Stability threshold of nearly-Couette shear flows
with Navier boundary conditions in 2D

Jacob Bedrossian* Siming He' Sameer Iyert Fei Wang®

October 17, 2024

Abstract

In this work, we prove a threshold theorem for the 2D Navier-Stokes equations posed on the
periodic channel, T x [—1, 1], supplemented with Navier boundary conditions w|y—+1 = 0. Initial
datum is taken to be a perturbation of Couette in the following sense: the shear component of the
perturbation is assumed small (in an appropriate Sobolev space) but importantly is independent
of v. On the other hand, the nonzero modes are assumed size O(V%) in an anisotropic Sobolev
space. For such datum, we prove nonlinear enhanced dissipation and inviscid damping for the
resulting solution. The principal innovation is to capture quantitatively the inviscid damping,
for which we introduce a new Singular Integral Operator which is a physical space analogue of
the usual Fourier multipliers which are used to prove damping. We then include this SIO in the
context of a nonlinear hypocoercivity framework.
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1 Introduction

We study the 2D Navier-Stokes equations in the periodic channel (z,y) € Tx[—1, 1]= [-m, 7]/~ x [-1,1]
with inhomogeneous Navier boundary conditions

O+ (v-V)v+ Vp = vAv, (1.1a)
V-v=0, wvtz,£1)=0, 0Jyvi(t,z,+1)=1, (1.1b)
U(t:O)$7y) va(%y)- (11C)
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This problem corresponds to studying a fluid with Navier-type boundary conditions and applying
a fixed force (rather than a fixed velocity) which slides the top and bottom boundaries in opposite
directions. See for example [32] for derivations of Navier-type boundary conditions from kinetic
theory. The boundary conditions on the vorticity 2 = dyu; — Ozus reduce to simple Dirichlet
conditions, giving the system

O +v-VQ =vAQ,
v=VIATI0= (9,A7'Q, -0,A7'Q), Qt,z,y=+1)=1,
Q(t = Oa :E?y) = an(xvy))

where the A1 is taken with homogeneous Dirichlet conditions on y = +1 so that v satisfies the
no-penetration condition va(¢,z,+1) = 0. It is straightforward to prove that all solutions of (1.1)
converge to the unique steady state selected by the boundary conditions, namely, the Couette flow:

oo = (g) |

A class of questions which has received a lot of attention recently is that of a quantitative stability
threshold: given a norm on the initial data ||| y, what is the largest v > 0 such that

[0(0) = vollx <+

implies that v(t) behaves roughly like the linearized problem for all time, where the exact quan-
tification of this varies from work-to-work, but generally involves at least observing the enhanced
dissipation characteristic of the linearized problem (discussed further below). See [9] for a detailed
discussion on thresholds in the context of the Couette flow. See e.g. [15,16,19,21,33,34] and the
references therein for 2D, and see 3D [5,8,10,37] and the references therein for 3D. When studying
these kinds of high Reynolds number hydrodynamic stability problems, the mixing induced by the
shearing greatly influences the stability of the equilibrium, leading to two notable effects in 2D:
inviscid damping wherein the perturbation velocity decays in the linearized (or nonlinear) Euler
equations and enhanced dissipation, wherein the mixing accelerates the viscous dissipation, leading
to, for example rapid decay of the z-dependence on time-scales like &~ y1/3 (rather than the decay
of the heat equation ~ v~!). Many works have studied these effects recently in the linearized
Navier-Stokes and Euler equations; see for example [7,23,25,26,31,35,38-40,42] and the references
therein for inviscid damping results and e.g. [11,18,19,21,27,40] and the references therein for
results on enhanced dissipation (some results study both, such as [18,27], but such results are rare
outside of the Couette flow). There are also works on mixing and enhanced dissipation by laminar
flows in passive scalars, for example such as [1,3,4,22] and the references therein.

The purpose of this paper is three-fold. The first two are: (1) to introduce a new energy
method for studying inviscid damping and enhanced dissipation; and (2) use this method to obtain
a stability threshold not just for the Couette flow, but for all shear flows close to Couette, namely

the ‘slowly-varying’ solutions
tv A
v(t) = (e OUO) : (1.2)

with [Jug — y|| 2 < 0o for a universal constant oy independent of v. In [15], it was estimated that

v < 1/2 without boundaries (i.e. y € R) with initial data in Sobolev spaces X = H® with s > 1.
For the case of the Couette flow (rather than (1.2)) more work exists. In the case of T x R,

[34] improves the required regularity for v < 1/2 to HY9 Lg. And it turns out to be optimal for



low regularity even up to H;Lg [29]. For fo = y without boundaries, this was later improved to
v < 1/3 for sufficiently high Sobolev regularity [33] and v € [0, 1/3] for suitable Gevrey classes [28],
which is expected to be sharp, due to the results of [20]. The regularity could be further relaxed
to H® for s > 3 in a upcoming paper [36]. When one has at least Gevrey-2 regularity on the other
hand, the result was proved with v = 0 in [14] (i.e. the results are uniform-in-v). For fy = y and
Dirichlet boundary conditions in the channel, the stability threshold was proved with v = 1/2 in
[16]. The method of that paper should also prove the corresponding result for the Navier boundary
condition case, which is easier than the Dirichlet case.

In our upcoming work [12], we extend the Gevrey-2 uniform-in-v result of [14] to the channel in
the case with Navier boundary conditions. The proof works essentially in two steps: (1) to obtain
precise Gevrey regularity estimates on time-scales 1 < t < v~¢ for some ¢ > 1/3 (which contain
all of the results of e.g. [13,24] and more) and then (2) apply the results of Theorem 1.1 below
for times t > v~¢ to obtain a global-in-time result. The third purpose of this paper is hence to
complete the proof of the theorem stated in [12] by solving step (2). We have made this step a
separate paper as the methods herein are largely different from [12], and moreover, the result and
the new energy method we introduce are of independent interest.

Let us now make the results more precise. We will consider initial conditions of the form

Qin(ZEa y) =1+ Wm(y) + Win(xay)v

where we will be assuming more regularity on W;, but no v-dependent smallness, whereas w;,
will be assumed small relative to v. We define the heat extension (with homogeneous Dirichlet
conditions) of W, as

W (t,y) = (e""2vWin) (1), (1.3a)

and U be the resulting shear flow given by the corresponding Biot-Savart law (here G' denotes the
Greens function for 0y, with homogeneous Dirichlet conditions on interval [—1, 1])

Ult,y) = y+0, /_11 Gy, y )W (ty)dy'. (1.3b)
We write the solution of the Navier-Stokes equations as
Q=14+W(t,y) +w(t, z,y),
reducing the problem to

Oyw + Udpw—U"0,¢ + u - Vw = vAw, (1.3¢)
u=V+A ", wlt,y=%1)=0, w(0)=wipn, (1.3d)

which now contains time-dependent linear terms which are not perturbatively small in v and do
not satisfy any straightforward energy estimates because of the non-local term U”9,¢ (note that
U"” = 0y,U is not sign-definite). Nevertheless, we obtain a new energy method capable of dealing
with the time-dependent linearized Navier-Stokes equations for Navier boundary conditions and
extracting both inviscid damping and enhanced dissipation at the same time (the same method
works, and is simpler, in T x R). The approach is nearly a physical-side analogue of the Fourier
multiplier energy method employed in [14] to solve the corresponding problem without a boundary.
Such a Fourier multiplier approach cannot be employed here due to the boundary, however, one
can find a singular integral operator that is essentially a physical-side analogue of the multiplier



in [14] used therein to obtain the fundamental L%H;Li inviscid damping estimate on the velocity
field and which allows to integrate the U”9,¢ linear term. Using this singular integral operator,
combined with a more standard hypocoercivity method to obtain the enhanced dissipation and
suitable nonlinear estimates, we obtain the following theorem purely via an energy method.

Theorem 1.1. Consider the equation (1.3) subject to compatibility condition Wm‘y:ﬂ = wm‘
0. Then for all m € (2/3,1), 39,61 > 0 such that if

y==%1 =

[Winllgg < 00, 3 @0, ()™ win

0<j<1

‘LQ =:1e < 61V, (1.4)

then for all 6, > 0 sufficiently small (depending only on universal constants) and all v € (0,1),
there hold

> | (Vl/?’ay)jwyé(t)‘ , See ™ vt e [0,00);
0<j<1 Loy

> | o )w)]| , s e e o,00);

0<j<1 v

3 eé*ul/Bt‘aﬂerl*%(V1/3ay)ju¢’ . Se

0<j<1 LYLZ

Remark 1.2. Note that while we require a little more than 2/3 of a derivative in = to be O(\/v)
in L2, we only require d,w to be O(v'/%) in H;/3+L§.

Remark 1.3. In the case of Dirichlet boundary conditions, the boundary layers will necessitate
a more complicated approach that cannot be done only with energy estimates. Nevertheless, the
proofs of [16] show that a strong understanding of the Navier case is extremely useful for making
progress on the Dirichlet case. The case of Dirichlet boundary conditions will be considered in
future work.

