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VARIATIONAL ANALYSIS OF PROXIMAL COMPOSITIONS
AND INTEGRAL PROXIMAL MIXTURES

PATRICK L. COMBETTES™! AND DIEGO J. CORNEIO™!
1Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

ABsTrRACT. This paper establishes various variational properties of
parametrized versions of two convexity-preserving constructs that were recently
introduced in the literature: the proximal composition of a function and a linear
operator, and the integral proximal mixture of arbitrary families of functions
and linear operators. We study in particular convexity, Legendre conjugacy,
differentiability, Moreau envelopes, coercivity, minimizers, recession functions,
and perspective functions of these constructs, as well as their asymptotic be-
havior as the parameter varies. The special case of the proximal expectation
of a family of functions is also discussed.

1. Introduction. Throughout, # is a real Hilbert space with power set 2, iden-
tity operator Idy, scalar product (-|-),,, associated norm [|-||,,, and quadratic
kernel @y = ||- ||3-t /2. In addition, G is a real Hilbert space, the space of bounded
linear operators from H to G is denoted by B (H,G), and we set B (H) = B (H,H).
The Legendre conjugate of f: H — [—o0, +0o0] is

[ H — [—o0,+00]: ¥ — sug((x\x*)H — f(x)), (1)

[AS

the Moreau envelope of index v € ]0,+oo[ of f: H — [—o00,400] is

Tf:H — [—o00,+00]: T > ylgqf{(f(y) + %@H(xfy))v (2)

and the adjoint of L € B (H,G) is denoted by L*.

In analysis, there are several ways to compose a function g: G — [—00, +00] and
an operator L € B (H,G) in order to construct a function from #H to [—oo, +0o0].
The most common is the standard composition

goL:H — [—oo,+0c0]: > g(Lx). (3)
Another instance is the infimal postcomposition of g by L*, that is (see [2, Sec-
tion 12.5] and [16, Section 1.5], and, for applications, [4, 5, 19]),
L*D>g: H — [—o0,+00]: 122 9(y). (4)
Lgy:r
These two operations are dually related by the identities (L* > g)* = ¢g* o L and,
under certain qualification conditions, (g o L)* = L* [> g* [2, Corollary 15.28]. The
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focus of the present paper is on the following alternative operations introduced in
[9], where they were shown to manifest themselves in various variational models.

Definition 1.1. Let L € B(H,G), g: G — [—00,+00], and v € |0,4+00[. The

proximal composition of g and L with parameter 7 is the function L $ g:H —
[—00, +00] given by
1

L3g=(H(g)oL) - 20 (5)

and the proximal cocomposition of g and L with parameter v is L . g= (L 1</>’Y g)*.

In [9], proximal compositions were studied only in the case when v = 1 and
few of their properties were explored. The goal of this paper is to carry out an
in-depth analysis of these compositions, leading to results which are new even when
v = 1. We study in particular convexity, Legendre conjugacy, differentiability,
subdifferentiability, Moreau envelopes, minimizers, recession functions, perspective
functions, as well as the preservation of properties such as coercivity, supercoercivity,
and Lipschitzianity. We also investigate the behavior of L g gand L . g as 1y varies.
Another contribution of our work is to derive from these results a systematic analysis
of the notions of integral proximal mixtures and comixtures. These operations,
recently introduced in [7], combine arbitrary families of convex functions and linear
operators acting in different spaces in such a way that the proximity operator of
the mixture is explicitly computable in terms of those of the individual functions.
In turn, this analysis leads to new results on the proximal expectation of a family
of convex functions.

The remainder of the paper is organized as follows. In Section 2, we provide our
notation and the necessary mathematical background. In Section 3, we investigate
various variational properties of proximal compositions. Finally, Section 4 is devoted
to applications to integral proximal mixtures and proximal expectations.

2. Notation and background. We first present our notation, which follows [2]
(see also the first paragraph of Section 1).

Let L € B(H,G). The range of L is denoted by ran L and, if it is closed,
the generalized inverse of L is denoted by L. Further, L is called an isometry if
L* o L =1dg and a coisometry if Lo L* =1Idg. Let f: H — [—o0, +00]. We set

cam f = {h: H — R | h is continuous, affine, and h < f}
f= sup{h: H — [—00,+00] | h is lower semicontinuous and h < f}

f: sup{h: H — [—00,400] | h is lower semicontinuous, convex, and h < f}
(6)
The infimal postcomposition of f by L € B (H,G) (see (4)) is denoted by L B> f if,
for every y € L(dom f), there exists z € H such that Lz = y and (LD f)(y) =
f(x) € ]—00,+00]. The function f is proper if dom f = {z € H | f(z) < 400} # &
and —oo ¢ f(H). If f is proper, its subdifferential is

of i H—2":z— {x* EH|(VyeH) (y—x|z™),y + flz) < f(y)} (7)
and, if f is also convex, its recession function at = € H is

(rec f)(x) = esignf(f(z +y) — f(y)). (8)

Y
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If f and g: H — ]—o00, +00] are proper, their infimal convolution is
fOg: H = [0, oc]: @ inf (f(y) +9(x —y))- (9)

We denote by T'g(H) the class of functions from #H to ]—o0, +00] which are proper,
lower semicontinuous, and convex. If f € T'g(#H), its proximity operator is

prox;: H — H: x»—)argr%in (f(y) + @u(z —y)). (10)
ye

Let C C H. Then (o denotes the indicator function of C' and o¢ the support
function of C. If C' is convex, its normal cone is denoted by N¢ and its strong
relative interior is the set sri C' of points « € C such that the smallest cone containing
C — z is a closed vector subspace of H. If C' is nonempty, closed, and convex, its
projection operator is denoted by proj.. Finally, the closed ball with center € H
and radius p € |0, 400 is denoted by B(z; p).

The following facts will be frequently used in the paper.

Lemma 2.1. Let f and g be functions from H to [—oo,+00]. Then the following
hold:

(i) f<f.

(i) f<g=g" <[

(iv) f* =400 & cam f = @.

(v) f*eTy(H) & [f is proper and cam [ # &].

Proof. (1)—(iii): [2, Proposition 13.16].
(iv): [2, Proposition 13.12(ii)].
(v): Combine [2, Proposition 13.10(ii)] and (iv). O

Lemma 2.2. [2, Propositions 13.10(ii) and 13.23(i)—(ii)|] Let f: H — [—o0, +o0]
and let p € 10,4o00[. Then the following hold:
(i) (pf)* = pf*(-/p).
(i) (pof(-/p))" = pf*.
(iil) (f(p))" = f(-/p)-
The next lemma follows easily from (2).

Lemma 2.3. Let f: H — [—o00,4+0], v € |0,400[, and p € ]0,+o0[. Then the
following hold:
@) o5 = Hof).
(i) f)p) = = (Fp))-
Lemma 2.4. Let f € To(H) and v € ]0,+0o0[. Then the following hold:
(i) |2, Theorem 9.20] cam f # @.
(ii) [2, Corollary 13.38] f* € I'o(H) and f** = f.
(iii) [2, Corollary 16.30] Of* = (9f)~*.
(iv) |2, Remark 14.4] 'f + Y(f*) = Gy and prox s + prox . = Idy.
(v) |2, Theorem 13.49] rec(f*) = 0dom s and rec f = ddom f=-
) [2, Propositions 12.15 and 12.30] 7f: H — R is convex and Fréchet differen-
tiable.
(vii) [2, Proposition 12.30] V(7f) = (Idy — prox.,;)/7-
(viii) [2, Proposition 14.1] (f 4+ v@x)* = "(f*).

(vi
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Lemma 2.5. Let f: H — ]—o0,+00], L € B(H,G), and v € ]0,+o0[. Then the
following hold:

(i) |2, Proposition 13.24(iii)] ("f)* = f* + vQy.

(ii) [2, Proposition 13.24(iv)] (L[> f)* = f* o L*.

(iii) [2, Corollary 15.28(i)] Suppose that f € T'o(H) and 0 € sri(dom f — ran L*).

Then (f o L*)* = L b f*.

Lemma 2.6. Let f € To(H), g € To(H), and v € ]0,+00[ be such that 7f = g.
Then f =g.
Proof. By Lemma 2.5(i), f* = ("f)* — v@y = ("g)* — v@y = g*. Therefore, we
deduce from Lemma 2.4(ii) that f = f** = ¢g** = g. O

Lemma 2.7. Let L € B (H,G) and set ® = @g — @y 0 L*. Then ® is convex if and
only if |IL| < 1.

Proof. Since dom ® = G and V® = Idg—LoL*, we deduce from |2, Proposition 17.7]
that @ is convex < Idg — L o L* is monotone < ||[L* - |7, < || - |2 & [[L*]| < 1 &
IL] < 1. O

Lemma 2.8. [2, Proposition 17.36(iii)] Let A € B(H) be monotone and self-
adjoint. Suppose that ran A is closed, set ga: H — R: x— (x| Ax),, /2, and define
gat likewise. Then ¢ = tran A + qat-

3. Proximal compositions.

3.1. General properties. We start with direct consequences of Definition 1.1.

Proposition 3.1. Let L € B(H,G), g: G — [—00,+0], v € ]0,+00[, and p €
10, +oco[. Then the following hold:

(i) Let h: G — [—o0, +00] be such that g** < h < g. Then L$h = L g and

Leh=Lsg.

() (L3g)r =14 ¢*

(iii) (L3g)* = (L5 g*)

(iv) (L3g) = (L4 g)"

() p(L3g) =17 (pg).

i) (L3g)(p) = L™ (9(p))
(vii) p(L3g) = L7 (pg).
(viii) (Leg)(p) =L (9(p")-

Proof. (i): By Lemma 2.1(ii)—(iii), ¢* = ¢*** > h* > g*. Therefore, h* = g*, and
the claims follow from Definition 1.1.

ii): It follows from Definition 1.1 and (i) that L gy g = (Ldg™) = (Ldg).

(
(iii): An immediate consequence of Definition 1.1.
(iv): This follows from (ii).

