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ABSTRACT. We consider the question of when the operation of contact surgery with positive surgery
coefficient, along a knot K in a contact 3-manifold Y , gives rise to a weakly fillable contact struc-
ture. We show that this happens if and only if Y itself is weakly fillable, and K is isotopic to the
boundary of a properly embedded symplectic disk inside a filling of Y . Moreover, if Y ′ is a contact
manifold arising from positive contact surgery along K, then any filling of Y ′ is symplectomorphic
to the complement of a suitable neighborhood of such a disk in a filling of Y .

Using this result we deduce several necessary conditions for a knot in the standard 3-sphere
to admit a fillable positive surgery, such as quasipositivity and equality between the slice genus
and the 4-dimensional clasp number, and we give a characterization of such knots in terms of a
quasipositive braid expression. We show that knots arising as the closure of a positive braid always
admit a fillable positive surgery, as do knots that have lens space surgeries, and suitable satellites
of such knots. In fact the majority of quasipositive knots with up to 10 crossings admit a fillable
positive surgery. On the other hand, in general, (strong) quasipositivity, positivity, or Lagrangian
fillability need not imply a knot admits a fillable positive contact surgery.

1. INTRODUCTION

Every closed, oriented 3-dimensional manifold Y admits contact structures, and any contact
structure on Y can be obtained from the standard contact structure on S3 by contact surgery
along a Legendrian link. Many geometric properties of contact structures are preserved by con-
tact surgery with negative (contact) surgery coefficient, such as tightness and the various notions
of fillability, so it is natural to consider the effect of positive contact surgery on these properties.
Here we study the case of surgery along a single knot K ⊂ Y and ask when the result of con-
tact surgery, with some positive contact surgery coefficient, yields a fillable contact structure.
Theorem 1.1 below provides, in a certain sense, a complete answer to this question.

Note that in general the result of contact surgery along a Legendrian knot depends on cer-
tain choices: according to [12], any contact surgery along a Legendrian L can be described as a
sequence of ±1 contact surgeries—for which the result is uniquely determined—along a Legen-
drian link inductively constructed by taking contact-framed pushoffs of L and stabilizing them
suitably. The choices involved amount to whether the stabilizations are taken to be positive or
negative, or a combination. We will always consider the situation in which all stabilizations are
chosen to be negative. (In fact, in the case of an integer contact surgery only a single stabilization
is required.)

Recall that a compact symplectic 4-manifold (Z, ω) is a weak symplectic filling of (Y, ξ) if
∂Z = Y as oriented manifolds, and ω is positive on the contact planes ξ (here, and throughout,
we are supposing that ξ has a given orientation). We say (Z, ω) is a strong filling of (Y, ξ) if there
is a Liouville vector field defined in a neighborhood of Y and directed out of Z, whose induced
contact structure is ξ.
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Theorem 1.1. Let K ⊂ Y be an oriented Legendrian knot in a closed contact 3-manifold (Y, ξ). For
an integer n, let ξ−n (K) denote the contact structure obtained by contact n-surgery along K using “all
negative stabilizations.” Then there exists n > 0 such that ξ−n (K) is weakly symplectically filled by some
symplectic manifold (Z ′, ω′), if and only if both of the following hold:

• (Y, ξ) is weakly symplectically fillable.
• Some weak filling (Z, ω) of (Y, ξ) contains a properly embedded symplectic disk ∆ such that ∂∆

is a positive transverse pushoff of K.

Moreover, in this situation Z and ∆ can be chosen so that (Z ′, ω′) is symplectomorphic to the complement
of a suitable neighborhood of ∆ in Z.

We will use the phrase “K admits a fillable positive surgery” as shorthand for the condition
that some n > 0 exists as in the theorem. In fact, if K ⊂ Y is a smooth knot, we will say K
admits a fillable positive surgery if there exists some Legendrian representativeK of K with that
property. Note that any smooth knot admits many inequivalent Legendrian representatives, but
the condition for fillable surgery depends only on the transverse pushoff of such representa-
tives. In particular, since oriented Legendrians K and K′ differing by negative stabilization(s)
have equivalent transverse pushoffs, the question of admitting a fillable positive surgery has the
same answer for K and K′. As we will review below (Remark 2.3), the fillable contact structures
resulting from such surgeries are contactomorphic so long as the underlying smooth surgeries
are equivalent.

The forward implication of the “if and only if” statement of the theorem was proved by Con-
way, Etnyre, and the second author in [10, Theorem 1.13] (that theorem is stated only for knots in
the standard 3-sphere, but the same argument proves the more general case). We give a slightly
different proof in Section 3 (see Theorem 3.3). The converse direction is a consequence of the
following result.

Theorem 1.2. Let (Z, ω) be a weak symplectic filling of (Y, ξ), and ∆ ⊂ Z a properly embedded sym-
plectic disk with positively transverse boundary K ⊂ Y . Then ∆ has an arbitrarily small tubular neigh-
borhood U such that if Z ′ = Z − U and ω′ = ω|Z′ , then (Z ′, ω′) is a weak symplectic filling of a
contact structure ξ′ on Y ′ = ∂Z ′. Moreover, the contact structure ξ′ is obtained from ξ by an inadmis-
sible transverse surgery along K, or (equivalently) from a positive contact surgery along a Legendrian
approximation of K.

For a description of the notion of inadmissible transverse surgery and its relationship with
positive contact surgery, the reader is referred to [9].

We remark that if K ⊂ Y has the property that ξ−n (K) is weakly fillable for some n > 0, then
ξ−m(K) is fillable for all m ≥ n. There are various ways to see this; a proof from the current point
of view is easily supplied by symplectically blowing up points of the symplectic disk ∆ ⊂ Z
provided by Theorem 1.1 (see the discussion in Section 2.3). Thus, for givenK, the set of integers
n > 0 such that ξ−n (K) is weakly fillable is either empty or an interval of the form [n0,∞).

When specialized to knots in the standard contact structure ξstd on S3, Theorem 1.1 provides
very effective means to determine whether a knot K admits a fillable positive surgery. (We
remark that in the case (Y, ξ) = (S3, ξstd), weak and strong fillability of ξ−n (K) are equivalent. See
Corollary 3.11.) Indeed, the symplectic fillings of (S3, ξstd) are all symplectomorphic to blowups
of the 4-ball, so the question reduces to asking whether K is the boundary of a symplectic disk
inside such a blowup.
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On the side of constraints we have the following corollary, where we recall that the 4-dimensional
clasp number c∗(K) is the minimum number of double points in any generically immersed disk
inB4 with boundaryK. The slice genus g∗(K) is the minimum genus of any smoothly embedded
surface in B4 with boundary K; by smoothing double points we have the obvious inequality
g∗(K) ≤ c∗(K) for any K ⊂ S3. In general, the difference between c∗(K) and g∗(K) can be
arbitrarily large [11, 32]. The definition of quasipositivity is reviewed in Section 2.1.

Corollary 1.3. If K ⊂ (S3, ξstd) admits a fillable positive surgery, then K must satisfy:
• K is quasipositive.
• The invariants g∗(K) and c∗(K) are equal.

Moreover, K bounds a properly immersed disk in B4 with only transverse double point singularities,
having c∗(K) = g∗(K) positive double points, and no negative double points.

The proof of Corollary 1.3 is spelled out in Section 2. It immediately implies the following,
which in particular answers Question 2 of [10].

Corollary 1.4. There exist Legendrian knots K in S3 such that ξ−n (K) is tight for all sufficiently large n,
but ξ−n (K) is not fillable for any n > 0. In fact, there exist such K among positive knots, in particular
those that bound Lagrangian surfaces embedded in B4.

Indeed, one need only consider the knot K = 74 in the standard tables. This knot has g∗(K) =
1, but it was shown by Owens-Strle [41] that c∗(K) = 2. Hence K admits no fillable positive
surgery by Corollary 1.3. On the other hand, K is a positive knot in the sense that it admits a
diagram with only positive crossings, hence is Lagrangian fillable by [23], and it is not hard to see
that for K a Legendrian representative with maximal Thurston-Bennequin number, the contact
surgeries ξ−n (K) are tight for all n ≥ 1 (for example, it follows from [19] or [35] that the Heegaard
Floer contact invariants of these contact structures are all nonzero). Note that positive knots are
in particular strongly quasipositive [48], so Corollary 1.4 also shows that strong quasipositivity
does not imply a fillable positive surgery.

In the other direction, in Section 2.1 we provide general and comparatively computable con-
ditions under which a knot in S3 admits a fillable positive surgery. These conditions are given
in Theorems 2.6 and 2.12. For the sake of illustration in this introduction, we have the following
result on existence of fillable positive surgeries for particular classes of knots.

Corollary 1.5. A knot K ⊂ S3 admits a fillable positive surgery if it satisfies any of the following
conditions.

(a) K is isotopic to the closure of a positive braid.
(b) Some smooth surgery on K (with positive surgery coefficient) yields a lens space.
(c) K is obtained as a twisted satellite Pm(C), where:

• C ⊂ S3 is a knot that admits a fillable positive surgery,
• m is the smooth surgery coefficient corresponding to some such fillable surgery on C, and
• the pattern P is a braided fillable pattern in the sense of Definition 2.14.

(d) In particular a cabled knot K = Cp,q admits a fillable positive surgery, so long as C itself has that
property and the cabling parameters satisfy q/p > m, where m is as in (c).

It is interesting to note that while all known knots that admit a lens space surgery are also
isotopic to the closure of positive braids (up to mirroring; this is observed, for example, in [18]),
our proofs of cases (a) and (b) are different. In particular, part (b) along with Corollary 1.3 implies
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that any knot K with a lens space surgery must have g∗(K) = c∗(K), which does not seem to be
otherwise known in general. Part (c) implies the same property for many L-space knots, but a
priori not all; see the discussion in Section 2.2.

The class of knots admitting fillable positive surgeries is much larger than might be suggested
by Corollary 1.5, however. In Section 2.1 we give a necessary and sufficient condition for fillable
positive surgery in terms of a quasipositive braid expression of a knot; this criterion together
with the constraints of Corollary 1.3 suffices to prove the following.

Corollary 1.6. Of the 59 quasipositive knots of up to 10 crossings listed in the KnotInfo database [8], 48
admit a fillable positive surgery while 11 do not.

Note that only 6 of the knots referenced in this corollary are lens space knots; these and two
others are the only positive braids.

A variety of additional necessary conditions, constructions, and consequences related to fill-
able positive surgeries for knots in S3 are obtained in Section 2. Among these, stated in Corol-
lary 2.5, is that if K ⊂ S3 admits a fillable positive surgery with smooth surgery coefficient
r > 0, then every filling of the corresponding contact structure has negative definite intersection
form. In particular, the surgery manifold S3

r (K) is the boundary of a smooth negative definite
4-manifold, which is a nontrivial constraint. In [40], Owens and Strle consider the question of
when a positive surgery on a knot K ⊂ S3 has this property, and define in this context the
invariant

m(K) = inf{r ∈ Q>0 |S3
r (K) bounds a negative definite 4-manifold}.

They prove that m(K) exists for all K (i.e., that for any knot, some positive surgery bounds a
negative definite 4-manifold). In a similar spirit, we can define

µ(K) = min{r ∈ Z≥0 |K admits a fillable positive surgery with smooth coefficient r},

where if no fillable positive surgery exists then we set µ(K) = ∞. Then Corollary 2.5 implies
that for any K ⊂ S3 we have m(K) ≤ µ(K). Strictly, the case µ(K) = 0 requires a special
argument: if µ(K) = 0 then necessarily K is slice, as follows from the discussion on fillable
surgery coefficients at the beginning of Section 2.3, and if K is slice it is not hard to show that
m(K) = 0.

A basic property of µ(K) is as follows:

Proposition 1.7. If µ(K) <∞ then we have

2g∗(K) ≤ µ(K) ≤ 4g∗(K).

The first inequality is strict unless g∗(K) = 0.

This proposition is proved in Section 2.3. Equality can occur for the second inequality in
Proposition 1.7, as follows from the next result.

Proposition 1.8. For the positive torus knot T (p, q) we have µ(T (p, q)) = dm(T (p, q))e.

This is proved in Theorem 2.21. The value of m(T (p, q)) was computed by Owens and Strle
(and is reviewed in Section 2.3), and in particular we have m(T (2, 2n+ 1)) = 4g∗(T (2, 2n+ 1) =
4n. Hence the second inequality of Proposition 1.7 is an equality in this case. For a “typical”
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torus knot the inequality is strict; for example we have

µ(T (p, p− 1)) = (p− 1)2

4g∗(T (p, p− 1)) = 2(p− 1)(p− 2).

It follows from these examples that in general, the smallest fillable surgery coefficient µ(K) is
not, for instance, determined by the genus or slice genus of K.

Corollary 1.9. If K is a knot that admits a fillable positive surgery, then m(K) ≤ 4g∗(K).

Note that Owens-Strle show that for general K one has the bound m(K) ≤ 4u+(K), where
u+ is the minimum number of changes of positive crossings in an unknotting sequence for K. A
similar argument shows m(K) ≤ 4c+(K), where c+(K) is the minimal number of positive self-
intersections in a normally immersed disk in B4 with boundary K. In general, these bounds can
be arbitrarily larger than 4g∗(K) [11,32], while as we have seenm(K) = 4g∗(K) can occur. In fact,
since there are examples of knots with fillable positive surgery for which u+(K) = u(K) > g∗(K)
(such as the knot 10126), the bound in the corollary above is sharper than the unknotting bound.
On the other hand, of course, if K admits a fillable positive surgery then g∗(K) = c∗(K) and
c−(K) = 0, by Corollary 1.3. We do not know an example of a knot with µ(K) < ∞ for which
dm(K)e < µ(K), but expect that such knots exist; one possibility is the pretzel knot P (−2, 3, 7)
(see Example 2.20).

The paper is organized as follows. In Section 2 we assume Theorems 1.1 and 1.2 and deduce
the rest of the results stated above along with some additional refinements. Section 2.1 describes
several conditions equivalent to the existence of a fillable positive surgery, including Theorem
2.12 giving a braid characterization. The latter is used to show that certain twist knots admit
fillable positive surgeries, and leads to Table 1 in Section 4, verifying Corollary 1.6.