2 Outline

2.1 Linearized Problem

One of the primary challenges to Theorem 1.1 is obtaining sufficiently good estimates on the (time-
dependent) linearized problem that results from dropping the nonlinearity in (1.3). We believe
these could be obtained using a time-splitting argument similar to that used in [17] along with a
suitable variation of the resolvent estimates found in [16]. While effective and robust, this method
is also quite technical. One of our primary contributions here is to provide a more straightforward
method based solely on energy estimates.

Due to translation invariance, the linearized problem is best studied mode-by-mode in x. De-

1 i ,
noting wy(t,y) := / w(t, z,y)e"**dx, we have the mode-by-mode linearization given by

2 J_,
Orwy + U’ikwk—U,/ikqbk —vAgw, =0, (2.1&)
Ay = wg, (2.1b)
op(£1) =0,  wr(£l) =0, (2.1c)
where Ay = —|k]? + Oyy. We introduce a hypocoercive energy for (2.1), which simultaneously

captures the inviscid damping and the enhanced dissipation: for universal constants {cx}.e{a, 8,1 C
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(0,1) to be specified below,

2 2 1 4 .
Eplwr] ==llwil72 + cav3 k|75 | 0ywil|7> — cor# k|~ 3 Re(ikw, dywy,)
2 _2 -
+ c-Re{wg, Jp[wr]) + creqvs k|73 Re<8ywk,‘jk[8ywk]>
=Re(wi, (14 e 31) [we]) + cav/? k] 3Re(ywy, (1 + cr3e) [Oyw]) — cov3 [k~ 3 Re(ikwy, Oyw).

(2.2)

Here the singular integral operator (SIO) Ji is given by
WA = kv [ G )y 23)

k = Ve ., < k B 5 .
Ik J -1 2i(y —3')
where we denote Gy, the Green’s function for A, = —|k|*> + 9,, with homogeneous Dirichlet
boundary conditions, which has the explicit form:
1 sinh(k(1 — o)) sinh(k(1 + y)) y <y

A ’ ’ 2.4
Grly.y) k sinh(2k) { sinh(k(1 — y))sinh(k(1+79')), y=>y. (2:4)

The first three terms in (2.2) are the by-now standard hypocoercive energy for extracting opti-
mal enhanced dissipation from problems such as passive scalar shear flows (i.e. (2.1) with no
ikU" ¢i, term); see for example [4,22]. The last two terms in the energy simultaneously deal with
the non-local ikU” ¢, in the energy estimate (which would normally frustrate any straightforward
hypocoercivity estimate) and also extracts a L?H%_‘SLZ inviscid damping estimate which is nearly
the optimal estimate expected from the 2D Couette flow [16], namely that

k2 IV korl 2L < lorO)ll7: -

In our case, the terms involving J; will provide the following invisicd damping estimates

Z |k|2 H(V1/3 |k‘|_1/3 ay)]vk¢k‘ ing

0<5<1 ty

S Exfwi(0)].

We show below that J is a bounded operator, mapping L? to L?, with a bound depends uniformly
in k, and so for appropriate choices of the parameters (see Section 4.5 for the details on how to set
the parameters {ci}.c{a,,-}), We have

2/3

2
|k|2/3 Haywka 9

Eleox] ~ |lwxllZ2 +
with an implicit constant independent of v and k.

The first main result of our work is the following linearized energy estimate, proved in Section
4.

Proposition 2.1. For suitable choices of the parameters {c.}.c(ap.r} (2.2), and for any H' solu-
tions to (2.1),#0, the following holds for all sufficiently small 6, > 0 that are independent of v and
k,

26.1/3|k|2/3¢ 1 s v1/3|k12/3s 17,12 2
e Bylor@®)] + ger | €™ k" [Vior(s)l72 ds < Eglwi(0)], V>0,
0



and, more specifically, the following energy estimate holds:

d
= Eplw] < —86,Dlwi] — 86,13 |k|*? Eplwy),

dt
where Dy, is given by

Dy = Dk,'y + CaDk@ + C,BDk,,B + CTDk,T + CTCO(D]C,T&7 (253)

Dy 1= v [ Vaewn |22 = vllikesn]3a + viIywnl3e. (2.5b)

2

Dy = v [k | Vi@ 0, )un | . (2.5¢)

Dy := '3 k[ [l 72 (2.5d)

Dy := [k[* [|Vior72 (2.5¢)

Dira i= 23 |3 || V1,0 01|22 - (2.5¢)

Here Vy, := (ik, 0y). Furthermore, we define the notation D, = Zk;;éo Dy, * € {v,, 8,7, Tt}

The definition of J; comes from a physical-side representation of a Fourier multiplier employed
in the works [10,14,15,41]. In the case of T x R, a similar physical-side SIO as J; was used in the
recent work [30]. In [6], the Fourier multiplier was employed for the same purpose of dealing with
the non-local term in the linearized equation (2.1). In the work [15,41], the problem was re-written
in the coordinates f(t,z,y) = wi(t,z + ty,y) and a norm based on the following energy estimate
for the linearized Euler equations was made

2
d - M
i IM(E, k. 0y) fill 72 + (1 = Co) ‘ /\t/l M| <0,
L2
where the Fourier multiplier M is chosen such that
M(0,k,n) =1 i/\/l(tk )——LM(tk )
y 05 7] ) dt y 51 k2—|-|7’]—t]€|2 y Ry 11)-

Undoing the coordinates shows that the term involving 9,M/M is in fact |k|*|Vi¢g|32. The
operator M(t, k, 9,) is order zero and ||[Mf||;2 =~ || f]| 2, which has led to the use of the word “ghost
multiplier” (in analogy with the ghost energy method of Alinhac [2]). One explicitly computes that
(using that arctan is odd),

t 1
M(t, k,n) = exp / ——————d7r | =exp (arctan(t + ﬂ) — arctan(ﬁ)> .

0 1+ |7 —# k k
Undoing the shift,

M(t, k,n—tk) = exp <arctan% - arctan(% — t)) 1200, exp (arctan% + 7r/2> )
For n/k > 0 as n — oo this expands as

exp (arctang + 77/2) ~ e <1 + arctang +7/24 ) .



We observe that the inverse Fourier transform of arctan is given by

/ iy aretan ldn — — —— [ ¢ LIk an—_Fa (¥)

Re arc ank n= ik Re WQ-FWQ n= i R;k\Y)s

where G, would be the fundamental solution of —Aj on R. The resulting singular integral
operator should be the most important aspect of M on the physical-side.

An alternative, purely physical space, point of view motivating the definition of J; is as follows.
One may consider the following toy model on T x R, 0;f + ikyf = ickA,;lf, with 0 < ¢ < 1. The
term on the right-hand side is a stand-in for the nonlocal term. Next, we commute this equation
with an abstract SIO J;, which commutes with 0; and A,;l, but not with the transport ¢ky. This
will generate the commuted equation 0;Jxf + ikyJrf = [iky, Jk|f + z'ck:A,;lfjk f. If we represent
Jef() by [ I(y,y') f(y)dy’, we find the criteria that the commutator ik [(y —y') I (y, v') f(v)dy'
needs to absorb the nonlocal term cik [ Grui(y — v/)f(y')dy’. Given this, our Ji is a natural
adaptation to the setting of the channel.

These two explanations motivate the definition of Jx, though it is not a priori clear why using
Ji should be sufficient to deduce inviscid damping, even without further adaptation to the time-
dependent shear flow. The properties of J; are outlined in Section 3 while the proof that its use
provides the desired inviscid damping is in Section 4.4.

2.2 Nonlinear Problem

For the nonlinear problem we use the following natural nonlinear extension of the linear energy
functional (with the time-decay built in):

Eo = 2| wo |2 + cae® V|20, wol|22, (2.6a)
Ep= Y 2P KPM Byl (2.6D)
k40
E:=E& + &« (2.6¢)
This energy comes with the associated dissipation functional

Dy = ") 0ywo |22 + Ca626*yt1/"1/1/365w0||%2, (2.7a)

Dyo= Y e k[P Dy ). (2.7b)

k#0

We also use the corresponding notation for the dissipation operators such as Dy, Dy o, etc. as in
(2.5)

V1/3 m
Dy = 2 ™ Dy ) [wil. (2.8)
k0

We note that the definitions D, and D, differ by \k!2m factor and the time weight 626*Vt, e20:1/3t
For future convenience we also define

Dg = vE + v'/? Z 2003 |l~::]2m+2/3 Exwg]- (2.9)
k40
Finally, we define

Theorem 1.1 is an immediate consequence of the following energy estimate, proved in Section 5.



Proposition 2.2. There exists a constant Cy, depending only on the parameters d., &y, and m €
(2/3,1) such that

dig +45,D < (Cov€)° D. (2.11)

Here & and D are defined in (2.6¢) and (2.10). In particular, the bound (2.11) implies that if
Eli=0 < 7 1/ then the following global estimate

sup E(t) + 20, /oo D(s)ds < £(0)
0

>0
holds.

