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ABSTRACT

In this study, we investigate in situ etching of f-Ga,0O; in a metalorganic chemical vapor deposition system using fert-butyl chloride (TBCI).
We report etching of both heteroepitaxial (201)-oriented and homoepitaxial (010)-oriented f-Ga,O; films over a wide range of substrate
temperatures, TBCl molar flows, and reactor pressures. We infer that the likely etchant is HCI (g), formed by the pyrolysis of TBCI in the
hydrodynamic boundary layer above the substrate. The temperature dependence of the etch rate reveals two distinct regimes characterized by
markedly different apparent activation energies. The extracted apparent activation energies suggest that at temperatures below ~800 °C, the
etch rate is likely limited by desorption of etch products. The relative etch rates of heteroepitaxial (201) and homoepitaxial (010) -Ga,Os5
were observed to scale by the ratio of the surface energies, indicating an anisotropic etch. Relatively smooth post-etch surface morphology
was achieved by tuning the etching parameters for (010) homoepitaxial films.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0239152

The ultra-wide bandgap semiconductor f-Ga,O; (~4.8€eV) has
garnered attention recently as a platform for power electronics and
radio frequency devices.' The ultra-wide bandgap results in a high crit-
ical breakdown field strength yielding a superior Baliga’s figure of
merit relative to semiconductors like SiC and GaN.” Progress in
f-Ga, 05 research has been spurred by the availability of large-area (up
to 4in.) melt-grown substrates’ and the ease of n-type doping.’
Metalorganic chemical vapor deposition (MOCVD) has emerged as a
technique capable of producing high-quality f-Ga,Os thin films with
room-temperature electron mobilities approaching the polar optical
phonon limit.” * A low-damage in situ etch to minimize contamina-
tion or plasma-induced damage before subsequent deposition of n+
material” or dielectrics'’ will be key for enabling higher-performance
devices. In this study, we investigate the use of tert-butyl chloride
(TBCI) as a precursor for in situ etching of f-Ga,Os.

In situ etching of -Ga,O; has been demonstrated using a flux of
elemental gallium in molecular beam epitaxy (MBE) and using trie-
thylgallium in MOCVD."""” The etch mechanism for both leverages
the formation of volatile gallium suboxides.” The use of elemental Ga
can, however, potentially leave gallium metal droplets on the surface
necessitating an ex situ HCl wet etch. Agnitron Technologies has dem-
onstrated that these Ga droplets can be removed in situ with TBCl
etching; however, their use of TBCI for etching of f-Ga,Oj itself was
not promising, requiring much higher TBCl molar flow compared to
those used in this work to achieve appreciable etch rates.'* I situ etch-
ing of f-Ga, 05 has also been demonstrated in halide vapor phase epi-
taxy (HVPE) systems using HCl gas."'°

TBCl is an attractive choice as an etchant precursor since it is rel-
atively noncorrosive compared to HCl, displays long-term stability at
room temperature, has a reasonable vapor pressure, and can be
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installed in the typical bubblers, widely used for precursor delivery in
MOCVD systems. In situ etching using TBCI has been demonstrated
for various ITI-V semiconductors.'” *' The thermal decomposition of
TBCI has been experimentally confirmed to follow™” **

(CH3);CCl(g) — iso-C4Hs(g) + HCl(g). 1)

In situ etching of f-Ga,O; was performed in a cold-wall Agnitron
Agilis 100 MOCVD system equipped with a remote-injection shower-
head. The SiC-coated graphite susceptor was inductively heated, and
the substrate temperature was measured by a pyrometer aimed at the
backside. The etching studies were carried out over reactor pressures
of 10-60 Torr, susceptor temperatures of 700-1000°C, and TBCl
molar flows of ~20-61 ymol/min. The stainless-steel bubbler contain-
ing the TBCI (99.9999%) was purchased from Dockweiler Chemicals
and was held at a pressure of 900 Torr and a temperature of 5°C. Both
heteroepitaxial (201) f-Ga,Os, grown on c-plane sapphire, and homo-
epitaxial films, grown on Fe-doped (010) f-Ga,O; from Novel Crystal
Technologies, were etched. For homoepitaxial films, etching was stud-
ied at 15 and 30 Torr, 750 and 875°C, and a TBCl molar flow of
~61 pimol/min. During etching, the total flow in the reactor was fixed
at 6000 sccm using Ar (99.999%) carrier gas.

