

RESEARCH ARTICLE OPEN ACCESS

Off-Diagonal Ramsey Numbers for Slowly Growing Hypergraphs

Sam Mattheus¹ | Dhruv Mubayi² | Jiaxi Nie³ | Jacques Verstraëte⁴

¹Department of Mathematics, Vrije Universiteit Brussel, Brussel, Belgium | ²Department of Mathematics, Statistics and Computer Science, University of Illinois Chicago, Chicago, Illinois, USA | ³School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, USA | ⁴Department of Mathematics, University of California, San Diego, La Jolla, California, USA

Correspondence: Jiaxi Nie (jnie47@gatech.edu)

Received: 10 September 2024 | **Revised:** 22 December 2024 | **Accepted:** 9 January 2025

Funding: Research supported by a postdoctoral fellowship 1267923N from the Research Foundation Flanders (FWO). Research supported by NSF Grant Nos. DMS-1952767, DMS-2153576 and a Simons Fellowship. Research supported by NSF Grant No. DMS-1952786.

Keywords: Berge triangle | hypergraph container | pseudorandomness | Ramsey number | random block construction

ABSTRACT

For a k -uniform hypergraph F and a positive integer n , the Ramsey number $r(F, n)$ denotes the minimum N such that every N -vertex F -free k -uniform hypergraph contains an independent set of n vertices. A hypergraph is *slowly growing* if there is an ordering e_1, e_2, \dots, e_t of its edges such that $|e_i \setminus \bigcup_{j=1}^{i-1} e_j| \leq 1$ for each $i \in \{2, \dots, t\}$. We prove that if $k \geq 3$ is fixed and F is any non- k -partite slowly growing k -uniform hypergraph, then for $n \geq 2$,

$$r(F, n) = \Omega\left(\frac{n^k}{(\log n)^{2k-2}}\right)$$

In particular, we deduce that the off-diagonal Ramsey number $r(F_5, n)$ is of order $n^3/\text{polylog}(n)$, where F_5 is the triple system $\{123, 124, 345\}$. This is the only 3-uniform Berge triangle for which the polynomial power of its off-diagonal Ramsey number was not previously known. Our constructions use pseudorandom graphs and hypergraph containers.

1 | Introduction

A hypergraph is a pair (V, E) where V is a set, whose elements are called vertices, and E is a family of nonempty subsets of V , whose elements are called edges. A k -uniform hypergraph (k -graph for short) is a hypergraph whose edges are all of size k . An *independent set* of a hypergraph F is a subset of $V(F)$ that does not contain any edge of F .

Given a k -graph F , the *off-diagonal Ramsey number* $r(F, n)$ is the minimum integer such that every F -free k -graph on $r(F, n)$ vertices has an independent set of size n . Ajtai, Komlós, and

Szemerédi [1] proved the upper bound $r(K_3, n) = O(n^2/\log n)$, and Kim [2] proved the corresponding lower bound $r(K_3, n) = \Omega(n^2/\log n)$. The current state-of-the-art results are due to Fiz Pontiveros, Griffiths, and Morris [3] and Bohman and Keevash [4], who determine $r(K_3, n)$ up to a small constant factor:

$$\left(\frac{1}{4} - o(1)\right) \frac{n^2}{\log n} \leq r(K_3, n) \leq (1 + o(1)) \frac{n^2}{\log n}$$

For larger cliques, the current best general lower bounds are obtained by Bohman and Keevash [5] strengthening earlier

bounds of Spencer [6, 7]. On the other hand, the current best upper bounds are proved by Li, Rousseau, and Zang [8] by extending ideas of Shearer [9], which improve earlier bounds of Ajtai, Komlós and Szemerédi [1]. These bounds are as follows: for $s \geq 3$, there exists a constant $c_1(s) > 0$ such that

$$c_1(s) \frac{n^{\frac{s+1}{2}}}{(\log n)^{\frac{s+1}{2} - \frac{1}{s-2}}} \leq r(K_s, n) \leq (1 + o(1)) \frac{n^{s-1}}{(\log n)^{s-2}}$$

Recently, the first and fourth authors [10] determined the asymptotics of $r(K_4, n)$ up to a logarithmic factor by proving the following lower bounds.

Theorem 1. (Theorem 1 [10]) As $n \rightarrow \infty$,

$$r(K_4, n) = \Omega\left(\frac{n^3}{(\log n)^4}\right)$$

In this paper, we prove some hypergraph versions of these results. A *Berge triangle* is a hypergraph consisting of three distinct edges e_1 , e_2 , and e_3 such that there exist three distinct vertices x , y , and z with the property that $\{x, y\} \subset e_1$, $\{y, z\} \subset e_2$, and $\{x, z\} \subset e_3$. It is easy to check that there are only four different 3-uniform Berge triangles: LC_3 (loose cycle of length 3), TP_3 (tight path on three edges and five vertices), F_5 , and K_4^{3-} (3-uniform clique on four vertices minus an edge), as shown from left to right in Figure 1. It is natural to consider the problem of determining the off-diagonal Ramsey numbers for 3-uniform Berge triangles since they are in some sense the smallest non-trivial hypergraphs that provide a natural extension of $r(K_3, n)$.

The off-diagonal Ramsey numbers for TP_3 and LC_3 have been determined up to a logarithmic factor: for TP_3 , a result of Phelps and Rödl [11] shows that $c_1 n^2 / \log n \leq r(TP_3, n) \leq c_2 n^2$; for LC_3 , Kostochka, the second author, and the fourth author [12] showed that $c_1 n^{3/2} / (\log n)^{3/4} \leq r(LC_3, n) \leq c_2 n^{3/2}$. It seems plausible to conjecture that for some constant c ,

$$r(TP_3, n) \leq \frac{cn^2}{\log n} \quad \text{and} \quad r(LC_3, n) \leq \frac{cn^{\frac{3}{2}}}{(\log n)^{\frac{3}{4}}}$$

It is conjectured explicitly in [12] that $r(LC_3, n) = o(n^{3/2})$ and the question of determining the order of magnitude of $r(TP_3, n)$ was posed in [13]. It was also shown in [13] that $r(TP_4, n)$ has an order of magnitude n^2 , leaving TP_3 as the only tight path for which the order of magnitude of $r(TP_s, n)$ remains open. We remark that if one can prove that every n -vertex TP_3 -free 3-graph with average degree $d > 1$ has an independent set of size at least $\Omega(n\sqrt{\log d/d})$, then this implies that $r(TP_3, n) = \Theta(n^2/\log n)$.