2.3 Notations

Throughout the paper, the constant C will change from line to line. For A, B > 0, we use the
notation A < B to highlight that there exists a constant C' > 0 such that A < CB.

To avoid introducing too many symbols, we further define ‘local variables’, denoted as T..,
for example, T and Ty. These notations represent terms that appear during the estimation
in each subsection. Once a subsection is concluded, these notations will be redefined in the next
subsection.

3 Properties of the Inviscid Damping Energy Functional

Here we develop some properties on the operator Jj. For future notational convenience, we denote

V¢ Gr(y,y) U Gr(y,y)
el =g [ iy S e e 20— )

so that by definition,

f)dy', (3.1)

Jklf] = lig%fik,e[f]- (3.2)

We first prove that Jj, extends to a bounded linear operator J;, : L? — L2.

Lemma 3.1. The singular integral operator Ji, extends to a bounded linear operator on L?> — L?
and moreover

Sl pespe S 1-

Remark 3.2. Note that we therefore have Vf € L%, limc_o ||Jk[f] — Jr.[f]]| = 0.

Proof. We decompose

1 f) ,
—J V. Gi( "
o = |ze|p / Y5 — @
k / / f(y/) / k /er’i / f(y/) ’
=—D.V. Grly,y ) —=———dy + —p.v. Grly,y ) ————dy
P syt ery Y550 =y @ TR Ly O =
k / N fW) k /y+i )
=—p.V. Ge(y,y) == dy + —Gr(y,y)p.v. ————d
K et by y y)%(y—y) ST ey ) y—1 2i(y =) Y



3 . Y+ n_ _fW)
TR '/y_l (v /) Gk(y’y)]%(y—y’)dy

=i+ T2+ 7Ts.

The strategy is as follows: for T, we use a Schur-type estimate and the rapid decay of Gg(y,y’) to
gain integrability. For T, we use properties on the (truncated) Hilbert transform. For 73, we use
L;OL;, + L;?Lzl/ bounds to gain the 1/k.

Bound of T1 : The bound of 77 is perhaps the most subtle, because it relies on the properties of
Gy. Nevertheless, we may split 71 = T1 < + 71,>, where

k vk N fW) /
T = / Grly. ) —1) g 3.3
1,< |k|pV . k(y y)Qz(y—y’) Y ( )
k ! f)
T ;:../ Gily, )Y __qyf. 3.4
1,> ‘k’pv y+% k(y y)21(y_y,) Yy ( )

These two operators are treated analogously, so we focus on 7; >. First of all, we notice that we
can remove the principle value due to excising the point ¥’ = y, and we therefore can write

G / / / ! / / /
Tiod = i [ o) g I = [ Rals)) ) (35)

By using Schur’s test, we have
1> Fllz2 S (Kl zge 2, + Kl o o)l 2 (3.6)

Therefore, we need to estimate
' sinh(k(1 —y)) sinh(k(1 + y))
+1 k!y y'| sinh(2k)

/
/1 ek(l—y") _ o—k(1—y )][ek(lﬂ;) — e*k(1+y)]
)
/

LGy
T

dy’
y+% |y Yy ’

AN

dy’ (3.7)

N

dy’  (3.8)

+ kly —y'le?

L ok(1=y) k(1+y)

==

dy' + Erry, (3.9)

+ kly —y |e2k

el

where the error integral above is defined as follows:

1 elF+y) _ g=h(14y)] 1 e F(1=y)]e—k(1+y) (3.10)
Errg ::/ —|—/ 3.10
Y+ k|y yle2* v+ k|y A

The main contribution simplifies as follows
ek(1=y") ok (1+y) L o=k(y'—y) 1 [RO-y) o—u 1
- dy = d’:/ —du < —. 3.11
/y; kly — yle% Y /;k(y—y)y blus w7 (311

The estimation of the term Errj is simpler, and can be controlled as above by using the following
bounds on the numerators:

e ROV [h(+y) _ o=k(149)] < k(1—y) k(1+y)



[eF(1=Y) _ o=k(1=y))e=k(1Hy) < k(1-y) k(1Y)

Taking the supremum in y, we obtain the bound HKkHLZOLl, S 1/k.
Y
We now need to estimate the quantity |[Ky| e S 1 /k. We therefore fix a ¢ in the range
Y
1/k <y’ < 1. We then have

Grly.y) ! /y/_i Grly.y)
KGOy = [ Ty sy —pdy= | 3, =W

y/*% k(=) ok(1+y) ylié e k')
[
y=0 k(y - y)e y=0 k;(y - y)

1 (R emu 1
< T du< =,
Nk/l w e

Therefore, inserting these kernel bounds into (3.6), we have
1
1Ti>fllz2 S (HKkHLgoL;, + HKkHL;?L}!”U”L? S 2l f il

By applying the analogous argument also to 71 <, we have

1
1T flle S <11 f Nz (3.12)

Bound of Ty : For the operator T2, we use the boundedness properties of the truncated Hilbert
transform. In particular, we proceed as follows:

k R R )
_ A < oo [|p.v. ———dy/
T2l 12 |||k|Gk(y,y)p-V~ /y—i Qi(y_y,)dy Iz S NGr(y, y) e llp-v /y—i Qi(y_y,)dy 22
1 E )
<Zlp.v. I 2. 1
NkllpV/y_}c 2i(y_y,)dy 2 (3.13)

It remains thus to estimate the L? — L? boundedness of the operator above. To do so, we realize
this as the difference between the classical Hilbert transform, and the truncated Hilbert transform.
Indeed, define

- iy
Hf :=p.v. /1 %0y — ) dy (3.14)
y= f@) ’ ! f@) ,
=D.V. _JN) g _JW) .
Hol by /1 2i(y — )"’ * /y+5 2y —y) (3.15)
T R fY)

with the convention that

v f(Y)
.. LI gy =0, ify—0<—1;
/1 2z(y - y’) Y Y

10



1 /
p.v./y+52i{y(?i)y,)dy’20, ify+6>1.

Then, we have

77’2 = Hf - Hl/kf:

from which the L? — L? boundedness of T follows from the classical corresponding boundedness
estimates (uniform in 0):

[Hf 2 S W fllezs I Hsf Nz S 1l e

Therefore, continuing from (3.29), we have

1 1
IT2fllze S L IT2fllce ST lEe- (3.17)

Bound of T3 : For the operator T3, we use Schur’s Test again. In this case, we have

1 1
/y” G,¥) = Ge@ 9| g s < 0 Gr: ) —Gk(y,y))/“k o <t
Y Yy k
Y Y

-1 ly =] uy ly =y 1
/1 /41
YR |Gy ) — Grly )l o Gr(y:y) — Grlysy)) [YE 1
; dy < sup|| ; dy < -
y—1 ly =¥ vy ly =¥l y—1 k

Therefore, again by applying Schur’s test, we have

1
1731z ST Il ze- (3.18)

Combining the bounds (3.12), (3.17), (3.30), we obtain the desired result. O
The next lemma captures the commutator between d, and J.

Lemma 3.3. If f € H' then Ji[f] € H' we define
[0y, Ik) = N,

where

1 /
aulf] = k. [ S pay.

where Hy is a continuous function given by the formula

_sinh(k(y +¥'))

N
Proof. Consider the regularizations
1 VG )y —9) g
Jefy::/ f(y)dy'
‘k| k[ ]( ) . (y—y’)2+62 ( )

11



Integrating by parts (and using the boundary conditions), we have

1 1

e ~e y—v)
m(dk[ayf] — 0y Jilf]) = /1 (Z/(—@//W (_ay’Gk(yay/) - Gka(y,y’)) flyh)dy'.
The right-hand side passes to the limit in L? to $y. If 9,f € L? then 35[0y f] passes to the limit
in L? as well. It follows that J¢[f] € H! and 0,J¢[f] is given by the above formula. First of all, a
direct computation yields

0yGr(y,y)
sin 1 L 1 _ eyt .
B 10T 1) 4 e - M) Gsinh(B( 4 ).y <
— 1 ) =:H(yfy1/)
sinh(2k) —Llhé%) + Zefzk(ek(y*y/) -1)+ 16%(1 —e POV Lsinh(k(y' +y),  y>y.
—H(y—y')

We now observe that we can rewrite the kernel 9, Gy (y,y’) using the notations y—y' =n, y+y = ¢
as follows:

9y Gr(y,y)
_ Smhl@k) <_; sinh(2k)sign(n) + (; sinh (=2 + [7))k) + ;sinh(Qk)> TZI - ;smh(kg))
—T(0) + )+ 5(0) a0

Here ‘J’ is the jump part, ‘H’ is the C'' part and ‘S’ is the smooth part. We notice that functions
of the n variable are annihilated by —0, — 0,7, and therefore only the “S” term contributes to the
commutator. Indeed, we have that

/ / sinh(k(y + "))
— — Oy == 21
8ka(y7 Yy ) 8y Gk(y) Yy ) Sll’lh(Qk) (3 )
O
We have the following commutator estimate on .
Lemma 3.4. There holds the estimate
19kl 22 S 1K (3.22)
Proof. We decompose in a similar manner to Lemma 3.1, as follows:
1 ! ) ’
kS =p-V-/ He(y,y) 57— dy
I L D30 =)
1
k / n W)k /yn n T
=1,b-Vv. Hy(y,y) 57— dy + —=p.v. Hi(y,¥') 57— dy
CIRA L b7 ) L L MR )
: / N fW) ’ k L f@) ’
=—p.V. Hi(y,¥) 57— dy + - Hi(y,y p-V-/ 5 dy
|| 1,1~ (y—1 y+1) ( >2Z(y—y’) || 4:9) g1 2i(y—y)
koo [vE 1)
+ p-v./ Hi(y,y") — Hi(y, )] 57— dy
P ),y ) = 5, =0
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=T+ T2+ Ts

We will now provide bounds on 77, 73, T3 successively.

