an automated manner if these outputs are
evaluated in isolation from the entire system.

The deployment cycle of current foundation models (in
non-robotics applications) involves thorough red-teaming
by human evaluators (Ganguli et al., 2022; OpenAl, 2023).
Recent work has also considered partially automating this
process by using foundation models themselves to perform
red-teaming (Perez et al., 2022; Tong et al., 2023). De-
veloping ways to perform red-teaming (both by humans and
in a partially automated way) for foundation models in
robotics is an exciting direction for future research.

In addition to evaluating the foundation model in iso-
lation, it is also critical to assess the safety of the end-to-end
robotic system. Simulation can play a critical role here and
already does so for current field-deployed systems such as
autonomous vehicles (Kusano et al., 2022; Webb et al.,
2020). The primary challenges are to ensure that (i) the
simulator has high enough fidelity for results to meaning-
fully transfer to the real world, and (ii) test scenarios
(manually specified, replicated from real-world scenarios,
or automatically generated via adversarial methods (Ding
et al., 2023)) are representative of real-world scenarios and
are diverse enough to expose flaws in the underlying
foundation models. In addition, finding ways to augment
large-scale simulation-based testing with smaller-scale real-
world testing is an important direction for future work. We
emphasize the need for performing such testing throughout
the lifecycle of a field-deployed robotic system, especially
as updates are made to different components (which may
interact in unpredictable ways with foundation models).

6.5.2. Runtime monitoring and out-of-distribution
detection. In addition to performing rigorous testing off-
line, robots with foundation model-based components
should also perform runtime monitoring. This can take the
form of failure prediction in a given scenario, which can
allow the robot to deploy a safety-preserving fallback policy
(Luo et al., 2022; Farid et al., 2022a, 2022b; Hsu et al.,
2023b, 2023a). Alternately, the robot can perform out-of-
distribution (OOD) detection using experiences collected
from a small batch of scenarios in a novel distribution (Cai
and Koutsoukos, 2020; Farid et al., 2021; Greenberg and
Mannor, 2021; Sinha et al.,, 2022); this can potentially
trigger the robot to cease its operations and collect addi-
tional training data in the novel distribution in order to re-
train its policy. Developing techniques that perform runtime
monitoring and OOD detection with statistical guarantees
on false positive/negative error rates in a data-efficient
manner remains an important research direction.

6.5.3. Performance evaluation. Given the high complexity
of the robot policies themselves and in general foundation
models, we anticipate a greater reliance on statistical per-
formance evaluation methods that remain independent of
the policy’s complexity. For example, some early works in
this area include Vincent et al. (2023, 2024).

6.6. Using existing foundation models “plug-
and-play” vs. building new foundation models
for robotics

To incorporate foundation models into robotics, either
existing pretrained large models can be employed as plug-
and-play, or new foundation models can be built using
robotics data. Using foundation models “plug-and-play”
refers to integrating foundation models into various ap-
plications without extensive customization. A large body of
the existing literature on foundation models in robotics is
centered around the use of foundation models from other
domains, such as language or vision. The “plug-and-play”
approach simplifies and facilitates the integration of recent
Al advances into the robotics domain. However, these
models are not always customized to specific applications.
When specific domain expertise is needed, it is necessary to
build a foundation model from scratch or fine-tune the
existing models. Building a foundation model from scratch
is resource-intensive and demands significant computa-
tional power. However, it provides fine-grained control over
the architecture, training parameters, and overall behavior.

Below, we speculate on potential foundation models that
could be built specifically for robotics applications in the
future.

6.6.1. Incorporating tactile and audio sensing. Tactile and
audio sensing are less commonly utilized today but are
critical for human manipulation. Because the data captured
in these modalities is often very sensor-specific, it is
challenging to deploy pretrained models and leverage prior
datasets for a new hardware setup. Early efforts toward
developing unified and grounded representations for touch
and audio in the context of robotics (Clarke, 2019; Fu et al.,
2024; Gao et al., 2022; Yang et al., 2024) may eventually
lead to foundational models that can learn from and be
deployed on heterogeneous hardware setups, making these
modalities easy to integrate and unlocking their potential.

