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ABSTRACT

For a k-uniform hypergraph F and a positive integer n, the Ramsey number r(F, n) denotes the minimum N such that every
N-vertex F-free k-uniform hypergraph contains an independent set of n vertices. A hypergraph is slowly growing if there is an
ordering e;, e,, ..., e, of its edges such that |e;\ Uj._:llejl <1 foreachie€ {2, ...,1}. We prove that if k > 3 is fixed and F is any
non-k-partite slowly growing k-uniform hypergraph, then for n > 2,

Fy=of —" _

r( ’ n) - <(10g n)Zk—Z >

In particular, we deduce that the off-diagonal Ramsey number r(Fs, n) is of order n*/polylog(n), where F; is the triple system
{123,124, 345}. This is the only 3-uniform Berge triangle for which the polynomial power of its off-diagonal Ramsey number was
not previously known. Our constructions use pseudorandom graphs and hypergraph containers.

1 | Introduction Szemerédi [1] proved the upper bound r(K;,n) = O(n?/logn),

and Kim [2] proved the corresponding lower bound r(Kj;,n) =

A hypergraph isapair (V, E) where V' is a set, whose elements are
called vertices, and E is a family of nonempty subsets of V', whose
elements are called edges. A k-uniform hypergraph (k-graph for
short) is a hypergraph whose edges are all of size k. An inde-
pendent set of a hypergraph F is a subset of V' (F) that does not
contain any edge of F.

Given a k-graph F, the off-diagonal Ramsey number r(F,n) is
the minimum integer such that every F-free k-graph on r(F,n)
vertices has an independent set of size n. Ajtai, Komlés, and

Q(n?/logn). The current state-of-the-art results are due to
Fiz Pontiveros, Griffiths, and Morris [3] and Bohman and
Keevash [4], who determine r(Kj, n) up to a small constant factor:

1 n? n?
<Z - 0(1))@ < r(Ksum) < A+ oo

For larger cliques, the current best general lower bounds are
obtained by Bohman and Keevash [5] strengthening earlier
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bounds of Spencer [6, 7]. On the other hand, the current best
upper bounds are proved by Li, Rousseau, and Zang [8] by extend-
ing ideas of Shearer [9], which improve earlier bounds of Ajtai,
Komlés and Szemerédi [1]. These bounds are as follows: for s > 3,
there exists a constant ¢, (s) > 0 such that

e1(5)—L— < KKy < (1 + 0(1) ———
(logn)> ~+= (logn)s=

s—1

Recently, the first and fourth authors [10] determined the asymp-
totics of r(K,, n) up to a logarithmic factor by proving the follow-
ing lower bounds.

Theorem 1. (Theorem 1[10]) Asn — oo,

Kom=af -
r( 4,}1)— <(10gn)4>

In this paper, we prove some hypergraph versions of these results.
A Berge triangle is a hypergraph consisting of three distinct edges
e, e,,and e, such that there exist three distinct vertices x, y, and
zwith the property that {x, y} C ey, {y,z} Ce,,and {x,z} Ce;. It
is easy to check that there are only four different 3-uniform Berge
triangles: LC; (loose cycle of length 3), TP, (tight path on three
edges and five vertices), Fy, and K~ (3-uniform clique on four
vertices minus an edge), as shown from left to right in Figure 1. It
is natural to consider the problem of determining the off-diagonal
Ramsey numbers for 3-uniform Berge triangles since they are in
some sense the smallest non-trivial hypergraphs that provide a
natural extension of r(Kj, n).

The off-diagonal Ramsey numbers for 7P, and LC; have been
determined up to a logarithmic factor: for T P, a result of Phelps
and Ro6dl [11] shows that ¢;n?/logn < (T Py, n) < ¢,n?; for LC,,
Kostochka, the second author, and the fourth author [12] showed
that ¢,n*?/(logn)** < r(LC;,n) < c,n*/?. It seems plausible to
conjecture that for some constant c,

3
cnz

2
HT Py, n) < ICL and r(LCy.n) < .
ogn (logn)?

It is conjectured explicitly in [12] that r(LC,, n) = o(n*/?) and
the question of determining the order of magnitude of r(T" Py, n)
was posed in [13]. It was also shown in [13] that +(T P,, n) has
an order of magnitude »n?, leaving T P, as the only tight path
for which the order of magnitude of (T P,, n) remains open. We
remark that if one can prove that every n-vertex T P;-free 3-graph
with average degree d > 1 has an independent set of size at least
Q(n+/logd/d), then this implies that r(T Py, n) = ©(n?/ log n).