(v): Combining Lemmas 2.2(ii), 2.3(i)—(ii), and 2.2(i), we obtain

o(F()oL) = (02 (e) o (L/0))
= (%(og"(/p) o L)
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_ (%((pg)*) oL)*. (11)

The assertion therefore follows from Definition 1.1.
(vi): We deduce from Lemmas 2.2(iii) and 2.3(ii) that

(F6") o) () = (o) o (1/0))
= (T /) or)

_ (‘f((g(p-))*) oL>*. (12)

In view of Definition 1.1, the assertion is established.
(vii): We invoke Definition 1.1, Lemma 2.2(ii), (v), (vi), and Lemma 2.2(i) to get

/Y e *
p(L3g) =p(L 6 ")

= (28 ) (/0))"
= (L p</>’y (pg)*>*
=L 'y‘p (pg). (13)

(viii): By Definition 1.1, Lemma 2.2(iii), and (vi), we get

g
= (99 (/0)
_ (L”zo/” (g(p.))*)*
=17 (4(p), (14)
which completes the proof. O

Proposition 3.2. Let L € B (H,G), let g: G — |—00, +00] be a proper function
such that cam g # @, let v € 10, +00], and set & = Qg — Q3 0 L*. Then the following
hold:
(i) Lég=L*B (9" +D/7).
(ii) Leg=(g*+~y®)* oL.
(iii) dom(L gg) = L*(dom g**).
(iv) Suppose that one of the following are satisfied:
(a) 0 < ||L|l < 1.
(b) domg** =G.
Then dom(L . g)=H.
(v) Leg>"(g**)oL.

Proof. By Lemma 2.1(v), g* € T'¢(G). Therefore, Lemma 2.4(vi) implies that
dom %(g*) = G and that %(g*) eTy(9).
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(i): Let x € H. Because dom %(g*) —ranL = G, it follows from Definition 1.1
and items (iii) and (i) in Lemma 2.5 that

(LSg)(r) = ((i(g*) o1) - 1@)(@:)
(e ot
(e :

= mig (g**(y) + §@g(y)) - ;@H(ﬂ”)

::mn@“@+§wm) (15)

yeg
L y=x

(ii): By Definition 1.1, (i), and Lemmas 2.1(iii) and 2.5(ii),
_ (L 1/7 *)
(L* B> (" +7q>))

=(g" +7®) o L. (16)

(iii): Since dom ® = G, [2, Proposition 12.36(i)] and (i) imply that dom(ng) =
1*(dom(g™ + &/)) = L*(dom g™

(iv): By Lemma 2.7, ® € T'y(G). Because dom ® = G, the identity (y®)* = &* /v
and [2, Proposition 15.2] imply that

(9" +7®)" =g O(y®)" =g O (/7). (17)
On the other hand, we have (1 — ||L||*)@g < ®. Hence, in view of property (iv)(a)
and Lemma 2.1(ii), we have ®* < @g/(1 — ||L||?), which yields dom ®* = G. We
thus deduce from (17) that dom(g* +~v®)* = dom ¢g** + dom ®* = G and obtain the
assertion via (ii).

(v): Since ® < Qg, g* + 7P < g* + v@g. In turn, Lemmas 2.4(viii) and 2.1(ii),
and (ii) imply that

g**) oL =(g* +~Gg) oL < (¢ +~®) oL =Leg, (18)
which completes the proof. O
Remark 3.3. Suppose that L € B (H,G) satisfies ||L]| =1, set & = Qg — @y, o L™,
and set A = Idg — Lo L*. Then A is monotone and self-adjoint, ®: y — (y | Ay)s/2,

and Lemma 2.8 shows that dom ®* = ran A under the assumption that ran A is
closed. In this case, arguing as in (17) and using Proposition 3.2(ii), we obtain

dom(L e g) = L~1(dom g** 4 ran A).
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Proposition 3.4. Let L € B (H,G) be such that ran L is closed and ker L = {0}, let
g: G — |—00,+0o0] be a proper function such that camg # &, and let v € |0, +o0[.
Then the following hold:

(i) Suppose that g** is coercive. Then L . g 1s coercive.

(ii) Suppose that g** is supercoercive. Then L . g 18 supercoercive.

Proof. Tt follows from [2, Fact 2.26] that there exists a € ]0, +o0][ such that || L-||g >
af - |l%. Thus, ||Lz||g — +oo as ||z]|5x — +oo. On the other hand, combining
Lemmas 2.1(v) and 2.4(ii), we obtain g** € T'x(G).

(i): By [2, Corollary 14.18(i)], "(¢g**) is coercive. Therefore, Proposition 3.2(v)
implies that (L« g)(z) > ("(¢**))(Lz) — 400 as ||z|x — +oo.

(ii): By [2, Corollary 14.18(ii)], 7(g**) is supercoercive. Hence, Proposition 3.2(v)
yields

7 *% *%
(Leg)(@) _ (g™)(La) _ (g™)(Lx)
[E3(EM [E4(Ex I1Lz(lg
which concludes the proof. O

— 400 as |z|ly — +oo, (19)

The next proposition studies the effect of quadratic perturbations and transla-
tions.

Proposition 3.5. Let L € B(H,G), g € T0(G), a € R, v €]0,+0c0[, p € [0, +0o0],
and u € H. Given w € G, set 7, g: y — g(y — w). Then the following hold:

(i) Set 8 =~/(1+p7). Then L3 (g+ plg + (-] Lu)g + ) = (LS g) + plox +
(- u)yy + .
(ii) Lo (toug+a) =1 (Leg)+a.

Proof. (i): Let x € H, set h = g + pQg + (- | Lu)g + @, and set ® = Qg — Q3 o L*.
Since g € Tg(G) and p > 0, we have h € T'o(G). In turn, Lemma 2.4(ii) yields
h* € Ty(G), h** = h, and g** = g. Therefore, it follows from Proposition 3.2(i) that

(L3 h)(x) = min (h(y)+ %‘P(y))

L y=x

9(W) + pQg(y) + (y | Lu)g + a + %@(y)>

9() + p2(y) + p@u(L7y) + (L7y | u)y + %‘P(y)) +o
o)+ (p+2)80)) + pOu(o) + (a0} +

9(y) + (1)) + pu(x) + (x| why, +a

B
= (Log) (@) + pQy(z) + (x| u); + . (20)
ii): Set h = 1,9 + . We recall from [2, Proposition 13.23(iii)] that h* =
g* + (-] Lu)g — a. Hence, using Definition 1.1 and (i), we get

Leh= (L1</>7 (g*+<-|Lu>g—o¢)>*
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= ((L 1</>7g*) + (- Ju)y, — a>*
1/~

=7(L o g) +a
as claimed. O

3.2. Convex-analytical properties. We first study the convexity, Legendre con-
jugacy, and differentiability properties of proximal compositions. We then turn our
attention to the evaluation of their proximity operators, subdifferentials, Moreau
envelopes, recession functions, and perspective functions.

Proposition 3.6. Suppose that0# L € B (H,G), let g: G — |—00, +0] be a proper
function such that camg # &, let v € |0,4+00[, and let a € [—1/v,+00]. Suppose
that g** — a@g is conver and set B = (oo +1/7)/| L% = 1/y. Then LS g — BGy €
To(H).

Proof. By Lemma 2.1(v), g* € T'y(G). Thus, Lemma 2.4(vi) implies that %(g*)oL €
T'o(#H). In turn, Lemma 2.4(ii) and Definition 1.1 yield ng—i-@y.t/v = (%(g*)oL)* €
T'o(#H). Since (=8 — 1/7v)@y is continuous with domain G, by [2, Lemma 1.27],
ng — Ay = ng + Q3 /v+ (=B —1/7)@y is proper and lower semicontinuous. It
remains to show that L& g — 8@y is convex. Let x € H, set i) = | L||?@g — @3 o L*,
and set & = @g — @y o L*. By Proposition 3.2(i),

yeg

(L3 g)(x) — BOn(z) = e (5@ + ~2) - Beu(z)

g7 (y) + %I’(y) - B@H(L*y))

1

— W (Oz + %)@H(L*y))

|
z
B

(
~ min (570 + 2 €s(0)
(5w —ato) + (8+ - )0w). @)

Since Vi = |[L|2Idg — Lo L, for every y € G, (V(y) | 4)g = |IEI2ll3 — 129l >
0. Therefore, we infer from [2, Proposition 17.7] that ¢ is convex. Further, since
a+1/v >0, (84+1/7)4 is convex with domain G. By assumption, ¢**—a@Qg € T'o(G).
Hence, the function (¢** — a@g) + (8 + 1/7)% is proper and convex. Altogether,
in view of (22) and [2, Proposition 12.36(ii)], we conclude that L $g— BGy is
convex. O

Proposition 3.7. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let g: G —
]—00, +00] be a proper function such that camg # &, and let v € ]0,4+00[. Then
the following hold:

(i) LégeTo(H) and L+ g e To(H).
() (L3g)r =L ¢,
(i) L3g= (L% g°)".
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Proof. Recall that Lemmas 2.1(v) and 2.4(i) assert that g* € T'g(G) and cam g* # &.
(i): Lemma 2.4(ii) yields g** € T'o(G). Now set B = (1/||L||*> —1)/7. Then 8 >0
and, by applying Proposition 3.6 with o = 0, we see that L & g — B0y € Lo(H)

and hence that L & g € To(H). Likewise, applying Proposition 3.6 with a = 0

1
to g* € To(G) and using Lemma 2.1(iii) we get L & g* € To(H). In view of

Definition 1.1 and Lemma 2.4(ii), we conclude that L ¢ g € To(H).
(ii): We derive from Definition 1.1, (i), and Lemma 2.4(ii) that (L ¢ g)* =

(L 1</>7 g ) =1L 1</>7 g*.
(iii): By Proposition 3.1(iv), (i), and Lemma 2.4(ii), (L ' ¢*)* = (L % g)™ =
Ldg. O

The next result examines differentiability.

Proposition 3.8. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let g: G —
]—00, +00] be a proper function such that camg # &, and let v € 10, 4+o00[. Then
the following hold:

(i) Suppose that ||L|| < 1 and set B =~(1/|L||*> —1). Then L+ g is differentiable
with a (1/8)-Lipschitzian gradient.

(ii) Let 0 € ]0,4o00[, suppose that g is real-valued, convez, and differentiable with
a O-Lipschitzian gradient, and set 3 = (1/0 +~)/||L||*> —~. Then L e g is
differentiable with a (1/8)-Lipschitzian gradient.

Proof. We recall that a continuous convex function f: H — R is differentiable with
a (1/p8)-Lipschitzian gradient if and only if f* — 8@ is convex [2, Theorem 18.15].

