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ABSTRACT
For a k-uniform hypergraph 𝐹 and a positive integer 𝑛, the Ramsey number 𝑟(𝐹 , 𝑛) denotes the minimum 𝑁 such that every
𝑁-vertex 𝐹 -free 𝑘-uniform hypergraph contains an independent set of 𝑛 vertices. A hypergraph is slowly growing if there is an
ordering 𝑒1, 𝑒2, . . . , 𝑒𝑡 of its edges such that |𝑒𝑖⧵⋃𝑖−1

𝑗=1𝑒𝑗 | ≤ 1 for each 𝑖 ∈ {2, . . . , 𝑡}. We prove that if 𝑘 ≥ 3 is fixed and 𝐹 is any
non-k-partite slowly growing 𝑘-uniform hypergraph, then for 𝑛 ≥ 2,

𝑟(𝐹 , 𝑛) = Ω
(

𝑛𝑘

(log 𝑛)2𝑘−2

)
In particular, we deduce that the off-diagonal Ramsey number 𝑟(𝐹5, 𝑛) is of order 𝑛3∕polylog(𝑛), where 𝐹5 is the triple system
{123, 124, 345}. This is the only 3-uniform Berge triangle for which the polynomial power of its off-diagonal Ramsey number was
not previously known. Our constructions use pseudorandom graphs and hypergraph containers.

1 | Introduction

Ahypergraph is a pair (𝑉 ,𝐸)where𝑉 is a set, whose elements are
called vertices, and𝐸 is a family of nonempty subsets of 𝑉 , whose
elements are called edges. A 𝑘-uniform hypergraph (𝑘-graph for
short) is a hypergraph whose edges are all of size 𝑘. An inde-
pendent set of a hypergraph 𝐹 is a subset of 𝑉 (𝐹 ) that does not
contain any edge of 𝐹 .

Given a 𝑘-graph 𝐹 , the off-diagonal Ramsey number 𝑟(𝐹 , 𝑛) is
the minimum integer such that every 𝐹 -free 𝑘-graph on 𝑟(𝐹 , 𝑛)
vertices has an independent set of size 𝑛. Ajtai, Komlós, and

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

© 2025 The Author(s). Random Structures & Algorithms published by Wiley Periodicals LLC.

Szemerédi [1] proved the upper bound 𝑟(𝐾3, 𝑛) = 𝑂(𝑛2∕ log 𝑛),
and Kim [2] proved the corresponding lower bound 𝑟(𝐾3, 𝑛) =
Ω(𝑛2∕ log 𝑛). The current state-of-the-art results are due to
Fiz Pontiveros, Griffiths, and Morris [3] and Bohman and
Keevash [4], who determine 𝑟(𝐾3, 𝑛) up to a small constant factor:(1

4
− 𝑜(1)

)
𝑛2

log 𝑛
≤ 𝑟(𝐾3, 𝑛) ≤ (1 + 𝑜(1)) 𝑛

2

log 𝑛

For larger cliques, the current best general lower bounds are
obtained by Bohman and Keevash [5] strengthening earlier
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bounds of Spencer [6, 7]. On the other hand, the current best
upper bounds are proved by Li, Rousseau, andZang [8] by extend-
ing ideas of Shearer [9], which improve earlier bounds of Ajtai,
Komlós and Szemerédi [1]. These bounds are as follows: for 𝑠 ≥ 3,
there exists a constant 𝑐1(𝑠) > 0 such that

𝑐1(𝑠)
𝑛
𝑠+1
2

(log 𝑛)
𝑠+1
2
− 1
𝑠−2

≤ 𝑟(𝐾𝑠, 𝑛) ≤ (1 + 𝑜(1)) 𝑛𝑠−1

(log 𝑛)𝑠−2

Recently, the first and fourth authors [10] determined the asymp-
totics of 𝑟(𝐾4, 𝑛) up to a logarithmic factor by proving the follow-
ing lower bounds.

Theorem 1. (Theorem 1 [10]) As 𝑛 → ∞,

𝑟(𝐾4, 𝑛) = Ω
(

𝑛3

(log 𝑛)4

)

In this paper, we prove some hypergraph versions of these results.
A Berge triangle is a hypergraph consisting of three distinct edges
𝑒1, 𝑒2, and 𝑒3 such that there exist three distinct vertices 𝑥, 𝑦, and
𝑧with the property that {𝑥, 𝑦} ⊂ 𝑒1, {𝑦, 𝑧} ⊂ 𝑒2, and {𝑥, 𝑧} ⊂ 𝑒3. It
is easy to check that there are only four different 3-uniform Berge
triangles: 𝐿𝐶3 (loose cycle of length 3), 𝑇𝑃3 (tight path on three
edges and five vertices), 𝐹5, and 𝐾3−

4 (3-uniform clique on four
vertices minus an edge), as shown from left to right in Figure 1. It
is natural to consider the problemof determining the off-diagonal
Ramsey numbers for 3-uniform Berge triangles since they are in
some sense the smallest non-trivial hypergraphs that provide a
natural extension of 𝑟(𝐾3, 𝑛).

The off-diagonal Ramsey numbers for 𝑇𝑃3 and 𝐿𝐶3 have been
determined up to a logarithmic factor: for 𝑇𝑃3, a result of Phelps
and Rödl [11] shows that 𝑐1𝑛2∕ log 𝑛 ≤ 𝑟(𝑇𝑃3, 𝑛) ≤ 𝑐2𝑛2; for 𝐿𝐶3,
Kostochka, the second author, and the fourth author [12] showed
that 𝑐1𝑛3∕2∕(log 𝑛)3∕4 ≤ 𝑟(𝐿𝐶3, 𝑛) ≤ 𝑐2𝑛3∕2. It seems plausible to
conjecture that for some constant 𝑐,

𝑟(𝑇𝑃3, 𝑛) ≤
𝑐𝑛2

log 𝑛
and 𝑟(𝐿𝐶3, 𝑛) ≤

𝑐𝑛
3
2

(log 𝑛)
3
4

It is conjectured explicitly in [12] that 𝑟(𝐿𝐶3, 𝑛) = 𝑜(𝑛3∕2) and
the question of determining the order of magnitude of 𝑟(𝑇𝑃3, 𝑛)
was posed in [13]. It was also shown in [13] that 𝑟(𝑇𝑃4, 𝑛) has
an order of magnitude 𝑛2, leaving 𝑇𝑃3 as the only tight path
for which the order of magnitude of 𝑟(𝑇𝑃𝑠, 𝑛) remains open. We
remark that if one can prove that every 𝑛-vertex 𝑇𝑃3-free 3-graph
with average degree 𝑑 > 1 has an independent set of size at least
Ω(𝑛

√
log 𝑑∕𝑑), then this implies that 𝑟(𝑇𝑃3, 𝑛) = Θ(𝑛2∕ log 𝑛).