Section 2.2 contains constructions and in particular gives the proof of Corollary 1.5; it also
includes some remarks on the question of whether any L-space knot admits a fillable positive
surgery.

In Section 2.3 we consider the invariant µ(K), the minimal fillable positive surgery coefficient.
This section includes the proof of Propositions 1.7 and 1.8.

Section 3 contains the proofs of Theorem 1.1 and 1.2 and is the technical core of the paper.
Section 4 tabulates knots with up to 10 crossings that admit fillable positive surgeries.
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2. APPLICATIONS AND EXAMPLES

For this section, we will assume the results of Theorems 1.1 and 1.2, and will mainly consider
Legendrian and transverse knots in the standard contact structure on S3. Before making this
specialization we note that, given a knot with a fillable positive surgery, Theorem 1.1 does not
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specify directly which contact surgery will result in a fillable structure. However, we have the
following basic observation. Let Y be a 3-manifold and K ⊂ Y a nullhomologous knot such that
(Y,K) = ∂(Z,∆) for ∆ ⊂ Z a properly embedded disk in the 4-manifold Z. If one chooses a
smooth 2-chain Σ ⊂ Y with boundary K (e.g., a Seifert surface), then framings on K are identi-
fied with the integers by declaring the framing induced by Σ to correspond to 0. Likewise, Σ can
be used to define a self-intersection number for ∆ by defining ∆ · ∆ to be the self-intersection
of the absolute homology class determined by ∆ ∪ −Σ. (If Y is a rational homology sphere,
these definitions are independent of the choice of Σ.) The following is straightforward, or com-
pare [10, proof of Theorem 1.14].

Lemma 2.1. In the situation above, let Z ′ be the complement of a small tubular neighborhood of ∆, and
Y ′ = ∂Z ′. Then Y ′ is obtained from Y by surgery along K with coefficient equal to −∆ ·∆, where the
surgery coefficient and self-intersection are defined with respect to the same Seifert surface. 2

In particular, if we are given (Y, ξ) and Legendrian K ⊂ Y , and are interested in the smallest
positive contact surgery coefficient n such that ξ−n (K) is fillable, we are equivalently interested
in the greatest self-intersection number of a symplectic disk bounded by a transverse pushoff of
K in some filling of (Y, ξ). If that largest self-intersection number is −p, then the corresponding
fillable contact surgery coefficient is p− tb(K).

Remark 2.2. In light of Lemma 2.1, one consequence of Theorem 1.2 is that if ∆ ⊂ Z is a properly
immersed disk having nullhomologous, positively transverse boundary, in a symplectic mani-
fold weakly filling (Y, ξ), then −∆ ·∆ > tb(K) for any Legendrian approximation K of K = ∂∆.
This is not hard to see directly: for example, one can attach a Stein 2-handle H to Z along K.
Then the Lagrangian core of H admits a symplectic pushoff ∆̃ whose boundary is the transverse
pushoff K, and with self-intersection ∆̃ · ∆̃ = tb(K) − 1. Gluing ∆ and ∆̃ gives a symplectic
sphere S embedded in Z ∪H , where the latter is a weak filling of its boundary. By [14], Z ∪H
embeds in a closed symplectic 4-manifold that we can assume has b+2 ≥ 2, and hence by [36] we
must have S · S < 0. Since S · S = ∆ ·∆ + ∆̃ · ∆̃, it follows that −∆ ·∆ ≥ tb(K). Granted that
the complement of ∆ has fillable boundary given by some contact surgery on K, the inequality
must be strict since contact surgery with smooth framing equal to tb(K) is overtwisted. (In fact,
the same argument applies without the assumption that K is nullhomologous, to show that the
smooth surgery that yields Y ′ in Theorem 1.2 corresponds to a framing that is greater than the
contact framing of K.)

Remark 2.3. Strictly, having found a symplectic disk whose boundary is a transverse pushoff
K of K, Theorem 1.2 says we obtain a fillable positive surgery on a Legendrian approximation
K′ of K, which a priori is not the same Legendrian knot as the original K. We claim that we
can ignore this technicality, i.e. K and K′ either both admit fillable positive surgeries or neither
do. Indeed, since they are approximations of the same transverse knot, K and K′ are related by
negative stabilizations and destabilizations; we claim that a fillable positive contact surgery on
K′ is equivalent to some positive contact surgery on K. To see this, recall first that if K is any
Legendrian that has been stabilized, then ξ+1(K) is overtwisted. Let us write K(k) for the k-fold
negative stabilization of K. Then the fact that ξ−n (K) ∼= ξ−n+1(K(1)) for any n > 0 (see [34, Lemma
2.6]) shows that whenever 0 < n ≤ k we have ξ−n (K(k)) = ξ−+1(K(k−n+1)) is overtwisted, hence in
particular is not weakly fillable. Now, to say that K and K′ are related as above is equivalent to
K(k) = K′(k′) for some k and k′. If ξ−n (K′) is fillable, then so is ξ−n+k′(K

′(k′)) = ξ−n+k′(K
(k)) (being
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equivalent to ξ−n (K′)), and hence n + k′ > k. In that case, we have ξ−n+k′(K
(k)) = ξ−n+k′−k(K) is a

fillable positive surgery on K.

2.1. Equivalent conditions for fillable surgery. In this and following subsections, we consider
Legendrian and transverse knots in (S3, ξstd). The symplectic fillings of the standard 3-sphere are
classified by work of Gromov and McDuff [22,36], and are all symplectomorphic to a symplectic
blowup of the standard 4-ball. From Theorem 1.1 we get:

Proposition 2.4. A Legendrian K in (S3, ξstd) admits a fillable positive contact surgery if and only if a
transverse pushoff of K bounds a symplectic disk embedded in a symplectic blowup of B4. Moreover, any
symplectic filling of such a contact surgery is symplectomorphic to the complement of a small neighborhood
of such a disk.

Since a blowup of B4 has negative definite intersection form, this immediately gives:

Corollary 2.5. If K is a Legendrian knot in S3, and n > 0 is such that ξ−n (K) is weakly symplectically
fillable, then any weak symplectic filling (Z, ω) of ξ−n (K) has b+2 (Z) = 0.

Since a disk ∆ in a blowup of B4 necessarily has non-positive self-intersection, it also follows
from the above and Lemma 2.1 that for a LegendrianK ⊂ (S3, ξstd), every fillable positive contact
surgery along K has nonnegative smooth surgery coefficient. This observation is refined and
extended by Proposition 1.7, to be proved in Section 2.3.

The condition that K bounds an embedded symplectic disk in a blowup of B4 can be trans-
lated into the condition that K bounds a singular symplectic disk in B4 itself:

Theorem 2.6. An oriented Legendrian K ⊂ S3 admits a fillable positive contact surgery if and only if
the positive transverse pushoff of K is the boundary of a (possibly) singular symplectic disk in B4 having
locally holomorphic singularities.

Proof. Let Z ∼= B4#kCP 2 be a blowup of the 4-ball equipped with some symplectic structure
ω, obtained by blowing up the standard structure on B4. Let ∆ ⊂ Z be a properly embed-
ded symplectic disk with boundary a positive transverse knot K ⊂ S3. Adapting arguments
of McDuff [36, Lemma 3.1] (see also Boileau-Orevkov [5, proof of Lemma 2]) we can find an
almost-complex structure J on Z compatible with ω such that ∆ is J-holomorphic, and such
that the exceptional spheres E1, . . . , Ek of the blowup are also J-holomorphic: in particular each
geometric intersection between ∆ and Ej contributes positively to the intersection number. By
perturbing ∆ slightly (symplectically) we can suppose that ∆ intersects each Ej transversely if
we wish. In any case, the image of ∆ under the blow-down Z → B4 is then a (possibly) singular
symplectic disk whose singularities are modeled on those of a holomorphic curve.

Conversely, any singular symplectic disk as in the statement can be desingularized by suitable
blowups, and remains symplectic in the blown-up 4-ball. �

Recall that a transverse knot in (S3, ξstd) is transversely isotopic to the closure of a braid; two
braid closures represent transversely isotopic knots if and only if the closed braids are related
by braid isotopy and by positive braid stabilization and destabilization. A braid β, as an ele-
ment of the n-stranded braid group Brn, is quasipositive if it can be expressed as a product of
conjugates of positive powers of the standard Artin generators σ1, . . . , σn−1 ∈ Brn. We will say
that a transverse knot is quasipositive if it is transversely isotopic to the closure of a quasipos-
itive braid. The condition of quasipositivity is intimately tied to symplectic topology. Indeed,
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Boileau-Orevkov [5] show that if K is the transverse boundary of a symplectic surface smoothly
embedded in B4 then K is quasipositive. Conversely, by work of Rudolph [45], a quasipositive
knot is the boundary of an algebraic curve (in particular, smooth symplectic surface) in B4.

Now, a singular symplectic disk can always be smoothed to an embedded symplectic sur-
face of (in general) higher genus. From Theorem 2.6 we infer the following slight refinement of
Corollary 1.3:

Corollary 2.7. If K is a Legendrian in S3 that admits a fillable positive contact surgery, then the trans-
verse pushoff K of K is quasipositive. Moreover, K bounds a smoothly and symplectically immersed disk
in the 4-ball, having only positive double point singularities, and the number of double points is equal to
the slice genus g∗(K).

Proof. The first claim follows from the discussion above. For the second, we make a symplectic
perturbation of an embedded disk in a blowup of B4 bounded by K such that it intersects the
exceptional spheres transversely. Observe that if for some exceptional sphere Ej we have that
∆ ∩ Ej is transverse and consists of mj points, then the corresponding singularity after blow-
ing down is an ordinary multiple point of order mj . Now make a further perturbation after
the blowdown so that any higher-order multiple points become collections of ordinary double
points. These are all positive double points because the singularity has a holomorphic model.
To see there are exactly g∗(K) double points, observe that we can find a nearby embedded sym-
plectic surface in B4 (smoothing the double points) with boundary K, whose genus equals the
number of double points in the immersed disk. A symplectic surface bounding K necessarily
has genus equal to the slice genus [5, 47]. �

Remark 2.8. By the argument in the preceding proof, the condition in Theorem 2.6 of bounding
a singular symplectic disk with holomorphic singularities can be replaced by the condition that
the symplectic disk have only ordinary double point singularities (all positive). In other words,
the converse of Corollary 2.7 is true as well.

In general, we expect that without the condition that the disk be symplectically immersed, the
converse of Corollary 2.7 is false. However if we specialize to transverse knots whose underlying
knot type is slice, i.e. bounds an embedded disk in B4, then this condition is automatic:

Corollary 2.9. A Legendrian representative K of a slice knot K ⊂ S3 admits a fillable positive contact
surgery if and only if a transverse pushoff of K is transversely isotopic to the closure of a quasipositive
braid.

Proof. If a transverse knot K is slice and quasipositive, then a symplectic surface in B4 bounded
by K must be a disk. In particular this provides the embedded symplectic disk in a filling of S3

that yields a fillable surgery. The “only if” follows from Corollary 2.7. �

Corollary 2.10. Let K be a Legendrian knot such that:
• The underlying knot type of K is slice,
• The Thurston-Bennequin invariant of K is tb(K) = −1.

Then K is Lagrangian slice in B4 if and only if the transverse pushoff of K is quasipositive as in Corollary
2.9.

Proof. A Lagrangian disk with Legendrian boundary can be perturbed to a symplectic disk with
positively transverse boundary [7, 13], hence by [5] again we find that if K is Lagrangian slice
then the pushoff of K is quasipositive.
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For the converse, quasipositivity means that the transverse pushoff K bounds an embedded
symplectic (indeed complex) surface in B4, which necessarily realizes the 4-ball genus of K.
Since K is slice we find that K bounds an embedded symplectic disk ∆ ⊂ B4, whose comple-
ment is then a symplectic filling of some positive contact surgery on K by Theorem 1.2. The
complement of ∆ in B4 has the homology of S1×B3, and its boundary the homology of S1×S2.
It follows that the topological surgery coefficient is necessarily 0, and since tb(K) = −1 the con-
tact surgery coefficient is +1. But by [10], contact +1 surgery on K is fillable if and only if K is
Lagrangian slice. �

The distinction between the situations of the two preceding corollaries, both dealing with slice
knots, can be viewed either in terms of the surgery coefficient resulting in a fillable surgery, or
in terms of the Thurston-Bennequin number. In either corollary, we find a fillable surgery by
removing an embedded symplectic disk from the 4-ball; the resulting 3-manifold is necessarily
obtained by smooth 0-surgery. The corresponding contact surgery coefficient depends on the
Thurston-Bennequin number of K; for example the mirror of the knot 820 is slice, quasipositive,
and admits a Legendrian representative having tb(K) = −2. The fillable contact manifold arising
as the boundary of the complement of a symplectic slice disk for K is then smooth 0-surgery,
and contact +2 surgery on K. Contact +1 surgery on this Legendrian knot is not fillable since
820 is not Lagrangian slice [10], corresponding to the fact that 820 does not admit a Legendrian
representative with Thurston-Bennequin number −1 (this also follows since the Heegaard Floer
contact invariant of the corresponding contact structure vanishes, see [35]).

Remark 2.11. It appears to be an open question whether any slice knot that admits a Legendrian
representative having tb = −1 must be Lagrangian slice. In light of Corollary 2.10, this is equiv-
alent to the a priori weaker condition that the knot bound a symplectic disk inB4, or equivalently
that such a knot must have a quasipositive pushoff.