QWD
. .

FIGURE1 | From left toright: LC;, TPy, Fs and K.

The problem for K~ is interesting in the sense that it is the small-
est hypergraph whose off-diagonal Ramsey number is at least
exponential: Erdés and Hajnal [14] proved r(K;~, n) = n®" and
R&dl (unpublished) proved r(K3~, n) > 2. More recently, Fox
and He [15] showed that #(K3~, n) = n®™.

The problem for Fs, however, is not very well studied: a result
of Kostochka, the second author, and the fourth author [16]
implies that r(Fs,n) < ¢;n*/logn, and the standard probabilis-
tic deletion method shows that r(Fs,n) > c,n?/logn. In this
paper, we fill this gap by showing that r(Fs, n) = n®/polylog(n).
This is a consequence of a more general theorem that we will
prove.

Building upon techniques in [10], we prove lower bounds for the
off-diagonal Ramsey numbers of a large family of hypergraphs. A
k-graph F is slowly growing if its edges can be ordered as ey, ..., ¢,
such that

Vie(2,...,1}, <1

i-1
e;\ U e;
=1

We use this terminology to describe the fact that at most one
new vertex is added when we add a new edge in the order-
ing. Further, F is k-partite, or degenerate, if its vertices can
be partitioned into k sets V;, ...,V such that each edge inter-
sects each V;, 1 <i <k, in exactly one vertex. Otherwise, H
is non-degenerate. The three hypergraphs T P;, Fs, and Kj‘ in
Figure 1 are slowly growing, whereas the first is not. The last two
are non-degenerate.

In this paper, we obtain the following result for non-degenerate,
slowly growing hypergraphs.

Theorem 2. Forevery k > 3, there exists a constant ¢ > 0 such
that for every slowly growing non-degenerate k-graph F and all
integersn > 2

Cl’lk

F,n)> ——
r(F,n) 2 (log n)*-2

The constant ¢ here is independent of F because our construction
simultaneously avoids all non-degenerate slowly growing F.

Theorem 2 is tight up to a logarithmic factor for the following
family of hypergraphs, which includes F;. For k > 3, let F,;_,
be the k-graph on 2k — 1 vertices vy, ..., Uy_y, Wy, ..., W, With
k edges {v,, ..., v_, w;}, 1<i<k-1,and {wy, ..., w,}.
Further, let T}, be the k-graph obtained from F,,_, by adding the
edge {v;, ..., v,_;, wy }. See Figure 2 for an illustration of F, and

T,. Note that 7, is a (graph) triangle.
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FIGURE2 | F,andT,.

The order of magnitude of r(T,,n) for k > 3 is determined by
the upper bound result of Kostochka, the second author, and
the fourth author [16] together with the lower bound result of
Bohman, the second author, and Picollelli [17]. For k = 2, this
theorem restates the known result [1-4] that r(K;, n) has an order
of magnitude of n?/log n.

Theorem 3. (Theorem 2[16]; Theorem 1[17]) Let k > 2. Then
there exist constants c¢;, ¢, > 0 such that for all integers n > 2,

k k

cyn
<r(T,,n <
logn

N
logn

Thus we have r(Fy,_;,n) < r(T},n) < O(n*/logn). On the other
hand, it is easy to check that F,,_;, is a slowly grow-
ing non-degenerate k-graph. Hence Theorem 2 together with
Theorem 3 implies the following theorem.

Theorem 4. Let k > 3. There exist constants c¢;,c, > 0 such
that for all integers n > 2,

k k

cqn
W <r(Fy_,n) <

)

logn
Theorem 4 determines r(F,,_,,n) up to a logarithmic factor. In
particular, this determines r(Fs,n) up to a polylogarithmic fac-
tor, and F; is the only 3-uniform Berge triangle for which the

polynomial power of the off-diagonal Ramsey number was not
previously known.

It would be interesting to determine its order of magnitude. We
believe the current upper bounds are closer to the truth:

Conjecture 1.
n>2,

There exists a constant ¢ > 0 such that for

Cl’l3

F. >
r(Fs,m) 2 log n

2 | The Construction

The proof of Theorem 2 uses the so-called random block con-
struction, which first requires a pseudorandom bipartite graph.
We build our construction using the following bipartite graph.