The problem for𝐾3−
4 is interesting in the sense that it is the small-

est hypergraph whose off-diagonal Ramsey number is at least
exponential: Erdős and Hajnal [14] proved 𝑟(𝐾3−

4 , 𝑛) = 𝑛
𝑂(𝑛) and

Rödl (unpublished) proved 𝑟(𝐾3−
4 , 𝑛) ≥ 2Ω(𝑛). More recently, Fox

and He [15] showed that 𝑟(𝐾3−
4 , 𝑛) = 𝑛

Θ(𝑛).

The problem for 𝐹5, however, is not very well studied: a result
of Kostochka, the second author, and the fourth author [16]
implies that 𝑟(𝐹5, 𝑛) ≤ 𝑐1𝑛3∕ log 𝑛, and the standard probabilis-
tic deletion method shows that 𝑟(𝐹5, 𝑛) ≥ 𝑐2𝑛2∕ log 𝑛. In this
paper, we fill this gap by showing that 𝑟(𝐹5, 𝑛) = 𝑛3∕polylog(𝑛).
This is a consequence of a more general theorem that we will
prove.

Building upon techniques in [10], we prove lower bounds for the
off-diagonal Ramsey numbers of a large family of hypergraphs. A
𝑘-graph𝐹 is slowly growing if its edges can be ordered as 𝑒1, . . . , 𝑒𝑡
such that

∀ 𝑖 ∈ {2, . . . , 𝑡},
||||||𝑒𝑖⧵

𝑖−1⋃
𝑗=1
𝑒𝑗

|||||| ≤ 1

We use this terminology to describe the fact that at most one
new vertex is added when we add a new edge in the order-
ing. Further, 𝐹 is 𝑘-partite, or degenerate, if its vertices can
be partitioned into 𝑘 sets 𝑉1, . . . , 𝑉𝑘 such that each edge inter-
sects each 𝑉𝑖, 1 ≤ 𝑖 ≤ 𝑘, in exactly one vertex. Otherwise, 𝐻
is non-degenerate. The three hypergraphs 𝑇𝑃3, 𝐹5, and 𝐾3−

4 in
Figure 1 are slowly growing, whereas the first is not. The last two
are non-degenerate.

In this paper, we obtain the following result for non-degenerate,
slowly growing hypergraphs.

Theorem 2. For every 𝑘 ≥ 3, there exists a constant 𝑐 > 0 such
that for every slowly growing non-degenerate 𝑘-graph 𝐹 and all
integers 𝑛 ≥ 2

𝑟(𝐹 , 𝑛) ≥ 𝑐𝑛𝑘

(log 𝑛)2𝑘−2

The constant 𝑐 here is independent of𝐹 because our construction
simultaneously avoids all non-degenerate slowly growing 𝐹 .

Theorem 2 is tight up to a logarithmic factor for the following
family of hypergraphs, which includes 𝐹5. For 𝑘 ≥ 3, let 𝐹2𝑘−1
be the 𝑘-graph on 2𝑘 − 1 vertices 𝑣1, . . . , 𝑣𝑘−1, 𝑤1, . . . , 𝑤𝑘 with
𝑘 edges {𝑣1, . . . , 𝑣𝑘−1, 𝑤𝑖}, 1 ≤ 𝑖 ≤ 𝑘 − 1, and {𝑤1, . . . , 𝑤𝑘}.
Further, let 𝑇𝑘 be the 𝑘-graph obtained from 𝐹2𝑘−1 by adding the
edge {𝑣1, . . . , 𝑣𝑘−1, 𝑤𝑘}. See Figure 2 for an illustration of 𝐹7 and
𝑇4. Note that 𝑇2 is a (graph) triangle.

FIGURE 1 | From left to right: 𝐿𝐶3, 𝑇𝑃3, 𝐹5 and 𝐾3−
4 .
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FIGURE 2 | 𝐹7 and 𝑇4.

The order of magnitude of 𝑟(𝑇𝑘, 𝑛) for 𝑘 ≥ 3 is determined by
the upper bound result of Kostochka, the second author, and
the fourth author [16] together with the lower bound result of
Bohman, the second author, and Picollelli [17]. For 𝑘 = 2, this
theorem restates the known result [1–4] that 𝑟(𝐾3, 𝑛)has an order
of magnitude of 𝑛2∕ log 𝑛.

Theorem 3. (Theorem 2 [16]; Theorem 1 [17]) Let 𝑘 ≥ 2. Then
there exist constants 𝑐1, 𝑐2 > 0 such that for all integers 𝑛 ≥ 2,

𝑐1𝑛
𝑘

log 𝑛
≤ 𝑟(𝑇𝑘, 𝑛) ≤

𝑐2𝑛
𝑘

log 𝑛

Thus we have 𝑟(𝐹2𝑘−1, 𝑛) ≤ 𝑟(𝑇𝑘, 𝑛) ≤ 𝑂(𝑛𝑘∕ log 𝑛). On the other
hand, it is easy to check that 𝐹2𝑘−1 is a slowly grow-
ing non-degenerate 𝑘-graph. Hence Theorem 2 together with
Theorem 3 implies the following theorem.

Theorem 4. Let 𝑘 ≥ 3. There exist constants 𝑐1, 𝑐2 > 0 such
that for all integers 𝑛 ≥ 2,

𝑐1𝑛
𝑘

(log 𝑛)2𝑘−2
≤ 𝑟(𝐹2𝑘−1, 𝑛) ≤

𝑐2𝑛
𝑘

log 𝑛

Theorem 4 determines 𝑟(𝐹2𝑘−1, 𝑛) up to a logarithmic factor. In
particular, this determines 𝑟(𝐹5, 𝑛) up to a polylogarithmic fac-
tor, and 𝐹5 is the only 3-uniform Berge triangle for which the
polynomial power of the off-diagonal Ramsey number was not
previously known.

It would be interesting to determine its order of magnitude. We
believe the current upper bounds are closer to the truth:

Conjecture 1. There exists a constant 𝑐 > 0 such that for
𝑛 ≥ 2,

𝑟(𝐹5, 𝑛) ≥
𝑐𝑛3

log 𝑛

2 | The Construction

The proof of Theorem 2 uses the so-called random block con-
struction, which first requires a pseudorandom bipartite graph.
We build our construction using the following bipartite graph.

Definition 1. For every prime power 𝑞 and integer 𝑚 ≥ 2, let
Γ𝑞,𝑚 be the bipartite graph with two parts 𝑋 = 𝔽 2

𝑞
and 𝑌 = 𝔽𝑚

𝑞
,

where two vertices 𝑥 = (𝑥0, 𝑥1) ∈ 𝑋 and 𝑦 = (𝑦0, . . . , 𝑦𝑚−1) ∈ 𝑌
form an edge if and only if

𝑥1 =
𝑚−1∑
𝑖=0
𝑦𝑖𝑥

𝑖
0

One can view𝑋 as points on 𝔽 2
𝑞
and 𝑌 as one-variable polynomi-

als defined on 𝔽𝑞 of degree at most 𝑚 − 1. Now Γ𝑞,𝑚 is simply the
incidence bipartite graph of the points and the polynomials where
a point 𝑃 ∈ 𝑋 and a polynomial 𝐹 ∈ 𝑌 form an edge if and only
if 𝑃 = (𝑤,𝐹 (𝑤)) for some 𝑤 ∈ 𝔽𝑞 .