The condition for existence of a fillable positive surgery given in Theorem 2.6 has an equiva-
lent formulation in terms of quasipositive braid expressions. As mentioned previously, a braid
β ∈ Brn is said to be quasipositive if it can be expressed as a product of expressions of the
form gσg−1, for σ a standard generator of Brn and g ∈ Brn any element. Such an expres-
sion is called a positive band. In fact, any decomposition of β as a product of positive bands
can be thought of as arising from an algebraic curve, specifically a smooth algebraic subset
C = {F (z, w) = 0} ⊂ D2 × C ⊂ C× C, such that

• F is a polynomial of the form wn+ fn−1(z)wn−1 + · · ·+ f0(z). In particular, for fixed z the
equation F (z, w) = 0 has exactly n solutions counted with multiplicity. It follows that if
D2(R) denotes the disk of radius R in C (and we write D2 for D2(1)), then the curve C is
contained in D2 ×D2(R) for sufficiently large R.
• The intersectionC∩S1×D2(R) ⊂ D2×D2(R) is equivalent to the closure β̂ of β. Here we

smooth the corners ofD2×D2(R) and identify the boundary with S3, where the complex
tangencies determine the standard contact structure.
• The map C → D2 induced by the projection to z is a simple branched covering, with

branch points in 1-1 correspondence with the positive bands in the decomposition of β.
• The braid word β arises as the monodromy of C around ∂D2, in the sense described

in [45].
The fact that any quasipositive braid closure arises this way was proved by Rudolph [45]. We
are interested in a variation on this situation, in which the curve C is not necessarily smooth but
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may have nodes, and also is required to have genus 0. With this in mind, let us call an element
of the braid group Brn of the form gσ2g−1 a positive node, where again σ is a standard generator.

Theorem 2.12. A Legendrian knot K in (S3, ξstd) admits a fillable positive contact surgery if and only if
a transverse pushoff K of K is transversely isotopic to the closure of a braid of the form

β = β1 · · ·βk ∈ Brn

where each βj is either a positive band or a positive node, and such that there are exactly n − 1 positive
bands among the βj .

It is not hard to see that the condition on the number of bands in the expression of the state-
ment is equivalent to the requirement that there are exactly g∗(K) positive nodes in that expres-
sion.

Proof. By Theorem 2.6 and Remark 2.8, the claim is equivalent to the assertion that K bounds an
immersed symplectic disk in B4 with only positive double points if and only if it is equivalent to
a braid of the given form. The forward implication follows from an adaptation to the immersed
case of Boileau-Orevkov’s proof that a symplectic surface in B4 is a quasipositive (or “positively
braided”) surface in the sense of [5, Definition 1] (see also [46]). We note that the monodromy
associated to a simple double point is the square of an Artin generator and thus each double
point gives rise to a positive node factor in β. The remaining positive bands correspond to
simple branch points of the covering C → D2; the restriction on the number of positive bands is
equivalent to the condition that the surface be irreducible and have genus 0, by an easy exercise
with the Riemann-Hurwitz formula.

In the other direction, a braid of the given form arises as the monodromy of an algebraic curve
in D2×D2(R) as above, having a simple double point for each positive node βj , as follows from
Orevkov’s generalization [39] of Rudolph’s construction (see also [49, Theorem 73]). Granted
that β̂ is a knot, such a curve must have genus 0 and k − n+ 1 double points. �

The conditions in Theorem 2.12 and the preceding results allow for straightforward deter-
mination for many knots in the knot table whether or not there is a Legendrian representative
admitting a fillable positive surgery. Indeed, by Corollary 2.7 we need consider only quasiposi-
tive knots, and for these it is often straightforward to obtain a braid expression of the sort given
in Theorem 2.12. For example, the knot 10142 is listed in KnotInfo [8] as quasipositive with the
following braid expression as a product of positive bands (in which the only band that includes
a nontrivial conjugation is enclosed in parentheses):

β = σ1σ1︸︷︷︸σ1(σ3σ2σ
−1
3 )σ1σ1︸︷︷︸σ1σ2σ3 ∈ Br4 .

To show 10142 admits a fillable positive surgery we must arrange this expression into a product of
3 positive bands, and the remaining terms must pair into positive nodes (conjugates of squares of
generators). Two such nodes are indicated by the braces above, but this leaves 5 bands (the four
remaining unconjugated generators and the band in parentheses) rather than 3. Instead, one can
replace the occurrence of σ2 in the parentheses by σ1σ2σ1σ

−1
2 σ−1

1 , and after a minor manipulation
we obtain

β = σ1σ1︸︷︷︸σ1σ1︸︷︷︸(σ3σ2σ1σ
−1
2 σ−1

3 )σ1σ1︸︷︷︸σ2σ3,

containing only 3 bands and the remaining terms paired into nodes. Similar arguments, together
with the conditions of quasipositivity and that c∗(K) = g∗(K) from Corollary 2.7, lead quickly to
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the determination for all knots of 10 or fewer crossings whether a fillable positive contact surgery
exists; see Table 1 in Section 4.

Example 2.13. Similar direct arguments can be used to show that any positive twist knot admits
a fillable contact surgery. Recall that the positive twist knot K` is described by the diagram on
the left of Figure 1, which can be rearranged into the 2-bridge position shown on the right of that
figure. Note that ` is odd; we write ` = 2k + 1. A standard braiding algorithm, for example the
one described in [2, Section 4], yields a description of K` as the closure of a quasipositive braid
(indeed, strongly quasipositive) that includes a positive node term corresponding to the clasp in
the original diagram. Since the slice genus of K` is 1 the corresponding nodal symplectic surface
must have genus 0, and we infer the existence of a fillable surgery by Theorem 2.6.

Explicitly, for indices 1 ≤ i ≤ j ≤ n − 1 we let σ(i, j) ∈ Brn be the positive band given by the
word

σ(i, j) = σiσi+1 · · ·σj−1σjσ
−1
j−1 · · ·σ

−1
i+1σ

−1
i

(such an expression is sometimes called an embedded positive band). Then one can show that
K` is isotopic to the closure of the braid

β = σ(k, 2k + 1)σ(1, 2k + 1)2
k∏
i=1

σ(i, k + i)σ(i+ 1, k + i) ∈ Br2k+2

This expression contains 2k + 1 positive bands and one positive node, showing that K` bounds
a symplectic disk with a single positive double point.

2.2. Constructions. In this subsection we prove Corollary 1.5, which shows that knots in certain
families admit fillable positive surgeries.

Proof of Corollary 1.5, part (a). We suppose thatK is a transverse knot in (S3, ξstd) given as the clo-
sure of a positive braid (that is, a braid expressed as a word in only positive powers of the stan-
dard generators of the braid group). Recall, for example from [16, Lemma 2.4], that an isotopy of
transverse knots sweeps out a symplectic surface in the symplectization of the surrounding con-
tact manifold; if the isotopy condition is relaxed to allow transverse self-intersections at isolated
parameter values then the swept-out surface is symplectically immersed. Compared to [16] we
run things backwards: we consider the “negative half” of the symplectization of (S3, ξstd) lying
inside B4, so increasing the time parameter in the isotopy corresponds to decreasing the radial
coordinate.

In [6, Section 4], Boileau and Weber give an unknotting algorithm for the closure of any braid
β that requires at most 1

2(`(β) − n + r) crossing changes, where `(β) is the word length of β, n
is the braid index, and r the number of components of the closure β̂. In particular, each crossing

ℓ

Kℓ

· · ·

FIGURE 1. On the left is the positive twist knot K` where ` = 2k+ 1. On the right
is K` in 2-bridge position where the lower twist region has ` half twists.
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change is made in the diagram of β coming from its expression in braid generators. Applied to
a positive braid whose closure is a knot, the algorithm provides a sequence of crossing changes,
necessarily from positive to negative, from β to a braid ε that, after a braid isotopy, contains
exactly n − 1 (positive) crossings and whose closure is unknotted. It is easy to see that the
closure ε̂ of such a braid bounds a smooth symplectic disk in B4. (For example, the self-linking
number of ε̂ is the writhe, or algebraic word length, minus the braid index, in this case −1. Since
ε̂ is unknotted and the unknot is transversely simple, ε̂ is transversely isotopic to a standard
unknot. Alternatively, one can use the results cited in the proof of Theorem 2.12 to construct a
smooth symplectic disk bounded by ε̂ without involving any braid (de)stabilizations.) This disk
together with the immersed annulus corresponding to the sequence of crossing changes gives
an immersed symplectic disk in B4 with boundary β̂; all self-intersections are positive since all
crossings changed from positive to negative. HenceK has a fillable positive surgery by Theorem
2.6. �

Proof of Corollary 1.5, part (b). It is well known that every tight contact structure on a lens space is
symplectically fillable [30]. Hence, given a lens space knotK ⊂ S3 (which is to say a smooth knot
such that S3

m(K) is a lens space for some m > 0), it suffices to show that there is a Legendrian
representative of K so that the contact surgery corresponding to m has positive contact surgery
coefficient and is tight. Now, a lens space knot is necessarily strongly quasipositive (see [25, 38,
42], or [4] for a self-contained proof). In particular K is isotopic to the boundary of an embedded
symplectic surface S inB4, and is thus can be realized as a transverse knot in the standard contact
structure of S3 such that the self-linking number s`(K) is equal to 2g(S) − 1, and g(S) = g∗(K)
(which equals g(K) by strong quasipositivity). A Legendrian approximationK of this transverse
knot then has tb(K)+ | rot(K)| = 2g∗(K)−1. IfK is oriented suitably, it then follows from [19,35]
that ξ−n (K) has nonvanishing Heegaard Floer contact class—and in particular is tight—whenever
the smooth surgery coefficient m = n + tb(K) is at least 2g∗(K). (Note that this conclusion
requires the additional hypothesis that ε(K) ≥ 0, where ε is the concordance invariant defined
by Hom [27]. That this holds follows from [27, Proposition 3.6(4)], using the fact that for strongly
quasipositive knots, τ(K) = g∗(K) = g(K).)

Hence for tightness we need to see that the surgery coefficient yielding a lens space (corre-
sponds to a positive contact surgery and) is at least 2g∗(K). But by [21, Theorem 1.1], if surgery
on K with coefficient m > 0 is a lens space then m > 2g(K) − 1, which is also at least tb(K).
Thus the contact surgery giving a lens space has positive contact surgery coefficient and is tight,
hence fillable. �

For part (c) of Corollary 1.5, we need a definition. Recall that a pattern (for a satellite operation)
is a knot P ⊂ S1 ×D2 in a solid torus. For a knot K ⊂ S3, the satellite knot P (K) is the (isotopy
class of the) image of P under an embedding S1 × D2 → S3 that maps S1 × {0} onto K, and
a pushoff S1 × z to a 0-framed longitude of K. More generally, the twisted satellite P`(K) is
obtained by a similar construction with the condition that S1 × z is identified with an `-framed
longitude, or equivalently links K ` times.

Definition 2.14. Consider S3 as the unit sphere in C2, and fix a smooth identification S1×D2 →
S3 ∩ {|z2| ≤ 1

2} as a 0-framed neighborhood of the unknot in S3. A braided fillable pattern is a
pattern knot P ⊂ S1 ×D2, subject to the following conditions:

• Under the identification above, P is a transverse knot in S1 ×D2 ⊂ S3.



FILLABLE CONTACT STRUCTURES FROM POSITIVE SURGERY 13

• There exists an immersed symplectic disk ∆P ⊂ {|z2| ≤ 1
2} ⊂ B4 with only positive

double point singularities, with ∂∆P = P .

Clearly a braided fillable pattern, considered as a knot in S3, is presented as a braid closure:
that is, P (U) = β̂ for some braid β, where U is the unknot. Moreover, β can be expressed
as a product of positive bands and positive nodes, satisfying the condition in Theorem 2.12.
On the other hand if β is expressed as in Theorem 2.12, then as in the proof of that theorem,
P (U) is identified with the boundary of a nodal algebraic curve in D2 × D2(R). Rescaling the
second coordinate if necessary, we can find an algebraic, hence symplectic, disk as specified in
the definition above. Part (c) of Corollary 1.5 is equivalent to the following.

Proposition 2.15. Let C be a Legendrian in S3 that admits a fillable positive contact surgery, whose
corresponding smooth surgery coefficient is m. Let C be the smooth knot underlying C, and let P be a
braided fillable pattern. Then K = Pm(C) admits a Legendrian representative having a fillable positive
contact surgery.

Proof. We wish to show that K bounds an embedded symplectic disk in some blowup of B4. By
hypothesis, C can be described as the boundary of such a disk ∆C ⊂ B4#kCP 2, such that−∆C ·
∆C = m. Let ∆P ⊂ B4 be a nodal algebraic disk lying in {|z2| ≤ 1

2}, whose intersection with
S3 is the pattern P . By further rescaling z2 as above, we can suppose that ∆P lies in {|z2| < ε}
for any chosen ε > 0; again rescaling the second coordinate preserves the fact that the immersed
disk is holomorphic and hence it also remains symplectic.

For convenience, we can rescale the symplectic form on B4#kCP 2 so that the disk ∆C has
area π. Then by standard neighborhood theorems in symplectic geometry, for small enough
ε > 0 there is a symplectomorphism F from D2 × D2(ε) to a neighborhood of ∆C . Strictly, this
may involve “trimming” a subset of D2 × D2(ε) contained in {1 − δ ≤ z1 ≤ 1} × D2(ε), but
this does not affect the argument. In particular, the image under F of the disk ∆P is a singular
symplectic disk in B4#kCP 2, having only positive nodes as singularities, whose boundary is
clearly the satellite P`(C) for some `. Moreover, if we take C to be positively transverse (i.e., a
transverse pushoff of C), then since P is braided we can also choose neighborhoods small enough
that the satellite P`(C) is transverse.

The disk F (∆P ) can be smoothed by further blowups, so it follows from Proposition 2.4 that (a
Legendrian approximation of) P`(C) has a fillable positive contact surgery. It remains to observe
that the framing ` is nothing but the difference between the 0-framing of C and the framing that
extends over the disk ∆C = F (D2 × 0); this is exactly m. �

Proof of Corollary 1.5, part (d). Recall that if C ⊂ S3 is a knot, the (p, q) cable Cp,q is the satellite
knot having companion C and pattern P = T (p, q) the (p, q) torus knot, thought of as a closed
braid in the standard solid torus in S3. Here p is the “longitudinal” coordinate, and we consider
p, q > 0. By realizing a positive torus knot as the closure of a positive braid, we have that T (p, q)
is a braided fillable pattern in the sense of Definition 2.14.