Bounds on Ti: We again split into 71 = 71> + T1,<, where we define

k ! W)
Tisfi=—p. / Hi(y,y)—2L_dy, 3.23
I,Zf |k’pV y,:y—’—% k‘(y y)2l(y_y,) Y ( )
k N
Ti<f i=—p. / Hi(y,y)——22_ay. 3.24
1,<f i L k(Y y)zz(y_y,) y (3.24)

By symmetry it suffices to estimate 7; >. For this, we have the kernel

1
K Ni=1(y > —)H, ! 3.25
(yy) =1y 2y + 1) k(y,y)m(y,_y) (3.25)
We will first fix a y and compute the Lll/, norm. Indeed, we have
1 . / 1 k(y+y')
sinh(k(y + v e
Kl < [ e
Y Y =y++ (y" — y) sinh(2k) y=y++ (¥ —y)e
k(1— u

<oy [V (3.26)

Taking now the supremum in y, we obtain ”KHLZOLl, < 1. Wenow fix ay/ in the range 1/k <y’ < 1.
Yy

Then we compute

;1 ;1 ’

V=% sinh(k(y + ¢/ Y-r  eklyty)
IK(, 9l </ 0 (bly +9)) s |
Y

7 = b2 o Wy

o—2k(1— y)/ du < 2k(1-y), (3.27)

~

Taking now the supremum in y' over the range 1/k < ¢y’ < 1, we conclude \|K||LO7L5 < 1. By
Yy

applying the analogous argument also to 77 <, we have
ITifllz S N2 (3.28)

Bounds on T5: For the operator 73, we have

k vE e f(y) vtE o f(y)
—||—H . d <|H oo dy’
| 7211 12 |||k| k(y,y)pV/yi 2y — o) Y2 S He(y, )l Hpv/y; 2y — o) Y| 12
vt f(y)
<p.v. AW 3.29
<lip.v . y
[ /yi 50y — 1) 2 (3.29)

Above, we have used the bound

sinh(2ky)

sinh(2k) g < 1.

1Hk (W )l S - =275
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From here, the desired bound follows from the corresponding boundedness of the truncated Hilbert
transform, just as in Lemma 3.1.

Bounds on T3: For the operator T3, we use Schur’s Test again. In this case, we have

vti H —H H — Hy(
y—1 k‘ly Y| vy kly Y y—1

vt H H H — Hy( v+
/ k|k|\ k(YY) — k(y,y)\dyssupH k(YY) — Hi(y,y) ‘/ “kldy < 1.
y-1 kly — /| vy kly — | 1

Therefore, again by applying Schur’s test, we have

17afllz2 SIfllze- (3.30)

Bringing the bounds on 71, T2, 73 together finishes the proof of the lemma. O
Finally we point out the following symmetry properties.

Lemma 3.5. For all f,g € L? there holds

and
1 B 1 B
/ Farlgldy = - / el Flody, (3.31)
1 1

which in particular, implies J = J7..

Proof. The first identity follows by definition. For the latter, we have

/fak ldy = /fhm dy—hm/ Falg)

iy [ i /Wyee mg@’)dy/) dy
~lim _11 9()( /|| mﬂy)dy) dy
i o) ([ S i)y
—/gﬁk[.ﬂdy’,
which is the desired result. O

4 The Linearized Problem

In this section we prove Proposition 2.1, which specifically concerns the linearized problem (2.1).
To this end, we begin by computing the time derivative of the energy (2.2)

1/d 2. _2d 1., 4ad )
= Erfwr] =3 <dtHWk||%2 + cav3 k| 3@”331%”%2 + cpr3 k| 3£Re<2kwk7aywk>

14



d 2, _2d -
+CT£Re<wk,3k[wk]> + cTcayg |k| 3 CﬁRe@ywk,‘jk[@yka)

=T, +Tq+Tg+ Tr+ Tra. (4.1)

Each term is confronted in the following individual subsections. Since this entire section is k-by-k,
we omit the k’s whenever it is clear from context. Without loss of generality, we assume k£ > 0 in
this section.

4.1 Estimate of the T, Terms

The basic L? energy estimate is almost immediate.
Lemma 4.1 (T, Estimate). Under the hypotheses of Proposition 2.1, we have the following

14,

2dt

Here the parameter 0y is defined in (1.4) and the diffusion term Dy, ; is defined in (2.5). The
implicit constant depends on |U||cs.

w72 + VI Vw72 S do [k~ Di.r- (4.2)

~

Proof. By direct calculation we have
1d
2dt

The latter term is estimated as follows using integration by parts, Cauchy-Schwarz, and the small-

ness assumption (1.4),

|wk |32 + || Viws|[32 = Re ik(U" ¢, wi).

]Re ik(U"m,wk)] :\Re ik<U”¢k, Ak¢k>‘ S \Re ik(U”quﬁk., Vk¢k>’ + ]Re ’ik(U’”¢k, Vk(ﬁkﬂ
SV llo2 KV kel 22 S W a4 k1~ Dier < dolk| ™' D r,

~

which completes the proof. ]
4.2 Estimate of the T, Terms
The following is also a relatively straightforward calculation.

Lemma 4.2 (T, Estimate). Under the hypotheses of Proposition 2.1, we have the following

1d _ _
5 P 0ynlZs + vk ) VBl 2 S BoDsy + B R el (43)

Here 69, Dy, are defined in (1.4) and (2.5). The implicit constant depends on ||U||cs.

Proof. We compute the time-derivative

1d

% HaywkH%Q = vRe (ArOywy, Oywy) — Re (ikU'wy, dywy ) + Re (0, (U"iker), Oywy ) -

Using that Agwy = Oyywy = 0 on the boundary {y = 1}, we may still integrate by parts on the
first term, which gives rise to the desired dissipation term,

vRe (AROywy, Oywy) = —v ||vkaywkHiz .

The second and third terms are handled via Cauchy-Schwarz, elliptic regularity and the smallness
assumption (1.4),

|Re (ikU'wy, ywi )| < Wl gyalkl okl 2 10ywil 2 < Go || llwill 2 10yl 2

~
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|Re (3, (U" ko), Oywn)| < do llwll 2 10ywill 2
which completes the desired estimates after noting that

2/3
1%
REE K] llwkll g2 110ywrll 2 S v IIVkwrl 2 + v 2RI lwil T2 & Dy + 02152 [|w]| 72 -

4.3 Estimate of the Ty Terms

As in the case with standard hypocoercivity approaches, the cross-term Tg, produces the enhanced
dissipation.

Lemma 4.3. There holds the following,

w3 d

v A 1/317.12/3 2 1/2.41/2
‘k|4/3dtRe<2kaaaywk>+V k| H\/U/w’“HLQSD’WDW'

Here, the parameter 6y and the dissipation {Dj ~,Dy o} are defined in (1.4), (2.5). The implicit
constant depends on |U||¢s.

Proof. Here we have by integration by parts (using that wg, ¢, vanish on the boundary),

%Re(z’kwk, Oywi) = Re(ik(—ikUwp+U"ik¢y + vAgwy), Oywy)
+ Re(ikwy, Oy (—ikUwp+U"ikdr + vAgwy))
— k[ H\ﬁwkH; —9Re |k|* (U" 6y, By
+Im k (wg, Oy Agwy) + Im k (Oywy, vAgwy,) -

The first term on the right hand side is the dissipation and the remaining terms are error terms.
To treat the first error term, we integrate by parts (using the boundary conditions) and elliptic
regularity to obtain

2Re [ (U6, )| S (10" o 1ROyl 2+ [0 o Wil o) Tk il
< 0o [k llwn |7 -
For the latter error terms note that by integrating by parts and Cauchy-Schwarz,
[t ke (wr, vOy Agwr) +Im k (Qywr, vAgwy)| S v k[ 18ywill 2 (1B lwrll 2 + 10yyell 2)

which completes the desired estimate upon noting that

_ _ 1/2
8 k2 0yl 2 (1K1 ookl 2 + 10yyeonlly2) S 02 Wkl 202 (531172 [ 940yl )
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4.4 Estimates of the T, and T,, Terms

The most interesting contribution relative to existing works on hypocoercivity is that of T, (and
T,o). First, we prove the main result for T, and below we provide the estimate on T,.