For any vertex 𝑥 of a graph𝐺, we use 𝑑(𝑥) to denote the degree of
𝑥, that is, the number of neighbors of 𝑥 in𝐺. Further, for any set𝑈
of vertices, we use 𝑑(𝑈 ) to denote the number of common neigh-
bors of vertices in𝑈 . When𝑈 = {𝑥, 𝑦}, we use 𝑑(𝑥, 𝑦) = 𝑑({𝑥, 𝑦})
for short. The following proposition collects some useful proper-
ties of Γ𝑞,𝑚.

Proposition 1. For every prime power 𝑞 and integer 𝑚 ≥ 2,
Γ𝑞,𝑚 has the following properties:

i. ∀ 𝑥 ∈ 𝑋, 𝑑(𝑥) = 𝑞𝑚−1.

ii. ∀ 𝑦 ∈ 𝑌 , 𝑑(𝑦) = 𝑞.

iii. ∀ 𝑦, 𝑦′ ∈ 𝑌 , if 𝑦 ≠ 𝑦′, then 𝑑(𝑦, 𝑦′) ≤ 𝑚 − 1.

iv. ∀ 𝑥, 𝑥′ ∈ 𝑋, let 𝑥 = (𝑥0, 𝑥1) and 𝑥′ = (𝑥′0, 𝑥
′
1). If 𝑥0 ≠ 𝑥

′
0,

then 𝑑(𝑥, 𝑥′) = 𝑞𝑚−2. If 𝑥0 = 𝑥′0 and 𝑥1 ≠ 𝑥
′
1, then 𝑑(𝑥, 𝑥

′) =
0.

v. Let 𝑈 ⊆ 𝑋 such that 1 ≤ |𝑈 | ≤ 𝑚, then 𝑑(𝑈 ) ≤ 𝑞𝑚−|𝑈 |.
Proof.

i. For every 𝑥 = (𝑥0, 𝑥1) ∈ 𝑋, to find a neighbor 𝑦 =
(𝑦0, . . . , 𝑦𝑚−1) of 𝑥, one can choose 𝑦𝑖 for 1 ≤ 𝑖 ≤ 𝑚 − 1
freely and then let 𝑦0 = 𝑥1 −

∑𝑚−1
𝑖=1 𝑦𝑖𝑥

𝑖. Thus 𝑑(𝑥) = 𝑞𝑚−1.

ii. For every 𝑦 = (𝑦0, . . . , 𝑦𝑚−1), to find a neighbor 𝑥 = (𝑥0, 𝑥1)
of 𝑦, one can choose 𝑥0 freely and then let 𝑥1 =

∑𝑚−1
𝑖=0 𝑦𝑖𝑥

𝑖
0.

Thus 𝑑(𝑦) = 𝑞.

iii. For every 𝑦 = (𝑦0, . . . , 𝑦𝑚−1), 𝑦′ = (𝑦′0, . . . , 𝑦
′
𝑚−1) ∈ 𝑌 , if 𝑥 =

(𝑥0, 𝑥1) is a common neighbor of 𝑦 and 𝑦′, then 𝑥0 is a solu-
tion to the equation

∑𝑚−1
𝑖=0 (𝑦𝑖 − 𝑦

′
𝑖
)𝑥𝑖 = 0where 𝑥 is the only

variable. By the Fundamental TheoremofAlgebra for finite
fields, such an equation has at most 𝑚 − 1 solutions. Since
𝑥1 is determined by 𝑥0, we conclude that 𝑑(𝑦, 𝑦′) ≤ 𝑚 − 1.

iv. For every 𝑥 = (𝑥0, 𝑥1), 𝑥′ = (𝑥′0, 𝑥
′
1) ∈ 𝑋, if 𝑥0 ≠ 𝑥

′
0, then

every common neighbor 𝑦 = (𝑦0, . . . , 𝑦𝑚−1) corresponds to
a solution to a collection of two linear equations that are
linearly independent. The solution space of such a col-
lection of linear equations has rank 𝑚 − 2, which implies
that the number of solutions is 𝑞𝑚−2. Thus in this case
𝑑(𝑥, 𝑥′) = 𝑞𝑚−2. On the other hand, if 𝑥0 = 𝑥′0 and 𝑥1 ≠ 𝑥

′
1,

then for every 𝑦 = (𝑦0, . . . , 𝑦𝑛) ∈ 𝑌 , 𝑥1 −
∑𝑚−1
𝑖=0 𝑦𝑖𝑥

𝑖
0 ≠ 𝑥

′
1 −

3 of 8
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∑𝑚−1
𝑖=0 𝑦𝑖𝑥

′𝑖
0 , which implies that the two equations cannot

equal 0 at the same time. Thus 𝑑(𝑥, 𝑥′) = 0.

v. Let |𝑈 | = 𝑘, and let 𝑥(1) = (𝑥(1)0 , 𝑥
(1)
1 ), . . . , 𝑥(𝑘) = (𝑥(𝑘)0 , 𝑥

(𝑘)
1 )

be the vertices in 𝑈 . Then each common neighbor 𝑦 =
(𝑦0, . . . , 𝑦𝑚−1) corresponds to a solution to the collection
of 𝑘 linear equations

∑𝑚−1
𝑖=0 𝑦𝑖𝑥

(𝑡) 𝑖
0 = 𝑥(𝑡)1 , 1 ≤ 𝑡 ≤ 𝑘. If there

exist 1 ≤ 𝑡1 < 𝑡2 ≤ 𝑘 such that 𝑥(𝑡1)0 = 𝑥(𝑡2)0 , then we must
have 𝑥(𝑡1)1 ≠ 𝑥

(𝑡2)
1 since 𝑥(𝑡1) and 𝑥(𝑡2) are different. Then by

the same argument as in (iv), we know that 𝑑(𝑈 ) = 0. On
the other hand, if all𝑥(𝑡)0 are distinct, then the solution space
of the collection of linear equations has rank 𝑚 − 𝑘, which
implies that the number of solutions is 𝑞𝑚−𝑘. Thus in this
case 𝑑(𝑥, 𝑥′) = 𝑞𝑚−𝑘. ◽

For all 𝑘 ≥ 3, let 𝐻𝑞,𝑘 be a 𝑘-uniform hypergraph on
𝑋 = 𝑋(Γ𝑞,𝑘−1) whose edges are all 𝑘-sets {𝑥1, . . . , 𝑥𝑘} ⊆ 𝑋
such that there exists an element 𝑦 ∈ 𝑌 = 𝑌 (Γ𝑞,𝑘−1) such that
{𝑥1, . . . , 𝑥𝑘} ⊆ 𝑁(𝑦). By Proposition 1, 𝐻𝑞,𝑘 is the union of 𝑞𝑘−1
𝑘-uniform cliques on 𝑞 vertices such that each vertex is contained
in 𝑞𝑘−2 cliques and the vertex sets of every two cliques intersect
in at most 𝑘 − 2 vertices. Let 𝐻∗

𝑞,𝑘
be the 𝑘-uniform hypergraph

obtained by replacing each maximal clique of 𝐻𝑞,𝑘 with a ran-
dom complete 𝑘-partite 𝑘-graph on the same vertex set. More
formally, for each 𝑦 ∈ 𝑌 , we color the vertices in 𝑁(𝑦) with 𝑘
colors {1, . . . , 𝑘} uniformly at random, and for each 1 ≤ 𝑖 ≤ 𝑘,
we let 𝑋𝑦,𝑖 ⊆ 𝑁(𝑦) be the set of vertices with color 𝑖, and then
we replace the clique on𝑁(𝑦) with a complete 𝑘-partite 𝑘-graph
on 𝑁(𝑦) with 𝑘-partition 𝑋𝑦,1 ⊔ · · · ⊔ 𝑋𝑦,𝑘. It is easy to check the
following proposition.