Definition 1. For every prime power g and integer m > 2, let

R . o em
', . be the bipartite graph with two parts X = F, and Y = F
where two vertices x = (xy,x;) € X and y = (g, ..., V1) €Y
form an edge if and only if

One can view X as points on [F(f and Y as one-variable polynomi-
als defined on F, of degree at most m — 1. Now I, , is simply the
incidence bipartite graph of the points and the polynomials where
apoint P € X and a polynomial F € Y form an edge if and only
if P = (w, F(w)) for some w € F,.

For any vertex x of a graph G, we use d(x) to denote the degree of
x, that is, the number of neighbors of x in G. Further, for any set U
of vertices, we use d(U) to denote the number of common neigh-
bors of vertices in U. When U = {x, y},weuse d(x,y) = d({x, y})
for short. The following proposition collects some useful proper-
tiesof [ .

Proposition 1.  For every prime power q and integer m > 2,
[, has the following properties:

i VxeX,dx) =q"'.
ii. VyeY,dy =gq.
iii. Vy,y) €Y,if y# Y, thend(y,y) <m-—1.

iv. Vx,x' € X, let x = (x¢,x;) and x' = (x, x}). If xy # x,
thend(x,x'") = ¢" 2. If x, = x, and x, # x|, thend(x,x") =
0.

v. Let U C X such that1 < |U| < m, then d(U) < ¢"V1
Proof.

i. For every x =(xy,x;)€ X, to find a neighbor y=
(¥gs +--»Ym_y) Of x, one can choose y; for 1 <i<m-1
freely and then let y, = x; — Z:":_lly,xf. Thus d(x) = ¢ L.

ii. Foreveryy = (¥, ..., ¥,_1), to find a neighbor x = (x,, x;)
of y, one can choose x, freely and then let x; = Z:":_Ol YiXg-
Thus d(y) = q.

ili. Foreveryy= (o, ..., V1Y =W ---» ¥, 1) €Y, ifx =
(x¢, x;) is a common neighbor of y and )/, then x, is a solu-
tion to the equation Z:":_Ol (y; — ¥))x' = O where x is the only
variable. By the Fundamental Theorem of Algebra for finite
fields, such an equation has at most m — 1 solutions. Since
x, is determined by x,,, we conclude that d(y, y’) < m — 1.

iv. For every x = (xo,X;),x" = (x{, x]) € X, if xj # x[, then
every common neighbor y = (y,, ..., y,,_;) corresponds to
a solution to a collection of two linear equations that are
linearly independent. The solution space of such a col-
lection of linear equations has rank m — 2, which implies
that the number of solutions is ¢”~2. Thus in this case
d(x,x") = ¢"2. On the other hand, if x, = x{, and x; # x/,
then for every y = (¥, ..., ¥,) €Y, x; — X yixd # x| —
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> 01 y,xo, which implies that the two equations cannot
equal 0 at the same time. Thus d(x, x") = 0.

v. Let |[U| =k, and let xV = (xgl),x(ll)), v x® = (x(k) (k))
be the vertices in U. Then each common neighbor y =
Vs v s V1) corresponds to a solution to the collection
of k linear equations )" 'yx g) = x(l'), 1 <t < k. If there
exist 1 <1, <1, < k such that x"
have x(ltl) # x(l'z) since x and x(2) are different. Then by
the same argument as in (iv), we know that d(U) = 0. On
the other hand, ifall x(()’) are distinct, then the solution space
of the collection of linear equations has rank m — k, which
implies that the number of solutions is ¢"*. Thus in this
case d(x,x") = g" k. o

= xgz), then we must

For all k>3, let H,; be a k-uniform hypergraph on
X = X[, ,-1) whose edges are all k-sets {x;,....x;} CX
such that there exists an element y € Y =Y (I',,_;) such that
{x, ..., x,} € N(y). By Proposition 1, H, is the union of ¢*~!
k-uniform cliques on g vertices such that each vertex is contained
in ¢*=2 cliques and the vertex sets of every two cliques intersect
in at most k — 2 vertices. Let H_, be the k-uniform hypergraph
obtained by replacing each max1rnal clique of H,, with a ran-
dom complete k-partite k-graph on the same vertex set. More
formally, for each y € Y, we color the vertices in N(y) with k
colors {1, ..., k} uniformly at random, and for each 1 <i <k,
we let X ; € N(y) be the set of vertices with color i, and then
we replace the clique on N (y) with a complete k-partite k-graph
on N(y) with k-partition X, U---U X . Itis easy to check the
following proposition.