UV-vis optical reflectometry was used to measure heteroepitaxial
film thickness, while x-ray diffraction (XRD) (PANalytical Empyrean)
was used to determine homoepitaxial film thickness. Homoepitaxial
films grown for determining the etch rate included a thin (~10nm)
B-(Aly o,Gage3),05 interface followed by 200-300 nm of -Ga,O5 which
provided an index contrast resulting in Laue oscillations.”” Atomic force
microscopy (AFM) was used to evaluate the surface morphology.

We used heteroepitaxial $-Ga,O5 to map out the etch rate as a
function of TBCI molar flow at temperatures between 700 and 900 °C
(Fig. 1). At a fixed reactor pressure of 15 Torr, we found that etch rate
increases linearly with TBCl molar flows between ~20 and 61 umol/
min, which enables fine control of the etch rate.

In general, the etch rate increases with increasing temperature;
however, the slope of the etch rate vs TBCI molar flow jumps sharply
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40 850 °C ;—_ 10.0F 3+
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FIG. 1. Etch rate of heteroepitaxial -Ga,0; as a function of (a) TBCI molar flow
and (b-c) reactor pressure. (a) At a fixed pressure of 15 Torr and temperatures
between 700 and 900 °C, increasing the TBCI molar flow results in a linear increase
in etch rate. At a fixed TBCI molar flow of ~61 umol/min, the etch rate monotoni-
cally increases with reactor pressure in both the (b) HT and (c) LT regimes, indicat-
ing that TBCI etching of $-Ga,O3; does not occur in a mass-transport-limited
regime.

ARTICLE pubs.aip.org/aip/apl

from 800 to 850 °C, indicative of a sudden change in the etch-limiting
step. At a fixed TBCI molar flow of ~61 ymol/min, the etch rate follows
an Arrhenius relationship (Fig. 2). There are two distinct activation
energy regimes that are commonly observed in CVD growth’® and etch-
ing”” processes. In our work, the low-temperature (LT) regime below
~800°C has a higher apparent activation energy of ~1.59 and
~1.75¢eV for 15 and 30 Torr, respectively. The high temperature (HT)
regime above ~800 °C exhibits a much lower apparent activation energy
of ~0.11 and ~0.04eV for 15 and 30 Torr, respectively. These values
are much lower than the Ga-O bond dissociation energy (~3.88 ev),”
and we confirmed that even at the highest etch temperature employed,
there is negligible thermal decomposition of f-Ga,Os.”

During the etching process, the etchant adsorbs on the surface
and then reacts to form an etch product, followed by the desorption of
the etch product from the surface. Based on the data from Tsang,”" at
temperatures between 700 and 1000 °C used in our work and esti-
mated residence times™ for precursors in the heated boundary layer
above the susceptor, TBCl pyrolyzes into isobutene and hydrogen
chloride (HCI) (Fig. 3). This temperature range, however, is not high
enough to enable further gas-phase pyrolysis of HCl (Fig. 3).”'
Therefore, it is reasonable to assume that HCl is the etchant.

We hypothesize that the HCI adsorbs onto the surface of the
f-Ga,05 and reacts to form a volatile GaCl,, (n < 3) etch product by
one of the following three reactions, which were determined to be ther-
modynamically favorable based on thermochemical data™ ** and the
partial pressures of the various species at experimental conditions used
in this work:

Ga,05(s) + 6HCl(g) < 2GaCl(g) + 3H,0(g) +2Ch(g), (2)
Ga,05(s) + 6HCl(g) — 2GaCly(g) + 3H,0(g) + Cly(g), (3)
Ga,05(s) + 6HCl(g) < 2GaCls(g) + 3H,O(g). (4)