Proposition 2. If 𝐹 is a non-degenerate slowly growing
𝑘-graph, then𝐻∗

𝑞,𝑘
is 𝐹 -free.

Proof. Consider an ordering 𝑒1, . . . , 𝑒𝑡 of the edges of 𝐹
such that

∀ 𝑖 ∈ {2, . . . , 𝑡},
||||||𝑒𝑖⧵

𝑖−1⋃
𝑗=1
𝑒𝑗

|||||| ≤ 1

Equivalently, we have

∀ 𝑖 ∈ {2, . . . , 𝑡},
||||||𝑒𝑖∩

𝑖−1⋃
𝑗=1
𝑒𝑗

|||||| ≥ 𝑘 − 1

We claim that every copy of 𝐹 in𝐻𝑞,𝑘 must be fully contained in
one of the 𝑞𝑘−1 𝑘-uniform cliques of size 𝑞. Indeed, suppose that
we want to build a copy of 𝐹 in 𝐻𝑞,𝑘 by consecutively picking
the edges in the order given above. Then the fact that every two
cliques of 𝐻𝑞,𝑘 intersect in at most 𝑘 − 2 vertices shows that we
must pick every edge in the clique containing the previous edges.
Since 𝐻∗

𝑞,𝑘
is obtained from 𝐻𝑞,𝑘 by replacing every clique by a

complete𝑘-partite𝑘-graph and𝐹 itself is not𝑘-partite, this proves
the statement. ◽

We will fix an instance of 𝐻∗
𝑞,𝑘

with good Balanced Supersatura-
tion, which means that each induced subgraph of𝐻∗

𝑞,𝑘
on 𝑞1+𝑜(1)

vertices contains many edges that are evenly distributed. Using
Balanced Supersaturation together with the Hypergraph Con-
tainer Lemma [18, 19], we can find upper bounds on the number
of independent sets in𝐻∗

𝑞,𝑘
of size 𝑡 = (log 𝑞)2𝑞

1
𝑘−1 .

We then take a random subset 𝑊 of 𝑉 (𝐻∗
𝑞,𝑘
) where each vertex

is sampled independently with probability 𝑝 = Θ( 𝑡
𝑞
) as in [20].

Finally, our construction is obtained by arbitrarily deleting a ver-
tex from each independent set of size 𝑡 in𝐻∗

𝑞,𝑘
[𝑊 ].

We will give the details in the following sections.

3 | Pseudorandomness of 𝚪𝒒,𝒌−1

In this section we show the pseudorandomness of Γ𝑞,𝑘−1, which
will be useful later in showing the balanced supersaturation of
𝐻∗
𝑞,𝑘
.

Given an 𝑛-vertex graph 𝐺, let 𝐴𝐺 be the adjacency matrix of 𝐺,
which is the 𝑛 × 𝑛 symmetric matrix where

𝐴𝐺(𝑖, 𝑗) ∶=

{
1, if {𝑖, 𝑗} ∈ 𝐸(𝐺),
0, otherwise

Let 𝜆1(𝐺) ≥ . . . ≥ 𝜆𝑛(𝐺) denote the eigenvalues of 𝐴𝐺. If 𝐺
is a bipartite graph with bipartition 𝑉1 ⊔ 𝑉2, we say 𝐺 is
(𝑑1, 𝑑2)-regular if 𝑑(𝑣) = 𝑑1 for all 𝑣 ∈ 𝑉1 and 𝑑(𝑣) = 𝑑2 for all
𝑣 ∈ 𝑉2.

The seminal expander mixing lemma is an important tool that
relates edge distribution to the second eigenvalue of a graph.Here
we make use of the bipartite version.

Lemma 1. (Theorem 5.1, [21]) Suppose that 𝐺 is a
(𝑑1, 𝑑2)-regular bipartite graph with bipartition 𝑉1 ⊔ 𝑉2. Then
for every 𝑆 ⊂ 𝑉1 and 𝑇 ⊂ 𝑉2, the number of edges between 𝑆 and
𝑇 , denoted by 𝑒(𝑆, 𝑇 ), satisfies

||||𝑒(𝑆, 𝑇 ) − 𝑑2|𝑉1| |𝑆||𝑇 ||||| ≤ 𝜆2(𝐺)√|𝑆||𝑇 |
By Proposition 1, we know Γ𝑞,𝑘−1 is (𝑞𝑘−2, 𝑞)-regular. For con-
venience, from now on we let 𝑛 = |𝑉 (Γ𝑞,𝑘−1)| = 𝑞2 + 𝑞𝑘−1, 𝐴 =
𝐴Γ𝑞,𝑘−1 , 𝜆𝑖 = 𝜆𝑖(Γ𝑞,𝑘−1) for all 1 ≤ 𝑖 ≤ 𝑛, and let 𝑑1 = 𝑞

𝑘−2, 𝑑2 = 𝑞.

Lemma 2. 𝜆2 = 𝑞
𝑘

2
−1.

Proof. Define the matrix

𝑀 =

[
0 𝐽

𝐽 𝑡 0

]

where 𝐽 is the |𝑋| × |𝑌 | all-one matrix. We will show that

𝐴3 = (𝑞 − 1)𝑞𝑘−3𝑀 + 𝑞𝑘−2𝐴 (1)

By definition, for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , 𝐴3(𝑥, 𝑦) is the number of
walks of length three of the form 𝑥𝑦′𝑥′𝑦 in Γ𝑞,𝑘−1. There are two
cases.

Case 1: 𝑥𝑦 ∈ 𝐸(Γ𝑞,𝑘−1). When 𝑥′ = 𝑥, the number of choices for
𝑦′ is 𝑞𝑘−2. When 𝑥′ ≠ 𝑥, the number of choices for 𝑥′ is 𝑞 − 1, and
for each such 𝑥′, by Proposition 1iv, the number of choices for
𝑦′ is 𝑞𝑘−3. Thus in this case the number of walks 𝑥𝑦′𝑥′𝑦 is 𝑞𝑘−2 +
(𝑞 − 1)𝑞𝑘−3.