Proposition 2. If F is a non-degenerate slowly growing
k-graph, then H; . Is Ffree.

Proof. Consider an ordering e, ...
such that

,e, of the edges of F

Vvie(2, ...,

i-1
t}, |e;\ U e < 1
j=1

Equivalently, we have

Vie(2, ...t e)| > k-1

i-1
1, le;n U

Jj=1
We claim that every copy of F in H,, must be fully contained in
one of the g*~! k-uniform cliques of size q. Indeed, suppose that
we want to build a copy of F in H,, by consecutively picking
the edges in the order given above. Then the fact that every two
cliques of H,, intersect in at most k — 2 vertices shows that we
must pick every edge in the clique containing the previous edges.
Since H *. 1s obtained from H , by replacing every clique by a
complete k -partite k-graph and F itselfis not k-partite, this proves
the statement. m]

We will fix an instance of H;, with good Balanced Supersatura-
tion, which means that each 1nduced subgraph of H on g
vertices contains many edges that are evenly dlstrlbuted Using
Balanced Supersaturation together with the Hypergraph Con-
tainer Lemma [18, 19], we can find upper bounds on the number
of independent sets in H;‘, . Of size t = (log q)zqkl?.

We then take a random subset W of V(H; ) Where each vertex
is sampled independently with probability p = @(é) as in [20].
Finally, our construction is obtained by arbitrarily deleting a ver-
tex from each independent set of size 7 in H; AW

‘We will give the details in the following sections.

3 | PseudorandomnessofI',, ;

In this section we show the pseudorandomness of [, k-1, Which
will be useful later in showing the balanced supersaturation of
H;,k'

Given an n-vertex graph G, let A be the adjacency matrix of G,
which is the n X n symmetric matrix where

A ) 1,
i,j):=
G 0.

Let 4,(G) > ... > 1,(G) denote the eigenvalues of A,. If G
is a bipartite graph with bipartition V; UV,, we say G is
(dy,d,)-regular if d(v) = d, for all v € V; and d(v) = d, for all
veV,.

if {i,j} € E(G),

otherwise

The seminal expander mixing lemma is an important tool that
relates edge distribution to the second eigenvalue of a graph. Here
we make use of the bipartite version.

Lemmal. (Theorem 5.1, [21]) Suppose that G is a
(d,, d,)-regular bipartite graph with bipartition V; UV,. Then
forevery S C Vy and T C V,, the number of edges between S and
T, denoted by e(S,T), satisfies

—ISIITI < LG)VIS|IT]

e(S,T) -
il
By Proposition 1, we know I, _; is (¢*72, ¢)-regular. For con-
venience, from now on we let n = |V([,, Dl =¢*+4¢"", A=
Ap A=Ay ) foralll <i<n,andletd, = ¢*2,d, =q.

L]

Lemma2. 1,=gq:

Proof.  Define the matrix

01|J
M =
J' 0
where J is the | X| X |Y| all-one matrix. We will show that

=(q-1¢">M+4"A €Y

By definition, for any x € X and y € Y, A3(x, y) is the number of
walks of length three of the form xy’x'y in T, _,. There are two
cases.

Case 1: xy € E(I'; ;_;). When x" = x, the number of choices for
y'is ¢¥=2. When x’ # x, the number of choices for x” is ¢ — 1, and
for each such x’, by Proposition 1liv, the number of choices for
y' is ¢*=3. Thus in this case the number of walks x)'x’y is ¢*=2 +
(g —1)g*=.
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Case 2: xy & E(T',,_,). Suppose x = (xg, x;) and x" = (x;, x}). If
x, = X;, then x; # x/, and hence, by Proposition 1iv, x and x’
have no common neighbor. When x, # x; the number of choices
for x’ is ¢ — 1 and for each such x’, the number of choices for )’
is ¢*=3, again by Proposition 1liv. Thus in this case the number of
walks xy'x"y is (¢ — 1)g*3.