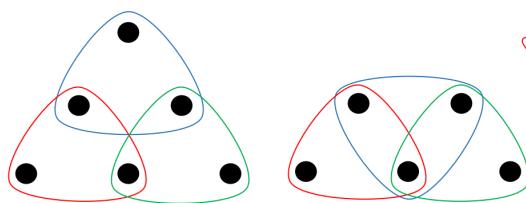


FIGURE 1 | From left to right: LC_3 , TP_3 , F_5 and K_4^{3-} .

The problem for K_4^{3-} is interesting in the sense that it is the smallest hypergraph whose off-diagonal Ramsey number is at least exponential: Erdős and Hajnal [14] proved $r(K_4^{3-}, n) = n^{O(n)}$ and Rödl (unpublished) proved $r(K_4^{3-}, n) \geq 2^{\Omega(n)}$. More recently, Fox and He [15] showed that $r(K_4^{3-}, n) = n^{\Theta(n)}$.

The problem for F_5 , however, is not very well studied: a result of Kostochka, the second author, and the fourth author [16] implies that $r(F_5, n) \leq c_1 n^3 / \log n$, and the standard probabilistic deletion method shows that $r(F_5, n) \geq c_2 n^2 / \log n$. In this paper, we fill this gap by showing that $r(F_5, n) = n^3 / \text{polylog}(n)$. This is a consequence of a more general theorem that we will prove.

Building upon techniques in [10], we prove lower bounds for the off-diagonal Ramsey numbers of a large family of hypergraphs. A k -graph F is *slowly growing* if its edges can be ordered as e_1, \dots, e_t such that

$$\forall i \in \{2, \dots, t\}, \left| e_i \setminus \bigcup_{j=1}^{i-1} e_j \right| \leq 1$$

We use this terminology to describe the fact that at most one new vertex is added when we add a new edge in the ordering. Further, F is k -partite, or *degenerate*, if its vertices can be partitioned into k sets V_1, \dots, V_k such that each edge intersects each V_i , $1 \leq i \leq k$, in exactly one vertex. Otherwise, H is *non-degenerate*. The three hypergraphs TP_3 , F_5 , and K_4^{3-} in Figure 1 are slowly growing, whereas the first is not. The last two are non-degenerate.

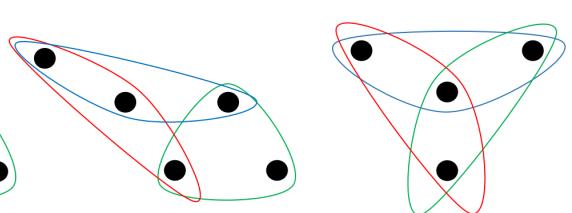
In this paper, we obtain the following result for non-degenerate, slowly growing hypergraphs.

Theorem 2. For every $k \geq 3$, there exists a constant $c > 0$ such that for every slowly growing non-degenerate k -graph F and all integers $n \geq 2$

$$r(F, n) \geq \frac{cn^k}{(\log n)^{2k-2}}$$

The constant c here is independent of F because our construction simultaneously avoids all non-degenerate slowly growing F .

Theorem 2 is tight up to a logarithmic factor for the following family of hypergraphs, which includes F_5 . For $k \geq 3$, let F_{2k-1} be the k -graph on $2k-1$ vertices $v_1, \dots, v_{k-1}, w_1, \dots, w_k$ with k edges $\{v_1, \dots, v_{k-1}, w_i\}$, $1 \leq i \leq k-1$, and $\{w_1, \dots, w_k\}$. Further, let T_k be the k -graph obtained from F_{2k-1} by adding the edge $\{v_1, \dots, v_{k-1}, w_k\}$. See Figure 2 for an illustration of F_7 and T_4 . Note that T_2 is a (graph) triangle.



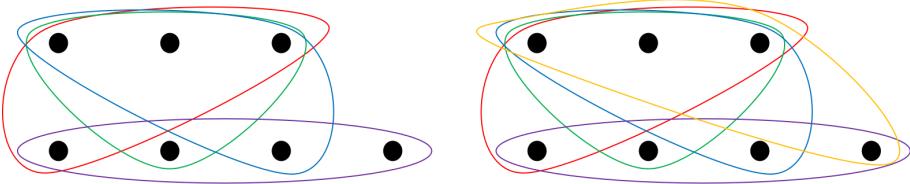


FIGURE 2 | F_7 and T_4 .

The order of magnitude of $r(T_k, n)$ for $k \geq 3$ is determined by the upper bound result of Kostochka, the second author, and the fourth author [16] together with the lower bound result of Bohman, the second author, and Picollelli [17]. For $k = 2$, this theorem restates the known result [1–4] that $r(K_3, n)$ has an order of magnitude of $n^2 / \log n$.

Theorem 3. (Theorem 2 [16]; Theorem 1 [17]) Let $k \geq 2$. Then there exist constants $c_1, c_2 > 0$ such that for all integers $n \geq 2$,

$$\frac{c_1 n^k}{\log n} \leq r(T_k, n) \leq \frac{c_2 n^k}{\log n}$$

Thus we have $r(F_{2k-1}, n) \leq r(T_k, n) \leq O(n^k / \log n)$. On the other hand, it is easy to check that F_{2k-1} is a slowly growing non-degenerate k -graph. Hence Theorem 2 together with Theorem 3 implies the following theorem.

Theorem 4. Let $k \geq 3$. There exist constants $c_1, c_2 > 0$ such that for all integers $n \geq 2$,

$$\frac{c_1 n^k}{(\log n)^{2k-2}} \leq r(F_{2k-1}, n) \leq \frac{c_2 n^k}{\log n}$$

Theorem 4 determines $r(F_{2k-1}, n)$ up to a logarithmic factor. In particular, this determines $r(F_5, n)$ up to a polylogarithmic factor, and F_5 is the only 3-uniform Berge triangle for which the polynomial power of the off-diagonal Ramsey number was not previously known.