4 of 8 Random Structures & Algorithms, 2025
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Case 2: 𝑥𝑦 ∉ 𝐸(Γ𝑞,𝑘−1). Suppose 𝑥 = (𝑥0, 𝑥1) and 𝑥′ = (𝑥′0, 𝑥
′
1). If

𝑥0 = 𝑥′0, then 𝑥1 ≠ 𝑥
′
1, and hence, by Proposition 1iv, 𝑥 and 𝑥′

have no common neighbor. When 𝑥0 ≠ 𝑥′0 the number of choices
for 𝑥′ is 𝑞 − 1 and for each such 𝑥′, the number of choices for 𝑦′
is 𝑞𝑘−3, again by Proposition 1iv. Thus in this case the number of
walks 𝑥𝑦′𝑥′𝑦 is (𝑞 − 1)𝑞𝑘−3.

Combining the two cases above, we obtain Equation (1). Next, let
𝑢𝑋 be the characteristic vector of 𝑋, that is, 𝑢𝑋(𝑣) = 1 for each
𝑣 ∈ 𝑋 and 𝑢𝑋(𝑣) = 0 otherwise. Similarly, let 𝑢𝑌 be the character-
istic vector of 𝑌 . Let 𝑎1 =

√
𝑑1𝑢𝑋 +

√
𝑑2𝑢𝑌 and let 𝑎𝑛 =

√
𝑑1𝑢𝑋 −√

𝑑2𝑢𝑌 . It is easy to check that 𝜆1 = −𝜆𝑛 =
√
𝑑1𝑑2 and that 𝑎1 and

𝑎𝑛 are eigenvectors corresponding to 𝜆1 and 𝜆𝑛. Since 𝐴 is sym-
metric, the spectral theorem implies that 𝐴 has an orthonormal
basis of eigenvectors. Hence, for each 1 < 𝑖 < 𝑛, there exists an
eigenvector 𝑎𝑖 corresponding to 𝜆𝑖 such that 𝑎𝑖 is orthogonal to
both 𝑎1 and 𝑎𝑛. Thus 𝑎𝑖 is orthogonal to 𝑢𝑋 and 𝑢𝑌 , which implies
that𝑀 ⋅ 𝑎𝑖 = 0. Multiplying both sides of Equation (1) by 𝑎𝑖, we
obtain 𝜆3

𝑖
= 𝑞𝑘−2𝜆𝑖. Because the rank of 𝐴 is larger than 2, there

exists at least one 𝜆𝑖 ≠ 0, and hence 𝜆𝑖 = ±𝑞
𝑘

2
−1. Note that since

Γ𝑞,𝑘−1 is bipartite, we have 𝜆𝑖 = 𝜆𝑛−𝑖+1. Therefore, 𝜆2 = 𝑞
𝑘

2
−1. ◽

Let 𝑆 be a subset of 𝑋 with size |𝑆| = 𝑟𝑞. If we pick 𝑦 ∈ 𝑌 uni-
formly at random, then the expectation of |𝑁(𝑦) ∩ 𝑆| is 𝑟. Thus
intuitively, the vertex set of a “typical” clique in 𝐻𝑞,𝑘 intersects
𝑆 in Θ(𝑟) vertices. The following lemma shows that a substantial
portion of all cliques are “typical”.

Lemma 3. Let 𝑆 be a subset of 𝑋 with size |𝑆| = 𝑟𝑞. For 0 <
𝛿 < 1, let

𝑌𝛿 = {𝑦 ∈ 𝑌 | (1 − 𝛿)𝑟 ≤ |𝑁(𝑦) ∩ 𝑆| ≤ (1 + 𝛿)𝑟}

Then |𝑌𝛿| ≥ (
1 − 2

𝛿2𝑟

)
𝑞𝑘−1.

Proof. Let

𝑌+ = {𝑦 ∈ 𝑌 | |𝑁(𝑦) ∩ 𝑆| > (1 + 𝛿)𝑟} and

𝑌− = {𝑦 ∈ 𝑌 | |𝑁(𝑦) ∩ 𝑆| < (1 − 𝛿)𝑟}

Apply Lemma 1 with 𝐺 = Γ𝑞,𝑘−1 and 𝑇 = 𝑌+. Together with
Lemma 2, we have

|𝑒(𝑆, 𝑌+) − 𝑞

𝑞2
𝑟𝑞|𝑌+|| ≤ 𝑞 𝑘2 −1√𝑟𝑞|𝑌+|

By definition, 𝑒(𝑆, 𝑌+) ≥ |𝑌+|(1 + 𝛿)𝑟. Thus 𝛿𝑟|𝑌+| ≤ 𝑞 𝑘−12 √
𝑟|𝑌+|,

which implies |𝑌+| ≤ 𝑞𝑘−1

𝛿2𝑟
. Similarly,we can show that |𝑌−| ≤ 𝑞𝑘−1

𝛿2𝑟
.

Therefore,

|𝑌𝛿| = |𝑌 | − |𝑌+| − |𝑌−| ≥ (
1 − 2

𝛿2𝑟

)
𝑞𝑘−1

◽

4 | Balanced Supersaturation

In this section, we show that 𝐻∗
𝑞,𝑘

has balanced supersaturation
with positive probability. We need to use the following concen-
tration inequality.

Proposition 3. (Corollary 2.27 [22]) Let 𝑍1, . . . , 𝑍𝑡 be inde-
pendent random variables, with 𝑍𝑖 taking values in a set Λ𝑖.

Assume that a function 𝑓 ∶ Λ1 × · · · × Λ𝑡 → ℝ satisfies the follow-
ing Lipschitz condition for some numbers 𝑐𝑖:

(L) If two vectors 𝑧, 𝑧′ ∈ Λ × · · · × Λ𝑡 differ only in the 𝑖𝑡ℎ coor-
dinate, then |𝑓 (𝑧) − 𝑓 (𝑧′)| ≤ 𝑐𝑖.

Then, the random variable 𝑋 = 𝑓 (𝑍1, . . . , 𝑍𝑡) satisfies, for any
𝜆 ≥ 0,

Pr(𝑋 ≤ 𝔼(𝑋) − 𝜆) ≤ exp

(
− 𝜆2

2
∑𝑡

𝑖=1𝑐
2
𝑖

)

Recall that𝐻∗
𝑞,𝑘
is the 𝑘-uniform hypergraph obtained by replac-

ing eachmaximal clique of𝐻𝑞,𝑘with a randomcomplete𝑘-partite
𝑘-graph on the same vertex set. Concretely, for each 𝑦 ∈ 𝑌 , we
color the vertices in 𝑁(𝑦) with 𝑘 colors {1, . . . , 𝑘} uniformly at
random, and for each 1 ≤ 𝑖 ≤ 𝑘 we let 𝑋𝑦,𝑖 ⊆ 𝑁(𝑦) be the set of
vertices with color 𝑖, and then we replace the clique on𝑁(𝑦)with
a complete 𝑘-partite 𝑘-graph on𝑁(𝑦)with 𝑘-partition𝑋𝑦,1 ⊔ · · · ⊔
𝑋𝑦,𝑘. Note that the colorings for different cliques are independent.