Observe that for a framing coefficient m, the twisted cable Pm(C) (with P = T (p′, q′)) is noth-
ing but Cp′,q′+mp′ . Put another way, we have Cp,q = Pm(C) where P = T (p, q −mp). According
to part (c) of Corollary 1.5, we infer that Cp,q admits a fillable positive surgery so long as m is the
smooth coefficient of a fillable surgery on C, and T (p, q −mp) is braided fillable. The second of
these simply requires q −mp > 0, which is the condition assumed in the statement. �
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With the results of Corollary 1.5 in hand it is worth pausing for a few additional remarks. As
mentioned in the introduction, the fact that a knot that admits a lens space surgery also has a
fillable positive contact surgery implies the purely topological consequence that for lens space
knots K one has g∗(K) = c∗(K). We do not know another proof of this fact.

It is natural to wonder whether the same conclusion holds for general L-space knots (i.e.,
knots K such that some positive surgery along K yields a Heegaard Floer L-space), in particular
whether c∗ = g∗ and the other consequences of Corollary 1.3 hold for such knots. There are
certain parallels between the results of Corollary 1.5 and known constructions of L-space knots:
for example, it is a consequence of work of Hedden [24] and Hom [26] that a cabled knot Kp,q is
an L-space knot if and only if K is an L-space knot and q

p ≥ 2g(K)− 1. (Note that since L-space
knots are strongly quasipositive, we have g(K) = g∗(K) for such knots.) From Corollary 1.5
we find that if K admits a fillable positive surgery, then Kp,q does as well, at least for q

p large
enough; by Proposition 1.7 (proved in the next section), it suffices that q

p ≥ 4g∗(K). Of course
one wonders about the values of q

p between 2g∗ − 1 and 4g∗.
Likewise, there are more general satellite constructions of L-space knots [28, 29], requiring

conditions on the pattern and companion knots as well as on the twisting parameter, analogous
to the conditions in Corollary 1.5(c) but somewhat less stringent; in particular it is not hard to
construct L-space knots with these techniques, for which Corollary 1.5 does not guarantee a
fillable positive surgery (see below).

On the other hand, the sufficient condition on the cabling parameter required to obtain a
cabled knot with fillable surgery, stated in Corollary 1.5(d), is certainly not necessary in general.
For example, if one considers cables of the right-handed trefoil knot T (2, 3), it it easy to see that
the cable T (2, 3)2,7 is isotopic to the closure of a positive braid, hence admits a fillable positive
surgery. In this case the parameter q

p = 7
2 is less than the minimum smooth coefficient yielding a

fillable surgery on T (2, 3) itself, which is 4.
The results of Corollary 1.5 combined with those of [24] provide many examples of L-space

knots (that are not lens space knots) that admit a fillable positive surgery. It is natural to ask
whether every L-space knot admits a fillable positive surgery; as a concrete instance we do not
currently know whether the cable knot T (2, 3)2,3, which is an L-space knot but neither a lens
space knot [20] nor a positive braid closure [31, Remark 4], [1, Example 1], admits a fillable
positive surgery.

2.3. Fillable surgery coefficients. We now return to the question of which contact surgery on
a given Legendrian K in the standard 3-sphere will yield a fillable contact structure. According
to Proposition 2.4 and Lemma 2.1 such a surgery exists if and only if the transverse pushoff K
bounds an embedded symplectic disk ∆ in Z = B4#kCP 2, and in this case the fillable surgery
corresponds to smooth surgery coefficient r = −∆·∆. Here since ∂Z = S3 the surgery coefficient
and self-intersection do not depend on a choice of Seifert surface for K, so we make no further
mention of that choice and in fact identify the homology class [∆] with an absolute homology
class via the natural isomorphism H2(Z)→ H2(Z, ∂Z). With this understood, we can write

(1) [∆] =

k∑
j=1

njej
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for integers {nj},where e1, . . . , ek are the homology classes of the hyperplanes in each copy of
CP 2. In this case, since ei · ej = −δij , we see that ∆ determines a fillable contact surgery on K
whose corresponding smooth coefficient is

(2) r = −∆ ·∆ =
∑
j

n2
j .

Recall that we can arrange that each class ej is represented by a smooth symplectic 2-sphere
Ej having self-intersection−1, such that each point of intersection between ∆ andEj contributes
positively to ∆ · ej . Hence in the expression (1), we have that nj = 1 if and only if ∆ intersects Ej
transversely in a single point. In particular, in this case we can blow down Ej and the image of
∆ after blowing down is still an embedded symplectic disk with boundary K, now in B4#(k −
1)CP 2. Moreover, the topological surgery coefficient −∆ ·∆ decreases by 1 after this operation.
(Of course, nj = 0 if and only if ∆ is disjoint fromEj , and we can blow downEj without affecting
the surgery.) Conversely, by blowing up a smooth point of ∆ we decrease the self-intersection
by 1 and correspondingly increase the smooth coefficient of a fillable surgery by 1.

One consequence of these remarks is the following result concerning the surgery coefficient of
a fillable surgery.

Proposition 2.16. IfK is a Legendrian knot in S3 such that some positive contact surgery is fillable, then
ξ−n (K) is weakly fillable for every n corresponding to a smooth surgery coefficient greater than or equal to
4g∗(K), where g∗(K) is the slice genus of the underlying smooth knot K.

Proof. As in the discussion surrounding Theorem 2.6, we can find a symplectic disk immersed in
B4 having boundary a pushoff K of K, only positive transverse double points as singularities,
and exactly g∗(K) such double points. By blowing up each double point we find an embedded
symplectic disk ∆ in the g∗(K)-fold blowup of B4, such that

[∆] = −
g∗(K)∑
j=1

2ej .

In particular we have ∆ · ∆ = −4g∗(K), so that contact surgery on K with smooth coefficient
4g∗(K) is fillable. It follows from the remarks preceding the statement of the proposition that
every contact surgery with greater coefficient is also fillable. �

In fact, if a disk ∆ ⊂ B4#kCP 2 is found, with transverse boundary K and homology class as
in (1), the coefficients nj are related to the slice genus g∗(K) as follows. Arrange as above that
each intersection of ∆ with an exceptional sphere is transverse, so that blowing down results in
a disk having k multiple points of orders n1, . . . , nk. An ordinary multiple point of order nj can
be perturbed symplectically to a collection of 1

2nj(nj−1) ordinary double points, which can each
then be smoothed to give an embedded symplectic surface in B4. Since this surface must realize
the slice genus of K, we have:

Proposition 2.17. If a transverse knot K bounds an embedded symplectic disk ∆ ⊂ B4#kCP 2 with
homology class as in (1), then

2g∗(K) =
k∑
j=1

nj(nj − 1).
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In particular, the complement of a neighborhood of ∆ gives a symplectic filling of the result of a positive
contact surgery on a Legendrian approximation of K, whose smooth surgery coefficient r is given by

r = 2g∗(K) +

k∑
j=1

nj .

The last equation follows from (2). Since all nj > 0 we infer the following, which together
with Proposition 2.16 completes the proof of Proposition 1.7.

Corollary 2.18. Any fillable contact surgery on a Legendrian knot K with underlying smooth knot K
has smooth surgery coefficient r satisfying r ≥ 2g∗(K). The inequality is strict unless K is isotopic to the
transverse boundary of an embedded symplectic disk in B4, in particular unless g∗(K) = 0.

In a related vein, we have the following simple observation.

Proposition 2.19. Let K be a Legendrian in S3, and suppose n > 0 is an integer such that
• The contact structure ξ−n (K) is weakly fillable.
• The smooth surgery coefficient r = n+ tb(K) satisfies

r ∈ {1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 19}.
Then ξ−n−1(K) is also weakly fillable.

Proof. The significance of the list of allowed values of r is that these are exactly the integers such
that any expression of r as a sum of squares as in (2) must have at least one of the nj equal to
1. We have seen that in this situation, the corresponding embedded disk in the blown-up 4-ball
intersects one of the exceptional spheres transversely in a single point, so we can blow down that
sphere and obtain a filling of the next smaller integer surgery. �

It follows from this result, for example, that for a non-slice knot K, the smallest possible
smooth surgery coefficient corresponding to a fillable contact surgery is 4.

Proposition 2.16 shows that the smooth surgery coefficient 4g∗(K) is always large enough
to realize a fillable contact surgery, if any such surgery exists; moreover this coefficient corre-
sponds, in a sense, to a generically immersed symplectic disk in B4 bounding K. It is an inter-
esting problem to determine, for a given K, what is the smallest coefficient of a fillable surgery;
values smaller than 4g∗(K) correspond to symplectic disks with more “interesting” (e.g., higher
multiplicity) singularities than transverse double points.

Example 2.20. Consider the pretzel knot K = P (−2, 3, 7). It was observed by Fintushel and
Stern [17] that 18-surgery along K is a lens space, and therefore by Corollary 1.5(b) a suitable
Legendrian representative of K has a corresponding fillable contact surgery. Since the slice
genus of K is 5, Proposition 2.16 implies that the contact surgery yielding smooth 20-surgery
is fillable; of course the lens space surgery with coefficient 18 is also fillable. We claim that in
fact, the smallest fillable contact surgery on the chosen representative corresponds to smooth 17-
surgery. The observation that facilitates this result is that since K has slice genus 5, any properly
embedded symplectic surface in B4 having boundary K is genus 5.

As one approach to see that 17-surgery must be fillable, first note that the fillable 18-surgery
corresponds to an embedded symplectic disk ∆ ⊂ B4#kCP 2 with −∆ · ∆ = 18. Observe that
the only expression of 18 as a sum of squares not including 1 is 32 + 32. A symplectic disk ∆
realizing this as in (1) and (2) will have k = 2 and n1 = n2 = 3, and it then would follow from
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Proposition 2.17 that g∗(K) = 6, a contradiction. Hence ∆ must have intersection number 1 with
at least one exceptional curve, which as before implies that the next smaller surgery coefficient
is fillable.

Now we claim that the contact surgery corresponding to smooth 16-surgery on K is not fill-
able. Indeed, suppose there is a disk ∆ ⊂ B4#kCP 2 with −∆ ·∆ = 16, with homology class as
in (1). If some nj = 1, then we can blow down and obtain a filling of smooth 15-surgery, which is
negative definite by Corollary 2.5. But according to [33, Theorem 1.3], the manifold obtained by
15-surgery on P (−2, 3, 7) does not admit any fillable contact structures; in fact it does not bound
any negative definite 4-manifold. Hence we must have that (2) expresses 16 as a sum of squares
not including 1, which means either k = 4 with n1 = · · · = n4 = 2, or k = 1 with n1 = 4. In the
first case, an application of Proposition 2.17 forces g∗(K) = 4, while the second case yields genus
6, neither of which are possible.

Note that the fillability of smooth 17-surgery can also be seen directly from the expression of
P (−2, 3, 7) as the closure of the positive braid σ1σ

2
2σ

2
1σ

7
2 ∈ Br3 as listed in KnotInfo. Indeed, after

a conjugation, application of a braid relation, and introduction of the factor σ2σ
−1
2 , the closure of

the given braid is equivalent to the closure of the quasipositive braid

(σ1σ2)3(σ−1
2 σ1σ2)σ2

2σ
2
2σ2,

which we can see as the braid monodromy of a singular symplectic disk having two nodes, along
with a cusp singularity corresponding to the full twist (σ1σ2)3. The latter becomes smooth after
a single blowup of multiplicity three while the two nodes are each multiplicity two, yielding an
embedded symplectic disk ∆ ⊂ B4#3CP 2 with [∆] = −3e1−2e2−2e3 and self-intersection−17.

We now consider the problem of determining the minimal coefficient for a fillable surgery in
the case of a positive torus knot T (p, q), realized as a transverse knot and the closure of a positive
braid in the standard way. In our notation we will always take p and q relatively prime, and since
T (p, q) is transversely isotopic to T (q, p), we will also assume that p > q.

To begin, recall from Corollary 2.5 that for any knot K ⊂ S3 admitting a fillable positive con-
tact surgery corresponding to smooth surgery coefficient n (which is also necessarily positive),
a symplectic filling of the corresponding contact structure is negative definite: in particular the
surgery manifold S3

n(K) is the boundary of some smooth, compact, negative definite 4-manifold.
As mentioned in the introduction, Owens and Strle [40] define

m(K) = inf{r ∈ Q>0 |S3
r (K) bounds a negative definite 4-manifold}.

For torus knots they determine m explicitly, in fact they show

(3) m(T (p, q)) = pq − c(p, q)

for a certain rational number c(p, q) depending on the continued fraction expansion of p/q.
(Moreover, though m(T (p, q)) is defined as an infimum, Owens-Strle show that the manifold
Sm(T (p,q))(T (p, q)) bounds a negative definite 4-manifold.) Here the “Euclidean” continued frac-
tion expansion is p

q = [a1, . . . , an]+ if we have

(4)
p

q
= a1 +

1

a2 + 1
···+ 1

an−1+
1
an

.
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Any rational number p
q > 1 can be written in this form with aj ≥ 1 for all j, and the expression

is unique if we require that an ≥ 2 (we will always assume these conditions). With this in mind,
the constant c(p, q) in (3) is given by

c(p, q) =


q

p∗
if n is even in (4)

p

q∗
if n is odd.

Here p∗ ∈ {1, . . . , q − 1} and q∗ ∈ {1, . . . , p − 1} denote the inverses of p and q modulo q and p,
respectively. The proof of [40, Proposition 4.1] also shows that

c(p, q) = [an, an−1, . . . , am]+

where m is 2 or 1 when n is even or odd, respectively. This implies that the greatest integer less
than or equal to c(p, q) is an, the last coefficient in the continued fraction for p/q. In particular the
smallest positive integer surgery on T (p, q) that bounds a smooth negative definite 4-manifold
(symplectic or not) is

dm(T (p, q))e = pq − bc(p, q)c = pq − an.

Theorem 2.21. Let T (p, q) be a Legendrian knot in the knot type of T (p, q), having maximal Thurston-
Bennequin invariant. Then T (p, q) admits a fillable positive contact surgery, and the smallest integral
such surgery is the one corresponding to smooth surgery coefficient dm(T (p, q))e.

Proof. From Corollary 2.5 and the results of Owens-Strle, the smallest fillable contact surgery on
T (p, q) has smooth coefficient at least dm(T (p, q))e. We wish to show that this smallest possible
contact surgery is indeed symplectically fillable; in view of the remarks at the beginning of this
section this is equivalent to showing that T (p, q) bounds an embedded symplectic disk ∆ in a
blowup of B4, such that −∆ ·∆ = pq − an.