It would be interesting to determine its order of magnitude. We believe the current upper bounds are closer to the truth:

Conjecture 1. There exists a constant $c > 0$ such that for $n \geq 2$,

$$r(F_5, n) \geq \frac{cn^3}{\log n}$$

2 | The Construction

The proof of Theorem 2 uses the so-called random block construction, which first requires a pseudorandom bipartite graph. We build our construction using the following bipartite graph.

Definition 1. For every prime power q and integer $m \geq 2$, let $\Gamma_{q,m}$ be the bipartite graph with two parts $X = \mathbb{F}_q^2$ and $Y = \mathbb{F}_q^m$, where two vertices $x = (x_0, x_1) \in X$ and $y = (y_0, \dots, y_{m-1}) \in Y$ form an edge if and only if

$$x_1 = \sum_{i=0}^{m-1} y_i x_0^i$$

One can view X as points on \mathbb{F}_q^2 and Y as one-variable polynomials defined on \mathbb{F}_q of degree at most $m-1$. Now $\Gamma_{q,m}$ is simply the incidence bipartite graph of the points and the polynomials where a point $P \in X$ and a polynomial $F \in Y$ form an edge if and only if $P = (w, F(w))$ for some $w \in \mathbb{F}_q$.

For any vertex x of a graph G , we use $d(x)$ to denote the degree of x , that is, the number of neighbors of x in G . Further, for any set U of vertices, we use $d(U)$ to denote the number of common neighbors of vertices in U . When $U = \{x, y\}$, we use $d(x, y) = d(\{x, y\})$ for short. The following proposition collects some useful properties of $\Gamma_{q,m}$.

Proposition 1. For every prime power q and integer $m \geq 2$, $\Gamma_{q,m}$ has the following properties:

- i. $\forall x \in X, d(x) = q^{m-1}$.
- ii. $\forall y \in Y, d(y) = q$.
- iii. $\forall y, y' \in Y, \text{ if } y \neq y', \text{ then } d(y, y') \leq m-1$.
- iv. $\forall x, x' \in X, \text{ let } x = (x_0, x_1) \text{ and } x' = (x'_0, x'_1). \text{ If } x_0 \neq x'_0, \text{ then } d(x, x') = q^{m-2}. \text{ If } x_0 = x'_0 \text{ and } x_1 \neq x'_1, \text{ then } d(x, x') = 0$.
- v. Let $U \subseteq X$ such that $1 \leq |U| \leq m$, then $d(U) \leq q^{m-|U|}$.

Proof.

- i. For every $x = (x_0, x_1) \in X$, to find a neighbor $y = (y_0, \dots, y_{m-1})$ of x , one can choose y_i for $1 \leq i \leq m-1$ freely and then let $y_0 = x_1 - \sum_{i=1}^{m-1} y_i x_0^i$. Thus $d(x) = q^{m-1}$.
- ii. For every $y = (y_0, \dots, y_{m-1})$, to find a neighbor $x = (x_0, x_1)$ of y , one can choose x_0 freely and then let $x_1 = \sum_{i=0}^{m-1} y_i x_0^i$. Thus $d(y) = q$.
- iii. For every $y = (y_0, \dots, y_{m-1})$, $y' = (y'_0, \dots, y'_{m-1}) \in Y$, if $x = (x_0, x_1)$ is a common neighbor of y and y' , then x_0 is a solution to the equation $\sum_{i=0}^{m-1} (y_i - y'_i)x^i = 0$ where x is the only variable. By the Fundamental Theorem of Algebra for finite fields, such an equation has at most $m-1$ solutions. Since x_1 is determined by x_0 , we conclude that $d(y, y') \leq m-1$.
- iv. For every $x = (x_0, x_1), x' = (x'_0, x'_1) \in X$, if $x_0 \neq x'_0$, then every common neighbor $y = (y_0, \dots, y_{m-1})$ corresponds to a solution to a collection of two linear equations that are linearly independent. The solution space of such a collection of linear equations has rank $m-2$, which implies that the number of solutions is q^{m-2} . Thus in this case $d(x, x') = q^{m-2}$. On the other hand, if $x_0 = x'_0$ and $x_1 \neq x'_1$, then for every $y = (y_0, \dots, y_{m-1}) \in Y$, $x_1 - \sum_{i=0}^{m-1} y_i x_0^i \neq x'_1 - \sum_{i=0}^{m-1} y'_i x'_0^i$.

$\sum_{i=0}^{m-1} y_i x_0^{(i)}$, which implies that the two equations cannot equal 0 at the same time. Thus $d(x, x') = 0$.

v. Let $|U| = k$, and let $x^{(1)} = (x_0^{(1)}, x_1^{(1)}), \dots, x^{(k)} = (x_0^{(k)}, x_1^{(k)})$ be the vertices in U . Then each common neighbor $y = (y_0, \dots, y_{m-1})$ corresponds to a solution to the collection of k linear equations $\sum_{i=0}^{m-1} y_i x_0^{(i)} = x_1^{(t)}$, $1 \leq t \leq k$. If there exist $1 \leq t_1 < t_2 \leq k$ such that $x_0^{(t_1)} = x_0^{(t_2)}$, then we must have $x_1^{(t_1)} \neq x_1^{(t_2)}$ since $x^{(t_1)}$ and $x^{(t_2)}$ are different. Then by the same argument as in (iv), we know that $d(U) = 0$. On the other hand, if all $x_0^{(t)}$ are distinct, then the solution space of the collection of linear equations has rank $m - k$, which implies that the number of solutions is q^{m-k} . Thus in this case $d(x, x') = q^{m-k}$. \square