In the LT regime, the weak dependence of etch rate on TBCl molar

flow (Fig. 1) suggests that the etch is limited by etch product desorp-
tion—either GaCl, or H,O. While all thermodynamically favorable
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FIG. 2. Arrhenius plot of in situ etch rate of heteroepitaxial -Ga,05 for a TBCI

molar flow of ~61 umol/min at reactor pressures of 15 and 30 Torr. The HT and LT
etch regimes are delineated by distinct apparent activation energies.
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FIG. 3. Calculated fraction of TBCI and HCI pyrolyzed as a function of temperature
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substrate. The pyrolysis of TBCI into isobutene and hydrogen chloride (HCI) is fully
complete by 600 °C, while the thermal decomposition of HCI does not occur until
over 1000 °C.

gas-phase reactions can occur simultaneously, GaCl; formation kinet-
ics will depend on the surface coverage of HCI, which is likely low
given the linear (first order) increase in etch rate with TBCI partial
pressure, and the high vapor pressure of HCl even at 700°C.">"°
Therefore, the LT etch product is likely GaCl. Surface science studies
of GaCl,, desorption from GaAs have shown an apparent activation
energy for the desorption of GaCl; and GaCl of ~0.78 and ~1.65¢eV,”’
respectively.”” When the apparent activation energy is greater than
that expected for the relevant GaCl,, species, the limiting factor has
been attributed to the anionic species (N for GaN and As for
GaAs).””" For the case of -Ga,Os, after the desorption of volatile
GaCl, species, the surface is likely left hydroxylated. The hydroxyl-
terminated 5-Ga,O; surface is observed to be stable up to 750 °C in an
ultra-high vacuum (UHV) environment.”! Although the activation
energy for the desorption of H,O from hydroxylated f-Ga,0Os is
unknown at this time, the apparent activation energy for the desorp-
tion of H,O from o-Al,O5 surfaces is in the range of ~1.37 to 1.78 eV,
which is similar to our observations in the LT regime.”**’ Further
studies are required to fully elucidate the LT etch mechanism.

In the HT regime, the dominant GaCl, species is presumably
GaCl based on thermodynamic calculations of gas-phase HVPE
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FIG. 5. Comparison of etch rate between homoepitaxial (010) and heteroepitaxial
(201) p-Gay04 with ~61 umol/min TBCI. Included in the plot are the ratios of cal-
culated -Ga,03 dangling bond densities (p, green) and surface energies (E, blue)
from Mu et al., illustrating that the anisotropy of the etch rate is correlated with the
surface energy anisotropy: the higher the surface energy, the higher the etch rate.

growth of GaN."" The low apparent activation energy in the HT
regime agrees with the apparent activation energy (~0.08eV)
extracted above 800°C from atmospheric pressure HCl etching of
B-Ga,05."” The etch rate in the HT regime is determined by the sur-
face concentration of HCI as evidenced by the linear dependence of
the etch rate on reactor pressure in Fig. 1(b)."”

At high substrate temperatures, MOCVD growth typically occurs
in a mass-transport-limited regime. In the absence of significant gas-
phase parasitic reactions, and when all the flows are held constant, the
growth rate is independent of total reactor pressure within this mass-
transport-limited regime.””** To determine whether etching with
TBCI occurs in a mass-transport-regime, the pressure dependence of
the etch rate was explored at a fixed TBCI flow rate at two tempera-
tures: 750 °C (LT regime) and 900 °C (HT regime). The reactor pres-
sure was controlled, independent of the total gas flow, using a
computer-controlled butterfly valve in the exhaust manifold.
Figures 1(b) and 1(c) show that the etch rate is increasing, and not sat-
urating, with increasing reactor pressure, indicating that etching is not
occurring in a mass-transport-limited regime even at the highest
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substrate temperatures investigated in this study. An increase in etch
rate with reactor pressure is likely due to the increased surface coverage
of the etchant, HCI, with increasing HCI partial pressure.””