To do so, we recall some basic facts about algebraic curves and blowing up. The torus knot
T (p, q) (being a transverse pushoff of T (p, q) and a positive braid) can be realized as the link of
the singularity at the origin of the curve C = {xp+ yq = 0} in C2. The blowup π : C̃2 → C2 at the
origin can be described in coordinates by the transformation x = u, y = uv (or, in another chart,
by x = uv, y = u). Transforming the equation for C by this rule gives the total transform π∗C,
namely

π∗C = {uq(up−q + vq) = 0}.
The reduced curve u = 0 describes the exceptional curve of the blowup in this coordinate sys-
tem, and the remaining expression up−q + vq = 0 corresponds to the proper transform C̃ of C.
In particular, from the expression above we see that the exceptional curve E appears with mul-
tiplicity q in π∗C, and we say that q is the multiplicity of the singularity. It is standard to write
C̃ = C − qE as divisors where, by abuse of notation, C is conflated with π∗(C). (Note that in
the other chart on the blowup, the proper transform is smooth and disjoint from the exceptional
curve.) It follows from this that the self-intersection of C̃ is q2 less than that of C. Of course,
the original curve C lies in the 4-ball, hence its homology class is trivial and the self-intersection
vanishes; we phrase the result as we do because of the iteration to follow.

Having recorded this effect on the self-intersection of the (in general, still singular) proper
transform C̃, note that C̃ is a curve described by the same sort of equation asC, and we can iterate
this procedure. Specifically, if p− q > q then thinking of C̃ as given by the equation xp−q + yq =
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0, a blowup identical to the first one will give another exceptional curve of multiplicity q and
decrease the self-intersection by another q2. On the other hand, if p − q = r < q, then we blow
up the curve xr + yq = 0 using the transformation x = uv, y = u, and find the total transform
ur(vr + uq−r) = 0. Thus the blowup has multiplicity r and the self-intersection decreases by r2.

Clearly, this procedure is closely tied to the Euclidean algorithm for the quotient p/q, and thus
its continued fraction. (See, for example [44, Proposition 6.11].) For ease of notation, let us write
p = p0 and q = p1. Then the Euclidean algorithm yields:

p0 = a1p1 + p2

p1 = a2p2 + p3

...
pn−2 = an−1pn−1 + pn

pn−1 = anpn

where in each line we consider dividing pj by pj+1, with quotient aj+1 and remainder pj+2 <
pj+1. The algorithm terminates when there is no remainder as in the last line above, and then pn
is the greatest common divisor of p0 and p1. In our case of course this means pn = 1. Moreover,
the coefficients aj are simply those appearing in (4).

With the earlier discussion in mind, the first line of the algorithm tells us that in resolving the
singularity of C we perform a1 blowups each of multiplicity p1, and hence each decreasing the
self-intersection by p2

1. Similarly the j-th line means we use aj blowups, each of multiplicity pj .
The final line suggests that an blowups are required, but observe that since pn = 1 the curve
obtained in the previous step is of the form 0 = xpn−1 +ypn = xpn−1 +y, which is already smooth
(it does, of course, have a tangency of order an with the newest exceptional curve, but this is not
relevant for us).

The result of these considerations is that T (p, q) bounds a smooth, properly embedded and
complex (hence symplectic) disk ∆ in a blowup of B4 whose self-intersection is given by

−∆ ·∆ = a1p
2
1 + a2p

2
2 + · · ·+ an−1p

2
n−1.

On the other hand, if for j = 1, . . . , n we multiply the j-th line of the Euclidean algorithm above
by pj , then sequentially substitute each line into the previous, we find

p0p1 = a1p
2
1 + a2p

2
2 + · · ·+ an−1p

2
n−1 + anp

2
n.

Recalling that pn = 1 and reverting to p0 = p and p1 = q, this says pq−an = −∆·∆ as desired. �

Remark 2.22. From this result it is natural to expect that if one considers positive rational contact
surgeries on T (p, q), the smallest such surgery that is fillable will correspond to smooth coeffi-
cient exactly the rational number m(T (p, q)).

3. PROOF OF MAIN THEOREMS

While Theorem 1.1 is stated in terms of contact surgery along Legendrian knots, for our pur-
poses it is more natural to work with transverse knots and transverse surgery. We will review the
relationship between these ideas (which was clarified in particular by the work of Conway [9])
below.
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3.1. Open books and contact and transverse surgery. Recall that an open book decomposition
of a closed, connected, oriented 3-manifold Y consists of an oriented link B ⊂ Y , the binding
of the open book, together with a fiber bundle projection π : Y − B → S1 such that for each
component Bi of B, there is a tubular neighborhood nbd(Bi) ∼= D2 × Bi in which π is identified
with projection on the angular coordinate of D2. These neighborhoods must be suitably compat-
ible with orientations, so that for each θ ∈ S1 surface Σθ = π−1(θ) given by the closure of the
preimage of θ is an oriented, connected Seifert surface for B also called a page of the open book.

An open book can also be described by a pair (Σ, ψ), where Σ is a compact connected oriented
surface with boundary and ψ an orientation-preserving diffeomorphism of Σ fixing a neighbor-
hood of ∂Σ, called the monodromy, by the following construction. Consider the mapping torus

(5) M(ψ) = [0, 1]× Σ/(1, x) ∼ (0, ψ(x)),

where, for future reference, we will write [s, x]ψ for the equivalence class of the point (s, x) ∈
[0, 1] × Σ in M(ψ). In particular, the boundary of M(ψ) is ([0, 1]/(0 ∼ 1)) × ∂Σ = S1 × ∂Σ.
Here and throughout, we will think of S1 as R/Z = [0, 1]/0 ∼ 1 and typically use φ for the
corresponding coordinate.

Attach toM(ψ) the spaceD2×∂Σ, a union of solid tori, whose boundary ∂D2×∂Σ is identified
with ∂M(ψ) in the obvious way and so that ∂Σ becomes the binding of an open book decompo-
sition on the union. An open book decomposition for Y is equivalent to such a pair (Σ, ψ) along
with a diffeomorphism between Y and M(ψ) ∪∂ (D2 × ∂Σ), which we will generally suppress.

An open book (Σ, ψ) is compatible with a contact structure ξ = kerλ, and the contact structure
is supported by the open book, if dλ is a positive area form on the pages and λ is positive on
oriented tangents to ∂Σ. Any open book for Y supports a unique isotopy class of contact struc-
ture; conversely any contact structure is isotopic to one supported by some open book. Note that
the 3-manifold Y , and the supported contact structure, depend only on the equivalence class
of ψ under isotopies fixing a neighborhood of ∂Σ. We will write Mod(Σ) for the group of such
isotopy classes, with the caveat that our Mod(Σ) consists of orientation-preserving diffeomor-
phisms fixing a neighborhood of ∂Σ, up to isotopy of such maps, even though the notation does
not indicate these restrictions.

Let us fix an open book decomposition (Σ, ψ) on Y and compatible contact structure ξ = kerλ.
A knot K ⊂ Y is transverse if TK t ξ, and λ is positive on oriented tangents to K. In particular,
if K is a component of the binding of an open book decomposition for Y , then K is a transverse
knot in the supported contact structure. Take K to be a component of the binding, and for an
integer n > 0 construct a new open book (Σ′, ψ′n) as follows.

(1) Choose an annular collar neighborhood A ∼= S1 × [0, 1] of the boundary component of
Σ corresponding to K, and arrange by an isotopy that ψ is the identity map on A. We
identify S1 × {0}with the boundary component K.

(2) Let Σ′ = Σ ∪H , where H ∼= [0, 1]× [0, 1] is a 1-handle attached to two points of S1 × {0},
so that Σ′ is an oriented surface with one more boundary component than Σ.

(3) Extend ψ to Σ′ by declaring it to be the identity on Σ′ −Σ. Let ψ′n be the diffeomorphism
given by the composition of ψ with t−1

K1
◦ t∂1 ◦ t

n−1
∂2

. Here tC means the right-handed Dehn
twist around a simple closed curve C. We write ∂1, ∂2 for two simple closed curves in Σ′

parallel to the two components of ∂Σ′ adjacent to H , and K1 for the curve S1 × 1 ⊂ Σ
parallel to K.
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Thus (Σ′, ψ′n) is constructed by adding a 1-handle to the boundary component corresponding
to K, and composing ψ with a left twist around K, a right twist along one new boundary com-
ponent, and n − 1 right twists along the other new boundary component. The relevance of this
construction to our situation is the following.

Lemma 3.1. Let (Y, ξ) be a contact manifold and K an oriented Legendrian knot in Y .
(1) There exists an open book decomposition (Σ0, ψ0) supporting ξ such that K lies on a page of the

open book.
(2) Suitable stabilization of (Σ0, ψ0) yields an open book decomposition (Σ, ψ) supporting ξ, such

that a negative stabilization K− of K lies on a page and is parallel to a binding component, which
is isotopic to a transverse pushoff of K−.

(3) For any n > 0, the open book (Σ′, ψ′n) constructed from (Σ, ψ) as above describes a 3-manifold
with contact structure contactomorphic to the result ξ−n (K−) of contact n-surgery along K−.

(4) For any n > 0, there is a contactomorphism between ξ−n (K) and ξ−n+1(K−).
(5) The contact structure described by (Σ′, ψ′n) is contactomorphic to the result of an inadmissible

transverse surgery along the binding component K, and any integral inadmissible transverse
surgery on K can be described in this way for some n > 0.

Proof. (1) is fairly well-known; see [15] for example. (2) follows from Lemma 6.5 of [3]. (3) is
essentially the Ding-Geiges-Stipsicz algorithm [12] describing contact surgery; this point along
with (4) and (5) are spelled out by Conway [9] (see also [34, Lemma 2.6]). �

In particular, when considering properties of contact structures arising as some positive contact
surgery along a Legendrian K, then at the expense of possibly replacing K by K− and increasing
the contact surgery coefficient by one we may assume that K is parallel to a binding component
of some open book. (Note that the transverse pushoffs of K and K− are transversely isotopic.)

Remark 3.2. In the description we have given above, the contact structure ξ−n (K) is described
by the abstract open book decomposition (Σ′, ψ′n). In particular, it is determined only up to
contactomorphism, rather than up to isotopy. A more precise description of contact surgery can
be found in [30] and [12], where it is shown how to extend the contact structure ξ restricted to the
complement of a neighborhood of K across the torus glued in during surgery, and in particular
the choices involved in doing so. In the case of contact surgery with integer coefficient n having
|n| > 1, there are exactly two possibilities, corresponding to a single choice of sign. The two
choices in fact determine contactomorphic (but not generally isotopic) contact structures ξ+

n (K)
and ξ−n (K), essentially corresponding to the choice of which boundary component to label as ∂2

in the description above.

With the preceding in hand, we can prove one direction of Theorem 1.1.

Theorem 3.3. Suppose K is a Legendrian knot in a contact manifold (Y, ξ) with the property that for
some n > 0, the contact structure ξ−n (K) is weakly fillable. Then (Y, ξ) is weakly fillable, and there exists
a weak filling (Z, ω) of (Y, ξ) containing a properly embedded symplectic disk ∆ whose boundary is a
positive transverse pushoff of K.

Proof. Suppose (Z ′, ω′) is a weak symplectic filling of (Y ′, ξ−n (K)) (where Y ′ is the smooth mani-
fold underlying the result of contact surgery). By the remarks above, we may suppose that K is
parallel to a binding component K of an open book (Σ, ψ) for (Y, ξ), so that ξ−n (K) is supported
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by the open book (Σ′, ψ′n) as above, and K is a transverse pushoff of K. Let K ′ be the component
of ∂Σ′ corresponding to the component labeled ∂2 in the description of (Σ′, ψ′n) above.

Thinking of Y ′ as ∂Z ′, let Z be the result of attaching a 2-handle to Z ′ along K ′, with framing
equal to that induced by the page Σ′. Then ∂Z is the result of what is known as a “capping off”
operation; it carries a natural open book whose page is given by the union of Σ′ with a disk glued
along K ′, and monodromy extended by the identity across the disk. In the resulting surface, the
twists tn−1

∂2
are isotopically trivial, while the curves ∂1 and K are now parallel so that the right

and left twists on these curves that appear in ψ′n cancel in the capped-off open book. In other
words, the capped off open book is equivalent to the original open book (Σ, ψ) on Y , and in
particular ∂Z = Y .

It is a consequence of a theorem of Wendl [50, Theorem 5] that the manifold Z carries a sym-
plectic form ω that weakly fills the contact structure supported by the capped-off open book
(Σ, ψ); in fact ω|Z′ can be taken to agree with ω′ away from a small neighborhood of Y ′. In
particular, we find that (Y, ξ) is weakly fillable. Moreover, Wendl’s construction shows that the
cocore of the 2-handle used in the construction of Z is a symplectic disk ∆ with (positively)
transverse boundary. Topologically, this cobordism from Y ′ to Y is nothing but the trace of the
surgery from Y to Y ′, turned around; from this point of view it is clear that the boundary of
the cocore is smoothly isotopic to K. In terms of the open book, the boundary of the cocore can
be seen as the braid traced out by the center of the disk used to cap off Σ′, and it follows from
Lemma 3.4 below that this braid is transversely isotopic to K as well. �

Note that the argument proving Theorem 3.3 actually shows that if (Z ′, ω′) is a weak filling of
(Y ′, ξ−n (K)), then by attaching a 2-handle as in the proof we find Z ′ is symplectomorphic to the
complement of a neighborhood of the (symplectic) cocore disk inside the filling Z of (Y, ξ). This
proves the “moreover” statement in Theorem 1.1.

The proof of the converse direction of Theorem 1.1 amounts to showing that one can “undo”
the previous construction, by removing a suitable neighborhood of a symplectic disk in a weak
filling. We carry this out in the following sections.

3.2. Braids and monodromy. In our argument below it will be convenient to arrange K in a
particular way with respect to an open book decomposition for (Y, ξ). Recall that a knot K ⊂ Y
is braided with respect to an open book if K is everywhere transverse to the pages of the open
book (in particular K is disjoint from the binding), and intersects the pages positively. It is a
theorem of Mitsumatsu and Mori [37, Appendix] (see also Pavelescu [43]) that any transverse
knot in (Y, ξ) is isotopic, through transverse knots, to one that is braided with respect to a given
open book supporting ξ.