1
Further, by Proposition 3.7(ii), (L . g)*=1L </>7 g*.

(i): By Proposition 3.2(iv)(a), dom(ng) =H. Now set @ = 0. Since a > —7, we

1
deduce from Proposition 3.6 that L </>PY g* — B@y is convex, i.e., that (ng)* — BGy

is convex.
(ii): Since g € T'9(G), Lemma 2.4(ii) yields dom ¢** = dom g = G. Thus, it results
from Proposition 3.2(iv)(b) that dom(ng) = H. Now set o« = 1/6. Since g* —a@gis

1
convex and « > —v, Proposition 3.6 implies that (L . g)*—pBGy =1L </>7 g* — BQy

is convex. O

Remark 3.9. Proposition 3.8(i) guarantees the smoothness of the proximal cocom-
position when 0 < ||L|| < 1. Proposition 3.8(ii) shows that the Lipschitz constant
of the gradient of the cocomposition is improved when the original function is itself
smooth.

The following proposition motivates calling L g g a proximal composition.

Proposition 3.10. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let g: G —
|—00, +00] be a proper function such that camg # &, and let v € ]0,4+00[. Then

the following hold:
(i) PTOX_(130) = L* o prox, g« oL.
) olL.

(ii) prox’y<ng) =1Idy — L* o (Idg — prox., .-

Proof. As previously noted, ¢* € T'o(G) and ¢** € T'y(G).
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(i): Tt follows from Proposition 3.1(v) and Definition 1.1 that
1 . *
Qu +~(L3g) =@y +Lo(vg) = (1((79) )OL) : (23)

Since Proposition 3.7(i) yields Ldg € Ty(H), we deduce from |2, Corollary 16.48(iii)],
(23), and items (iii) and (vii) in Lemma 2.4 that

dy, +70(L 3 g) = (@ +7(L39))

- ("(0ar)en))
= (L* o (Idg — prox,)-) © L>_1. (24)

Hence, by [2, Proposition 16.44] and Lemma 2.4(iv),
-1
7 * *
proxﬂ/(ng) = (IdH +~0(Lo g)) = L 0 prox(, g« oL = L* o prox, .. oL. (25)

(ii): By Proposition 3.1(vii) and Definition 1.1, 'y(ng) = Li(’yg) = (L<1>('yg)*)*.
Therefore, Proposition 3.7(i) and Lemma 2.4(ii) entail that (’y(ng))* = L<1>('yg)*. In
turn, we deduce from Lemma 2.4(iv) and (i) that PTOX_(13,) = Idy — prox

L3(ve)
Idy — L* o (Idg — prox.,«.) o L. O

~g**

Our next result concerns the subdifferential of proximal compositions. We recall
that the parallel composition of A: H — 2% by L € B (H,G) is defined by L> A =
(Lo A=Y o L*)71 |2, Section 25.6].

Proposition 3.11. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let g: G —
|—00, +00] be a proper function such that camg # &, and let v € ]0,+o00[. Then
the following hold:

(i) O(LSg) =L* > (dg™ + (Idg — Lo L*)/7).

(ii) (L g) =L*o (dg* +~v(Idg — Lo L*)) "1 o L.
Proof. As seen in Proposition 3.7(i), L g € To(H) and L+ g € To(H). Now set
® = Gg—QyoL* and h = g**+P /. We deduce from Lemmas 2.1(v), 2.4(ii), and 2.7

that g* € T'o(G), g** € T9(G), and ® € T'y(G). Therefore, since dom ® = G, we have
h € T'o(G) and, by Lemma 2.4(ii), h** = h. On the other hand, dom h* Nran L # &

since Propositions 3.2(ii) and 3.7(i) yield h* o L = L A g* € T'9(G). Upon invoking
Propositions 3.2(i) and 3.7(iii), we get

Leh=rdg= (L") =@ or)" (26)
Therefore, |2, Proposition 16.42], Lemma 2.4(iii), and [2, Corollary 16.48(iii)| imply
that
d(h*oL)=L*0dh*oL=1L"0(0h) oL =L 0 (dg" +V®/7) ' oL. (27)
(i): Combining (26), Lemma 2.4(iii), and (27), we obtain
d(Ldg)=a(h*oL)"
= (@ o))"
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. -1
= (L* 0 (0g** +V®/y) "o L)
=L*D> (09" +V®/7). (28)
(ii): By Definition 1.1, Lemma 2.4(iii), (i), and Lemma 2.1(iii),
o(L3g)=0(L's ¢°)"
/v o\t
= (3(L <>'Yg ))
~1
= (1> (99" + V)
=L*o (99" +7V®) oL, (29)
which completes the proof. O

Corollary 3.12. Suppose that L € B (H,G) satisfies 0 < |L|| < 1, let 5 € ]0,+00],

let v € ]0,4+00[, and let g: G — R be convex and [3-Lipschitzian. Then L egis
(BIIL|)-Lipschitzian.

Proof. We recall that a lower semicontinuous convex function f: H — R is (-
Lipschitzian if and only if randf = dom df* C B(0;3) [2, Corollary 17.19]. Since
g € I'9(9), Lemma 2.4(ii) yields g* € I'y(G). We therefore invoke Proposition 3.11(ii)
to get

ranB(ng) cL* (ran(ag* +~(Idg — Lo L*))fl)

=L* (dom(@g* +v(Idg — Lo L*)))
= L*(dom dg*)
C L*(B(0;8))
< B(; B|L|), (30)
where L+ g: H — ]—o00,+00] is a real-valued lower semicontinuous convex function
by Propositions 3.2(iv)(b) and 3.7(i). O
Let us now evaluate Moreau envelopes of proximal cocompositions.

Proposition 3.13. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let g: G —
]—00, +00] be a proper function such that camg # @, let v € 0,400, and let
p €10,+00[. Then the following hold:

() /(L7 g) =L+ (%),

(i) "(Leg)="(g"")oL.

Proof. By Lemma 2.1(v) and Proposition 3.7(i), L Ry g* € To(H). Therefore,

Lemma 2.4(viii) and Definition 1.1 yield

(g +pa) =726 ¢7)") =#(L3). (31)

(i): We combine Definition 1.1, Lemma 2.5(i), Proposition 3.5(i), and (31) to
arrive at
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v, *
= (L o (g 4—p@g))
/(y+e) *
((L ’<Y> P g ) +p@~,¢)
(L7 g). (32)
(ii): Since g* € T'y(G), items (ii) and (vi) in Lemma 2.4 imply that 7(¢**) €

I'y(G) and that dom ?(¢**) = G. Hence, "(g**) o L € T'o(H) and it follows from
Lemma 2.4(ii), Definition 1.1, and (31) that

(g o= (") or) = (L7 g") +105)

as announced. ]

*

="(Lsyg), (33)

Corollary 3.14. Suppose that L € B (H,G) satisfies 0 < ||[L]] < 1, let g: G —
|—00, +00] be a proper function such that camg # &, and let v € ]0,4+o00[. Then

Argmin(L . g) = Argmin("(¢**) o L).

Proof. Since the set of minimizers of a function in I'g(#H) coincides with that of
its Moreau envelope [2, Propositions 17.5], the assertion follows from Proposi-
tion 3.13(ii). ]

Corollary 3.15. Let K be a real Hilbert space, suppose that L € B(H,G) and
S e B(K,H) satisfy |L|| <1, ||S]| €1, and Lo S #0, let g: G — |—00, 4] be a
proper function such that cam g # &, and let v € |0, +oo[. Then the following hold:

(i) Sl(ng):(LoS)zg.
(i) S$(Lég)=(LoS)dg.

Proof. (i): Set f = Leg. Since ||Lo S|| < ||L|l||S] < 1, we deduce from Proposi-
tion 3.7(i) that f € To(H), Sef € To(K), and (LoS)eg € T'o(K). By Lemma 2.4(ii),
f** = f. Hence, Proposition 3.13(ii) yields

(S8 f)="(1)os =705 =("g")oL) o5 ="((Lo8)3g).  (34)

Therefore, the assertion follows from Lemma 2.6.
(ii): By Proposition 3.7(i), L$ g € To(H), S (L4 g) € To(K), and (Lo S)dg €
I'o(KC). Therefore, using Propositions 3.7(iii) and 3.1(ii), together with (i), we get

S3(L3g)= (5" (L3g)")

9, (35)
which completes the proof. O

Proposition 3.16. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let g: G —
|—00, +00] be a proper function such that camg # &, and let v € |0, +o00[. Then

rec(L ¢ g) = (rec(g**)) o L. (36)
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Proof. By Lemmas 2.1(v) and 2.4(ii), ¢* € I'o(G) and ¢** € T'o(G). Therefore,
Lemma 2.4(v), Propositions 3.7(ii) and 3.2(iii), and Lemma 2.1(iii) imply that

rec(L . g) = Udom(ng)*
- Udom(Llé”g*)
= O+ (dom g***)
= Odomg* © L
= (rec(g™)) o L, (37)
as claimed. O

Proposition 3.17. Suppose that L € B (H,G) satisfies 0 < ||L]| < 1, let g € Ty(G),

let
ng(y/m),  if n>0;

g: G@R = |—o0,+o0]: (y,n) = q (recg)(y), if n=0; (38)

400, otherwise

be its perspective, let v € |0,+o0[, and set L:HeR - G aR: (z,€) — (Lz,§).

Then

T &y~ )

. (ZV5)@e, i ¢>0

Leg: HBER — ]—00,+00]: (z,€) — (rec g) (L), if €=0; (39)

~+00, otherwise.