Given a 𝑘-graph𝐻 , let Δ𝑖(𝐻) denote the maximum integer such
that there exists 𝑆 ⊆ 𝑉 (𝐻) such that |𝑆| = 𝑖 and the number of
edges containing 𝑆 is Δ𝑖(𝐻).

Lemma 4. For 𝑞 sufficiently large in terms of 𝑘, with posi-
tive probability, every 𝑆 ⊆ 𝑋 with |𝑆| ≥ 4𝑘𝑞 satisfies the following.
There exists a subgraph𝐻 ⊂ 𝐻∗

𝑞,𝑘
[𝑆] such that, for all 1 ≤ 𝑖 ≤ 𝑘,

Δ𝑖(𝐻) ≤ 6(16𝑘)2𝑘|𝐸(𝐻)||𝑆|
(
𝑞

1
𝑘−1|𝑆|

)𝑖−1

Proof. For a fixed 𝑆 ⊆ 𝑋 with |𝑆| ≥ 4𝑘𝑞, let 𝑟 = |𝑆|∕𝑞 ≥ 4𝑘 ≥
12 and let

𝑌1∕2 =
{
𝑦 ∈ 𝑌 | 𝑟∕2 ≤ |𝑁Γ𝑞,𝑘−1 (𝑦) ∩ 𝑆| ≤ 3𝑟∕2

}
By Lemma 3 we have |𝑌1∕2| ≥ 𝑞𝑘−1∕3.
Let𝐻 be a subgraph of𝐻∗

𝑞,𝑘
[𝑆] with edge set

𝐸(𝐻) =
{
𝑒 ∈ 𝐸(𝐻∗

𝑞,𝑘
[𝑆]) | ∃𝑦 ∈ 𝑌1∕2 such that 𝑒 ∈ 𝑁(𝑦)

}
In other words, 𝐻 contains only edges that are in the “typical”
cliques. Define the random variable𝑍 = |𝐸(𝐻)|. For all 𝑦 ∈ 𝑌1∕2
and 𝑣 ∈ 𝑁Γ𝑞,𝑘−1 (𝑦), let 𝐴𝑦,𝑣 be the random variable with values
in {1, . . . , 𝑘} such that 𝐴𝑦,𝑣 = 𝑖 if vertex 𝑣 receives color 𝑖 in
the clique on 𝑁Γ𝑞,𝑘−1 (𝑦). Let 𝐵1, . . . , 𝐵𝑡 be an arbitrary order of
𝐴𝑦,𝑣 for 𝑦 ∈ 𝑌1∕2 and 𝑣 ∈ 𝑁Γ𝑞,𝑘−1 (𝑣). Clearly, 𝑍 is determined by
𝐵1, . . . , 𝐵𝑡, i.e., there exists a function 𝑓 ∶ [𝑘]𝑡 → ℕ such that
𝑍 = 𝑓 (𝐵1, . . . , 𝐵𝑡). Observe that changing the color of a vertex
𝑣 in a typical clique will only affect the number of edges contain-
ing 𝑣 in that clique, which is at most

(
3𝑟∕2−1
𝑘−1

)
≤ (2𝑟)𝑘−1, since a

typical clique has size at most 3𝑟∕2. In other words, if two vectors
𝑏, 𝑏′ ∈ [𝑘]𝑡 differ in only one coordinate, then

|𝑓 (𝑏) − 𝑓 (𝑏′)| ≤ (2𝑟)𝑘−1

Note that for any 𝑘 vertices in a typical clique, the probability that
they form an edge in𝐻 is 𝑘 !

𝑘𝑘
. Hence, by linearity of expectation

5 of 8

 10982418, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21284 by U

niversity O
f C

alifornia, W
iley O

nline Library on [04/06/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



and the fact that a typical clique has size at least 𝑟∕2 and that
𝑟∕2 − 𝑘 ≥ 𝑟∕4, we have

𝔼(𝑍) ≥ |𝑌1∕2|( 𝑟∕2
𝑘

)
𝑘 !
𝑘𝑘

≥
𝑞𝑘−1

3
(𝑟∕2 − 𝑘)𝑘

𝑘𝑘
≥
𝑟𝑘𝑞𝑘−1

3(4𝑘)𝑘

Thus by Proposition 3 with 𝜆 = 𝑟𝑘𝑞𝑘−1

6(4𝑘)𝑘
, 𝑐𝑖 = (2𝑟)𝑘−1, and the fact

that 𝑡 ≤ |𝑌1∕2|(3𝑟∕2) ≤ |𝑌 |(3𝑟∕2) ≤ 3𝑟𝑞𝑘−1∕2, we have

Pr
(
𝑍 ≤

𝑟𝑘𝑞𝑘−1

6(4𝑘)𝑘

)
≤ exp

⎛⎜⎜⎜⎝−
(
𝑟𝑘𝑞𝑘−1

6(4𝑘)𝑘

)2
2(3𝑟𝑞𝑘−1∕2)((2𝑟)𝑘−1)2

⎞⎟⎟⎟⎠
≤ exp

(
− 𝑟𝑞𝑘−1

500(8𝑘)2𝑘

)
Using the union bound, the probability that there exists an𝑆 ⊆ 𝑋
with |𝑆| = 𝑠 = 𝑟𝑞 ≥ 4𝑘𝑞 such that 𝑍 ≤

𝑟𝑘𝑞𝑘−1

6(4𝑘)𝑘
is at most

𝑞2∑
𝑠=4𝑘𝑞

(
𝑞2

𝑠

)
exp

(
− 𝑠𝑞𝑘−2

500(8𝑘)2𝑘

)
≤

𝑞2∑
𝑠=1

exp
(
− 𝑠𝑞𝑘−2

1000(8𝑘)2𝑘

)
< 1

given that 𝑞 is sufficiently large in terms of 𝑘.

Hence, with positive probability, for every 𝑆 ⊆ 𝑋 with |𝑆| =
𝑟𝑞 ≥ 4𝑘𝑞, the corresponding 𝐻 satisfies |𝐸(𝐻)| ≥ 𝑟𝑘𝑞𝑘−1

6(8𝑘)2𝑘
. Let

𝐽 ⊆ 𝑆 be such that |𝐽 | = 𝑖 and 1 ≤ 𝑖 ≤ 𝑘 − 1. Note that, by
Proposition 1 (v), the number of 𝑦 such that 𝐽 ⊆ 𝑁Γ𝑞,𝑘−1 (𝑦) is at
most 𝑞𝑘−1−𝑖, and for each such 𝑦 ∈ 𝑌1∕2, the number of edges in
𝑁Γ𝑞,𝑘−1 (𝑦) ∩ 𝑆 containing 𝐽 is at most