Combining the two cases above, we obtain Equation (1). Next, let
uy be the characteristic vector of X, that is, uy(v) =1 for each
v € X and uy (v) = 0 otherwise. Similarly, let u, be the character-
isticvector of Y. Let a; = \/Zux + \/d_zuy and letag, = \/ZMX -
\/d_zuy. Itis easy to check that 4, = -4, = 1/d,d, and that a; and
a, are eigenvectors corresponding to 4, and 4,,. Since A is sym-
metric, the spectral theorem implies that A has an orthonormal
basis of eigenvectors. Hence, for each 1 < i < n, there exists an
eigenvector a; corresponding to 4; such that g; is orthogonal to
both ¢, and a,. Thus g, is orthogonal to u, and u,, which implies
that M - a;, = 0. Multiplying both sides of Equation (1) by a;, we
obtain 4} = ¢*~24,. Because the rank of A is larger than 2, there

. Note that since

k
", k-1 s bipartite, we have 4, = 4,_;,. Therefore, 4, = ¢:'. o

k
exists at least one 4; # 0, and hence 4, = iqi_l

Let .S be a subset of X with size |S| = rq. If we pick y € Y uni-
formly at random, then the expectation of |[N(y) N S| is r. Thus
intuitively, the vertex set of a “typical” clique in H,, intersects
S in O(r) vertices. The following lemma shows that a substantial
portion of all cliques are “typical”.

Lemma 3.
6 <1,let

Let S be a subset of X with size |.S| = rq. For 0 <

Ys={yeY|A-0r=<|INWNS|<A+dr}
Then |Y;| > (1 - %)llk—l.

Proof. Let
Y,={yeY | |INyNS|>1+)r}and
={yeY | INWNS| <1 -0dr}

Apply Lemma 1 with G=T,, ; and T =Y,. Together with
Lemma 2, we have

q k_
e(S.Y,) = ralVoll < g27 VralY.]
By definition, e(S, ¥,) 2 |Y,|(1 + &)r. Thus 5r|Y,| < q%‘,/—”y |

which implies |Y, | < q
Therefore,

Slmllarly, we canshow that |[Y_| < £— -

2 _
Yl = 1Y = 1Y, = 1Y) 2 (1= = )

4 | Balanced Supersaturation

In this section, we show that H*, has balanced supersaturation
with positive probability. We need to use the following concen-
tration inequality.

Proposition 3. (Corollary 2.27 [22]) Let Z,, ..., Z, be inde-
pendent random variables, with Z; taking values in a set A,.

Assume that a function f : A, X --- X A, = R satisfies the follow-
ing Lipschitz condition for some numbers c;:

(L) Iftwo vectors z,z' € A X --- X A, differ only in the i"* coor-
dinate, then |f(z) — f(z')| < c;.

Then, the random variable X = f(Z,, ...,

A>0,
2 )
t
zzizlciz

Recall that H}, is the k-uniform hypergraph obtained by replac-
ing each max1mal clique of H,, , with arandom complete k-partite
k-graph on the same vertex set Concretely, for each y € Y, we
color the vertices in N(y) with k colors {1, ..., k} uniformly at
random, and for each 1 <i < k we let X ; C N(y) be the set of
vertices with color i, and then we replace the clique on N (y) with
acomplete k-partite k-graph on N (y) with k-partition X ,; L - - - L
X, ;- Note that the colorings for different cliques are independent.

Z,) satisfies, for any

Pr(X <E(X)—- 1) < exp(—

Given a k-graph H, let A,(H) denote the maximum integer such
that there exists S C V' (H) such that |S| = i and the number of
edges containing .S is A;(H).

Lemmad4. For g sufficiently large in terms of k, with posi-
tive probability, every S C X with |.S| > 4kq satisfies the following.
There exists a subgraph H C H;k[S] such that, forall1 <i <k,

2k = i
A(H) < 6(16k)“*|E(H)| [ q
|S| |S|

Proof. For a fixed S C X with |S| > 4kq, let r = |S|/q > 4k >
12 and let

Yp={vevir2<INg mnsli<3/2)
By Lemma 3 we have |Y; ,| > ¢*~!/3.
Let H be a subgraph of H;k[S] with edge set
E(H) = {e € E(H[S]) | Iy €Yy, suchthate € N(y)}