Lemma 4.4. Under the regularity hypotheses on W (1.4), for all 6o > 0 sufficiently small (depend-
ing only on universal constants), the following estimate holds

d - 1
%Re@)k,dk[‘ﬂkb + ng,r < Dyye

The implicit constant depends on ||U||cs.

Remark 4.5. In the case of the Euler equations (v = 0), one simply obtains

d 1
%Re<wka3k[‘ﬂk]> + ng,T <0,

proving the L%H%Lz inviscid damping estimate for L? initial data.

Proof. First of all, since the SIO Ji is symmetric (Lemma 3.5), we obtain from the equation (2.1)
that

1d N . ", ~

§£R6<wk,dk[wk]> = Re <—U2kwk+U tkoy, + VAkwk,‘jk[ka =T +1T,+T5. (4.4)
The most straightforward term is that arising from the dissipation, T5. Using the symmetry Lemma
3.5 and the [0y, Ji]-commutator estimate (Lemma 3.3, Lemma 3.4), we have (using that wy, vanishes
on the boundary and that Jj is bounded),

1
Ji[Agwy|wpdy
1

1

T3 = yRe/ AgwrJk|wi|dy = I/Re/
-1

= VRe/ (—3k[vkwk]kak + [ka ay](éywk)@) dy

~ 1 [~ 2 2
< v (I3kll sz + K7 I8 Oyl 2oy ) [V kil 72 S v I Vkwill 72 S Dy

which is our desired estimate on 73 in (4.4).
Next, we estimate T5. By Lemma 3.3, 3.4, and w;, = Ar¢dr, we have

1
Ty = Re/1 (ik‘U”(JSk) Vi - Ik Vidr] + [Jk, ay] [6y¢k]dy

1 - -
— Re / Vi (ikU" dr) - Ik[Vror] + (ikU" 1) [Tk, 9, ][0y br]dy

ST [ on (IB5lz2 22 + 16 1B Ol 2, 12) VRN 72 S G0Dr-

where the last line used Lemma 3.1. This is sufficient to estimate 75 in (4.4).
Finally we turn to the most interesting contribution, 77 which will lead to the negative-definite
term. By Taylor’s theorem,

Uly) - VW) = U)W =) + 30" — 0P + 5 [ U7 - 9)ds.

2Jy
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Note that remainder satisfies

r(y,y) == L /y U"(s)(y — s)*ds € L™, (4.5a)

2(y - y/) Yy
()| SN0 || oo [y = ¥'|7 (4.5b)
|0y (y,¥)| + |0y r(y,y)| < ||U” (4.5¢)
|0y 0yr(y, )| S || U (4.5d)

[P
[P

Next, by the definition of J; and Lemma 3.5, we have
k , ~ ~ 5
T = = SRe (((Uw, Jpwr) + Fr[iUwr], i)

‘TRG/_ p-V. </_11U(y)wk(y)@_ly)a (y, 1 wr (y )dy)dy

2 1 T
_@Re/ o </1wk(y>(yly)G"“(y’y/)U(y')wk(y’)dy/> dy
\k| / / — y 5)@/)) ol o i

"“' re [ [ GO ety

+ HRe/ / K(@/)U”(y)(y — )Gy, v )wr(y)dy' dy

k
i | “Re / / wi(Y)7 (Y, y") Gy, ¥ wr(y')dy' dy
=T + T2+ Ti3. (46)

The term 777 leads to —Dy -. Indeed, applying the relation Ag¢y = wy and integrating by parts
(using the boundary condition that ¢y vanishes on the boundary),

[ L— i i "9, b
T = TRG ) U Akqbkgf)kdy = —T ‘ —Re [ U ay¢k¢kdy

LT 2 |k
< — - [VOTran L, + S 107 e 10060l 2 Nl 2
Therefore, for ||[Wiy,||g4 < do sufficiently small depending only on universal constants, there holds
k| 2
Tll < —? Hvk¢kHL2 . (4'7)
Next, consider 172, which we begin by making the replacement w, = Ar¢r and integrating by parts

in both y and 3’ (noting that the Green’s function vanishes on the boundary in both variables, i.e.
Gr(£1,y') = Gi(y, £1)= 0,Gy(y, £1) = 0y Gi(£1,y') = 0) to obtain

1 1
T = § K Re / / Adr U (1) (Y — )Gy, v') Arde (') dy'dy
]k:\ Re / / Vg oY) - vky(vky (U" () (y — ¥) Gl y ))-vk,y/m(y’))dy'dy.
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We will return to this estimate in a moment. We observe the following estimates on the integral
kernels N' = U"(y)(y — ¥ )G(y,y')

IVl 2

v,y

||ayNk||L§ iy + Hay’NkHLQ

vy’

0,005 < 10"

SO e 1617
ST o 1R
[o>©

which follow from the the formula for Gy, (2.4), and direct calculation. Therefore, by Cauchy-
Schwarz, we have

T1o < 0o [k | Vidwll72 (4.8)

which suffices to treat this term. We similarly set up 713, which we treat in essentially the same
manner:

Tism —Ro M / / Vg O @) - Viy (Vi (7@ 0)Ce®,1)) - Viy dr(y)) dy'dy,

where in order to integrate by parts twice we needed to use that G} does not have a singularity in
the second derivative at y =y’ (unlike G). Next we record the relevant estimates on rGy. Recall
that we assume k > 0 without loss of generality in this section. First, note that by (2.4) and (4.5),

ly—y'|> [ sinh(k(1—y'))sinh(k(1 +y)), <y

7G| < do |k|sinh(2k) { sinh(k(1 — g?j)) sinh(k(1 + yy)), ggj > Z’.

ly — /| sinh(k(1 — ")) sinh(k(1 + v)), y <y’

19y (rGr)] 5 %o || sinh (2k) { sinh(k(1 — y))sinh(k(1 +¢/)), v >y
b ly-vI* { sinh(k(1 — y')) cosh(k(1 +y)), y <y’
Osinh(2k) | | — cosh(k(1 —y))sinh(k(1 +¢))|, y >y

ly =¥ sinh(k(1 —y'))sinh(k(1 +y)), y<y;

[0y (rGr)| < 0 || sinh(2k) { sinh(k(1 — y))sinh(k(1 +v/), y>v/.
ot U i L
Osinh(Qk) sinh(k(1 — y)) cosh(k(1 +¥)), y>vy.

1 sinh(k(1 —¢')) sinh(k(1 + v)), y <y,
< Sp__ -
400 (1G] S S0 i | bk (s oSy

I Ul A { | —cosh(k(1 —y))sinh(k(L+y))l, y <y}
Osinh(2k) sinh(k(1 y)) cosh(k y'))l, y>vy.

(1+
ly — /| { \ —cosh(k(l—y))smh(( (1+9)l, y <

FO0Gh@E) | sinh(k(1 — ) cosh(k(1 +)), ¥ >y
k| ly — o' { cosh(k(1 —y))cosh(k(l +y)), y<y’
0 sinh(2k) cosh(k(1 —y)) cosh(k(1 +4")), y>1.

Therefore, it follows that
IrGrllz2 | < dolkl 2,
v,y
10,0G) 2+ [0, 0GRl < bl
Y, Y,y
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18,0, (rG < 8.

iz
Y,y
Therefore, by Cauchy-Schwarz, we have

2 2
T3 S 0olkl” | Vior|lz2 S oDk
which completes the desired estimate. ]

Next, let us consider the T, for which we prove the following.

Lemma 4.6. Under the hypotheses of Proposition 2.1, there holds for dg sufficiently small,

d . _o9/3d N 1 1/2
= k|72 ZRe (11730, o, (1720, )un)) + 5 Dkra S D + (v 2R el ) DL

The implicit constant depends on ||U||cs.
Proof. Taking the derivative of (2.1), we have
(at + kU — U’lik}A]zl — I/Ak) 8ywk = —ikU'wy, + ’L'kU”/Alzlwk + ’L'k'UH[ay, A;l]wk
=: Cp,1 + Cr2 + Cp 3.