A braided transverse knot can be described in terms of the monodromy ψ, in a way analogous
to classical braids. Namely, if Σ is a chosen page of the open book andK∩Σ consists of the points
p1, . . . , pk ∈ Int(Σ), then K determines and is determined by a choice of lift of ψ ∈ Mod(Σ) to an
element ψ̃ ∈ Mod(Σ, {p1, . . . , pk}) of the group of isotopy classes of diffeomorphism preserving
the set {p1, . . . , pk}, i.e., the surface braid group. In the case that K is a binding component of the
open book, the following shows in particular thatK is transversely isotopic to a 1-braid, meaning
a braid that intersects each page just once, which can be described by a particular choice of lift
of ψ.

Lemma 3.4. Let (Σ, ψ) be an open book decomposition for a contact manifold (Y, ξ), and K the positive
transverse knot given by a boundary component of Σ. Consider an annular collar neighborhood A of that
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boundary component on which ψ is the identity, and let p ∈ Σ be a point in the interior of A. Choose
disjoint boundary-parallel simple closed curves in A such that p is between the two curves; let γ1 be the
curve closer to the boundary and γ2 the other. Let ψ̃ ∈ Mod(Σ, p) be the mapping class that agrees
with ψ away from A, and is given by the composition of a right Dehn twist on γ1 and a left Dehn twist
on γ2. Then the 1-braid represented by the pointed surface (Σ, p) with monodromy ψ̃ ∈ Mod(Σ, p) is
transversely isotopic to K.

The situation of the lemma is illustrated in Figure 2.
For the proof of the lemma, as well as for certain calculations to follow, the following digres-

sion will be useful.

Digression: construction of compatible contact forms. We briefly review the construction of a contact
form compatible with an open book (Σ, ψ) (we follow the procedure of [50, Section 3.2]). First,
one finds a 1-form α on Σ such that

• dα is a positive area form on Σ.
• α has a standard form near ∂Σ, as follows. For each boundary component of Σ, choose an

annular neighborhood A ∼= S1 × [τ0, 1] on which ψ restricts to the identity, with oriented
coordinates (θ, τ), and require α = (2 − τ) dθ. Here τ0 is a constant with 0 < τ0 < 1 and
we suppose that the boundary of Σ corresponds to τ = τ0.
• Additionally, if D ⊂ Int(Σ) is a disk with ψ|D = id, with polar coordinates (ρ, θ), then

we can choose α so that α = 1
2ρ

2 dθ on D.
Next, by an interpolation argument one constructs a 1-form αψ on the mapping torus M(ψ)

such that dαψ > 0 on each slice {φ} × Σ. Further, we can suppose that αψ agrees with (the
pullback of) α on the subsets S1 × A and S1 ×D for the annuli A and disk D mentioned above.
Then for any small ε > 0, the form dφ + εαψ is a contact form on M(ψ) and has the form dφ +
ε(2 − τ) dθ near the boundary tori. (Recall that φ is our usual notation for the coordinate on S1

corresponding to the fibration of the mapping torus.)
Finally, one fills in the binding D2×∂Σ by using the coordinate identifications between (D2−

0)× S1 and S1 × A (where a component of ∂Σ has been identified with S1) given by (ρ, φ, θ) 7→
(φ, θ, τ = ρ) for ρ ≥ τ0. To extend the contact form across the binding, begin by choosing a
constant τ ′0 with 0 < τ ′0 < τ0, and a 1-form λ0 = f(ρ) dθ + g(ρ) dφ on D2 × S1 , such that:

• (f, g) defines a path in the first quadrant from (1, 0) to (0, 1) as ρ increases from 0 to 1.

(+) (−)

K

p

γ1 γ2

FIGURE 2. The braid described by p under the monodromy given by a right Dehn
twist along γ1 and a left twist on γ2 is transversely isotopic to K.
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• λ0 is a smooth contact form on {ρ < τ0} ⊂ D2 × S1.
• For ρ ∈ [τ0, 1) we have f(ρ) = 0.
• For ρ ∈ [τ ′0, 1) we have g(ρ) = 1

If ε is chosen as above, we modify λ0 as follows. Choose another function fε(ρ) such that
• fε = f on [0, τ ′0],
• f ′ε < 0 on [τ ′0, τ0]
• fε(ρ) = ε(2− ρ) on [τ0, 1].

Then the 1-form λε on D2 × S1 given by

λε =

{
fε(ρ) dθ + dφ for ρ ∈ [τ ′0, 1]
λ0 for ρ ≤ τ ′0

is a smooth contact form on D2 × S1 that agrees with the form dφ + εαψ when ρ ≥ τ0, and with
λ0 for ρ < τ ′0. In particular, note that by choosing f(ρ) = 1 and g(ρ) = 1

2ρ
2 for ρ < τ ′′0 < τ ′0, we

can obtain a contact form that in coordinates (ρ, φ, θ) on a neighborhood D2 × S1 of a binding
component has the form

λ = dθ + 1
2ρ

2 dφ (ρ < τ ′′0 ).

This ends the digression.

Proof of Lemma 3.4. It will suffice to restrict to a neighborhood of K. In particular we consider
nbd(K) to be equipped with an open book whose page is the annulus A and whose monodromy
is the restriction of ψ, i.e., the identity. Let ψs, s ∈ [0, 1] be an isotopy supported in A with ψ0 = ψ

and ψ1 = ψ̃ (the isotopy is relative to a small neighborhood of ∂A, but of course moves the point
p). An isomorphism between the mapping tori of ψ = id and ψ̃ (as maps of A) is then given by

M(ψ̃)→M(id)

[s, a]ψ̃ 7→ [s, ψs(a)]id,

using the notation introduced after (5). In particular the braid in M(ψ̃) parametrized by s 7→
[s, p]ψ̃ corresponds to the curve s 7→ [s, ψs(p)]id in M(id).

Choose oriented coordinates (θ, τ) onA = S1×[0, 1], where τ = 0 corresponds to the boundary
component K. This means that τ is an inward-directed coordinate on the collar, and the orienta-
tion on K as the boundary of Σ is given by the direction of increasing θ. By the digression above,
we can suppose that the contact structure on nbd(K) is given by identifying nbd(K) = S1 ×D2

with coordinates θ on S1 and (ρ, φ) polar coordinates on D2, and for a chosen τ ′′0 < 1, the contact
form is given by λ = dθ + 1

2ρ
2 dφ on the set {ρ ≤ τ ′′0 }. The open book projection (θ, ρ, φ) 7→ φ

supports this contact structure, and the page is the annulus with coordinates (θ, ρ). Thus the
mapping torus M(id) can be identified (after collapsing the boundary component {τ = 0} to a
circle) with S1 ×D2 by the natural map [s, (θ, τ)]id 7→ (θ, ρ = τ, φ = s).

For convenience, let us assume p ∈ A is given by the point (θ, τ) = (0, T ) for some T < τ ′′0 . By
writing an explicit model for the twists on γ1 and γ2, it is not hard to see that the isotopy ψs can
be chosen so that in the given coordinates the path s 7→ ψs(p) is s 7→ (θ = s, τ = T ). Hence, by
the identification between M(ψ̃) and M(id) above, the braid under consideration in M(id) is the
oriented curve c(s) = (θ = s, τ = T, φ = s). The tangent to this curve clearly has λ(c′(s)) > 0;
in fact if we take cτ (s) = (θ = s, τ, φ = s) then letting τ decrease from T to 0 gives a transverse
isotopy from the 1-braid to the oriented binding {τ = 0}. �
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3.3. Carving symplectic disks. We continue with the notation of the previous section: we are
given a contact 3-manifold (Y, ξ) with a weak symplectic filling (Z, ω) containing a properly
embedded symplectic disk ∆ whose boundary is a positively transverse knot K ⊂ Y . The goal
of this section and the next is to prove:

Theorem 3.5. The symplectic disk ∆ has an arbitrarily small open neighborhood U , such that if Z ′ =
Z − U and ω′ = ω|Z′ , then (Z ′, ω′) is a weak symplectic filling of a contact structure ξ′ on Y ′ = ∂Z ′.
Moreover, the contact structure ξ′ is obtained from ξ by an inadmissible transverse surgery along K, or
(equivalently) from a positive contact surgery along a Legendrian approximation of K.

This is essentially a restatement of Theorem 1.2. Taken together, this theorem and Theorem
3.3 imply Theorem 1.1.

As preparation, we can assume by an isotopy that the transverse knot K is a 1-braid with
respect to an open book decomposition of (Y, ξ). In particular, we can suppose that K is de-
termined by a lift of the monodromy ψ to an element of the mapping class group of Σ relative
to a point p (as well as ∂Σ), which we still call ψ. In fact, we can assume that this lift fixes a
disk neighborhood D ⊂ Σ of p, and call the resulting choice ψ̂ ∈ Mod(Σ, D). The choice of ψ̂ is
essentially equivalent to a choice of framing on K; any desired framing can be realized by com-
posing ψ̂ with Dehn twists around ∂D. The complement of the binding in Y is identified with
the mapping torus M(ψ̂) = [0, 1] × Σ/ ∼, and the choice of lift ψ̂ determines an identification
nbd(K) ∼= S1 ×D.

• Coordinates on nbd(K) will be (κ1, ρ, κ2), where (ρ, κ2) are polar coordinates on D with
ρ ≤ 1. All angular coordinates are taken in R/Z.
• The open book projection π : Y − B → S1 is given in nbd(K) by π(κ1, ρ, κ2) = κ1, so the

pages of the open book are tangent to ker(dκ1).
• By the digression in Section 3.2, in this neighborhood of K the contact form can be taken

to be
λY = dκ1 + ερ2 dκ2

for any small ε (since in nbd(K) we have φ = κ1).
Now turn to the weak filling Z. The disk ∆ has a neighborhood diffeomorphic to ∆1 × ∆2,

where ∆i is a unit disk with coordinates (ri, θi) for i = 1, 2. We can suppose that under this dif-
feomorphism ∂∆1×∆2 is identified with nbd(K) = S1×D, though the framings need not agree.
In particular, after an isotopy we can assume that this identification is via a diffeomorphism

F : ∂∆1 ×∆2 → nbd(K) = S1 ×D
F : (r1 = 1, θ1, r2, θ2) 7→ (κ1 = θ1, ρ = r2, κ2 = θ2 + nθ1)

for some integer n representing the difference between the framing on K induced by the disk ∆1

and that corresponding to the choice of ψ̂. For later use, we will always assume that ψ̂ has been
chosen so that n > 0.

Recall that ∆ ⊂ Z is assumed to be symplectic; by rescaling the form ω we may suppose it
has symplectic area π. By standard neighborhood theorems, since the normal bunde of ∆ is
(symplectically) trivial there is a symplectomorphism between some tubular neighborhood UZ
of ∆ in Z and a neighborhood U∆ of ∆1 × 0 ⊂ ∆1 ×∆2, where the symplectic structure on the
latter is given by the standard split form

ω0 = r1 dr1 ∧ dθ1 + r2 dr2 ∧ dθ2.
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Choose r0 small enough that the subset {r2 ≤ r0} lies in U∆, so that we can symplectically
identify that set with a subset of Z. In the following we will work with the standard structure
above on ∆1×∆2 with the understanding that our construction should be restricted to the subset
U∆ and transported via symplectomorphism into UZ ⊂ Z.

Now, (Z, ω) is assumed to be a weak filling of (Y, ξ), where ξ is a contact structure supported
by the open book determined by (Σ, ψ). Observe that varying the choice of ε in the construction
of such a contact form, as in the digression in Section 3.2, corresponds to an isotopy of ξ; by
Gray stability such an isotopy can be realized by an isotopy of Y . A diffeomorphism of Z that
is the identity away from a collar neighborhood of Y and effects this isotopy in the collar will
pull back ω to a symplectic form that weakly fills the modified contact structure, and determine
a symplectic structure on Z deformation equivalent to the original. In particular the constant r0

does not change through this process, and the conclusion is that we may choose ε as small as
desired without affecting r0.

Consider a solid torus D2 × S1 with coordinates (σ, α, β), where (σ, α) are polar coordinates
on the unit disk D2 with α, β ∈ R/Z. We embed D2 × S1 in ∆1 ×∆2 by a map

i : D2 × S1 → ∆1 ×∆2

i : (σ, α, β) 7→ (r1 = r1(σ), θ1 = α, r2 = r2(σ), θ2 = β),(6)

where r1(σ) and r2(σ) are smooth functions described below. We denote the image of this em-
bedding by H ⊂ ∆1×∆2, and usually identify H = D2×S1 via i. Schematically, H is described
by the diagram below.

∆2

∆1

H

r′0

r0

σ0

σ1

The functions r1(σ), r2(σ) are selected as follows. We suppose the constant r0 ∈ (0, 1) is given as
previously. Fix constants 0 < σ0 < σ1 < r0 < 1, and assume ε is chosen small enough to satisfy:

(7) ε < min{σ0, σ1 − σ0, 1/2nσ
2
1}.

Now require that r1(σ) is a smooth function satisfying

r1(σ) =

{
kσ 0 ≤ σ ≤ σ0

1 σ1 − ε ≤ σ ≤ 1

and otherwise increasing, where k > 0 is a constant with kσ0 < 1. Choosing an additional
constant r′0 with 0 < r′0 < r0 < 1, we select r2(σ) to be a smooth, strictly increasing function such
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that

r2(0) = r′0

r2(σ) ≤ r0 0 ≤ σ ≤ σ1

r2(σ) = σ σ1 ≤ σ ≤ 1

The hypersurfaceH separates ∆1×∆2 into two subsetsU1 andU2, whereU1 is a neighborhood
of ∆1 × 0 and U2 is the complementary region. Identifying ∆1 ×∆2 with a subset of Z as above,
we can think of U1 ⊂ Z, and define Z ′ = Z − U1. Of course Z ′ is independent of the choices of
the constants and embeddings in the above, up to diffeomorphism.