In other words, H contains only edges that are in the “typical”
cliques. Define the random variable Z = |E(H)|. Forally € Y, ,
and v € Nl- (y), let A, , be the random variable with values
in {1, . k} such that A , =1 if vertex v receives color i in
the clique on Np (). Let By, ..., B, be an arbitrary order of
Ay, foryeY,, and v € Ny, _ (v). Clearly, Z is determined by
B,. ...,B,, ie., there exists a function f : [k]' - N such that
Z = f(B,, ..., B,). Observe that changing the color of a vertex
v in a typical clique will only affect the number of edges contain-
ing v in that clique, which is at most (WE 1) < (2%, since a

typical clique has size at most 3r/2. In other words, if two vectors
b,b" € [k]' differ in only one coordinate, then

If(b) = FB)] < 2!

Note that for any & vertices in a typical clique, the probability that
they form an edge in H is % Hence, by linearity of expectation
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and the fact that a typical clique has size at least r/2 and that
r/2 —k > r/4, we have

r/2\ k! @7 /2= R rfgt

E2) > (P ) i s LR A ra

3(4k)

k ) kk 3 k¥

Thus by Proposition 3 with 1 = ; k(Z;:, ¢; = (2r)*71, and the fact

thatr < |Y,,1(3r/2) < |Y|(3r/2) < 3rg*~! /2, we have

rhgh=1 2
( 6(4k)k )

rqu—l
r<Z = 6(4k)k) = | G 2y 1R
qu—l
= eXp<_ 500(8K)%* >

Using the union bound, the probability that there existsan .S C X

. o kg
with |S| = s = rq > 4kqg such that Z < Saor

7 7 gk 7 sqk?
__% )« S S
2 ( s )eXp< 500(8k)2k> = ZexP( 1000(8k)2k> <

s=dkq s=1

is at most

given that g is sufficiently large in terms of k.

Hence, with positive probability, for every S C X with |S| =
rq > 4kgq, the corresponding H satisfies |E(H)| > g(k:;;k Let
J C S be such that |[J| =i and 1<i < k—1. Note that, by
Proposition 1 (v), the number of y such that J C qu.k_l(y) is at

most ¢*~'~/, and for each such y € Y; ,, the number of edges in
Nr ()N .S containing J is at most <3'/ Zi_i) < (2r)k'. Hence

gk=1 k—
we have

A(H) < 20 'q

In addition, we know that A, (H) < 1. By |E(H)| > g(k;;;k and

|S| = rq, we have

1o -1
616k | E(H)| [ qF > 92k ki gh1+ =i
S| 1S

Note that when 1 <i < k — 1, given that ¢ is sufficiently large,
we have
22krk—iqk—1+%—i > (zr)k—iqk—l—i > A,(H)
and when i = k,
22krk—[qk—l+g—i — 22k Z Ak(H)

Combining the inequalities above, we have forall 1 <i <k,

6(16k)2| ECHD)| <qﬁl >”

A(H) <
IS] IS]

concluding the proof. Note that a stronger bound actually holds
forall i < k — 1, and the claimed bound only arises from the case
i=k. ml

5 | Counting Independent Sets

We make use of the hypergraph container method developed
independently by Balogh, Morris, and Samotij [18] and Saxton
and Thomason [19]. Here we make use of the following simpli-
fied version of Theorem 1.5 in [23]:

Theorem 5. (Theorem 1.5 [23]) For every integer k > 2, there

exists a constant € > 0 such that the following holds. Let B, L > 1
be positive integers and let H be a k-graph satisfying

A(H) <

IE(H)I( B

i—1
7 |V(H)|> , V1<i<k )

Then there exists a collection C of subsets of V (H) such that:
i. For every independent set I of H, there exists C € C such
that I C C;
ii. ForeveryC € C, |C| < |V(H)| —€L;
iii. We have

log —'V(BH)' )B
IC| < exp

Next, we use Theorem 5 together with Lemma 4 to count the
1
number of independent sets of size g+ (log ¢)? in H; o

Theorem 6. Forevery k > 3, there exists a constant ¢’ > 0 such
that, when q is sufficiently large, we can fix an instance of H; . such

that the number of independent sets of size t = qﬁ (log 9)* of H;"k

is at most
cq !
t

Proof. By Lemma 4, we can fix an instance of H, such that
for every S C V(H;‘ ) With |.S| > 4kq there exists a subgraph H
of H;‘k[S] such thatforalll <i <k,

A(H) < (3)

IS IS

We will first prove the following claim.