Proof. Let (z,6) € H® R, set & = @g — @y o L*, and set ¥ = @gep — Qpapr o L *.
We consider two cases.
e & = 0: It follows from Proposition 3.16 and Lemma 2.4(i)—(ii) that (L . g)(z,0)
= (rec(L + g))(x) = (rec g)(La).
e &>0: Set C={(y*",n) €eGBR | n+g*(y*) <0}. Then [8, Items (ii) and
(iv) in Proposition 2.3] assert that g € I'o(G @ R) and (§)* = t¢. Therefore,
by Lemma 2.2(ii),

(Vy* € G) Sgg(nﬁ - (@) Wn) = Stelg(nf —wc(y*m))

= sup U3
n€l—oo,—g*(y*)]

=—£9"(y")
= —(&9(-/6))" (") (40)
On the other hand, for every n € R, ¥(-,n) = ® and, since 0 < ||L|| < 1,
we have 0 < ||L]] < 1. Hence, appealing to Proposition 3.2(ii), (40), and
Proposition 3.1(vii)—(viii),
~ 5 . ~\x %
(Z93)@o= (@) +ew) (L.€)
= (@) +&9) (Lx, )

= sup ((Lx, &) (W ) ger — (9) (" n) — vV (y*,m))
(y*m)eEGOBR

= sup (€4 (Laxl|y*)g— (9)" (v* n) —Ev®(y"))
(y*,m€EGBR
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= ys*uepg(<Ll‘ | y*>g - §'y<1>(y*) + ilelg(nf - (5)*(3;*, 77)))

= sup ((Lz |y*)g — E&v@(y") — (€9(:/€))" ("))

y*€g

((€9(/0))" +&10) (La)
= (L9 (&90/9)) (@)
=&(Lsg)(@/€)

- (Lig)(x,g). (41)
We have thus proved (39). O

3.3. Comparison with standard compositions and infimal postcomposi-
tions. As mentioned in Section 1, our discussion involves several ways to compose
a function defined on G with a linear operator from 4 to G in order to obtain a
function defined on H: the standard composition (3), the infimal postcomposition
(4), and the proximal composition and cocomposition of Definition 1.1. We saw in
Proposition 3.10 that a numerical advantage of the proximal compositions is that
their proximity operators are easily decomposable in terms of that of the underlying
function. Our purpose here is to compare these various compositions.

10

'S

& -5 4 & & -5 —4 &

(a) Graph of Lloog. (b) Graph of ng.

& -5 & & - &

(c) Graph of Lig. (d) Graph of g o L.

FIGURE 1. Graphs of the proximal cocomposition and of the stan-
dard composition in Example 3.18.
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(c) Graph of Lig. (d) Graph of g o L.

FIGURE 2. Graphs of the proximal cocomposition and of the stan-
dard composition in Example 3.19.

Example 3.18. Let

{L: R? — R%: (£1,&) = (0.5, —0.561, —0.565,0.361 + 0.465,0.1€; — 0.365)

9: R = R: (1,712,713, m4,m5) = 1071, m2,m3) [l + | (04 — 1,75 + 2)]|.
(42)
Figure 1 shows the graphs of both the standard composition and proximal cocom-
position for various values of ~.

Example 3.19. Let C'= B(0;2) and

L:R? = R3: (&,&) — (0.7 + 0.1&, —0.3&; + 0.4&2,0.56; — 0.3&3) (43)
g: R® = R: (11,12, m3) > de(m1,m2,m3).

Figure 2 shows the graphs of both the standard composition and proximal cocom-
position for various values of ~.

As we now show, the pointwise orderings suggested by Figures 1 and 2 are gen-
erally true.

Proposition 3.20. Suppose that L € B (H,G) satisfies 0 < |L|| < 1, let g: G —
|—00, +00] be a proper function such that camg # &, and let v € ]0,400[. Then
the following hold:

(i) L*>g** < Lég.

(ii) "(g*™*)o L < ng < g** o L.



16 PATRICK L. COMBETTES AND DIEGO J. CORNEJO

(i) Leg< L3g.
(iv) Suppose that L is an isometry. Then L gg =L+ g.
(v) Suppose that L is a coisometry. Then L 3 g=L"Bg"™ and L . g=g*olL.
(vi) Suppose that L is invertible with L= = L*. Then Ldg=L*Bg™ =g*oL =
Le g.
Proof. Set ® = Qg — @ o L* and observe that 0 < & < @Qg.
(i): Let © € H. By Proposition 3.2(i),

L39)@) = min (50 +10w) > ¢ 0)= (L 0e ). 41
L*y=x L*y=x

(ii): The leftmost inequality is established in Proposition 3.2(v). Let us prove

rightmost inequality. By Lemma 2.1(ii) and (i), (L Ey g ) < (L*D>g™)*. Tt
therefore follows from Definition 1.1 and Lemmas 2.1(iii) and 2.5(ii) that

1/~
S

Leg= (L6 g") <(L">g") =g oL (45)

(iii): Set f = Y(g**) o L. Since ||L|| < 1, Gg o L < @, and we deduce
from Lemma 2.1(ii) that (@y — f)* < (@g o L — f)*. However, it results from
Lemma 2.4(iv) that @go L — f = (@g — '(9**)) oL = '(¢g*) o L. Altogether, it follows
from Definition 1.1 and [2, Proposition 13.29] that

1 % * * % * 1
Leg=(f"—0n) =(@u—f) —@u<(Y(g)oL) —@y=Log. (46)
Hence, by Proposition 3.1(vii), (46), and Proposition 3.1(v), we get

ng:%(Ll(vg))<%(L<1>(79))=L<7>9- (47)

(iv): Here @y = @Qg o L and therefore the inequalities in the proof of (iii) can be
replaced with equalities.

(v): Here @g = @y o L* and thus ® = 0. Therefore, the result follows from
Proposition 3.2(i)—(ii).

(vi): A consequence of (iv) and (v). O

Remark 3.21. Suppose that L € B(#,G) is an isometry, let g: G — ]—00, +00]
be a proper function such that camg # &, and let v € ]0,+oo[. Then we recover
from [2, Proposition 13.24(v)] as well as items (i), (iv), and (ii) in Proposition 3.20
the inequalities

(9oL <L'Dg™<Ldég=Leg<g™olL, (48)
which appear in [9, Proposition 5.4] in the special case in which v = 1.

Remark 3.22. Suppose that L € B (H,G) is a coisometry, let g: G — |—00, +00]
be a proper function such that camg # @, and let v € ]0,4+00[. Then Proposi-
tions 3.20(v) and 3.13(ii) imply that

"((g™)oL) ="(Leg)="(g")oL. (49)

In particular, when g € I'y(G), we recover the fact that "(go L) = "go L (see [21,
Lemma 3]).
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Proposition 3.23. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let g: G —
|—o00, +00] be a proper function such that camg # &, let v € |0, +oo, let © € H,
and set & = Qg — Q3 o L*. Then the following hold:

(i) Suppose that y* € dg(Lx). Then 0 < g(Lz) — (L o g)(z) < v®(y*).

(i) Suppose that 0 € (Idg — L o L*)(8g(Lx)). Then (L g)(x) = g(Lx).
Proof. (i): By [2, Proposition 16.10], g(Lx) + g*(y*) = (Lz|y*)g. Further, [2,
Proposition 16.5] yields ¢**(Lz) = g(Lz) € R. Therefore, we deduce from Proposi-
tions 3.20(ii) and 3.2(ii) that (L  g)(z) € R and that

(Lz) - (L + g)(x)

g
=g(Lx) — (9" +~®) (L)
g(Lz) —sup((Lz | y)g — 9" (y) — v®(y))

yeg
< g(Le) = ((Lz|y)g — 9" (") —72(y"))
=72(y"): (50)
(ii): There exists y* € dg(Lx) such that L(L*y*) = y*. Therefore, ®(y*) = 0
and the conclusion follows from (i). O

Proposition 3.24. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let 8 €
10, +o0], let v € 10, +o0[, and let g: G — R be convex and -Lipschitzian. Then the
following hold:

(i) 0<goL—Leg<np?/2.

.. 1/
(i) L*>g* < L6 g* <(L* > g*) +75%/2.
(iii) Let x € H. Then || prox, ., — proxﬂ/(ng) x| < 8.

Proof. We recall that a lower semicontinuous convex function f: H — R is [-
Lipschitzian if and only if ran 0f = dom df* C B(0; ) [2, Corollary 17.19]. More-
over, since dom g = G, we have dom dg = G [2, Proposition 16.27].

(i): Let x € H and set & = Qg — @3 o L*. Since domdg = G, there exists
y* € dg(Lx) C randg C B(0;3). Thus, ®(y*) < Qg(y*) < B2/2 and the result
follows from Proposition 3.23(i).

(ii): The leftmost inequality follows from Proposition 3.20(i) and Lemma 2.1(iii).

1
On the other hand, Proposition 3.7(i) implies that L </>W g* € To(H). Additionally,
in view of Lemma 2.1(ii) and (i), (L . 9)* < (go L —~B%/2)*. Finally, we deduce
from Proposition 3.7(ii) and [2, Proposition 13.24(v)] that
v8° VB

Lo g*:(ng)*g (goL—> :(goL)*—FTg (L*l>g*)+7. (51)

(iii): Set ¥ =1Idg — Lo L*, py = ProXp(,4) , and p = prox, ., . We note that,
since ||L|| < 1,

¥ is monotone and | ¥]| < 1. (52)

Next, we deduce from [2, Proposition 16.44] and Proposition 3.11(ii) that there

exists y, € ((yg)* + V)~ (Lp,) such that L*y, = x — p,. Thus, y, € y9g(Lp, —
Uy.,). On the other hand, by [2, Proposition 16.44 and Corollary 16.53(i)|, there
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exists y € y9¢g(Lp) such that L*y = x — p. Therefore, the monotonicity of vdg [2,
Theorem 20.25] entails that

((Lpy — Vyy) — Lp|yy — y>g =0 (53)

However, by (52), the Cauchy-Schwarz inequality, and the fact that {y,,y} C
~vrandg C B(0;~/3) we derive that

(Lpy — Qyy) = Lp|yy —y)g 20
S Py =PI L Yy =Ygy — (Pyy Yy —y)g =0

< [lp _p'y”%-[ <Yy, |y)g — (Yyy [ 9q)g

= |p =l < Py, [v)g

= |l = pyl3 <112y~ llg llyllg

= |lp—py |3 < (48)?

& [lp—pyllu < 8. (54)

Since Proposition 3.1(vii) asserts that prox_ (L¥) x = p,, the proof is complete. [J

Leg

Example 3.25. Let L € B (H,G), let g € T'x(G), let v € ]0,+00[, and let p €
10, +o00[. Suppose that L o L* = pldg. Then the following hold:
(i) Set h =g(\/p-) and S = L/\/p. Then go L = Seh.
(ii) prox.gor = Idy + p tL* o (prox.,,, —Idg) o L.
Proof. (i): Since L o L* = pldg, S is a coisometry, and we deduce from Proposi-
tion 3.20(v) and Lemma 2.4(ii) that S eh=hoS=golL.
(ii): This follows from (i) and Proposition 3.10(ii) (see also [2, Proposition 24.14]).
O

Example 3.26. Let V be a closed vector subspace of H and v € ]0,4+o00[. Then
the following hold:

. Rt
(@) projy ol |l = v+ - ||
(i) projy #|[-[I = - [| o projy-.