It is important to note however, that the boundary conditions are different. In particular, dywy
has Neumann boundary conditions Oyywy|y=+1 = 0. However, one can check that the contributions
from the left-hand side behave similarly to the case of T,, and therefore we obtain

3
_9/3d N 1 _ ~
k| 2/3£Re<(vl/33y)wk7Jk[(V1/33y)Wk]> +3Dkra S Do+ YR Re (D0, Tk [Ch 1) -
j=1
With straightforward estimates we have
1Ck1ll 2 + ICr2ll 2 S IR[ llwrll 2 -

To estimate the commutator Cy 3, we explicitly write down the expression,

1
ICr,3ll 2 <[EIU"] oo /1 (0yGy, ¥ )wr(y) = Gr(y, y")Oywr(y)) dy’

Ly

1
IR0 / (OG01) + 0,Guly9) sy

L
ST ([ e K |wrll 2 S doll|Elwr | z2-
These estimates imply (using Lemma 3.1),
_9/3 d 1
[F 72 2 Re{(v' 20y e, 3u[(" 0y )wn]) + §Dkra < Do+ 2 K2 onl 2 10yeon .2
1/2
< Do + <,/1/syk‘2/3 HwkHiz) D,/2,

which completes the lemma. ]
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4.5 Completing the Linearized Estimate

Putting together Lemmas 4.1, 4.2, 4.3, 4.4, and 4.6 we obtain for some universal constant Ky,

d 2 e
%Ek + 265V1/3|]€|2/3 H V U’wkH + Dgy + caDpo + ngﬂ— + 12
< Ko0oDp.r + €aKo60Dgr + caKodor /3 |k|*3 ||wi| 22 + K005D1/2D1/2

1/2
+ KOCTD]C,’}/ + K()C.,-CQD]C’Q + Kocrcq <I/1/3’k‘2/3 ||WkH%2) Dlt:,/WQ
Therefore, it follows that if

2
1 1 c 1
_— 1 , C£ < , 76 < 5
8K050 Cﬁ 25K0 20(1 25K0

1
Cr < —— K050<Ci

39K, 32" Ca < mm{

then we have (assuming without loss of generality that Ky > 32).

12172 1 5 1 1
K()CQD / Dk/a < 10Dk'y + QKOC,BDka < 10 k,'y + gcaDk,Oﬂ
1/2 1 2 Cc 5C Co K Cc 1
Kuerco (O ol ) DY o S s+ 520D < SOSPE s + D

then, we have the monotonicity estimate
d 1/317.12/3
thk+ 6Dk+C(CT,Ca7Cﬂ)V |k|*°Ey <0,

where c¢(cr, ca,cg) > 0. This in particular, also implies the stated exponential decay estimate. We
also impose the condition

1 1
5 < gt 1(1 —¢r)

to ensure the Fy is coercive. While the procedure for setting the coefficients is by-now classical, we

record an example for clarity (assuming without loss of generality that Ko > 32(1 + supj |3kl 12— 12)),

1 1
r= e 00 < o = K"’ = K,
T haK, 0T (Gaky T Moo TR

5 Nonlinear Estimates
5.1 Some Preliminary Lemmas

Lemma 5.1. We have the following estimates

18y00ll 0 < &2 ||0260] 0 S v V0E Pe 0

Here & is defined in (2.6a).

Proof. By Gagliardo-Nirenberg-Sobolev inequality, and elliptic regularity, we obtain

1/2 —
<50/ e 5*l/t’

1
19yoll e < H [ ottt < ool <
— LOO

1/2 1 2 _ 1/2 _—
18260 o S 19ywoll}s llwoll 17 S v Y/0€y 2601,

Here Go(y,y') is the Green’s kernel of A, with Dirichlet boundary condition. Since Go(y,y’) is of
the form aly — 3| + by + ¢y’ for some constants, we have the bound ||9,Gol|~ < C. d
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Lemma 5.2. The following estimates hold

_ 3/4 _ 1/3
D Ik a7 S D DY e,
k=0

2m+4/3 2 - 1/2 _95,,1/3
> IR |72 v DY Dy 2em 20
k#£0

Proof. Both estimates are proved using the same interpolation trick; let us just show the numerology
for the first:

§m lm
STV R ugl|2a = ST K2R gl 25 R wnl )

k0 k#0
3/4 1/4
S|P w3 ) v R ekl
k+#0 k#0

< DYDY,

which is the desired result.

O
Lemma 5.3. There hold the following estimates:
SR [ gl S Dpee0
k0
Simalarly,
2
S R k| 2 R 9,)0] | S Draem
k40
Finally, for m > 2/3,
> 261l 5 00BN o)

k£0

Proof. By Gagliardo-Nirenberg-Sobolev and Cauchy-Schwarz,

SR P el S D R ] |[K1/20,00 | || #1204

k40 k40

o5 1/3
L S DTe 204V t'

A similar argument applies to the second estimate as well.
Finally, to prove (5.1), we apply elliptic regularity

kPerllce S llwrllzz,  10y1kPoxll < lI0ywrllz2,

which are natural consequences of testing the elliptic equation in (2.1) by functions {¢y, 9y¢r}.
Combining them with the Gagliardo-Nirenberg interpolation yields that

S 1020kl <> Uwrllze + [P0k ]| ) S S N0ywrllS il + |1k, x]| 15 11K Hrl17)
k#0 k#0 k0

22



_1 _ 1 1 _1 1/2 1/2
ST S IR (VSRS 0yl ) IRk

k40
-1 —2m+3 V2 Ly, m—3 m V2 —L1o1/2 5,013
St (D ) (e | el e ) S vmRet et
k#0 k0

Here, we have used the constraint m > 2/3 to guarantee that |k:|_2m+% el 2o- Hence, we have the
result. O

5.2 Zero Frequency Energy
Expanding the linear and nonlinear contributions of the zero frequency energy gives

1d

5@5@ =Ly+ Nﬁ0+5*V€0, (5.2)

where
Lo = 2*V'Re (wo, VOyywo) + ca® V23 Re (Oywo, VOyyywo)
NLy = —e¥"Re (wo, (u- Vw)o) —cae? V¥ 3Re (Oywo, Oy(u - Vw)o) -
The estimates of these contributions are summarized in the following lemma.

Lemma 5.4. There ezists a universal constant C' (independent of v) such that
051/2
N

Proof. First consider L. Using that wg(t,£1) = 9yywo(t,+1) = 0, we may integrate by parts and
obtain the following

1
Lo+ NLy+0,vE < _ZDO — 30, &) + D. (5.3)

5/3625*Vt HaQ
Y

2
Lo = —*y || dywol|32 — cav wol| s -

By Poincaré inequality, for ¢, < 1/8 we have
1
E(] S —§D0 - 4(5*1/50. (54)

This completes the treatment of the linear contributions.
Consider the nonlinear terms next. First, by the Biot-Savart law we have,

NLy=—e**"Re <w0, Oy Z 1kdpw_p > + a3V Re <8yw0, 83 Z thdpw_ > =:Top+T,.
k0 k0
(5.5)

Consider Ty first. Integrating by parts in y, (noting that wp vanishes on the boundary),
£l/2
|TO| _ 626*Vt Re <6yw0’ ZZk¢kw—k> S 62(5*1/15 ||6yw0||L2 Z |’2k¢k”L°° Hw_k;HLQ S %'Dé/Q’D}_/Z’
k40 k40
(5.6)

which suffices, as this is controlled by the right-hand side of (5.3).
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For T, we have by integration by parts (here we are using both that ik¢; and w_j vanish on
the boundary),

]Ta]§625*”ty2/3 <8yw0,8§ Zikqﬁkw,k > §625*”ty2/3 <8§w0,8y Zikqﬁkw,k >

k0 k0
< 2t 2/3 |1 9200 1ik0ydr|l oo llw—kllz2 + Y likdkl oo 1Oyw_kll 2 | =t T + Tas-
yollp
k#0 k#£0

The first term is estimated using the following

, 1/2 1/2
S k00l o loo—ell 2 S 3 1102081 10,8811 ol
k#0 k40
S ST IR R k12 S [[10 |
k0

PRCR

provided m > 1/3, yielding the estimate
Tot < V—1/351/2D(1)/2D[13/2‘

The Ti,;o-term is estimated with the following

. —2m m 1/2 m 1/2 m—
S ikl o 10— pll e S S 72 200157 220,08 | |1k 200

k#0 k0 L2
< V—1/3D71_/28;/2e—26*1/1/3t.
Hence we have that
To| S Toa + Top S v Y2EY2D. (5.7)
yielding the desired estimate. Combining (5.4), (5.5), (5.6), (5.7) yields the result (5.3). O

5.3 Non-zero Frequency Energy

First of all, we identify the expressions of the main terms to estimate. Define the following

Ly :=— Uikwy + U”ikjgbk + vApw; (5.8)
NLi :=(V'¢-Vw)e = > Vi por - Viewp. (5.9)
k'=—o00

Expanding the linear and nonlinear contributions of the nonzero frequency energy gives

%575 = E;,g + N£¢+25*1/1/3575. (5.10)

Thanks to the definitions (2.2), (2.6a), (2.6b), (2.6¢), (2.7a), (2.7b), (2.10), we obtain

Lo =262 PN (2 Re (wy, (1 + e 34)Lg)
k40
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+ 2606 ST B2 Re (V1 B0 D, (14 ¢ 30 K7 0,1 )
k=0
- 65626*V1/3t Z P13 || Pmoa/3 (Re (tkwy, OyLk) + Re (ikLy, Oywy) ); (5.11)
k0
NLz =2e2""t N7 k]2 Re (wy, (I + ¢, 35)NLy)
k#0
+ 260N B2 Re (12 K72 By, (1 + e, 310 K[ 0,NLy, )
k=0
— g2V PENT LB | PmY3 (Re (ikuwy,, 9,NLy) + Re (ikNLy, 8y)
k#0
::Nﬁfyﬂ' +N£a77‘a + Nﬁﬂ. (5.12)

Here we group the ~, 7 terms and «, Ta terms together because they share main features. The
goal of this subsection is devoted to the proof of the following lemma.