For all $k \geq 3$, let $H_{q,k}$ be a k -uniform hypergraph on $X = X(\Gamma_{q,k-1})$ whose edges are all k -sets $\{x_1, \dots, x_k\} \subseteq X$ such that there exists an element $y \in Y = Y(\Gamma_{q,k-1})$ such that $\{x_1, \dots, x_k\} \subseteq N(y)$. By Proposition 1, $H_{q,k}$ is the union of q^{k-1} k -uniform cliques on q vertices such that each vertex is contained in q^{k-2} cliques and the vertex sets of every two cliques intersect in at most $k-2$ vertices. Let $H_{q,k}^*$ be the k -uniform hypergraph obtained by replacing each maximal clique of $H_{q,k}$ with a random complete k -partite k -graph on the same vertex set. More formally, for each $y \in Y$, we color the vertices in $N(y)$ with k colors $\{1, \dots, k\}$ uniformly at random, and for each $1 \leq i \leq k$, we let $X_{y,i} \subseteq N(y)$ be the set of vertices with color i , and then we replace the clique on $N(y)$ with a complete k -partite k -graph on $N(y)$ with k -partition $X_{y,1} \sqcup \dots \sqcup X_{y,k}$. It is easy to check the following proposition.

Proposition 2. *If F is a non-degenerate slowly growing k -graph, then $H_{q,k}^*$ is F -free.*

Proof. Consider an ordering e_1, \dots, e_t of the edges of F such that

$$\forall i \in \{2, \dots, t\}, \left| e_i \setminus \bigcup_{j=1}^{i-1} e_j \right| \leq 1$$

Equivalently, we have

$$\forall i \in \{2, \dots, t\}, \left| e_i \cap \bigcup_{j=1}^{i-1} e_j \right| \geq k-1$$

We claim that every copy of F in $H_{q,k}$ must be fully contained in one of the q^{k-1} k -uniform cliques of size q . Indeed, suppose that we want to build a copy of F in $H_{q,k}$ by consecutively picking the edges in the order given above. Then the fact that every two cliques of $H_{q,k}$ intersect in at most $k-2$ vertices shows that we must pick every edge in the clique containing the previous edges. Since $H_{q,k}^*$ is obtained from $H_{q,k}$ by replacing every clique by a complete k -partite k -graph and F itself is not k -partite, this proves the statement. \square

We will fix an instance of $H_{q,k}^*$ with good *Balanced Supersaturation*, which means that each induced subgraph of $H_{q,k}^*$ on $q^{1+o(1)}$ vertices contains many edges that are evenly distributed. Using Balanced Supersaturation together with the Hypergraph Container Lemma [18, 19], we can find upper bounds on the number of independent sets in $H_{q,k}^*$ of size $t = (\log q)^2 q^{\frac{1}{k-1}}$.

We then take a random subset W of $V(H_{q,k}^*)$ where each vertex is sampled independently with probability $p = \Theta(\frac{1}{q})$ as in [20]. Finally, our construction is obtained by arbitrarily deleting a vertex from each independent set of size t in $H_{q,k}^*[W]$.

We will give the details in the following sections.

3 | Pseudorandomness of $\Gamma_{q,k-1}$

In this section we show the pseudorandomness of $\Gamma_{q,k-1}$, which will be useful later in showing the balanced supersaturation of $H_{q,k}^*$.

Given an n -vertex graph G , let A_G be the adjacency matrix of G , which is the $n \times n$ symmetric matrix where

$$A_G(i, j) := \begin{cases} 1, & \text{if } \{i, j\} \in E(G), \\ 0, & \text{otherwise} \end{cases}$$

Let $\lambda_1(G) \geq \dots \geq \lambda_n(G)$ denote the eigenvalues of A_G . If G is a bipartite graph with bipartition $V_1 \sqcup V_2$, we say G is (d_1, d_2) -regular if $d(v) = d_1$ for all $v \in V_1$ and $d(v) = d_2$ for all $v \in V_2$.

The seminal expander mixing lemma is an important tool that relates edge distribution to the second eigenvalue of a graph. Here we make use of the bipartite version.

Lemma 1. (Theorem 5.1, [21]) *Suppose that G is a (d_1, d_2) -regular bipartite graph with bipartition $V_1 \sqcup V_2$. Then for every $S \subseteq V_1$ and $T \subseteq V_2$, the number of edges between S and T , denoted by $e(S, T)$, satisfies*

$$\left| e(S, T) - \frac{d_2}{|V_1|} |S||T| \right| \leq \lambda_2(G) \sqrt{|S||T|}$$

By Proposition 1, we know $\Gamma_{q,k-1}$ is (q^{k-2}, q) -regular. For convenience, from now on we let $n = |V(\Gamma_{q,k-1})| = q^2 + q^{k-1}$, $A = A_{\Gamma_{q,k-1}}$, $\lambda_i = \lambda_i(\Gamma_{q,k-1})$ for all $1 \leq i \leq n$, and let $d_1 = q^{k-2}$, $d_2 = q$.

Lemma 2. $\lambda_2 = q^{\frac{k-1}{2}}$.

Proof. Define the matrix

$$M = \begin{bmatrix} 0 & J \\ J^t & 0 \end{bmatrix}$$

where J is the $|X| \times |Y|$ all-one matrix. We will show that

$$A^3 = (q-1)q^{k-3}M + q^{k-2}A \quad (1)$$

By definition, for any $x \in X$ and $y \in Y$, $A^3(x, y)$ is the number of walks of length three of the form $xy'x'y$ in $\Gamma_{q,k-1}$. There are two cases.

Case 1: $xy \in E(\Gamma_{q,k-1})$. When $x' = x$, the number of choices for y' is q^{k-2} . When $x' \neq x$, the number of choices for x' is $q-1$, and for each such x' , by Proposition 1iv, the number of choices for y' is q^{k-3} . Thus in this case the number of walks $xy'x'y$ is $q^{k-2} + (q-1)q^{k-3}$.

Case 2: $xy \notin E(\Gamma_{q,k-1})$. Suppose $x = (x_0, x_1)$ and $x' = (x'_0, x'_1)$. If $x_0 = x'_0$, then $x_1 \neq x'_1$, and hence, by Proposition 1iv, x and x' have no common neighbor. When $x_0 \neq x'_0$ the number of choices for x' is $q-1$ and for each such x' , the number of choices for y' is q^{k-3} , again by Proposition 1iv. Thus in this case the number of walks $xy'x'y$ is $(q-1)q^{k-3}$.