6.6.2. Foundation models for high-level reasoning and task
planning. In addition to building foundational models for
low-level skills, another significant direction is the devel-
opment of robot-specific models for planning. Planning
problems in robotics often require reasoning over both
discrete decisions and continuous actions, also known as the
task and motion planning problem (Garrett et al., 2021;
Zhao et al., 2024). Current solutions typically depend on
known object models, computationally intensive search
procedures, and domain-specific planning definitions cre-
ated by experts. Recent methods have demonstrated that
foundational models, fine-tuned on domain-specific data,
can reason about the physical properties of objects (Gao
et al., 2023), understand spatial relations in 3D (Chen et al.,
2024), and address planning-related questions from videos
(Sermanet et al., 2023). These reasoning abilities are all
important for robot planning and can collectively contribute
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to establishing a foundation model for long-horizon robot
planning.

6.7. End-to-end vs. modular systems

It is an open question of how much structure should be
imposed on a robotic system based on learning from large-
scale data. Similarly, there is no definitive answer to whether
a robotic system should be built on a single foundation
model or composed of multiple modular models. On one
side of the spectrum are end-to-end systems such as Ro-
botics Transformers (Brohan et al., 2022; Zitkovich et al.,
2023), which directly provide raw observations and task
specifications to a neural network that outputs low-level
actions such as changes in end-effector pose. Toward the
other side are methods that build explicit modules with
structured inputs and outputs. For instance, such a method
may have a module specifically for perception that performs
object detection, or action planning within a scene graph.
Many learning-based robotic systems do not fall clearly into
one of these categories; rather, they are hybrid approaches.

End-to-end approaches may yield stronger performance
in the long term, particularly if the quantity of real-world
robotics data grows rapidly. Because they avoid imposing
structure or making assumptions about how a particular task
or physical system works and instead learn this directly
from the data, end-to-end methods tend to be more general;
that is, they can be deployed to a range of tasks without
much modification. For example, a system that includes a
perception module that performs object pose detection may
need to be modified to allow a robot to solve a task in-
volving fluid manipulation, where it is unclear how to
represent the pose of the fluid. In contrast, an end-to-end
model that directly produces actions based on pixels or point
clouds may require fewer changes. When trained on real-
world robotics data, end-to-end approaches have shown
strong deployment performance with minimal error due to
domain gaps.

On the other hand, more modular approaches could be
the key to improved generalization capabilities, better
sample efficiency, and more easily inheriting improvements
from computer vision and natural language processing.
Structure in intermediate representations can provide
powerful priors for improved generalization capabilities.
For instance, an object-centric representation of a scene may
provide positional or permutation invariance to a down-
stream planning module, while end-to-end methods must
learn such rules from additional data. This has the potential
to improve the sample efficiency of these models, which is
critical while real robot data remains scarce. Intermediate
structured representations such as language or feature fields
offer an interface between these models that have been
trained on large-scale robot-fiee data and modules specif-
ically trained for robotic settings. Jointly optimizing all
components based on downstream task performance could
be a promising approach to overcoming compatibility issues
when combining individually trained models.

6.8. High variability in real-world
robotic settings

Another challenge is the high variability in robotic settings.
Robot platforms are inherently diverse, with different
physical characteristics, configurations, and capabilities.
Real-world environments that robots operate in are also
diverse and uncertain, with a wide range of variations. Due
to all these variabilities, robotic solutions are usually tai-
lored to specific robot platforms with specific layouts,
environments, and objects for specific tasks. These solu-
tions are not generalizable across various embodiments,
environments, or tasks. Hence, to build general-purpose
pretrained robotic foundation models, a key factor is to pre-
train large models that are task-agnostic, cross-embodiment,
and open-ended and capture diverse robotic data. In ROSIE
(Yu et al., 2023), a diverse dataset is generated for robot
learning by performing inpainting of various unseen ob-
jects, backgrounds, and distractors with semantic textual
guidance. To overcome variability in robotic settings and
improve generalization, another solution as VINT (Shah
et al., 2023b) presents is to train foundation models on
diverse robotic data across various embodiments. RT-X
(Padalkar et al., 2023) also investigates the possibility of
training large cross-embodied robotic models in the domain
of robotic manipulation. RT-X is trained using a multi-
embodiment dataset called Open X-Embodiment dataset,
which is created by collecting data from different robot
platforms collected through a collaboration between 21
institutions, demonstrating 160266 tasks. RT-X demon-
strates transfer across embodiment improves robot capa-
bilities by employing experience from diverse robotic
platforms.