Proof. Set ® = Qy — @y o projy, and let z € H.
(i): It follows from Proposition 3.2(i), Lemma 2.4(ii), and the identity & =
@ o projy,. that

(projy 311+ 1) (@)

1
. f - _ 2
it (Il + 5l = ol?)

projy y=x
B {|x||, if eV
+oo, if v ¢V
= w (@) + ||z (55)
(ii): We recall that 9| - ||(z) = {z/||z||} if  # 0 and that J|| - ||(0) = B(0;1) [2,
Example 16.32]|. Hence,

) . proj projy z/|| projy x||) }, if proj, x # 0;
projy-+ 91 (projy 2)) = { (Prelve (prody e/ l[projy )}, if prody = #
projy . (B(O,l))7 if projyx =0



PROXIMAL COMPOSITIONS AND INTEGRAL PROXIMAL MIXTURES 19

_ J{oy, if z¢ Vs
| projy. (B(0;1)), if z e V*

5 0. (56)

However, Id — projy, o projj, = projy .. Therefore, in view of Proposition 3.23(ii),

this confirms that projy, o= o projy . O

Remark 3.27. In contrast with Proposition 3.20(v), Example 3.26(ii) shows an
instance in which the proximal cocomposition coincides with the standard compo-
sition for a linear operator which is not a coisometry.

3.4. Asymptotic properties. We investigate the asymptotic properties of the
families (ng)ve]()#m[ and (ng)we]0,+oo[ as vy varies. These results provide further

connections between the compositions (3), (4), and the proximal compositions of
Definition 1.1.

Proposition 3.28. Suppose that L € B(H,G) satisfies 0 < ||L|| < 1 and let
g: G — ]—00,+00] be a proper function such that camg # &. Suppose that x €
L~Y(dom g**) and set, for every v € |0, 400, z, = PrOX_ ;7. . Then

lim (L . 9)(zy) = g**(La). (57)

0<y—=0

Proof. We first observe that, by virtue of Proposition 3.7(i), (2+)yejo,400] is well
defined. Appealing to Proposition 3.13(ii), we get

1 *kk
(ng) () + ;@H(x —zy)="(L . 9)(z) ="7(g")(La). (58)
On the other hand, by Proposition 3.10(ii),
1 1 1
;@H(l‘ —xy) = ;@H (L* (Lz — prox_ .. (Lx))) < ;||L||2@g (Lz — prox. .. (Lz)).
(59)

Therefore, since Lx € dom g**, |2, Proposition 12.33(iii)|] implies that v~ 1@ (x —
xy) — 0 as v — 0. Finally, by (58) and [2, Proposition 12.33(ii)],

odim (L *9)(z,) = odim (g™ (La) = (977) (La), (60)

as claimed. O

Theorem 3.29. Suppose that L € B (H,G) satisfies 0 < ||L|| < 1, let g: G —
|—00, +00] be a proper function such that camg # &, and let © € H. Then the
following hold:
(i) The functio
The functio
lim (L$g)(x) = (L* D> g™)().

y——+o0

)
)
(iv)  Jim (L)) = g™ (La).
)
)

0, +o00[ = |—00, +00]: v (LS g)(x) is decreasing.
0, +00[ = |—00, +00]: v+ (L + g)(x) is decreasing.

n
n

Suppose that ||L|| < 1. Then lim (ng)(:v) = inf g™ (y).
y—+oo yeg
Suppose that ||L|| = 1 and that V =ran(Idg — L o L*) is closed. Then

li L’Y _ . *k ]
Jim (Leg)(x) = inf g7 (y)
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Proof. Set ® = Qg — Q4 o L*.
(i): Fix 1 € ]0,+o00] and 72 € ]0, +oo[ such that ;3 < v2. Then we deduce from
Proposition 3.2(i) that

LSg=L"B (¢ +®/p) < L*B (¢ +®/m) =L 5 g. (61)
1/71

(ii): Fix 71 € ]0,400[ and 2 € ]0,+o0[ such that 71 < 2. By (i), L o g¢* <

1
L /<>W g*. Therefore, appealing to Definition 1.1 and Lemma 2.1(ii), we get

1 « 1 «
L¥g=(L @29*) < (L @lg*) =Leg. (62)
(iii): Since ® > 0, it follows from (i) and Proposition 3.2(i) that

lim (ng) (r) = inf [<L* B> (g** + fly(I))) (x)

y—+o0 ~v€]0,+00

1
yefor,loo[( érelg (g (y)+7 (y))>

L*y=x

1
inf (ve]l({lm[(g (y) + 5 (y))>

L*y=x

inf ¢**
inf 97 ()
L y=x

= (1> ™) (@), (63)

(iv): By [2, Proposition 12.33(ii)], "(¢**) — ¢** as 0 < v — 0. The claim
therefore follows from Proposition 3.20(ii).

(v)—(vi): As in the proof of Proposition 3.2(iv), (¢* +v®)* = ¢g**O(P* /7). Thus,
it follows from Proposition 3.2(ii) that

Leg= (g”D(@*/v)) o L. (64)

Moreover, since ® < @g, Lemma 2.1(ii) yields @g < ®*. Altogether, using (ii) and
(64), we obtain

lim (Leg)(z)= _inf <g** 0 ‘i) (Lzx)

y—+o0 ~v€]0,+00]
1
—  inf f( 420 (Lo — ))
yefg}m[(;gg 9" y) + S (Le —y)

inf (We]mf (g**(y) +1ov(ra - y))>

yELx—dom &* 0,4o00[ ¥

- yGLxH}ifom o g (y) (65)

We set A = Idg — L o L* and observe that ®: y — (y| Ay);/2. In case (v), since
IIL|| <1, A is invertible and Lemma 2.8 asserts that dom ®* = ran A = G in (65).
Finally, case (vi) follows from Lemma 2.8 and (65). O

Corollary 3.30. Suppose that L € B (H,G) is an isometry, let g € T'o(G), and let
x € H. Then the following hold:

() _tim (L3g)x) = (I* > g)(a).



PROXIMAL COMPOSITIONS AND INTEGRAL PROXIMAL MIXTURES 21

iy 7 _
() lim (L30)(x) = g(L).
Proof. By Proposition 3.20(iv), ng = ng7 whereas Lemma 2.4(ii) yields g** = g.
(i): A consequence of Theorem 3.29(iii).
(ii): A consequence of Theorem 3.29(iv). O

Example 3.31. Let V = {0} be a closed vector subspace of G, let g € T'y(G), and
let x € G. Then

li iy e = inf : 66
lim(projy ¢g)(z) = inf g(z +v) (66)
Proof. Since || projy || = 1 and ran(Idg — projy oproji,) = V*, it follows from
Theorem 3.29(vi) and Lemma 2.4(ii) that
li ojv = inf = inf = inf +0), (67
ngloo(pr jv *9)(z) semold v 9(y) R g9(y) = nf g(z+v), (67)
as announced. O

We now turn our attention to epi-convergence. As discussed in [1], this notion
plays a central role in the approximation of variational problems. It will allow us to
connect asymptotically the proximal composition to the infimal postcomposition,
and the proximal cocomposition to the standard composition as 7 evolves.

Definition 3.32 ([1, Chapter 1], [17, Chapter 7|). Suppose that H is finite
-dimensional, and let (f,)nen and f be functions from H to [—oo, +oc0]. We say
that (f,)nen epi-converges to f, in symbols f, = £, if the following hold for every
reH:

(i) For every sequence (2, )nen in H such that x, — z, f(z) < lim f,(z,).

(ii) There exists a sequence (2, )nen in H such that z,, — 2 and lim f,,(z,,) < f(z).
The epi-topology is the topology induced by epi-convergence.

Lemma 3.33. Suppose that H and G are finite-dimensional, let (Ly)neny and L
be operators in B (H,G), let (gn)nen and g be functions in To(G), and let (Yn)nen
and 7 be reals in 0, +oo[. Suppose that L, — L, g, = g, and v, — . Then the
following hold:

(1) Yngn = G-
(i) g5 = g
(iii) Suppose that h: G — R is continuous. Then g, +ynh = g+ vh.
(iv) Suppose that 0 € int(dom g —ran L). Then g, o L, < go L.
Proof. (i): [17, Exercise 7.8(d)].
(ii): [17, Theorem 11.34].
(iii): It follows from (i) and [17, Exercise 7.8(a)| that g,/v., +h = g/v + h.
Invoking (i) once more, we obtain g, +vnh = Yn(gn /Y +h) = v(g/y+h) = g+7h.
(iv): [17, Exercise 7.47(a)]. O

Theorem 3.34. Suppose that H and G are finite-dimensional, let (L, )neny and L
be operators in B (H,G), let (gn)nen and g be functions in To(G), and let (Vn)nen
and v be reals in 0, +o0[. Then the following hold:
(i) Suppose that L,, — L, g, = g, and v, — 7. Then the following are satisfied:
(a) Ly, S gn 5 Ldyg.
(b) L, ¢ gn S Leg.
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ii) Suppose that 0 < < 1. en the following are satisfied:
i) S hat 0 L 1. Then the foll fied

(a) Suppose that vy, 1 +o0o. Then L g5 (L* > g).
(b) Suppose that v, 1 0. Then LS g5 go L.