Combining the two cases above, we obtain Equation (1). Next, let u_X be the characteristic vector of X , that is, $u_X(v) = 1$ for each $v \in X$ and $u_X(v) = 0$ otherwise. Similarly, let u_Y be the characteristic vector of Y . Let $a_1 = \sqrt{d_1}u_X + \sqrt{d_2}u_Y$ and let $a_n = \sqrt{d_1}u_X - \sqrt{d_2}u_Y$. It is easy to check that $\lambda_1 = -\lambda_n = \sqrt{d_1d_2}$ and that a_1 and a_n are eigenvectors corresponding to λ_1 and λ_n . Since A is symmetric, the spectral theorem implies that A has an orthonormal basis of eigenvectors. Hence, for each $1 < i < n$, there exists an eigenvector a_i corresponding to λ_i such that a_i is orthogonal to both a_1 and a_n . Thus a_i is orthogonal to u_X and u_Y , which implies that $M \cdot a_i = 0$. Multiplying both sides of Equation (1) by a_i , we obtain $\lambda_i^3 = q^{k-2}\lambda_i$. Because the rank of A is larger than 2, there exists at least one $\lambda_i \neq 0$, and hence $\lambda_i = \pm q^{\frac{k}{2}-1}$. Note that since $\Gamma_{q,k-1}$ is bipartite, we have $\lambda_i = \lambda_{n-i+1}$. Therefore, $\lambda_2 = q^{\frac{k}{2}-1}$. \square

Let S be a subset of X with size $|S| = rq$. If we pick $y \in Y$ uniformly at random, then the expectation of $|N(y) \cap S|$ is r . Thus intuitively, the vertex set of a “typical” clique in $H_{q,k}$ intersects S in $\Theta(r)$ vertices. The following lemma shows that a substantial portion of all cliques are “typical”.

Lemma 3. *Let S be a subset of X with size $|S| = rq$. For $0 < \delta < 1$, let*

$$Y_\delta = \{y \in Y \mid (1 - \delta)r \leq |N(y) \cap S| \leq (1 + \delta)r\}$$

Then $|Y_\delta| \geq \left(1 - \frac{2}{\delta^2r}\right)q^{k-1}$.

Proof. Let

$$Y_+ = \{y \in Y \mid |N(y) \cap S| > (1 + \delta)r\} \text{ and}$$

$$Y_- = \{y \in Y \mid |N(y) \cap S| < (1 - \delta)r\}$$

Apply Lemma 1 with $G = \Gamma_{q,k-1}$ and $T = Y_+$. Together with Lemma 2, we have

$$|e(S, Y_+) - \frac{q}{q^2}rq|Y_+|| \leq q^{\frac{k}{2}-1}\sqrt{rq|Y_+|}$$

By definition, $e(S, Y_+) \geq |Y_+|(1 + \delta)r$. Thus $\delta r|Y_+| \leq q^{\frac{k-1}{2}}\sqrt{r|Y_+|}$, which implies $|Y_+| \leq \frac{q^{k-1}}{\delta^2r}$. Similarly, we can show that $|Y_-| \leq \frac{q^{k-1}}{\delta^2r}$. Therefore,

$$|Y_\delta| = |Y| - |Y_+| - |Y_-| \geq \left(1 - \frac{2}{\delta^2r}\right)q^{k-1} \quad \square$$

4 | Balanced Supersaturation

In this section, we show that $H_{q,k}^*$ has balanced supersaturation with positive probability. We need to use the following concentration inequality.

Proposition 3. (Corollary 2.27 [22]) *Let Z_1, \dots, Z_t be independent random variables, with Z_i taking values in a set Λ_i .*

Assume that a function $f : \Lambda_1 \times \dots \times \Lambda_t \rightarrow \mathbb{R}$ satisfies the following Lipschitz condition for some numbers c_i :

(L) *If two vectors $z, z' \in \Lambda \times \dots \times \Lambda_t$ differ only in the i^{th} coordinate, then $|f(z) - f(z')| \leq c_i$.*

Then, the random variable $X = f(Z_1, \dots, Z_t)$ satisfies, for any $\lambda \geq 0$,

$$\Pr(X \leq \mathbb{E}(X) - \lambda) \leq \exp\left(-\frac{\lambda^2}{2\sum_{i=1}^t c_i^2}\right)$$

Recall that $H_{q,k}^*$ is the k -uniform hypergraph obtained by replacing each maximal clique of $H_{q,k}$ with a random complete k -partite k -graph on the same vertex set. Concretely, for each $y \in Y$, we color the vertices in $N(y)$ with k colors $\{1, \dots, k\}$ uniformly at random, and for each $1 \leq i \leq k$ we let $X_{y,i} \subseteq N(y)$ be the set of vertices with color i , and then we replace the clique on $N(y)$ with a complete k -partite k -graph on $N(y)$ with k -partition $X_{y,1} \sqcup \dots \sqcup X_{y,k}$. Note that the colorings for different cliques are independent.

Given a k -graph H , let $\Delta_i(H)$ denote the maximum integer such that there exists $S \subseteq V(H)$ such that $|S| = i$ and the number of edges containing S is $\Delta_i(H)$.

Lemma 4. *For q sufficiently large in terms of k , with positive probability, every $S \subseteq X$ with $|S| \geq 4kq$ satisfies the following. There exists a subgraph $H \subset H_{q,k}^*[S]$ such that, for all $1 \leq i \leq k$,*

$$\Delta_i(H) \leq \frac{6(16k)^{2k}|E(H)|}{|S|} \left(\frac{q^{\frac{1}{k-1}}}{|S|}\right)^{i-1}$$

Proof. For a fixed $S \subseteq X$ with $|S| \geq 4kq$, let $r = |S|/q \geq 4k \geq 12$ and let

$$Y_{1/2} = \left\{y \in Y \mid r/2 \leq |N_{\Gamma_{q,k-1}}(y) \cap S| \leq 3r/2\right\}$$

By Lemma 3 we have $|Y_{1/2}| \geq q^{k-1}/3$.