(
3𝑟∕2−𝑖
𝑘−𝑖

)
≤ (2𝑟)𝑘−𝑖. Hence

we have

Δ𝑖(𝐻) ≤ (2𝑟)𝑘−𝑖𝑞𝑘−1−𝑖

In addition, we know that Δ𝑘(𝐻) ≤ 1. By |𝐸(𝐻)| ≥ 𝑟𝑘𝑞𝑘−1

6(8𝑘)2𝑘
and|𝑆| = 𝑟𝑞, we have

6(16𝑘)2𝑘|𝐸(𝐻)||𝑆|
(
𝑞

1
𝑘−1|𝑆|

)𝑖−1
≥ 22𝑘𝑟𝑘−𝑖𝑞𝑘−1+

𝑖−1
𝑘−1−𝑖

Note that when 1 ≤ 𝑖 ≤ 𝑘 − 1, given that 𝑞 is sufficiently large,
we have

22𝑘𝑟𝑘−𝑖𝑞𝑘−1+
𝑖−1
𝑘−1−𝑖 ≥ (2𝑟)𝑘−𝑖𝑞𝑘−1−𝑖 ≥ Δ𝑖(𝐻)

and when 𝑖 = 𝑘,

22𝑘𝑟𝑘−𝑖𝑞𝑘−1+
𝑖−1
𝑘−1−𝑖 = 22𝑘 ≥ Δ𝑘(𝐻)

Combining the inequalities above, we have for all 1 ≤ 𝑖 ≤ 𝑘,

Δ𝑖(𝐻) ≤ 6(16𝑘)2𝑘|𝐸(𝐻)||𝑆|
(
𝑞

1
𝑘−1|𝑆|

)𝑖−1

concluding the proof. Note that a stronger bound actually holds
for all 𝑖 ≤ 𝑘 − 1, and the claimed bound only arises from the case
𝑖 = 𝑘. ◽

5 | Counting Independent Sets

We make use of the hypergraph container method developed
independently by Balogh, Morris, and Samotij [18] and Saxton
and Thomason [19]. Here we make use of the following simpli-
fied version of Theorem 1.5 in [23]:

Theorem 5. (Theorem 1.5 [23]) For every integer 𝑘 ≥ 2, there
exists a constant 𝜖 > 0 such that the following holds. Let 𝐵,𝐿 ≥ 1
be positive integers and let𝐻 be a 𝑘-graph satisfying

Δ𝑖(𝐻) ≤ |𝐸(𝐻)|
𝐿

(
𝐵|𝑉 (𝐻)|

)𝑖−1
, ∀1 ≤ 𝑖 ≤ 𝑘 (2)

Then there exists a collection  of subsets of 𝑉 (𝐻) such that:

i. For every independent set 𝐼 of 𝐻 , there exists 𝐶 ∈  such
that 𝐼 ⊂ 𝐶 ;

ii. For every 𝐶 ∈ , |𝐶| ≤ |𝑉 (𝐻)| − 𝜖𝐿;
iii. We have

|| ≤ exp
⎛⎜⎜⎜⎝
log

( |𝑉 (𝐻)|
𝐵

)
𝐵

𝜖

⎞⎟⎟⎟⎠
Next, we use Theorem 5 together with Lemma 4 to count the
number of independent sets of size 𝑞

1
𝑘−1 (log 𝑞)2 in𝐻∗

𝑞,𝑘
.

Theorem 6. For every 𝑘 ≥ 3, there exists a constant 𝑐′ > 0 such
that, when 𝑞 is sufficiently large, we can fix an instance of 𝐻∗

𝑞,𝑘
such

that the number of independent sets of size 𝑡 = 𝑞
1
𝑘−1 (log 𝑞)2 of 𝐻∗

𝑞,𝑘

is at most (
𝑐′𝑞

𝑡

)𝑡
Proof. By Lemma 4, we can fix an instance of 𝐻∗

𝑞,𝑘
such that

for every 𝑆 ⊂ 𝑉 (𝐻∗
𝑞,𝑘
) with |𝑆| ≥ 4𝑘𝑞 there exists a subgraph 𝐻

of𝐻∗
𝑞,𝑘
[𝑆] such that for all 1 ≤ 𝑖 ≤ 𝑘,

Δ𝑖(𝐻) ≤ 6(16𝑘)2𝑘|𝐸(𝐻)||𝑆|
(
𝑞

1
𝑘−1|𝑆|

)𝑖−1
(3)

We will first prove the following claim.

Claim 1. There exists a constant 𝜖 > 0 such that for every
𝑆 ⊂ 𝑉 (𝐻∗

𝑞,𝑘
) with |𝑆| > 4𝑘𝑞, there exists a collection 𝑆 of at

most

exp

(
log 𝑞 ⋅ 𝑞

1
𝑘−1

𝜖

)

subsets of 𝑆 such that:

i. For every independent set 𝐼 of𝐻∗
𝑞,𝑘
[𝑆], there exists 𝐶 ∈ 𝑆

such that 𝐼 ⊂ 𝐶 ;

ii. For every 𝐶 ∈ 𝑆 , |𝐶| ≤ (1 − 𝜖)|𝑆|. ◽
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Proof. Fix an arbitrary 𝑆 ⊂ 𝑉 (𝐻∗
𝑞,𝑘
) with |𝑆| ≥ 4𝑘𝑞. By

Lemma 4 there exists a subgraph 𝐻 of 𝐻∗
𝑞,𝑘
[𝑆] satisfying

Equation (3). By Equation (3), it is easy to check that Equation (2)
holds for𝐻 , with𝐿 = |𝑆|

6(16𝑘)2𝑘
and𝐵 = 𝑞

1
𝑘−1 . Hence by Theorem 5,

there exist a constant 𝜖′ (not depending on 𝑆) and a collection
𝑆 of subsets of 𝑆 such that

i. For every independent set 𝐼 of𝐻 , there exists 𝐶 ∈ 𝑆 such
that 𝐼 ⊂ 𝐶 ;

ii. For every 𝐶 ∈ 𝑆 , |𝐶| ≤ |𝑉 (𝐻)| − 𝜖′𝐿 ≤

(
1 − 𝜖′

6(16𝑘)2𝑘

)|𝑆|;
iii. We have

|𝑆 | ≤ exp
⎛⎜⎜⎜⎝
log

( |𝑉 (𝐻)|
𝐵

)
𝐵

𝜖′

⎞⎟⎟⎟⎠ ≤ exp

(
log(𝑞2)𝑞

1
𝑘−1

𝜖′

)

Since 𝐻 is a subgraph of 𝐻∗
𝑞,𝑘
[𝑆], every independent set of

𝐻∗
𝑞,𝑘
[𝑆] is also an independent set of 𝐻 . Therefore, by taking 𝜖

sufficiently small with respect to 𝜖′ and 𝑘, we conclude that 𝑆
has the desired properties. ◽

Now we apply Claim 1 iteratively as follows. Fix the constant 𝜖
guaranteed by Claim 1. Let 0 = {𝑉 (𝐻∗