Proof. (i)(a): It follows from Lemmas 2.4(viii) and 3.33(ii)—(iii) that
Loy 1 * e 1 L,
W (gn) = (gn + Tn@g) = (g+ ;@g) =7(g")- (68)

Since Lemmas 2.1(v) and 2.4(vi) yield dom %(g*) = G, Lemma 3.33(iv) and (68)
imply that i(g;) oL, = %(g*) o L. Finally, appealing to Definition 1.1 and
Lemma 3.33(ii)—(iii), we conclude that

anébgn = (ﬁ(g;;) OLn)* — %@H 5 (%(g*) OL>

*

1
- ;@H =Ldg. (69

(i)(b): By Lemma 3.33(ii), g% < g¢*. Therefore, upon combining (i)(a) and
Lemma 3.33(ii), we obtain

Lo % go= (Lo %" g2)" 5 (L6 ) = L3y (70)

n

(ii)(a): Set f = L*>gand (Vn € N) f, = L8 g. It follows from items (i) and (iii)
in Theorem 3.29, as well as Lemma 2.4(ii), that (f,)nen is decreasing and pointwise
convergent to f as n — +o0o. Further, since f is convex by [2, Proposition 12.36(ii)|,
we deduce from [17, Proposition 7.4(c)] and [2, Corollary 9.10] that

fngéggfnzfzf (71)

(ii)(b): Set f = goL and (Vn € N) f,, = L % g. Since (Yn)nen is decreas-
ing, (fn)nen is increasing by Theorem 3.29(ii). Further, Theorem 3.29(iv) and
Lemma 2.4(ii) imply that (f,)nen converges pointwise to f as n — +o0o. On the
other hand, Proposition 3.7(i) implies that (Vn € N) f,, = f,,. Therefore, by virtue
of [17, Proposition 7.4(d)|,

fngsupﬁzsupfn:fv (72)
neN neN

which concludes the proof. O
Corollary 3.35. Suppose that H and G are finite-dimensional, let L € B (H,G), let

g € T0(G), and let (yn)nen be a sequence in |0, +o00[. Suppose that L is an isometry
and that (ridom g*) N (ran L) # @&. Then the following hold:

(i) Suppose that v, 1 +00. Then L6 g < L* > g.
(ii) Suppose that v, L 0. Then L 39S golL.
(iii) For everyt € [0,1], set v = tan(nt/2). Then the operator
go L7 Zf t= 07
T:[0,1] > To(H):t =S LEg, if0<t<l; (73)
L'>g, ift=1
is continuous with respect to the epi-topology.
Proof. Proposition 3.20(iv) yields (Vv € ]0, +00[) ng = ng. Further, [2, Propo-

sition 6.19(x)| implies that 0 € sri(dom ¢g* — ran L). Therefore, by virtue of Lem-
mas 2.5(iii) and 2.4(ii), we get L* > g € T'o(H).
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(i): A consequence of Theorem 3.34(ii)(a).

(ii): See Theorem 3.34(ii)(b).

(iii): Theorem 3.34(i)(a) guarantees the epi-continuity of T on ]0,1[. Finally, (i)
and (ii) imply that Oiitnio T(t) = T(0) and 12}21 T(t) = T(1), respectively. O

Remark 3.36. Suppose that H and G are finite-dimensional and that L € B (H,G)
satisfies 0 < ||L]| < 1, let g € Ty(G), and let (y5)nen be a sequence in ]0, +ool.
Under a qualification condition (see Lemma 2.5(iii)), L* > g € T'g(H) and, conse-
quently, L* > g = (L* > g). In this case, Theorem 3.29(iii) and Theorem 3.34(ii)(a)
show that the proximal composition converges pointwise and epi-converges to the
infimal postcomposition as v, T +0co. On the other hand, Theorem 3.29(iv) and
Theorem 3.34(ii)(b) show that the proximal cocomposition converges pointwise and
epi-converges to the standard composition. Further, in the particular case in which
L € B(H,G) is an isometry, Corollary 3.35(iii) asserts that g o L and L* [> g are
homotopic via the proximal composition with respect to the epi-topology.

Proposition 3.37. Suppose that H and G are finite-dimensional and that L €
B (H,G) satisfies 0 < ||[L]| < 1, let g € To(G), and let (yn)nen be a sequence in
10, +00[ such that v, | 0. Suppose that dom gNran L # @ and that go L is coercive.
Then the following hold:

(i) infrep(L ¥ 9)(x) — mingen g(La).
(ii) There exists N C N such that N\.N is finite and (Vn € N) Argmin(LW:g) #* 3.
Further,

lim Argmin (L K g) C Argmin(go L). (74)

Proof. Set f = go L and (Vn € N) f, = L'¢ g. Since domg Nranl # &,
f €To(H). Thus, by [2, Proposition 11.15(i)], f has a minimizer over H. Further,
by Proposition 3.7(i), for every n € N, f,, € T'g(H) and, by Theorem 3.34(ii)(b),
fn = f. On the other hand, [2, Proposition 11.12] asserts that the lower level sets
(levge f)eer are bounded. Altogether, by virtue of [17, Exercise 7.32(c)], for every
¢ € R, there exists N¢ € N such that UH>N§ lev¢e frn is bounded.

(i)—(ii): A consequence of [17, Theorem 7.33]. O

4. Integral proximal mixtures.

4.1. Definition and mathematical setting. Integral proximal mixtures were in-
troduced in [7] as a tool to combine arbitrary families of convex functions and linear
operators in such a way that the proximity operator of the mixture can be expressed
explicitly in terms of the individual proximity operators. They extend the proximal
mixtures of [9], which were designed for finite families. In this section, we use the
results of Section 3 to study their variational properties. This investigation is car-
ried out in the same framework as in [7], which hinges on the following assumptions.
Henceforth, we adopt the customary convention that the integral of an F-measurable
function ¥: Q — [—00, +-00] is the usual Lebesgue integral [, ¥dpu, except when the
Lebesgue integral [, max{9,0}dp is +oco, in which case [, Jdu = +00.

Assumption 4.1. Let (2,5, u) be a complete o-finite measure space, let (Gy,)wea
be a family of real Hilbert spaces, and let [ cq G be the usual real vector space of
mappings x defined on @ such that (Yw € Q) z(w) € G,. Let ((Gy)wea, ®) be an
F-measurable vector field of real Hilbert spaces, that is, & is a vector subspace of
[I.cq Go which satisfies the following:
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[A] For every x € &, the function Q@ — R: w— [[z(w)|g  is F-measurable.
[B] For every x € [],cq Gu,

[(Vye®) Q= R:we (2(w)|y(w))g, is F-measurable] = xe®. (75)

[C] There ezists a sequence (en)nen in & such that (Yw € Q) span{e,(w)tnen =
G-

Set ) ={z €& | fQ||ac(w)||éw,u(dw) < +o0}, and let G be the real Hilbert space of
equivalence classes of u-a.e. equal mappings in §) equipped with the scalar product

(1)g:GxG =R (2,y) = fQ@(W) [y(@))g, mdw), (76)

where we adopt the common practice of designating by x both an equivalence class
i G and a representative of it in §. We write

(]
G= J' Gup(dw) (77)
Q
and call G the Hilbert direct integral of ((Gy)weq,®) [13].

Assumption 4.2. Assumption 4.1 and the following are in force:

[A] H is a separable real Hilbert space.

[B] For every w € Q, L, € B(H,G,,).

[C] For every x € H, the mapping e.x: w — L,x lies in &.
[D] 0 < follLuln(dw) < 1.

Given a complete o-finite measure space (2, F, ), a separable real Hilbert space
H with Borel o-algebra By, and p € [1, +00[, we set

2P (9,9, 1 H)

:{x:Q—>H

x is (F, By)-measurable and f l|lz(w) |l p(dw) < —l—oo}. (78)
Q

The Lebesgue integral (also known as the Bochner integral) of z € £ (Q, F, p; H) is
denoted by [, x(w)u(dw). The space of equivalence classes of y-a.e. equal mappings
in ZP(Q,F, p; H) is denoted by LP(Q, F, p; H).

Assumption 4.3. Assumption 4.1 and the following are in force:
[A] For every w € Q, g,,: G, — |—00, +00| satisfies camg,, # &.
[B] For every x* € §), the mapping w ProXg. x*(w) lies in &.
[C] There exists r € § such that the function w — g, (r(w)) lies in Z1(Q, F, pu; R).
[D] There exists r*€ ) such that the function w — g (r*(w)) lies in £1(Q, F, u; R).

The following construct will also be required.

Definition 4.4 ([6, Definition 1.4]). Suppose that Assumption 4.1 is in force and,
for every w € Q, let g,: G, — [—00,+00]. Suppose that, for every = € §), the
function Q — [—o0, +00]: w > gy, (z(w)) is F-measurable. The Hilbert direct integral
of the functions (g, )weq relative to & is

(GINes)
| gt dw)s G = (o0 todli o [ g (o)l (79)
Q Q

We introduce below parametrized versions of the integral proximal mixtures of
[7, Definition 4.2].
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Definition 4.5. Suppose that Assumptions 4.2 and 4.3 are in force, and let v €
10, +oc[. The integral proxzimal mizture of (gy)wen and (Ly)wen with parameter
is

o 1 1
M, (Lo, 8w)wen = h* — ;@H, where (¥x € H) h(x) = J 7 (g5) (Lux)p(dw),
Q

(80)
and the integral proxzimal comizture of (g,)weq and (L, )weq with parameter v is
* < *

M'y(l—wagw)weﬁ = (Ml/’y(vagZ))wEQ) . (81)

4.2. Properties. The following proposition adopts the pattern of [7, Theorem 4.3]
by connecting integral proximal mixtures to proximal compositions in the more
general context of Definitions 1.1 and 4.5.

Proposition 4.6. Suppose that Assumptions 4.2 and 4.3 are in force, and let v €
10, 4+00[. Define
L:H—=G: x> ex (82)

and
&Srd

o= | e, (53)

Then the following hold:
(i) LeB(H,G) and 0 < ||LH 1.

(ii)) L*: G = H: 2" — [ LY (2 (w)) pu(dw).
(iii) g e Ty(9).
(IV) 7( wagw)wGQ = L<>g
(V) M’y(l—wa gw)weﬂ =1L ’ g-

Proof. (i): We deduce from [6, Proposition 3.12(ii)] and Assumption 4.2[D] that
L e B(H,G) and that 0 < ||L|? < [q Lo p(dw) < 1.
(ii): See [6, Proposition 3.12(v)]
To establish (iii)—(v), set J: @ - R: w — —g*(r(w)) and (Vw € Q) f, = g7.
Let us show that (f,).ecq satisfies the following:
[A]” For every w € Q, f,, € I'o(G,,).
[B]” For every x € $), the mapping w + prox;_(z(w)) lies in &.
[C]” The function w + f,(r*(w)) lies in Z1(, F, u; R).
[D]” ¥ € 21(Q, F, u; R) and, for every w € Q, f, > (r(w)|-)g +9(w).
This will confirm that (f,),ecq satisfies the properties of [6, Assumption 4.6]. First,
it follows from items [A] and [C] in Assumption 4.3 and from Lemma 2.1(v) that [A]’
holds. Second, Assumption 4.3|B| implies that [B|’ holds, while Assumption 4.3|D|
implies that [C|” holds. Let us now show that ¥ € £1(Q,F, ;R). As in the proof
of [6, Theorem 4.7(ix)], —¢ is F-measurable. Further, by (1) and Lemma 2.1(i),

(Vw € Q) (|r(w))e, —85(r" W) < g5 < go- (84)

Thus, we infer from Assumption 4. S[C] [D] that g’* is bounded by integrable func-
tions, which shows that

9 e LYY T, 1;R). (85)

On the other hand, it follows from Lemma 2.1(iii) and (1) that, for every w € ,

fo = g5 = (r(w)| ), — 85 (r(w)) = (r(w)|)g, + ¥(w), which provides [D]".
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Therefore (f,),ecq satisfies the conclusions of [6, Theorem 4.7]. In particular, [6,
Theorem 4.7(1)—(ii)] entail that

SrD
/= fQ foop(dev) (86)

is a well-defined function in I'g(G) and from [6, Theorem 4.7(ix)] and Lemma 2.4(ii)
that
g9 =" €To(9). (87)
(iii): See (87).
(iv): By [6, Theorem 4.7(viii)|,

1 ere
= | ) (88)
Further, by (iii) and Lemma 2.4(ii), g* = f. In turn, (82) and (88) imply that
%(g*) oL:H—>R:x— J %(gz‘,) (LX) p(dw). (89)
Q

In view of Definitions 1.1 and 4.5, the assertion is proved.