Let H be a subgraph of $H_{q,k}^*[S]$ with edge set

$$E(H) = \left\{e \in E(H_{q,k}^*[S]) \mid \exists y \in Y_{1/2} \text{ such that } e \in N(y)\right\}$$

In other words, H contains only edges that are in the “typical” cliques. Define the random variable $Z = |E(H)|$. For all $y \in Y_{1/2}$ and $v \in N_{\Gamma_{q,k-1}}(y)$, let $A_{y,v}$ be the random variable with values in $\{1, \dots, k\}$ such that $A_{y,v} = i$ if vertex v receives color i in the clique on $N_{\Gamma_{q,k-1}}(y)$. Let B_1, \dots, B_t be an arbitrary order of $A_{y,v}$ for $y \in Y_{1/2}$ and $v \in N_{\Gamma_{q,k-1}}(v)$. Clearly, Z is determined by B_1, \dots, B_t , i.e., there exists a function $f : [k]^t \rightarrow \mathbb{N}$ such that $Z = f(B_1, \dots, B_t)$. Observe that changing the color of a vertex v in a typical clique will only affect the number of edges containing v in that clique, which is at most $\binom{3r/2-1}{k-1} \leq (2r)^{k-1}$, since a typical clique has size at most $3r/2$. In other words, if two vectors $b, b' \in [k]^t$ differ in only one coordinate, then

$$|f(b) - f(b')| \leq (2r)^{k-1}$$

Note that for any k vertices in a typical clique, the probability that they form an edge in H is $\frac{k!}{k^k}$. Hence, by linearity of expectation

and the fact that a typical clique has size at least $r/2$ and that $r/2 - k \geq r/4$, we have

$$\mathbb{E}(Z) \geq |Y_{1/2}| \binom{r/2}{k} \frac{k!}{k^k} \geq \frac{q^{k-1}}{3} \frac{(r/2 - k)^k}{k^k} \geq \frac{r^k q^{k-1}}{3(4k)^k}$$

Thus by Proposition 3 with $\lambda = \frac{r^k q^{k-1}}{6(4k)^k}$, $c_i = (2r)^{k-1}$, and the fact that $t \leq |Y_{1/2}|(3r/2) \leq |Y|(3r/2) \leq 3rq^{k-1}/2$, we have

$$\begin{aligned} \Pr\left(Z \leq \frac{r^k q^{k-1}}{6(4k)^k}\right) &\leq \exp\left(-\frac{\left(\frac{r^k q^{k-1}}{6(4k)^k}\right)^2}{2(3rq^{k-1}/2)((2r)^{k-1})^2}\right) \\ &\leq \exp\left(-\frac{rq^{k-1}}{500(8k)^{2k}}\right) \end{aligned}$$

Using the union bound, the probability that there exists an $S \subseteq X$ with $|S| = s = rq \geq 4kq$ such that $Z \leq \frac{r^k q^{k-1}}{6(4k)^k}$ is at most

$$\sum_{s=4kq}^{q^2} \binom{q^2}{s} \exp\left(-\frac{sq^{k-2}}{500(8k)^{2k}}\right) \leq \sum_{s=1}^{q^2} \exp\left(-\frac{sq^{k-2}}{1000(8k)^{2k}}\right) < 1$$

given that q is sufficiently large in terms of k .

Hence, with positive probability, for every $S \subseteq X$ with $|S| = rq \geq 4kq$, the corresponding H satisfies $|E(H)| \geq \frac{r^k q^{k-1}}{6(8k)^{2k}}$. Let $J \subseteq S$ be such that $|J| = i$ and $1 \leq i \leq k-1$. Note that, by Proposition 1 (v), the number of y such that $J \subseteq N_{\Gamma_{q,k-1}}(y)$ is at most q^{k-1-i} , and for each such $y \in Y_{1/2}$, the number of edges in $N_{\Gamma_{q,k-1}}(y) \cap S$ containing J is at most $\binom{3r/2-i}{k-i} \leq (2r)^{k-i}$. Hence we have

$$\Delta_i(H) \leq (2r)^{k-i} q^{k-1-i}$$

In addition, we know that $\Delta_k(H) \leq 1$. By $|E(H)| \geq \frac{r^k q^{k-1}}{6(8k)^{2k}}$ and $|S| = rq$, we have

$$\frac{6(16k)^{2k} |E(H)|}{|S|} \left(\frac{q^{\frac{1}{k-1}}}{|S|}\right)^{i-1} \geq 2^{2k} r^{k-i} q^{k-1+\frac{i-1}{k-1}-i}$$

Note that when $1 \leq i \leq k-1$, given that q is sufficiently large, we have

$$2^{2k} r^{k-i} q^{k-1+\frac{i-1}{k-1}-i} \geq (2r)^{k-i} q^{k-1-i} \geq \Delta_i(H)$$

and when $i = k$,

$$2^{2k} r^{k-i} q^{k-1+\frac{i-1}{k-1}-i} = 2^{2k} \geq \Delta_k(H)$$

Combining the inequalities above, we have for all $1 \leq i \leq k$,

$$\Delta_i(H) \leq \frac{6(16k)^{2k} |E(H)|}{|S|} \left(\frac{q^{\frac{1}{k-1}}}{|S|}\right)^{i-1}$$

concluding the proof. Note that a stronger bound actually holds for all $i \leq k-1$, and the claimed bound only arises from the case $i = k$. \square

5 | Counting Independent Sets

We make use of the hypergraph container method developed independently by Balogh, Morris, and Samotij [18] and Saxton and Thomason [19]. Here we make use of the following simplified version of Theorem 1.5 in [23]:

Theorem 5. (Theorem 1.5 [23]) For every integer $k \geq 2$, there exists a constant $\epsilon > 0$ such that the following holds. Let $B, L \geq 1$ be positive integers and let H be a k -graph satisfying

$$\Delta_i(H) \leq \frac{|E(H)|}{L} \left(\frac{B}{|V(H)|}\right)^{i-1}, \quad \forall 1 \leq i \leq k \quad (2)$$

Then there exists a collection \mathcal{C} of subsets of $V(H)$ such that:

- i. For every independent set I of H , there exists $C \in \mathcal{C}$ such that $I \subseteq C$;
- ii. For every $C \in \mathcal{C}$, $|C| \leq |V(H)| - \epsilon L$;
- iii. We have

$$|\mathcal{C}| \leq \exp\left(\frac{\log\left(\frac{|V(H)|}{B}\right) B}{\epsilon}\right)$$

Next, we use Theorem 5 together with Lemma 4 to count the number of independent sets of size $q^{\frac{1}{k-1}}(\log q)^2$ in $H_{q,k}^*$.