In order to investigate the effect of oxygen on the etch rate, we
introduced a 50 sccm flow of O, into the reactor during etching. In the
LT regime, the etch rate was largely not affected; however, in the HT
regime, the etch rate was suppressed by a factor of ~2 as seen in Fig. 4.
We believe that the HT etch rate is suppressed due to the competing
HVPE growth back reaction.

Next, we etched co-loaded heteroepitaxial (201) and homoepi-
taxial (010) -Ga,O; samples to investigate the etch rate anisotropy.
The etch rate for homoepitaxial samples with ~61 ymol/min TBCl
molar flow was determined by XRD (Fig. S1) for four distinct condi-
tions (15 Torr at 750 and 875°C, and 30 Torr at 750 and 875°C).
Figure 5 summarizes these etch rates, revealing the anisotropy. Also
plotted in Fig. 5 are the ratios between the calculated (010) and (201)
dangling bond densities (p, green) and surface energies (E, blue),
which agrees well with the experimental data.”’ Etch rate anisotropy
has also been observed during etching of -Ga,05 using HCl in an
HVPE reactor."”

To investigate the surface morphology resulting from TBCI etch-
ing, ~400 nm thick homoepitaxial (010) unintentionally doped (UID)
f-Ga,05 samples were grown and then immediately in situ etched,
without cooling down, to a depth of ~100 nm for each of the four con-
ditions shown in Figs. 6(b)-6(e). The resulting surface morphology
resembles that resulting from hot phosphoric wet etching™ and does
not exhibit characteristic faceting of the (110) plane along the [001]
direction typically seen post-growth”” [as shown for an unetched film
in Fig. S1(b)] or after elemental Ga etching,'"'* In general, we observe
that etching under higher pressures and low temperatures results in
smoother surfaces. Currently, the exact mechanism for surface rough-
ening is unclear, but we note that conditions for smoother etch mor-
phologies also result in longer surface residence time of gas-phase
species. We note that heteroepitaxial (201) oriented f-Ga,O; films
grown on c-plane sapphire also exhibited increased surface roughness
after etching using TBCI (Fig. S2).

The electrical properties are not compromised for films grown
after a 30 min ex situ 48% hydrofluoric acid etch plus a ~50 nm
in situ, ~61 ymol TBCI etch at 750°C. (010) homoepitaxial films
doped™ to ~1 x 10" and ~2 x 10'®cm > exhibit mobilities of ~115

and ~102cm*/V's, respectively. We demonstrate that subsequent
regrowth after in situ etching of the substrate results in sub-nanometer
RMS roughness (Fig. S3). The surface morphology of regrowth after in
situ etching homoepitaxial films is comparable (~1nm RMS) and is
the subject of future work.

In summary, this study investigated the in situ etching of both
heteroepitaxial (201) and homoepitaxial (010) f-Ga,O; films by TBCl
in an MOCVD system over a temperature range of 700-1000 °C, pres-
sure of 10-60 Torr, and TBCI molar flow of ~20 to 61 ymol/min. Two
distinct regimes for TBCI etching of f/-Ga,O5 were observed. The LT
regime, below ~800°C, exhibits an apparent activation energy of
~1.59 and ~1.75¢eV for 15 and 30 Torr, respectively. In the LT regime,
we hypothesize that the etch rate is limited by the desorption of GaCl,,
or likely H,O. In the HT regime, we hypothesize that the thermody-
namically favored etch product is GaCl and the apparent activation
energy is low. The relationship between the etch rate of (201) and
(010) -Ga,Os5 scales by the ratio of surface energies. Finally, the sur-
face morphology of in situ etched homoepitaxial films was evaluated,
and it was determined that the lower temperature, higher pressure etch
resulted in smoother surfaces. This work lays the groundwork for uti-
lizing in situ TBCI etching and regrowth to obtain low-resistance
ohmic contacts and improve the performance of -Ga,O; based
devices.

See the supplementary material for details on MOCVD growth
conditions for the films etched in this study. Also included are the
XRD results used for etch rate determination, as well as AFM images
of as-grown and regrown homoepitaxial films and AFM images of an
as-grown and etched heteroepitaxial film.
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