(v): Let us show that (f,,),ecq fulfills the properties of Assumption 4.3 by showing
that the following hold:
[A]” For every w € Q, f,,: G, — ]—00, +00] satisfies camf,, # &.
[B]” For every z* € $, the mapping w — proxg. z*(w) lies in &.
[C]” The function w s f,(r*(w)) lies in L1(Q, F, u; R).
[D]” The function w — £ (r(w)) lies in L1(Q, F, u; R).
We first note that [A]” and Lemma 2.4(i) imply that [A]” holds, and that [C]'<[C]".
Additionally, it follows from (85) that [D]” holds. It remains to establish [B]".
Assumption 4.3[B| asserts that, for every z* € §, the mapping w — prox; z*(w)
lies in . Therefore, the inclusion ) C &, Lemma 2.4(iv), and the fact the &
is a vector space imply that, for every z* € $), the mapping w — Proxg. ¥ (w) =
x*(w)—prox¢ x*(w) lies in &, which provides [B]”. Hence, we combine Definition 4.5,
the application of (iv) to (f,)weq, (87), Lemma 2.4(ii), and Definition 1.1, to obtain

*

<o * 1/ * 1/ N *
M’Y(Lwagw)weQ = (Ml/'y(l-w7fw)w69> = (L O’Y f) = (L 079 ) :nga (90)
which completes the proof. 0
Our main results on integral proximal mixtures are the following.

Theorem 4.7. Suppose that Assumptions 4.2 and 4.3 are in force, and let v €
10, 4+o0c[. Then the following hold:

(i) I\jl'y(l-wagw)wefl € Fo(H),

*

) My (Lo, g)wenr € To(H).
(i) (VM (Lo g )oce)” = Mi (L 85 )wctr
) My (Lo 8ol = (M (L g5 )wen)
) Let x € H. Then prox o X = JQ L, (prox. g (Lux)) po(dw).

YM, (Lo ,8w)wen

(vi) Let x € H. Then prox . X =X— f L5, (Lox — prox, g (Lyx)) p(dw).
YM, (Lo ,8w)wen Q w
(vii) Define g as in (83) and L as in (82). Then the following are satisfied:
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(3) OM, (L €u)uen) = L*D> (99 + (1dg = Lo L)),
(1) DM (Lusgu)uca) = L7 o (99" +7(1dg = Lo L) o L.
(vii) Let x € H. Then (M, (Ly, g)wea)(x) = fﬂ (g ) (L) p(dew).

*

(ix) Argmin,cy(My (Lo, gu)wen)(x) = Argmin, ey fQ 7(857) (Lwx) p(dw).

(x) Let x € H. Then (rec I\./IW(Lw,gw)weQ)(x) = J (rec(gl)) (Lyx) p(dw).

Q
(xi) Suppose that u is a probability measure and that there exists 8 € ]0,4o00]
such that, for every w € Q, g, : G, — R s conver and [-Lipschitzian. Then
*

M., (Lo, 8uw)wea is B-Lipschitzian.

Proof. Define L as in (82) and g as in (83). Recall from items (i) and (iii) in
Proposition 4.6 that L € B (H,G), 0 < |[L|| < 1, and g € To(G). Additionally, by
Proposition 4.6(iv)—(v),

l\jlw(Lw,gw)wesz =Ldg and ,\’/l,y(l_w,gw)weﬂ =Laeg. (91)
Also, proceeding as in the proof of Proposition 4.6, it can be shown that

(g:)*)wEQ satisfies the properties of [6, Assumption 4.6]. (92)
Thus, by [6, Theorem 4.7(iv)],

(VzeG) (prox,,z)(w) = PIroX.g-+ (z(w)) for p-almost every w € Q. (93)
(i)—(iv): These are consequences of (91) and Proposition 3.7.

(v): It follows from (91), Propositions 3.10(i) and 4.6(ii), and (93) that

prOX'Y'\O/I'y(Lw7gw)weQ x=L* (proxw(Lx)) = L} L, (proxvg:* (wa)> pu(dw). (94)
(vi): It follows from (91), Propositions 3.10(ii) and 4.6(ii), and (93) that

prox x = x — L*(Lx — prox_,(Lx))

'Y'\./I'y(l-w@w)weﬂ
=x— J. Ly (wa — PrOX, g (wa))u(dw). (95)
0 5

(vii): A consequence of (91) and Proposition 3.11.
(viii): By (92) and [6, Theorem 4.7(viii)],

SrD
19 = fﬂ g pldw). (96)

However, by Lemma 2.4(ii), g = g**. Therefore, (91), Proposition 3.13(ii) and (96)
yield

’Y(MW(vagw)wGSZ) (x)="(L . 9)(x) = "g(Lx) = fQ (g5 ) (Lux) p(dw). (97)

(ix): The assertion is obtained by using successively (91), Corollary 3.14, and
(vii).

(x): By (92) and [6, Theorem 4.7(x)],

&S rd
recg = JQ rec (gl ) pu(dw) (98)



28 PATRICK L. COMBETTES AND DIEGO J. CORNEJO

However, by Lemma 2.4(ii), g = ¢**. Hence, it results from (91), Proposition 3.16,
and (98) that

(rec M, (Ly, 8) weg) rec Ll )

= (recg)

(rec £27)) (Lux) u(de). (99)
Q

(xi): It follows from (83), Lemma 2.4(ii), and Jensen’s inequality ([2, Proposi-
tion 9.24|) that

2
(Ve eG)(Vyeg) lg(x)—g)f =

| (eole@) ~ £ () uta)
Q
< j g (2(w)) — g (y(w)) | pu(duw)
Q
<P j (@) — (@) p(dw)
Q

= Blle -yl (100)
Therefore, g is B-Lipschitzian, and the conclusion follows from (91) and Corol-
lary 3.12. 0

Our second batch of results focuses on approximation properties.

Theorem 4.8. Suppose that Assumptions /.2 and 4.3 are in force. For everyx € H,
define

(I\7 (Lw> goJ)wEQ> (X)
- inf{ | &G

ze€G and JQ LY (z(w))p(dw) = x} (101)

> B>
and write (M(Ly, 8u)wea)(X) = (M(Ly, 8w)wew) (X) if the infimum is attained. Then
the following hold:

o >
(1) Let e }07 +OO[ Then M"/(Lwagw)weﬂ M(Lwa gw)weﬂ-
(ii) Let v € 10,400 and x € H. Then

*

| et ) < (M Lasguen) (9 < [ g Laulde). (102

* <&
(iii) Let v €]0,+oo[. Then M (Lwygw)wEQ <M (vagw)wEQ
(iv) Let~v €]0,4o00[ and suppose that ,u s a probabzlzty measure and that, for every

w € Q, L, is an isometry. Then |\/| (L, 8w)wen = M + (L, 8w)wea-
(v) Letv €10, +00[ and suppose that L in (82) is a coisometry. Then the following

are satisfied:
B>

<
(a) M'y(l—wagw)weﬂ = M(ngw)weﬂ-
(b) Let x € H. Then (M, (Ly, 8u)wen)(x) = J g (Lyx) p(dw).
Q
(vi) Let x € H. Then the following are satisfied:

()l (M (L)) 00 = (M(Lus 8 )ue) 0.

yF
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(0)Jim (M (L guloen) 0 = [ g2 (L ().

(vii) Suppose that H and G are finite-dimensional, and let (y,)nen be a sequence
n 10, +oo[. Then the following are satisfied:

)

o >
(a) Suppose that v, T +oo. Then M, (Ly, 8u)wen — (M(Lw,gw)weg).

(b) Suppose that v, | 0. Then M., (Ly, gu)wen — f, where (¥x € H) f(x) =
8" (Lwx) p(dw).

(c) Suppose that v, | 0 and that the function x — f g (Lyx)u(dw) is proper
Q

and coercive. Then

inf (M, (Lov e 00— mip | g2 (Lox) (). (103)

Proof. Define L as in (82) and g as in (83), and recall from items (i) and (iii) of
Proposition 4.6 that L € B(H,G), 0 < ||[L]] € 1, and g € Tg(G). Further, by
Proposition 4.6(iv)—(v),

< .
M'y(l—wagw)weﬂ = ng7 and M'y(ngw)weQ =L . g- (104)
Additionally, Proposition 4.6(ii) yields
>
(e H) (L'Dg)()= it g@) = (M(Lu.g)uen)().  (105)
L*z=x

On the other hand,
(e H) o) = | g ((ed(w)utde) = | g (Lu(dw).  (106)

(i): The assertion follows from (104), (105), and Proposition 3.20(i).
(ii): Combine (104), (106), and Proposition 3.20(ii).

(iii): This is a consequence of (104) and Proposition 3.20(iii).

(iv): We have

(ix e H) X3 = [ ILoxl3 () = [ klRutde) = w(@)IIE =I5 (107)

Therefore, L is an isometry and the assertion follows from (104) and Proposi-
tion 3.20(iv).

(v)(a): This follows from (104), (105), and Proposition 3.20(v).

(v)(b): This follows from (104), (106), and Proposition 3.20(v).

(vi)(a): This follows from (104), (105), and Theorem 3.29(iii).