Theorem 6. For every $k \geq 3$, there exists a constant $c' > 0$ such that, when q is sufficiently large, we can fix an instance of $H_{q,k}^*$ such that the number of independent sets of size $t = q^{\frac{1}{k-1}}(\log q)^2$ of $H_{q,k}^*$ is at most

$$\left(\frac{c' q}{t}\right)^t$$

Proof. By Lemma 4, we can fix an instance of $H_{q,k}^*$ such that for every $S \subseteq V(H_{q,k}^*)$ with $|S| \geq 4kq$ there exists a subgraph H of $H_{q,k}^*[S]$ such that for all $1 \leq i \leq k$,

$$\Delta_i(H) \leq \frac{6(16k)^{2k} |E(H)|}{|S|} \left(\frac{q^{\frac{1}{k-1}}}{|S|}\right)^{i-1} \quad (3)$$

We will first prove the following claim.

Claim 1. There exists a constant $\epsilon > 0$ such that for every $S \subseteq V(H_{q,k}^*)$ with $|S| > 4kq$, there exists a collection \mathcal{C}_S of at most

$$\exp\left(\frac{\log q \cdot q^{\frac{1}{k-1}}}{\epsilon}\right)$$

subsets of S such that:

- i. For every independent set I of $H_{q,k}^*[S]$, there exists $C \in \mathcal{C}_S$ such that $I \subseteq C$;
- ii. For every $C \in \mathcal{C}_S$, $|C| \leq (1 - \epsilon)|S|$. \square

Proof. Fix an arbitrary $S \subset V(H_{q,k}^*)$ with $|S| \geq 4kq$. By Lemma 4 there exists a subgraph H of $H_{q,k}^*[S]$ satisfying Equation (3). By Equation (3), it is easy to check that Equation (2) holds for H , with $L = \frac{|S|}{6(16k)^{2k}}$ and $B = q^{\frac{1}{k-1}}$. Hence by Theorem 5, there exist a constant ϵ' (not depending on S) and a collection \mathcal{C}_S of subsets of S such that

- i. For every independent set I of H , there exists $C \in \mathcal{C}_S$ such that $I \subset C$;
- ii. For every $C \in \mathcal{C}_S$, $|C| \leq |V(H)| - \epsilon' L \leq \left(1 - \frac{\epsilon'}{6(16k)^{2k}}\right)|S|$;
- iii. We have

$$|\mathcal{C}_S| \leq \exp\left(\frac{\log\left(\frac{|V(H)|}{B}\right)B}{\epsilon'}\right) \leq \exp\left(\frac{\log(q^2)q^{\frac{1}{k-1}}}{\epsilon'}\right)$$

Since H is a subgraph of $H_{q,k}^*[S]$, every independent set of $H_{q,k}^*[S]$ is also an independent set of H . Therefore, by taking ϵ sufficiently small with respect to ϵ' and k , we conclude that \mathcal{C}_S has the desired properties. \square

Now we apply Claim 1 iteratively as follows. Fix the constant ϵ guaranteed by Claim 1. Let $\mathcal{C}_0 = \{V(H_{q,k}^*)\}$. Let $t_0 = |V(H_{q,k}^*)| = q^2$ and let $t_i = (1 - \epsilon)t_{i-1}$ for all $i \geq 1$. Let m be the smallest integer such that $t_m \leq 4kq$. Clearly $m = O(\log q)$. Given a set of containers \mathcal{C}_i such that every $C \in \mathcal{C}_i$ satisfies $|C| \leq t_i$, we construct \mathcal{C}_{i+1} as follows: for every $C \in \mathcal{C}_i$, if $|C| \leq t_{i+1}$, then we put it into \mathcal{C}_{i+1} ; otherwise, if $|C| > t_{i+1}$, by Claim 1, there exists a collection \mathcal{C}' of containers for $H_{q,k}^*[C]$ such that every $C' \in \mathcal{C}'$ satisfies $|C'| < (1 - \epsilon)|C| \leq t_{i+1}$ —now we put every element of \mathcal{C}' into \mathcal{C}_{i+1} . Let $\mathcal{C} = \mathcal{C}_m$. Note that

$$\frac{|\mathcal{C}_i|}{|\mathcal{C}_{i-1}|} \leq \exp\left(\frac{\log q \cdot q^{\frac{1}{k-1}}}{\epsilon}\right)$$

Thus

$$|\mathcal{C}_m| = \prod_{i=1}^m \frac{|\mathcal{C}_i|}{|\mathcal{C}_{i-1}|} \leq \exp\left(m \frac{\log q \cdot q^{\frac{1}{k-1}}}{\epsilon}\right)$$

As $m = O(\log q)$, we conclude that there exists a constant $c'' > 0$ such that

$$|\mathcal{C}| = |\mathcal{C}_m| \leq \exp\left(c''(\log q)^2 q^{\frac{1}{k-1}}\right)$$

Also, by definition, we have $|\mathcal{C}| \leq 4kq$ for every $\mathcal{C} \in \mathcal{C}$.