Theorem 5.5. There exists a universal constant C' (independent of v) such that

1/2
Lo+ NLpA200M38, < —48,Dy — 65,13 Y 2005 | 2mt2/3 Byl + S5,
N
k£0
Here the D4, D are defined in (2.7b), (2.10).
We divide the proof of Theorem 5.5 into three lemmas.
Lemma 5.6 (Estimate of the N'C, ;). There exists a universal constant C' such that
051/2
| < ———D. 1
VL, 7| < NG (5.13)
Lemma 5.7 (Estimate of the ./\/'Emm). There exists a universal constant C' such that
061/2
aral < D. 14
N Lol < < (5.14)
Lemma 5.8 (Estimate of the N'Lg). There exists a universal constant C' such that
081/2
Ly < —=—D. 5.15
N Ly | < NG (5.15)

These lemmas implies Theorem 5.5:

Proof of Theorem 5.5. First of all, we observe that by Proposition 2.1, the linear part £ has the
bound

L < —86,Dy — 80,13 2Pt K Pmt2/3 By [y, (5.16)
k#0
Moreover, the estimates presented in Lemma 5.6, 5.7, 5.8 yield that
051/2
INL.| < D.
NI
So combining the two estimates above yields the conclusion. O

The proof of each lemma are presented in the next three subsections. We further highlight that
the notation Tl.g, Tox, 142, Ty, Ty, etc. will be redefined after the conclusion of each subsection.
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5.3.1 The v and 7 Contributions

This subsection is devoted to the proof of Lemma 5.6.
We recall the definition of N'L, - (5.12):

N[,%q— _ 2625*1/1/375 Z \k|2mRe <wk; (I + CTSk)(VL¢ i VLU)k> — 2626*V1/3t<T07,5 + T#O + T;é#)’
k#0
(5.17)

where the terms T, To, Tz are defined as follows
Toy = [k Re (w, (I + ¢-31) (9ypoikwy)) ,
k0

Tuo = [k Re (w, (I + ¢ 31) (ikdrdywo)) ,
k£0

Tppi= > [KP"Re (s (1 + 3 (VEprr - Viowr))
k,k'£0
bk

A central challenge is dealing with the nonlinear contributions involving Jy.
Treatment of the Ty term in (5.17):
Through integration by parts, we observe that the first term in the Tp. is zero. Hence,

Tox = Y K" Re (wr, ¢ 35(0ydoikwr)) ,
k#0

which is then estimated via Holder’s inequality and Lemma 3.1, yielding

2
Toxl S D 1R w72 10y ol oo -
k0
Next by Lemma 5.1 and 5.2, we have
_ 1/2.43/4 —28,.01/3t -4,
‘TO;A’ SV 1/250/ DB/ 'D,ly/4€ 204v1/5¢ Vt’

which is consistent with (5.13).
Treatment of the T, term in (5.17):
We estimate this term with Holder’s inequality and Lemma 3.1 to obtain

Teol S MK wkll 2 || 6k oo I0ywoll 2
k0

and hence by Lemma 5.3, we have
\T7A0| < V71/251/2D71_/21Dé/26726*1/1/31‘,75*1/7&’

and so this term is consistent with Theorem 5.5.
Treatment of the 7., term in (5.17):
We rewrite the term with Lemma 3.5 and further divide as follows

Tpp= 5 Re{(1+crdu) ™ wp K™ (Vi - Vivww))

k,k'#£0
k2K
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= 3 KERe (1 + ¢, k)eon, By ik — K)op_wwn)) — S K2 Re (1 + ¢, 3p)ek, k(D b))

ey ey
=T, +T,. (5.18)

To estimate T, we use integration by parts, Cauchy-Schwarz, and Lemma 3.1, 3.3, 3.4 to obtain
the following, using that m € (1/2,1),

TS > 1EP™ U+ I3kl e e + kI Sk Oyl o z2) [ Viwkll 2 || (k — B e
k,k'#£0
k£k'

SO R IVewrllge ([ = B|™ + [B™) || (k= ) dp—rs

k,k'#£0
k2K

Lo lww |l 2

Lo lwwll 2

1/2
2

— 1+ —5,1/3
SvTApl2 ZHV‘?—/‘C,‘ " G ; Z”WkHLZ e o
k40 kA0

=l D[S R e DY Y7 K
k0 k0

gLv? 1/291/2 _—38.01/3t
SﬁDT D'Y e N

where in the last line we used m > 1/2 to convert the ¢! sums into ¢* and then used Lemma 5.3.
This is hence consistent with (5.13) and Theorem 5.5.

To estimate T}, we again use Cauchy-Schwarz, and Lemma 3.1 to obtain the following and

introduce a frequency decomposition

1/3 2/3
Ty S D2 (o + Lemwizpen) | IR | IR 10,60l o N
kK £0
k£k!

=:Tyra + TyHL-

Estimating the 7).,y terms we have by Lemma 5.2

1/3 +2/3
Ty S D Loy | IR |, W1 10,00l o

k., k'#£0
k2!

< y*1/3*1/651/2’1);/47)’1/46736*1/1/3t7

where in the last line we used that by the Gagliardo-Nirenberg-Sobolev inequality and m > 1/2 we

S N0l < S 0306l Nl < €120
k#0 k0

Therefore, T}, is consistent with Theorem 5.5. For T),.;7;, we instead make the estimate

1/3 +2/3
Ty S Y Lipwisw] ‘|k|m+/ w’“”m [k — K™ 10, o] o el 2
kk/ 0
i

27



Next, we note that by the Gagliardo-Nirenberg-Sobolev inequality, Holder’s inequality, elliptic
regularity, and Lemma 5.3 we have,

1/2

L2

Z ‘k|m+2/3 HayQZ)kHLoo 5 Z |k|71/2 ‘k|m H|k’1/3 8§¢]€H2/22 H|k‘5/6 ’k|*1/3 Bygbk‘
k#0 k#0

1/3
5 y—1/12—1/6:D;/4D71_é4e—5*1/ / t'
Therefore,
—5/12 01/243/4.y1/4 _—38,01/3
Typ S v 26V DY le =300,

which is consistent with (5.13) and Theorem 5.5. This completes the treatment of the T, terms.
5.3.2 The a and ar Contributions

As in the previous subsection we begin with the same decomposition of the term N L, - (5.12):

1
fe—Qé*Vl/E‘tNﬁaﬂ_a = TO;& + T#O + T;é;é, (5.19)
(04

Toz = |k[*"Re <u1/3 6] Y3 8ywn, (I + )03 k|13 Gy(8y¢oikwk)> ,
k=0
Ty = [k Re <,,1/3 16|13 By, (I + )3 k|3 8y(z’k:¢k8yw0)> ,
k40
Topim 3 KPR (A3 K12 By (1 -+ e (672 0,V i Vo))
E,k'£0
kK

We note that all the T(*) are refreshed in this subsection.

Treatment of the Ty term in (5.19):

Analogous to the treatment in the previous section we have by integration by parts (using that wy,
vanishes along the boundaries)

Toy =cr Y |k[*"Re <V1/3 ||~ Oyeon, Jp /3 k|71 5y(3y¢>0ik‘wk)>
k0
+ Z |k|2mRe <V1/3 ‘k|71/3 8ywk7 V1/3 ‘k|71/3 8§¢ozkwk)>
k£0
+ 3 [k Re <u1/3 16| Y/3 8w, /3 || 3 8y¢gik8ywk)>
k£0
=: Toz;1 + Toxo + Toxzs. (5.20)

The last term vanishes since dy¢g is purely real

Tozs =Y |k[*"Re zk:/ W13 k| V3 8w |20, dody = 0.
k#0

For the Tpz. term in (5.20), we have

Tozo S V3 |k™ Dy | 12

’k’m-i-l/?)wk’
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Since we have that Oy, do = wo, ||Oyydol|L> = ||wol|z=. By Gagliardo-Nirenberg-Sobolev, we have
10260]| e < I0ywoll 15 llwoll5* < v~ Y08 e,

Therefore,

Toso < V—1/653/2:D%1/2Dé/26—26*V1/3t—§*zxt

)

which is consistent with (5.14) and Theorem 5.5.
For the Tyx, term in (5.20), we first apply the symmetry of J; (Lemma 3.5) and integration
by parts (using that wy vanishes on the boundary), to obtain that