Claim 1. There exists a constant ¢ > 0 such that for every
S C V(H;k) with |S| > 4kq, there exists a collection Cg of at

most
<1qu g7 >
exp| ——
€

i. For every independent set I of H;k[S], there exists C € Cg
such that I c C;

subsets of .S such that:

ii. Forevery C € Cg, |C| < (1—¢)|S]. =

6 0f 8
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Proof. Fix an arbitrary S C V(H;,) with |S|>4kq. By
Lemma 4 there exists a subgraph i of Hy, [S] satisfying
Equation (3). By Equation (3), it is easy to check that Equation (2)
holds for H, with L = 6(1|:k|)2k and B = qk -1. Hence by Theorem 5,
there exist a constant ¢’ (not depending on .S) and a collection
C of subsets of .S such that

i. For every independent set I of H, there exists C € Cg such
that I c C;

ii. ForeveryC € C, |C| < |[V(H)| —€'L < (1 6(16k)2k>|5|

iii. We have

ICs| < exp o o

W )
10g< )B < exp (IOg(qz)q“ >

Since H is a subgraph of H) * [S], every independent set of
H) - [S]is also an 1ndependent set of H. Therefore, by taking e¢
sufﬁ01ent1y small with respect to ¢’ and k, we conclude that Cg
has the desired properties. O

Now we apply Claim 1 iteratively as follows. Fix the constant e
guaranteed by Claim 1. Let C, = {V(H;‘,k)}. Lett, = |V(H;‘,k)| =
g*andlett; = (1 — e)t,_; foralli > 1. Let m be the smallest integer
such thatt,, < 4kq. Clearly m = O(log g). Given a set of containers
C; such that every C € (; satisfies |C| < t;, we construct C;,; as
follows: for every C € C;, if |C| <t,,,, then we put it into C,,;;
otherwise, if |C| > t,,,, by Claim 1, there exists a collection C’
of containers for H * [C] such that every C’ € (' satisfies |C'| <
1-9¢lC| < t,H—now we put every element of €’ into C, ;. Let
C = C,,. Note that

c logq - gt
IC; < exp 0gq - q*
|Ci—l| €
logg- =
<exp 0gq-4q
|CI 1| €

As m = O(log q), we conclude that there exists a constant ¢’/ > 0
such that

Thus

’:]s

ICnl =

€1 = 1C,| < exp(c"(og g™ )

Also, by definition, we have |C| < 4kgq for every C € C.
Recall that t = (log q)zqklfl and let N, be the number of indepen-

dent sets of H of size t. Since every independent set of H of size ¢
is contained in some C € C, we have, for some constant ¢’ > 0,

4k dq\'
vz el %) < ()

6 | Proofof Theorem 2

Proof.  Proof of Theorem 2 For every sufficiently large prime

power g, we let t = (log q)zqﬁ By Theorem 6 we can fix an
instance of H}, such that the number of independent sets of H ',

of size ¢ is at most
cq !
(7)

for some constant ¢’ > 0. Let W be a random subset of V(H * k)
where each vertex is sampled independently with probability p =
E' Note that p < 1 as ¢ is sufficiently large. Then the expected
number of independent sets of size ¢ in H;. [ W1is at most

cq
<1
(%)
Let W’ C W be obtained by arbitrarily deleting one vertex in each
independent set of size ¢. Thus the expectation of | W] is at least

(logq)* &
q k-

pg’ —1= -1

C/

Hence there exists a choice W' with at least this many ver-
tices. Let H' = H;",k[W’]. By definition of W', we have a(H') < 1.
Moreover, by Proposition 2 we know that H’ is F-free. Thus,
we have

log 9)*
rF.n > 189

c
Recall thatt = (log q)zqkl? . Itis well-known that for every integer
n there exists a prime g such that n/2 < ¢ < n. Thus for every n
sufficiently large, it is easy to find a prime ¢ such that

(logg2q™1 < n < 2(log q)2qi1

Therefore we conclude that there exists a constant ¢ > 0 such that
for all n sufficiently large,

an

F.,n)> ————
r(F,n) 2z (lOg n)2k—2
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