Recall that $t = (\log q)^2 q^{\frac{1}{k-1}}$ and let N_t be the number of independent sets of H of size t . Since every independent set of H of size t is contained in some $\mathcal{C} \in \mathcal{C}$, we have, for some constant $c' > 0$,

$$N_t \leq |\mathcal{C}| \binom{4kq}{t} \leq \left(\frac{c'q}{t}\right)^t$$

6 | Proof of Theorem 2

Proof. Proof of Theorem 2 For every sufficiently large prime power q , we let $t = (\log q)^2 q^{\frac{1}{k-1}}$. By Theorem 6 we can fix an instance of $H_{q,k}^*$ such that the number of independent sets of $H_{q,k}^*$ of size t is at most

$$\left(\frac{c'q}{t}\right)^t$$

for some constant $c' > 0$. Let W be a random subset of $V(H_{q,k}^*)$ where each vertex is sampled independently with probability $p = \frac{t}{c'q}$. Note that $p < 1$ as q is sufficiently large. Then the expected number of independent sets of size t in $H_{q,k}^*[W]$ is at most

$$\left(\frac{c'q}{t}\right)^t p^t \leq 1$$

Let $W' \subseteq W$ be obtained by arbitrarily deleting one vertex in each independent set of size t . Thus the expectation of $|W'|$ is at least

$$pq^2 - 1 = \frac{(\log q)^2}{c'} q^{\frac{k}{k-1}} - 1$$

Hence there exists a choice W' with at least this many vertices. Let $H' = H_{q,k}^*[W']$. By definition of W' , we have $\alpha(H') < t$. Moreover, by Proposition 2 we know that H' is F -free. Thus, we have

$$r(F, t) \geq \frac{(\log q)^2}{c'} q^{\frac{k}{k-1}}$$

Recall that $t = (\log q)^2 q^{\frac{1}{k-1}}$. It is well-known that for every integer n there exists a prime q such that $n/2 \leq q \leq n$. Thus for every n sufficiently large, it is easy to find a prime q such that

$$(\log q)^2 q^{\frac{1}{k-1}} \leq n \leq 2(\log q)^2 q^{\frac{1}{k-1}}$$

Therefore we conclude that there exists a constant $c > 0$ such that for all n sufficiently large,

$$r(F, n) \geq \frac{cn^k}{(\log n)^{2k-2}}$$

References

1. M. Ajtai, J. Komlós, and E. Szemerédi, “A Note on Ramsey Numbers,” *Journal of Combinatorial Theory Series A* 29, no. 3 (1980): 354–360.
2. J. H. Kim, “The Ramsey Number $r(3, t)$ Has Order of Magnitude $t^2/\log t$,” *Random Structures & Algorithms* 7, no. 3 (1995): 173–207.
3. G. Fiz Pontiveros, S. Griffiths, and R. Morris, “The Triangle-Free Process and the Ramsey Number $R(3, k)$,” *Memoirs of the American Mathematical Society* 263, no. 1274 (2020): v+125.
4. T. Bohman and P. Keevash, “Dynamic Concentration of the Triangle-Free Process,” *Random Structures & Algorithms* 58, no. 2 (2021): 221–293.
5. T. Bohman and P. Keevash, “The Early Evolution of the H -Free Process,” *Inventiones Mathematicae* 181, no. 2 (2010): 291–336.
6. J. Spencer, “Ramsey’s Theorem – a New Lower Bound,” *Journal of Combinatorial Theory Series A* 18, no. 1 (1975): 108–115.
7. J. Spencer, “Asymptotic Lower Bounds for Ramsey Functions,” *Discrete Mathematics* 20 (1977): 69–76.

8. Y. Li, C. C. Rousseau, and W. Zang, "Asymptotic Upper Bounds for Ramsey Functions," *Graphs and Combinatorics* 17 (2001): 123–128.
9. J. B. Shearer, "A Note on the Independence Number of Triangle-Free Graphs," *Discrete Mathematics* 46, no. 1 (1983): 83–87.
10. S. Mattheus and J. Verstraëte, "The Asymptotics of $r(4, t)$," *Annals of Mathematics* 199, no. 2 (2024): 919–941.
11. K. T. Phelps and V. Rödl, "Steiner Triple Systems With Minimum Independence Number," *Ars Combinatoria* 21 (1986): 167–172.
12. A. Kostochka, D. Mubayi, and J. Verstraëte, "Hypergraph Ramsey Numbers: Triangles Versus Cliques," *Journal of Combinatorial Theory Series A* 120, no. 7 (2013): 1491–1507.
13. J. Cooper and D. Mubayi, "Sparse Hypergraphs With Low Independence Number," *Combinatorica* 37, no. 1 (2017): 31–40.
14. P. Erdős and A. Hajnal, "On Ramsey Like Theorems. Problems and Results," in *Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972)* (Southend-on-Sea: Inst. Math. Appl., 1972), 123–140.
15. J. Fox and X. He, "Independent Sets in Hypergraphs With a Forbidden Link," *Proceedings of the London Mathematical Society* 123, no. 4 (2021): 384–409.
16. A. Kostochka, D. Mubayi, and J. Verstraëte, "On independent sets in hypergraphs," *Random Structures & Algorithms* 44, no. 2 (2014): 224–239.
17. T. Bohman, D. Mubayi, and M. Picollelli, "The Independent Neighborhoods Process," *Israel Journal of Mathematics* 214 (2016): 333–357.
18. J. Balogh, R. Morris, and W. Samotij, "Independent sets in hypergraphs," *Journal of the American Mathematical Society* 28, no. 3 (2015): 669–709.
19. D. Saxton and A. Thomason, "Hypergraph Containers," *Inventiones Mathematicae* 201, no. 3 (2015): 925–992.
20. D. Mubayi and J. Verstraëte, "A Note on Pseudorandom Ramsey Graphs," *Journal of the European Mathematical Society* 26, no. 1 (2024): 153–161.
21. W. H. Haemers, "Interlacing Eigenvalues and Graphs," *Linear Algebra and its Applications* 226, no. 228 (1995): 593–616.
22. S. Janson, T. Luczak, and A. Rucinski, *Random Graphs* (Hoboken, NJ, USA: John Wiley & Sons, 2011).
23. R. Morris, W. Samotij, and D. Saxton, "An Asymmetric Container Lemma and the Structure of Graphs With no Induced 4-Cycle," *Journal of the European Mathematical Society* 26, no. 5 (2024): 1655–1711.