𝑞,𝑘
)}. Let 𝑡0 = |𝑉 (𝐻∗

𝑞,𝑘
)| =

𝑞2 and let 𝑡𝑖 = (1 − 𝜖)𝑡𝑖−1 for all 𝑖 ≥ 1. Let𝑚 be the smallest integer
such that 𝑡𝑚 ≤ 4𝑘𝑞. Clearly𝑚 = 𝑂(log 𝑞). Given a set of containers
𝑖 such that every 𝐶 ∈ 𝑖 satisfies |𝐶| ≤ 𝑡𝑖, we construct 𝑖+1 as
follows: for every 𝐶 ∈ 𝑖, if |𝐶| ≤ 𝑡𝑖+1, then we put it into 𝑖+1;
otherwise, if |𝐶| > 𝑡𝑖+1, by Claim 1, there exists a collection ′

of containers for𝐻∗
𝑞,𝑘
[𝐶] such that every 𝐶 ′ ∈ ′ satisfies |𝐶 ′| <

(1 − 𝜖)|𝐶| ≤ 𝑡𝑖+1—now we put every element of ′ into 𝑖+1. Let
 = 𝑚. Note that

|𝑖||𝑖−1| ≤ exp

(
log 𝑞 ⋅ 𝑞

1
𝑘−1

𝜖

)

Thus

|𝑚| = 𝑚∏
𝑖=1

|𝑖||𝑖−1| ≤ exp

(
𝑚
log 𝑞 ⋅ 𝑞

1
𝑘−1

𝜖

)

As 𝑚 = 𝑂(log 𝑞), we conclude that there exists a constant 𝑐′′ > 0
such that

|| = |𝑚| ≤ exp
(
𝑐′′(log 𝑞)2𝑞

1
𝑘−1

)
Also, by definition, we have |𝐶| ≤ 4𝑘𝑞 for every 𝐶 ∈ .

Recall that 𝑡 = (log 𝑞)2𝑞
1
𝑘−1 and let𝑁𝑡 be the number of indepen-

dent sets of𝐻 of size 𝑡. Since every independent set of𝐻 of size 𝑡
is contained in some 𝐶 ∈ , we have, for some constant 𝑐′ > 0,

𝑁𝑡 ≤ ||(4𝑘𝑞
𝑡

)
≤

(
𝑐′𝑞

𝑡

)𝑡
◽

6 | Proof of Theorem 2

Proof. Proof of Theorem 2 For every sufficiently large prime
power 𝑞, we let 𝑡 = (log 𝑞)2𝑞

1
𝑘−1 . By Theorem 6 we can fix an

instance of𝐻∗
𝑞,𝑘
such that the number of independent sets of𝐻∗

𝑞,𝑘

of size 𝑡 is at most (
𝑐′𝑞

𝑡

)𝑡
for some constant 𝑐′ > 0. Let 𝑊 be a random subset of 𝑉 (𝐻∗

𝑞,𝑘
)

where each vertex is sampled independently with probability 𝑝 =
𝑡

𝑐′𝑞
. Note that 𝑝 < 1 as 𝑞 is sufficiently large. Then the expected

number of independent sets of size 𝑡 in𝐻∗
𝑞,𝑘
[𝑊 ] is at most(

𝑐′𝑞

𝑡

)𝑡
𝑝𝑡 ≤ 1

Let𝑊 ′ ⊆ 𝑊 be obtained by arbitrarily deleting one vertex in each
independent set of size 𝑡. Thus the expectation of |𝑊 ′| is at least

𝑝𝑞2 − 1 =
(log 𝑞)2

𝑐′
𝑞

𝑘

𝑘−1 − 1

Hence there exists a choice 𝑊 ′ with at least this many ver-
tices. Let𝐻 ′ = 𝐻∗

𝑞,𝑘
[𝑊 ′]. By definition of𝑊 ′, we have 𝛼(𝐻 ′) < 𝑡.

Moreover, by Proposition 2 we know that 𝐻 ′ is 𝐹 -free. Thus,
we have

𝑟(𝐹 , 𝑡) ≥
(log 𝑞)2

𝑐′
𝑞

𝑘

𝑘−1

Recall that 𝑡 = (log 𝑞)2𝑞
1
𝑘−1 . It is well-known that for every integer

𝑛 there exists a prime 𝑞 such that 𝑛∕2 ≤ 𝑞 ≤ 𝑛. Thus for every 𝑛
sufficiently large, it is easy to find a prime 𝑞 such that

(log 𝑞)2𝑞
1
𝑘−1 ≤ 𝑛 ≤ 2(log 𝑞)2𝑞

1
𝑘−1

Thereforewe conclude that there exists a constant 𝑐 > 0 such that
for all 𝑛 sufficiently large,

𝑟(𝐹 , 𝑛) ≥ 𝑐𝑛𝑘

(log 𝑛)2𝑘−2
◽

References

1. M. Ajtai, J. Komlós, and E. Szemerédi, “A Note on Ramsey Numbers,”
Journal of Combinatorial Theory Series A 29, no. 3 (1980): 354–360.

2. J. H. Kim, “The Ramsey Number r(3, t) Has Order of Magnitude t2/log
t,” Random Structures & Algorithms 7, no. 3 (1995): 173–207.

3. G. Fiz Pontiveros, S. Griffiths, and R. Morris, “The Triangle-Free Pro-
cess and the Ramsey Number R(3, k),” Memoirs of the American Mathe-
matical Society 263, no. 1274 (2020): v+125.

4. T. Bohman and P. Keevash, “Dynamic Concentration of the
Triangle-Free Process,” Random Structures & Algorithms 58, no. 2
(2021): 221–293.

5. T. Bohman and P. Keevash, “The Early Evolution of the H-Free Pro-
cess,” Inventiones Mathematicae 181, no. 2 (2010): 291–336.

6. J. Spencer, “Ramsey’s Theorem–aNewLower Bound,” Journal of Com-
binatorial Theory Series A 18, no. 1 (1975): 108–115.

7. J. Spencer, “Asymptotic Lower Bounds for Ramsey Functions,”Discrete
Mathematics 20 (1977): 69–76.

7 of 8

 10982418, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21284 by U

niversity O
f C

alifornia, W
iley O

nline Library on [04/06/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



8. Y. Li, C. C. Rousseau, and W. Zang, “Asymptotic Upper Bounds for
Ramsey Functions,” Graphs and Combinatorics 17 (2001): 123–128.

9. J. B. Shearer, “A Note on the Independence Number of Triangle-Free
Graphs,” Discrete Mathematics 46, no. 1 (1983): 83–87.

10. S. Mattheus and J. Verstraëte, “The Asymptotics of r(4, t),” Annals of
Mathematics 199, no. 2 (2024): 919–941.

11. K. T. Phelps and V. Rödl, “Steiner Triple Systems With Minimum
Independence Number,” Ars Combinatoria 21 (1986): 167–172.

12. A. Kostochka, D. Mubayi, and J. Verstraëte, “Hypergraph Ramsey
Numbers: Triangles Versus Cliques,” Journal of Combinatorial Theory
Series A 120, no. 7 (2013): 1491–1507.

13. J. Cooper and D. Mubayi, “Sparse Hypergraphs With Low Indepen-
dence Number,” Combinatorica 37, no. 1 (2017): 31–40.
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