6.9. Benchmarking and reproducibility in
robotics settings

Another significant obstacle in incorporating foundation
models into robotics research is the necessity of real-world
hardware experiments. This creates challenges for repro-
ducibility, as replicating results obtained from hardware
experiments may require access to the exact equipment
employed in prior work. Conversely, many recent works
have relied on non-physics-based simulators (e.g., ignoring
or greatly simplifying contact physics in gasping) that in-
stead focus on high-level, long-term tasks and visual en-
vironment models. Examples of this class of simulators are
common and include many of the simulators described
above in Section 5. For example the Gibson family of
simulators (Li et al., 2021; Xia et al., 2018), the Habitat
family (Puig et al., 2023; Savva et al., 2019; Szot et al.,
2021), RobotTHOR (Deitke et al., 2020), and VirtualHome
(Puig et al., 2018) all neglect low-level physics in favor of
simulating higher level tasks with high visual fidelity. This
leads to a large sim-to-real gap and introduces variability in
real-world performance based on how low-level planning
and control modules handle the true physics of the scenario.
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Even when physics-based simulators are used (e.g., Py-
Bullet or MuJoCo), the absence of standardized simulation
settings, computing environments, and a persistent sim-to-
real gap impede efforts to benchmark and compare per-
formance across various research endeavors.

A combination of open hardware, benchmarking in
physics-based simulators, and promoting transparency in
experimental and simulation setups can significantly alle-
viate the challenges associated with reproducibility in the
integration of foundation models into robotics research.
Generally, defining evaluation metrics in robotics research
is challenging because each embodiment (robot) and
research context is unique. This diversity makes it difficult
to establish metrics that are universally applicable across
different research groups. This challenge is not new and is
not specific to foundation models; it is a well-recognized
issue in benchmarking progress within the field of robotics.

With a standardized uniform hardware platform, it be-
comes easier to conceptualize competition-based evaluation
metrics. For instance, task-based evaluation metrics could
be established where the challenge is to complete a specific
task with a given robot and dataset while allowing re-
searchers to choose their own architectures and approaches.
Such competitions hold the potential to provide objective
measures of progress in robotics. They can serve as
benchmarks to assess whether the field is advancing. By
recording the outcomes of these competitions, we can gain
valuable insights into the trajectory of innovation and de-
velopment in robotics. These practices contribute to the
development of a more robust and collaborative research
ecosystem within the field.

6.10. Envisioning the impact of foundation
models in robotics

In this section, we examine the potential answers to the
following questions: What is the ultimate power of foun-
dation models in robotics, and what could be achieved in the
best-case scenario? The ultimate goal is to develop foun-
dation models that enable robots to safely and efficiently
perform a wide range of everyday tasks with a high success
rate. These models could operate through simple interfaces,
such as natural language text input, similar to how GPT-3
functions. As example applications, household robots could
safely navigate indoor spaces, accurately grasp and ma-
nipulate objects, and perform various chores. Autonomous
vehicles might achieve human-level contextual reasoning,
especially in response to safety threats or anomalous situ-
ations. They would accurately predict the motion of other
agents, facilitating safe real-time planning. Furthermore,
robots with open-world navigation capabilities could be
used for exploration purposes, such as space rovers or deep-
sea explorers. Humanoid robots could be deployed in open-
world environments to provide human-level navigation,
manipulation, and dexterity. These robots could work
alongside humans and other robots to accomplish diverse
tasks in warehouses and industrial manufacturing.

7. Conclusion

Through examination of the recent literature, we have
surveyed the diverse and promising applications of foun-
dation models in robotics. We have delved into how these
models have enhanced the capabilities of robots in areas
such as decision-making, planning and control, and per-
ception. We also discussed the literature on embodied Al
and generalist Al, with an eye toward opportunities for
roboticists to extend the concepts in that research field to
real-world robotic applications. Generalization, zero-shot
capabilities, multimodal capabilities, and scalability of
foundation models have the potential to transform robotics.
However, as we navigate through this paradigm shift in
incorporating foundation models in robotics applications, it
is imperative to recognize the challenges and potential risks
that must be addressed in future research. Data scarcity in
robotics applications, high variability in robotics settings,
uncertainty quantification, safety evaluation, and real-time
performance remain significant concerns that demand future
research. We have delved into some of these challenges and
have discussed potential avenues for improvement.
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