The boundary Y ′ = ∂Z ′ is obtained from Y by removing nbd(K) and replacing it by H . The
coordinates on nbd(K) and H are related via the embedding i and map F above. Explicitly, on
the subset {σ ≥ σ1} ⊂ H we have the transformation

(8) (σ, α, β) 7→ (κ1 = α, ρ = r2(σ), κ2 = β + nα),

where in fact, in this range we have r2(σ) = σ.
Observe: The coordinates (κ1, ρ, κ2) on nbd(K) are positively oriented for Y . The coordinates

(σ, α, β) on H correspond to the orientation on H induced as the boundary of U1. On the region
σ ≥ σ1 these are opposite orientations, which is reflected in the fact that the transformation above
is orientation-reversing.

Finally, recall that the open book on Y , restricted to nbd(K), is given by the map π(κ1, ρ, κ2) =
κ1. By the above, this corresponds to the map π′ : (σ, α, β) 7→ α, which extends to the com-
plement of 0 × S1 in H = D2 × S1 as an open book with a binding component B′ = 0 × S1.
Together with the remainder of the original open book on Y away from nbd(K) this defines an
open book (Σ′, ψ′) on Y ′, and we let ξ′ be the (unique isotopy class of) contact structure on Y ′

supported by this open book. Observe that the page of this open book is the surface Σ′ = Σ−D.
We will see that the monodromy ψ′ is obtained from the restriction of ψ̂ to Σ′ by composing with
n right-handed Dehn twists around a curve parallel to ∂D. Before doing so, we verify that the
restriction of ω to Z ′ indeed gives a weak filling of the contact structure supported by (Σ′, ψ′).

Consider the following Liouville vector field on ∆1 ×∆2, defined away from ∆1 × 0:

X =
1

2
r1 ∂r1 + (

1

2
r2 −

c

r2
) ∂r2 ,

where c > 0 is a constant. Note that X is directed radially outward in the direction of ∆1, and
radially inward along ∆2 so long as r2 <

√
2c. In particular, so long as c > 1

2r
2
0, we have that

X is transverse to H and directed into U1 (i.e., directed out of Z ′), and we fix c satisfying this
condition.

The primitive for ω0 associated to X is

ιXω0 =
1

2
r2

1 dθ1 + (
1

2
r2

2 − c) dθ2,

which pulls back to H as the form

λ0 = i∗(ιXω0) =
1

2
r1(σ)2 dα+ (

1

2
r2(σ)2 − c) dβ.

Now, recall that (σ, α, β) are coordinates that orient H as the boundary of U1, not the boundary
of Z ′. Using the positive coordinate system (σ, α, β′), where β′ = −β, we see that:
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• The form dλ0 = r1r
′
1 dσ ∧ dα − r2r

′
2 dσ ∧ dβ′, restricted to a page of the open book

π′(σ, α, β′) = α, is nondegenerate. Indeed, the tangent to the page is given by ker(dα),
co-oriented by dα, and we have

dλ0 ∧ dα = r2r
′
2dσ ∧ dα ∧ dβ′.

Since r2(σ) is strictly positive and increasing, this is positive.
• In particular a positive ordered basis for the tangent space to a page is given by {∂β′ , ∂σ}

(since this basis followed by ∂α is positive for Y ′). Since ∂σ is an inward-pointing vector
along the boundary of the page, it follows that ∂β′ orients the boundary of the page.
• We have λ0(∂β′) = c − 1

2r2(σ)2. Since r2(0) = r′0 < r0 and c > 1
2r

2
0, this is positive along

the binding B′ = {σ = 0}.
Thus, λ0 defines a contact structure on H that is compatible with the open book we have

introduced on H . It remains to “patch” the contact structure ker(λ0) together with the given
contact structure on Y ; recall that the latter is given by the kernel of the form λY = dκ1 + ερ2 dκ2

on nbd(K), a subset of which is identified with the region {σ ≥ σ1} ⊂ H . Concretely, the
identification is given by a map j : {σ ≥ σ1} → {ρ ≥ σ1}where

j : (σ, α, β) 7→ (κ1 = α, ρ = σ, κ2 = −β′ + nα).

Thus we get a form λY ′ = j∗λY given by

λY ′ = dα+ εσ∗(−dβ′ + ndα)

= −εσ2 dβ′ + (1 + εnσ2) dα (σ ≥ σ1).(9)

On the other hand, we have seen that on H ,

λ0 = (c− 1

2
r2(σ)2) dβ′ +

1

2
r1(σ)2 dα,

which for σ ≤ σ0 reduces to

(10) λ0 = (c− 1

2
r2(σ)2) dβ′ +

1

2
k2σ2 dα (σ ≤ σ0)

Now, a smooth 1-form onH given by λ̃ = f(σ) dβ′+g(σ) dα is a positive contact form if the curve
(f(σ), g(σ)) in the plane winds counterclockwise about the origin in the sense that fg′ − gf ′ > 0
for all σ. Bearing in mind the desired behavior of f and g as in (9) and (10), we first choose f
such that:

f(σ) = c− 1
2r2(σ)2 (σ ≤ σ0)

f(σ) = −εσ2 (σ ≥ σ1)
f ′(σ) < 0 (σ > 0)

Indeed, recall that r2(σ) is chosen so that r′0 ≤ r2(σ) ≤ r0 <
√

2c for 0 ≤ σ ≤ σ1 (and r2(σ) is
increasing), so a smooth interpolation exists as required. Moreover, we may suppose that the
only zero of f is at the value σ = σ1 − ε, and since ε < σ1 we can arrange that for σ ∈ [σ1 − ε, σ1]
we have

(11) |f ′(σ)| ≥ εσ1.
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For the function g, since kσ0 < 1 we can arrange

g(σ) = 1
2k

2σ2 (σ ≤ σ0)
g(σ) = 1 + εnσ2 (σ ≥ σ1 − ε)
g′(σ) > 0 (σ > 0)

By construction, λ̃ agrees with λ0 on {σ ≤ σ0} and with λY ′ on {σ ≥ σ1}. The winding
condition holds on {σ0 ≤ σ ≤ σ1 − ε} since fg′ > 0 and gf ′ < 0 in that interval. Finally, while
f(σ), f ′(σ) < 0 for σ ∈ (σ1 − ε, σ1], it is easy to check that the constraints (7), (11) imply the
winding condition holds in this interval as well.

Hence λ̃ is a positive contact form on H , and together with λY on Y − nbd(K) = Y ′ −H gives
a contact form on all of Y ′ that agrees with the form λY away from H .

Proposition 3.6. The contact structure ξ′ = ker(λ̃) is compatible with the open book on Y ′ constructed
above, and is weakly filled by the symplectic structure on Z ′ obtained by the restriction of ω.

Proof. Compatibility with the open book means that λ̃ is positive on the oriented boundary of
the pages, and that dλ̃ is an area form on the interior of the pages. Since λ̃ = λY away from H ,
and λY is compatible with the original open book, we need only check these conditions in H .
Positivity on the new binding component B′ ⊂ H follows since λ̃ = λ0 near B′, and we have
already checked this condition for λ0.

For positivity of dλ̃ on the pages, write

dλ̃ = f ′(σ) dσ ∧ dβ′ + g′(σ) dσ ∧ dα.

Hence dλ̃ ∧ dα = −f ′(σ) dσ ∧ dα ∧ dβ′ > 0 since f ′ < 0, and the claim follows since the oriented
tangents to the page are ker(dα).

The weak filling claim is the assertion that ω > 0 on the oriented contact planes ker(λ̃). This
is true by assumption away from H , and indeed on {σ ≥ r0}. In {r2 ≤ r0} ⊂ ∆1 ×∆2 ⊂ Z the
symplectic form is our standard one ω0, so to check positivity it suffices to show that i∗ω0 ∧ λ̃ is
positive, where i : H → ∆1 ×∆2 is the embedding from previously. We calculate using (6) (and
β′ = −β):

i∗ω0 ∧ λ̃ = (r1(σ)r′1(σ) dσ ∧ dα− r2(σ)r′2(σ) dσ ∧ dβ′) ∧ (f(σ) dβ′ + g(σ) dα)

= (r1(σ)r′1(σ)f(σ) + r2(σ)r′2(σ)g(σ)) dσ ∧ dα ∧ dβ′.

Now, this is automatically positive when σ ≤ σ0, since in that region λ̃ = λ0 is induced by a
Liouville field for ω. More generally, recall r2 and r′2 are positive for σ > 0, and g(σ) > 0 for
all σ as well. We have r1(σ) > 0 and r′1(σ) > 0 when σ < σ1 − ε, and on this region f(σ) > 0.
When σ ≥ σ1 − ε the function f is negative, but r′1(σ) = 0 in this interval. Hence the first term in
parentheses above is nonnegative while the second is positive, finishing the proof.

�

The proposition above proves Theorem 3.5 except for the claim that the contact manifold
(Y ′, ξ′) is obtained from (Y, ξ) by positive contact surgery on a Legendrian approximation of
K. We turn to that question next.
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3.4. Monodromy and framing. Recall that we have chosen a lift of the monodromy ψ ∈ Mod(Σ)

of a given open book on Y to an element ψ̂ ∈ Mod(Σ, D) ∼= Mod(Σ′) (all mapping class groups
are implicitly taken relative to the boundary), which entails a choice of framing of the 1-braid
K that we call the “page framing” even though, strictly, this framing is not determined by the
open book or even the representation of K as an element of Mod(Σ, p). We have denoted the
framing induced by the disk ∆ ⊂ Z, relative to the page framing, by n, and wish to understand
the monodromy of the open book on Y ′ determined by the construction above. To do so we must
be careful with the notion of “relative monodromy.”

Let π : M → S1 be a fiber bundle projection, where we think of S1 = [0, 1]/(0 ∼ 1) with
quotient map q : [0, 1] → S1. If F = π−1([0]) is the fiber over the base point, then the bundle
π̃ : q∗M → [0, 1] over [0, 1] is isomorphic to [0, 1] × F by some bundle isomorphism ϕ : q∗M →
[0, 1]×F that we may assume to be the identity on F = {0}×F . Observe that by the construction
of an induced bundle, the fibers of q∗M over 0 and 1 are canonically identified with F = π−1([0]).
The monodromy of π is then defined to be the composition

F = {1} × F → π̃−1(1) = π−1([0]) = F

where the arrow is determined by ϕ. If µ is this composition, then µ is well-defined up to conju-
gation (corresponding to the choice of identification of the fiber, which we will assume to be fixed
from now on) and isotopy (corresponding to the choice of ϕ). The bundle M is then isomorphic
to the mapping torus M(µ) = [0, 1]× F/(1, x) ∼ (0, µ(x)).

Now suppose B ⊂ F is a subset and µ : F → F is a diffeomorphism that is the identity
on B. (In our situation, F will be a compact surface and B a collar of its boundary.) Then the
mapping torus M(µ) contains a sub-bundle with fiber B, namely [0, 1] × B/(0, b) ∼ (1, b). In
particular, the map S1 × B → M(µ) sending (t, b) to the same element considered in M(µ) is a
canonical trivialization of this sub-bundle. Moreover, modifying µ by an isotopy that is fixed on
B to another diffeomorphism µ′ gives rise to a bundle isomorphismM(µ)→M(µ′) that respects
the corresponding trivializations of the sub-bundles. In other words, an element of Mod(F,B)
gives rise to a well-defined bundle and sub-bundle pair, where the sub-bundle is trivialized.
Conversely, suppose π : M → S1 is a fiber bundle with fiber F = π−1([0]), and N ⊂ M is a
sub-bundle such that N ∩F = B. Assume also that N is a trivial bundle, and that a trivialization
S1 × B → N has been chosen. Then, so long as B ⊂ F is a reasonable subset (e.g. a closed
submanifold), one can choose the trivialization ϕ of q∗M above so as to restrict to the given
trivialization of q∗N . In particular we obtain a monodromy diffeomorphism that is the identity
on B, well-defined up to isotopy rel B: that is, an element of Mod(F,B) that we call the relative
monodromy.

The point of the preceding discussion is that relative monodromy is determined not just by the
bundle π : M → S1 with its trivial sub-bundle, but by the additional choice of a trivialization of
the sub-bundle. Note that the notion of monodromy for an open book decomposition is, strictly,
an instance of relative monodromy. An example that is relevant for our situation is the following.
Let A = [0, 1] × S1 be an annulus, with oriented coordinates (τ, φ) (we take φ ∈ [0, 1]/(0 ∼ 1) as
usual). For an integer k, let ψk : A → A be the diffeomorphism ψk(τ, φ) = (τ, φ − kτ), which is
isotopic rel ∂A to the k-th power of a right-handed Dehn twist about the core circle ofA. (Strictly,
it is more appropriate to replace −kτ in this definition by a monotonic smooth function equal to
0 for τ near 0 and −k for τ near 1.) The mapping torus M(ψk) is then described concretely as

M(ψk) = [0, 1]× [0, 1]× S1/(1, τ, φ) ∼ (0, τ, φ− kτ),
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with bundle projection [s, τ, φ]ψk
7→ s. Here we write [·]ψk

for the equivalence class modulo
the relation induced by ψk as above. As a bundle over S1, the trivial mapping torus M(id) is
isomorphic to M(ψk) by the map

G : M(id)→M(ψk)

[s, τ, φ]id 7→ [s, τ, φ+ kτs]ψk
.

In particular, we can think of M(ψk) as just the trivial bundle M(id), but with different trivi-
alization on the boundary to account for the relative monodromy. Indeed, the trivialization of
∂M(ψk) is given by the obvious map [0, 1]× ∂A/ ∼ψk

→ S1× ∂A sending [s, j, φ]ψk
to (s, {j}×φ)

for j = {0, 1} (thinking of ∂A = {0, 1}×S1). Composing withG, the corresponding trivialization
∂M(id)→ S1 × ∂A maps

[s, 0, φ]id 7→ (s, {0} × φ)

[s, 1, φ]id 7→ (s, {1} × (φ+ ks)).

Put another way, the trivial bundle M(id), equipped with these boundary trivializations, has
relative monodromy isotopic to k right Dehn twists.