(vi)(b): This follows from (104), (106), and Theorem 3.29(iv).

(vii)(a): This follows from (104), (105), and Theorem 3.34(ii)(a).

(vii)(b): This follows from (104), (106), and Theorem 3.34(ii)(b).

(vii)(c): This follows from (104), (106), and Proposition 3.37(i). O

Example 4.9. Let p € N~ {0}, let (ar)i<k<p be a family in ]0,4o0[, let H
and (Gg)i<kgp be separable real Hilbert spaces, let & = Gy x --- x G, be the
usual Cartesian product vector space, with generic element = = (xg)1<k<p, and,
for every k € {1,...,p}, let Ly € B(H,Gg) and let g € T'y(Gg). Suppose that
0<>¥_, agllLg]® <1 and set

Q={1,....p}, F=2U0P and (Vke{l,....p}) u({k}) =ar. (108)
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Then ((Gg)igkgp, ®) is an F-measurable vector field of real Hilbert spaces and

f o Gup(dw) is the weighted Hilbert direct sum of (G)1<r<p, namely the Hilbert
space obtained by equipping & with the scalar product (z,y) — > r_; ax (X | Yk>Gk
Further, [, ||Lo|?n(dw) = >-7_, ak||lLk||? €]0,1]. Therefore, Assumptions 4.2 and
4.3 are satisfied, and (80) becomes a parametrized version of the proximal mizture
of [9, Example 5.9], namely,

S p * 1
M’y('—kagk)1<k<p = (Z (675 %(g?;) © Lk) - ;@H; (109)
k=1

while (81) becomes a parametrized version of the prozimal comizture

M (Lk, gk )1<k<p = ((Zak g OLk) —7@H>. (110)

In particular, for every x € H, we derive from Theorem 4.8(vi) the following new
facts:

() Tim (W (L gi)iney ) (0

=t

>

(M(Lkvgk)1<k<p)(x)
ylecl,m YpEGy (Zakgk yk))
Zk 1 obpyr=x k=1

(ii) o<1£yni>o(M (Li. gr) 1<k<p) Zakgk LX)

Example 4.10. In the context of Example 4.9, suppose that H is finite-dimensional
and that, for every k € {1,...,p}, Gy is finite-dimensional and gy € I'o(Gy). Let
(Yn)nen be a sequence in ]0,+o00[. Then we obtain the following new results on
proximal mixtures and comixtures.

(i) Suppose that v, T +00. Then Theorem 4.8(vii)(a) implies that

v

o

. /D
M, (Lk,gr)1<k<p = (M(Lkagk)lgkgp)~ (111)
(

(ii) Suppose that v, | 0. Then Theorem 4.8(vii)(b) implies that

. p
M., (Lk, 8k)1<k<p Zakgkol-k (112)

,_.

(iii) Suppose that 7, | 0 and that the function Y ;_, axgk o Lj is proper and
coercive. Then Theorem 4.8(vii)(c) implies that

. p
mf( (Lk7gk)1<k<p) (x) — E(rélgilz argr (Lgx). (113)
k=1

x€H
Remark 4.11. In connection with Example 4.10, it was empirically argued in
[11] (see also [14, 15, 18, 20] for the special cases of proximal averages) that, in
variational formulations arising in image recovery and machine learning, combining
linear operators (Ly)1<k<p and convex functions (gx)1<k<p by means of the prox-
imal comixture (110) instead of the standard averaging operation Y 1 _; cugr o Ly
had modeling and numerical advantages. For instance, the proximity of the for-

mer is intractable in general [12], while that of the latter is explicitly given by
Theorem 4.7(vi) to be ldy — 327 _; ax(Ly o (Idg, — prox., ) o Lg), which makes the
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implementation of first-order optimization algorithms [10] straightforward. The re-
sults of Example 4.10 provide a theoretical context that sheds more light on such
an approximation.

4.3. Proximal expectations. We specialize the results of Section 4.2 to the prox-
imal expectation. This operation, introduced in [7, Definition 4.6] as an extension
of the proximal average for finite families, performs a nonlinear averaging of an
arbitrary family of functions. We study here the following extension of it which
incorporates a parameter.

Definition 4.12. Let (2, F, P) be a complete probability space, let H be a separable
real Hilbert space, let (f,)weq be a family of functions in I'g(H) such that the
function

O xH—=]—00,+00]: (w,x) = f,(x) (114)
is F ® By-measurable. Suppose that there exist vectors r € Z£?(Q,F,P;H) and
r* € £%(Q,F,P;H) such that the functions w — f,,(r(w)) and w +— f*(r*(w)) belong
to Z1(Q,F,P;R). The prozimal expectation of (f,).ecq with parameter v € ]0, +o00]
is

E. (f)uen = h* — Lon, where (¥xeH) h(x) :j () ()P(dw).  (115)
Y Q

An inspection of Definition 4.5 suggests that the proximal expectation can be
viewed as the instance of the integral proximal mixture in which (Vw € Q) G, =H
and L, = Idy. This fact opens the possibility of specializing the results of Section 4.2
to obtain properties of the proximal expectation. Let us formalize these ideas.

Proposition 4.13. Consider the setting of Definition 4.12 and let v € |0, +o0].
Then the following hold:

(i) Ev(fw)weﬂ = '\<;|V<IdH’fw)w€Q = MV(IdH7fw)wesz'
) Ey(f)en € To(H).
(i) (E,(F)yen)” = Eur(fouen
) Let x € H. Then prox 2 (e X = J‘Q prox. ¢ xP(dw).

<&
(v) Letx € H. Then "(E,(f,)wen)(X) :f
Q
<o
(vi) Argmin,cpy(E,(fy)wen)(x) = ArgminerJ. 7, (x) P(dw).
Q
<&
(vii) Let x € H. Then (recE,(fy)wen)(x) = J (recfy,)(x) P(dw).
Q
(viii) Suppose that there exists 5 € ]0,400] such that, for every w € Q, f,: H— R
<&

o (x) P(dw).

is B-Lipschitzian. Then E.(f,)weq is B-Lipschitzian.

Proof. (i): As in the proof of [7, Proposition 4.7], the family (f,).cq fulfills the
properties of Assumption 4.3. Therefore, the conclusion follows from (115), (80),
and Theorem 4.8(iv).

(ii)—(viii): Combine (i) and Theorem 4.7. O

<&
Remark 4.14. Item (iv) in Proposition 4.13 justifies calling E, (f.,)weq the proximal
expectation of (f,)wecq: its proximity operator is the expected value of the individual
ones.
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Proposition 4.15. Consider the setting of Definition 4.12. For every x € H, define
>
(E(fw)weﬁ) (x)

= inf{J fo(z(w))P(dw)
Q
Then the following hold:
(i) Let v €]0,+00[ and x € H. Then (Ew(fw)weg)(x) > J 7, (x) P(dw).
Q
(ii) Let v € 10,400 and x € H. Then

(E(fw)weg)(x) < (By(fo)ucn) () < L . (x) P(dw). (117)
(iii) Let x € H. Then the following are satisfied:
S >
(@) Tim_(Ey(f)uen)() = (E(L)ucn) )

() Jim (B, (E)uca) (0 = [ () Pld).

(iv) Suppose that H and G are finite-dimensional, and let (vn)nen be a sequence
in ]0,+oo[. Then the following are satisfied:

x € L*(Q,F,P;H) and J
Q

z(w)P(dw) —x}. (116)

o > o
(a) Suppose that v, T +o00. Then E, (f,)weco 5 (E(fw)weg).
<o

(b) Suppose that v, | 0. Then E,, (fu)weq — f, where f: x — J. fu(x) P(dw).
Q

(c) Suppose that v, | 0 and that the function x +— J fo(X)P(dw) is proper
Q
<&
and coercive. Then infyen(E,, (fu)wen)(x) = mingen | fu(x)P(dw).
Q

Proof. Combine Proposition 4.13(i) and Theorem 4.8. O

Remark 4.16. Suppose that (fx)1<k<p is a finite family of functions in I'y(H) and
define P as in (108), with the additional assumption that > j_, @y = 1. Then

<&
E(ft)1<k<yp is the prozimal average of (fi)1<k<p, studied in [3] (see also [9, Exam-
ple 5.9]), namely,

© P 1 * 1
Ey(fi)ig<hsp = (Z o ”(ﬁ)) - ;@H = pav, (fe)1<k<p- (118)
k=1

In this context, Propositions 4.13(i)—(vi) and 4.15 recover properties presented in [3].
On the other hand, Proposition 4.13(vii)—(viii) yields the following new properties
of the proximal average:

(i) rec(pav., (fe)i<k<p) = Dp—y ok recfy.

(ii) Suppose that there exists 8 € |0, +oo[ such that, for every k € {1,...,p},

fi.: H— R is S-Lipschitzian. Then pavw(fk)lgkgp is B-Lipschitzian.

We conclude by making a connection between proximal expectations and integral
proximal comixtures that extends Proposition 4.13(i).
Proposition 4.17. Let (2, F,P) be a complete probability space, suppose that As-
sumptions 4.2 and 4.3 are in force, and let vy € |0, +o00|. Further, for every w € Q,
suppose that 0 < ||Ly|| <1 and set f, = L, ¢ g.,. Suppose that the function

O xH—=]—00,+00]: (w,x) > f,(x) (119)
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is FRBu-measurable and that there exist s € £2(,F,P;H) and s* € £%(2,F,P; H)
such that the functions w — f,(s(w)) and w — ¥ (s*(w)) lie in Z1(Q, F,P;R). Then

<& *
E'y (I—w z gw)weﬂ = M’y<Lw7 gw)w€Q~ (120)

Proof. As in the proof of |7, Proposition 4.7], the family (f,),cq fulfills the prop-
erties of Assumption 4.3. On the other hand, Proposition 4.13(ii) and Theo-

<& *
rem 4.7(ii) assert that E(f,)wen and M, (Ly, 8u)wen are in T'g(H). Further, Propo-
sitions 4.13(v) and 3.13(ii), together with Theorem 4.7(viii) yield

(¥x € H) 7(E7(1CW)WEQ)(><) - JQ 7, (x) P(dw)
:J (Lo 3 £) (x) P(dw)
Q
_ f 7(g5") (L) P(dw)
Q

= ’Y<M’Y(Lwagw)w€§2)(x)v (121)
and the assertion therefore follows from Lemma 2.6. O
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