Returning to the setting of open book decompositions, to say that Y is equipped with an open
book decomposition (Σ, ψ) means that the complement of a small neighborhood of the binding
B is identified with the mapping torus Σψ. Moreover, the bundle structure on Y − nbd(B) is
trivialized at the boundary using the meridians of B. Likewise, in the setting from previously,
the choice of lift ψ̂ ∈ Mod(Σ, D) gives rise to a trivialization nbd(K) ∼= S1 × D that we have
recorded in the coordinate system (κ1, ρ, κ2).

The manifold Y ′ is obtained by replacing nbd(K) by H ∼= D2 × S1 in such a way that near ∂H
the coordinates (σ, α, β) on H are related to those on nbd(K) via the transformation (8):

(σ, α, β′) 7→ (κ1 = α, ρ = σ, κ2 = β + nα).

The open book π′ on Y ′ is described on H by the map π′(σ, α, β) = α. By a slight abuse, we
think of this as defined for σ ∈ [0, 1] (not just the half-open interval), so the fiber of π′ is an
annulus A = [0, 1] × S1 described by coordinates (σ, β). In other words, after deleting a small
open neighborhood of the binding B′ = {σ = 0} and recoordinatizing, the new open book is
described in this coordinate system as a trivial mapping torus S1 × A with coordinates (α, σ, β).
(Note that this coordinate system reverses the orientation on H , which as we have seen makes
its orientation consistent with that of Y ′.) On the boundary component at σ = 0, the natural
trivialization of this bundle given by projection to α and β coordinates corresponds to the trivi-
alization given by meridians of B′, as required for an open book. At σ = 1, the trivialization is
dictated by the coordinate transformation above, and is the map S1 × {0} × S1 → S1 × S1 given
by (α, 1, β) 7→ (α, β + nα). Comparing with the example above, we obtain:

Proposition 3.7. The open book (Σ′, ψ′) on Y ′ obtained by the procedure above has monodromy described
as follows. Write Σ′ = (Σ−D) ∪ A where A is an annulus glued to Σ along ∂D. The monodromy ψ′ is
equal to the chosen lift ψ̂ on Σ−D, and on A is given by the composition of n right-handed Dehn twists
around the core of A.

Recall that there are various choices for the lift ψ̂, related to each other by Dehn twists around
∂D. Adding such a Dehn twist to ψ̂ changes the corresponding framing on K, however, in par-
ticular adding a right Dehn twist increases the “page framing” by 1. The framing of K induced
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by ∆ is independent of this choice, but the integer n represents the difference between the fram-
ing given by ∆ and the page framing. Hence adding a right twist along ∂D to ψ̂ means that n
decreases by 1, and the monodromy ψ′ described in the proposition is well-defined.

Lemma 3.8. LetK ⊂ Y be a positively transverse knot in a contact manifold (Y, ξ), and let λ be a chosen
framing of K. Then there exists an open book on Y supporting ξ, such that K is transversely isotopic to a
binding component, and such that the framing on K induced by the page of the open book is smaller than
λ.

Proof. Recall that the construction of [3] arranging for a transverse knot K to be a binding com-
ponent of an open book begins with taking a Legendrian approximation K of K, and finding an
open book such that this approximation lies on a page in such a way that the framing induced by
the page equals the contact framing of K. Then, by a suitable stabilization, one obtains an open
book with a binding component B that is a transverse pushoff of K (and hence transversely
isotopic to K) and furthermore a curve K− on the page parallel to that binding component is a
Legendrian approximation of B (and a negative stabilization ofK). AlteringK by a negative sta-
bilization does not change the transverse isotopy class of its transverse pushoff. Thus, by taking
many negative stabilizations of K at the beginning of the construction, we can suppose that the
contact framing of K− is less than λ, in fact as much less as we desire. The contact framing of
K− is the same as the framing induced by the page, which then corresponds to the framing of
B ' K induced by the page. �

Proposition 3.9. Let (Z, ω) be a weak symplectic filling of (Y, ξ), and ∆ ⊂ Z a properly embedded
symplectic disk with (positively) transverse boundary K ⊂ Y . Let Z ′ = Z − nbd(∆) be the symplectic
manifold weakly filling (Y ′, ξ′) as in Proposition 3.6. Then the contact structure ξ′ is obtained from ξ by
an inadmissible transverse surgery along K. Alternatively, ξ′ can be described as the result of a positive
contact surgery along a Legendrian approximation of K.

Proof. Let λ denote the framing on K induced by ∆, and apply the transverse isotopy of the
previous lemma to arrange that K is a binding component of an open book for (Y, ξ), such that
the page framing is less than λ− 1. Note that by attaching the trace of the isotopy to ∆ in a collar
attached to ∂Z, we can still suppose that ∂∆ = K (as in the proof of Corollary 1.5(a) in Section
2.2; see [16]).

Now apply the isotopy of Lemma 3.4 to realize K as a braid adjacent to the boundary of
the open book as in Figure 2, with the associated lift of the monodromy to a class in Mod(Σ, D).
(Again we carry ∆ through the isotopy.) We must see how the framing induced by this lift relates
to the page framing of the binding component. This is easy to analyze in the model constructed
in the proof of Lemma 3.4 by considering a pushoff given by a point p′ = (0, T ′) ∈ A. The
curve s 7→ (θ = s, τ = T ′, φ = s) links the original braid once (positively) in the model, while
the page framing on the binding is zero (corresponding to the linking between {τ = 0} and a
pushoff (θ = s, τ = ε, φ = 0)). Hence the “page framing” of the braid differs by 1 from the
page framing on the binding, and by our earlier choice is still lower than λ. In particular the
integer n, representing the difference between λ and the framing on the braid given by the lifted
monodromy, is positive.

Now the proposition follows easily thanks to the monodromy description in the previous
proposition. Indeed, with the braid described as in Figure 2, the proposition above says that
(Y ′, ξ′) is described in terms of the open book by removing a small neighborhood of p in A, and
adding n > 0 right Dehn twists about a curve parallel to the new boundary component. This
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open book is precisely equivalent to the one described before Lemma 3.1 (with n in that descrip-
tion replaced by n+ 1), and hence describes an (integral) inadmissible transverse surgery along
the binding, or equivalently the result of positive contact surgery on the Legendrian approxima-
tion of K given by a curve on A parallel to the boundary. �

Proposition 3.9 completes the proof of Theorem 3.5, which together with Theorem 3.3 implies
Theorem 1.1.

3.5. Strong vs weak fillability. It is natural to ask whether the filling (Z ′, ω′) can be taken to be
a strong filling, assuming (Z, ω) is strong. This is essentially a homological condition: indeed, a
result of Eliashberg [14, Proposition 4.1] shows that a weak filling can be deformed to a strong
one if and only if the symplectic form is exact in a neighborhood of the boundary. With this in
mind, recall that for a framed knot K ⊂ Y and Y ′ the result of surgery along K with the given
framing, the Betti numbers b1(Y ) and b1(Y ′) differ by at most one. More specifically, a meridian
m of K, considered in Y ′, represents an element of H1(Y ′;R) that is trivial unless both K is
nullhomologous and the framing is the nullhomologous framing.

Theorem 3.10. In the situation of Theorem 1.1, suppose that (Z, ω) is a strong symplectic filling of (Y, ξ),
and that either of the following two conditions hold:

(1) The symplectic form ω is exact on a neighborhood of Y ∪∆, or
(2) The meridian m of K, considered as a real homology class in Y ′, is trivial.

Then (Z ′, ω′) can be deformed to a strong symplectic filling of (Y ′, ξ′).

Proof. As observed above, to see that (Z ′, ω′) can be deformed to a strong filling it suffices to
show that ω′ = ω|Z′ is exact near Y ′. Since Y ′ is one boundary component of a tubular neighbor-
hood of Y ∪∆, the first condition in the statement of the theorem clearly suffices.

For the second condition, let N and U∆ be small closed tubular neighborhoods of Y = ∂Z and
∆ ⊂ Z, respectively, and consider the Mayer-Vietoris sequence in de Rham cohomology

H1(V )→ H2(N ∪ U∆)→ H2(N)⊕H2(U∆),

where V = N ∩ U∆ is a neighborhood of K ⊂ Y , thickened into Z. Since ω is exact on N and
H2(U∆) = 0, the class [ω] ∈ H2(N ∪ U∆) lies in the image of H1(V ) ∼= R. Under the hypothesis
that [m] = 0 in H1(Y ′), the composition

H1(V )→ H2(N ∪ U∆)→ H2(Y ′)

(where the first map is the Mayer-Vietoris boundary and the second is induced by inclusion) is
the trivial map, which verifies the theorem.

One way to check that the above composition vanishes is to pass to homology via Poincaré
duality, and consider the composition

H3(V, ∂V )→ H2(N ∪ U∆, ∂(N ∪ U∆))→ H1(Y ′).

Since V ∼= S1×D3, the first group is generated by the relative class [D3, ∂D3], which maps to the
class [∂D3] in the second group. Geometrically, thinking of N as Y × I and V as nbd(K)× I , we
have D3 = D2 × I for D2 a meridian disk of K. Thus ∂D3 corresponds to D2 × {0, 1} ∪m × I
where m = ∂D2 is the meridian. The second map above is given by intersecting chains with
Y ′, which in the case of ∂D3 gives only the circle m × {1}. Hence [∂D3] 7→ [m] and the claim
follows. �
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Corollary 3.11. If K ⊂ S3 is a Legendrian knot in the standard contact structure on S3, and n > 0
is a given integer, then ξ−n (K) is weakly symplectically fillable if and only if it is strongly symplectically
fillable.

Proof. If n corresponds to a surgery whose smooth surgery coefficient is not zero, then the merid-
ian of K vanishes in H1(Y ′;R) (indeed, the latter group is trivial), so the result follows from case
(2) of the theorem above. The case of a smooth zero-surgery arises exactly in the case that the
transverse pushoff K bounds a symplectic disk in a (weak) filling of S3 having self-intersection
zero. As seen in Section 2.1, this is equivalent to K bounding an embedded symplectic disk in
B4, whose symplectic form is exact. The conclusion follows from case (1) of Theorem 3.10. �

4. KNOTS WITH LOW CROSSING NUMBER

In Table 1 we tabulate those knots in the KnotInfo database with up to 10 crossings that admit
fillable positive surgeries. The table includes only knots that are listed as quasipositive in the

Name
Fillable
surgery? µ(K) Notes Name

Fillable
surgery? µ(K) Notes

31 Y 4 Torus knot T (3, 2) 1049 Y ≤ 12
51 Y 8 1053 N ∞ c∗ > g∗
52 Y 4 Twist knot K3 1055 Y ≤ 8
71 Y 12 1063 Y ≤ 8
72 Y 4 Twist knot K5 1066 Y ≤ 12
73 Y ≤ 8 1080 Y ≤ 12
74 N ∞ c∗ > g∗ 10101 N ∞ c∗ > g∗
75 Y ≤ 8 10120 N ∞ c∗ > g∗
815 Y ≤ 8 10124 Y 13 Torus knot T (5, 3)
819 Y 9 Torus knot T (4, 3) 10126 Y 4
820 Y 0 10127 Y ≤ 8
821 Y 4 10128 Y 9 Braid 3(12)3(3̄23)
91 Y 16 Torus knot T (9, 2) 10131 Y 4 Braid (123̄432̄1̄)(232̄)2(121̄)(4̄12322̄1̄4)
92 Y 4 Twist knot K7 10133 Y 4
93 Y ≤ 12 10134 Y ≤ 12
94 Y ≤ 8 10139 Y 13 Braid (12)3(2̄122)21
95 N ∞ c∗ > g∗ 10140 Y 0
96 Y ≤ 12 10142 Y ≤ 12 Braid 1212(3212̄3̄)1223
97 Y ≤ 8 10143 Y 4
99 Y ≤ 12 10145 Y ≤ 8 Braid 3221(3223̄)(212̄)
910 N ∞ c∗ > g∗ 10148 Y 4 Braid (1̄221)(2̄12)(2212̄2̄)
913 N ∞ c∗ > g∗ 10149 Y ≤ 8
916 Y ≤ 12 10152 Y 13 Braid (12)31(2̄122)(212̄)
918 Y ≤ 8 10154 Y ≤ 12 Braid 12221(2̄32)223
923 Y ≤ 8 10155 Y 0
935 N ∞ c∗ > g∗ 10157 Y ≤ 8
938 N ∞ c∗ > g∗ 10159 Y 4
945 Y ≤ 8 10161 Y ≤ 12
946 Y 0 10165 N ∞ c∗ > g∗
949 N ∞ c∗ > g∗

TABLE 1. Knots admitting a fillable positive contact surgery.
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database; we do not distinguish between a knot and its mirror image (only one of these can be
quasipositive, except possibly in the case of a slice knot).

A “Y” in the table indicates that some transverse representative has a Legendrian approxi-
mation with a fillable positive contact surgery; such a representative is provided by either the
quasipositive braid expression appearing in KnotInfo, a simple modification thereof, or by the
braid indicated in the table. Where the quasipositive braid expression exhibiting the existence
of a fillable surgery, as in Theorem 2.12, is not obvious from the expression given on KnotInfo,
we provide a braid expression using notation 1, 2, 3, . . . and 1̄, 2̄, 3̄, . . . for the braid generators
σ1, σ2, σ3, . . . and their inverses.

For those knots with a fillable positive surgery, the table includes either a value or an upper
bound for the minimal fillable surgery coefficient µ(K). Most instances of the upper bound coin-
cide with the general one from Proposition 1.7, though values µ(K) = 0 and µ(K) = 4 are sharp
in the cases g∗(K) = 0 and g∗(K) = 1, respectively, as follows from that proposition and from
Proposition 2.19. Estimates of µ(K) lower than 4g∗(K) arise from observing higher-multiplicity
singularities in symplectic disks, as evidenced by braid (monodromy) expressions: for example,
the knot 10128 admits a representation as the closure of a braid containing the expression (12)3,
which is the monodromy associated to an ordinary triple point singularity. When values of µ(K)
are indicated as sharp, the result follows from arguments such as those elsewhere in the paper
(Section 2.3 in particular). All examples of knots in this table that do not admit a fillable positive
surgery are obstructed from doing so by Corollary 1.3 in that their clasp number exceeds their
slice genus. Values of c∗(K) in these instances were in many (perhaps all) cases obtained by
Owens and Strle [41].
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