Toza = ¢ > K Re <1/1/3 1] Y/3 310y, 13 ||V 8y(6y¢0ikwk)>
k£0

=~ D k[P Re (013 |75 0,300k, v k7P (0, duike) )
E+#£0

Then we use Lemma 3.1, 3.3 to estimate the commutators,
Toza Scr y 3 K™ Y3 13kl 222 + K173k 0yl 22 22) 1 ViDyeon | 2
k0
1 1/3 2\ !/ Loy
S 2 (vl e ) (v s,
1/4
x (R Y 22) 1000l e

Now we recall Lemma 5.1 and the definition of Dy, Dg, D, (2.5), (2.8), and then obtain

X U3 |23 w2 18y ol oo

< 51/ 1/2 1/4 1/4 —28,01/3¢— 6*1/16

which is consistent with Theorem 5.5. This completes the treatment of the Ty, term.
Treatment of the T, term in (5.19):
We use Lemma 5.3 to obtain

2 1/3 11.1—1/3 92 2/3+ 1/3 —1/201/2541/2.41/2
Tuo 5 S Jk[2 Hy /31| aywkHB H‘k‘ %’fHLw Hy / ayw()HLQ < v V22Dl
k#0
which is consistent with Theorem 5.5. This completes the treatment of the T,y term.
Treatment of the 7., term in (5.19):

The most troublesome term is the 72 term, which we treat now. We apply the symmetric property
of Jx (Lemma 3.5) to rewrite the term as follows,

Taw = > Re (v ™3 (1t r3)0ywn, v ™2 0, (Vi hie - Viowno) )

k,k'#£0
|

The estimate of Tz begins by integrating by parts in the term involving dy¢y_ik'wy, and ap-
plying Holder’s inequality,

Taw == > Re (W2 k™% (1 ¢ 30)Byeon, v/ K™% 0, ik — K)o Dyons) )

k., k'#£0
k2!
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-~ 3 Re <1/1/3 ™2 8,1 + ¢ 3x) Bywr, V173 [k 3 (aymfk,m’wk,w
kK’ £0
kK
S Z HV1/3|]€|m_1/3(1 + CJk)@/“’“HLQ L

k,k'£0
k£k!

Lo [10ywierll 2 + [ (6 = &) B

(1600 e

)
30 [ 0,1+ ey, v R 0y ||

k., k'#£0
k2!

3
2= ) Tey
j=1

We note that to justify that Ji(0ywk) is well-defined on the boundary, one can apply the Lemma
3.3 and 3.4 to get ||0yJkfrllrz < |3k0y frllLz + 1[0y, Jk) frll L2 < kaHH,i < 0. To estimate the term
T2, we first apply Lemma 3.1, and introduce a frequency decomposition

T;é?é;l 5 Z (1\kfk’\<|k’|/2 —+ 1|k*k’|2|k/|/2) H1/1/3’]{;‘Tnfl/?taywkHL2 ]/1/3’]{;‘77171/3

k' £0
k'
X ||(k = K8y r—k || oo 10yen |l 12
= Tiog +Ty,HL-

For the LH term we have

Tion S Y Lkowi<i)2 HVl/Slk\mfl/?’aywkHLQ ||k — '] Oybr—r

Jo2 07 0|

Ko L 176
e
Note that for m > 1/2 we have by Lemma 5.3,
1/2
_ 2 _ _5.1/3
ka’ay@;HLoo 5 Z|k|2m+3H|k| 1/36y¢k’HLoo 51/ 1/3D71_é2€ Ox t’
k40 k40
Therefore,

—1/201/21/241/2 —368,.01/3t
Typg S v 2E2DHYIDY e300t

which is consistent with (5.14) and Theorem 5.5. For the HL contribution note that we have
instead

Tl;HL g Z Hyl/i’) ‘k|m—l/3 aywkHLz HV1/3 ‘k‘ _ k/|m+2/3 ay¢k—k’

k,k'#0
kAE

L Nl

By Lemma 5.3 we have
T1;HL ,S V_1/251/2D$é2D}//2e_35*V1/3t7

which is consistent with (5.14) and Theorem 5.5. This completes the treatment of Tl;.;.
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We turn to T'z.2 next, which we again begin with a frequency decomposition,

Tizo= > (pewi<wyz + Lpowzw)/2) Hl/l/g || 5ywkHL2 V'3

k., k'#£0
k2!

= )
=:To. g +To.Hr.

1o 105wn |

To treat the first term we use that on the support of the summand |k — k| + |k| < || to obtain

Toru S Y 1|k—k'|<|k/\/2HV1/3|k\m_l/35ywk:‘

k., k'#£0
KAk

J1/3 ’k/|m*1/3 350%’

e =i

L H 2’

Using Lemma 5.3 and m > 1/2 we have
To.rn S V_1/25;/21)71_/22);/26—35*u1/3t’

which is consistent with Theorem 5.5. For Tb. 1, notice that we similarly have (again using Lemma
5.3 and m > 1/2),

_ +1
Toanr S ) 1\k—kl\z\k'|/2HV1/3\klm 1/33kaHL2 H\k—k’lm Y
ke k' £0
k£k!

< u*1/251/22)%273}/26*35*”1/%,

ot v

which is consistent with (5.14), Theorem 5.5.
Turning to Tl...r3 we begin with a frequency decomposition

) | a0, 3,0k R [0yl oo [

=T3.ruy + 1311

To treat 15,15 first note that by Gagliardo-Nirenberg-Sobolev, m > 1/2, and elliptic regularity we
have

1/2 1/2 1/2 _g§,1/3
STVl S 3 Iwnllys IVkeell s < &% 0,
k0 k#£0

Combining this, the multiplier Lemma 3.1, 3.3, 3.4, Lemma 5.2, Gagliardo-Nirenberg inequality
and Young’s convolution inequality yields

Tg;LH 5 Z 1|k—k’|<|k’|/2V1/3 Hl/1/3|k‘|m_1/3vkayb%‘

k,k'£0
kk!

< I/_1/281/Q,Di/QD»]}-//4Dé/4€_36*V1/3t,

“k/}m—l—?/B Wi

10yl | .

which is consistent with Theorem 5.5. Finally, to treat Ty 57, we have

_ —1/3—0
T3;HL S Z 1‘k—k/\2‘k’|/2 Hyl/?)km USaSWkHL? y1/3 ‘/{ — k/‘m / H
ke k' 40
kK

+1/3
6y¢kfk/||[/oo H‘k‘,‘m / wk"

LZ
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< y1/3—1/6—1/2D1/2D2/251/26—36*V1/3t
~ « ’
where we used Gagliardo-Nirenberg-Sobolev and elliptic regularity to deduce

m— - m 1/2 1/2 1/2 _§5,1/3
SRR 0kl e < D 1R K™ (lwnll L SES T
k k

K1/ 0,01

This is consistent with (5.14), Theorem 5.5, which then completes the treatment of T...3. Hence
the proof of Lemma 5.7 is completed.

5.3.3 The S Contributions

In this subsection, we prove Lemma 5.8. We decompose the N Lg-term in (5.12) as follows

B PN Ly = ey ST A P (Re <ikwk, 9,(Vie- W)k> + Re <¢k(vL¢ V), aywk>)
k40
=Tp1 + Tpo.
Each term can be treated similarly due to integration by parts, hence we focus only on 7.1 without

loss of generality. We further note that we will only bound the absolute values of these terms, hence
the sign is not important. First, we separate the contributions of the zero and non-zero frequencies

oo
1 4 )
Toa=—cs Y > (Lhmwrpzo+ Ligrrpr=o + Lisar prz0) V3 [K]*" 75 Re <zkqu,3y (V?—Mﬁk—k’ : Vk’wk’)>
k0 K ——oc

=:Toz +Toso + Ttx. (5.22)

Estimate of the Ty term in (5.22):
Distributing the derivative and integrating by parts we have

‘T07é’ _ Z 1/1/3 ’k‘_4/3 V{?Pm Re <il€£dk7 8y¢08yikwk)> — Z V1/3 ‘k‘_4/3 ’k‘Qm Re <ikCU]g7 a§¢Okak>> '
k#0 h#0
1 m
_ ‘2 S V3P Re (wi, 02gowr)) ‘
k#0

By Holder’s inequality we have

Toel S D 0H% |1/
k0

2
* 3360l

Upon applying Gagliardo-Nirenberg-Sobolev and the o term in the &y-energy, we have the estimate

1/2 1/2 — 1/2 s,
1820|100 < 10ywoll s llwoll 17 S v Y/0€y 26012,

Combining the bounds above yields that,
‘T07£| < V—l/ﬁgé/QDﬁe—%*u1/3t—5*ut

which is consistent with (5.15), Theorem 5.5.
Estimate of the T, term in (5.22):
Integrating by parts and using Holder’s inequality yield that

STV KPP Re (ik0yw, (ikgrdywo))
k#0

1 Txo] =
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SR E™ Oyl
k0

— 1/2 1/34_
’k’m—I—l (Z)kHLOO (Vl/guaywOHLQ) S U 1/2D,1y/2D71_/2€0/ e 20411/t 5*1/157

where in the last line we used the « term in the &-energy (2.6a) and Lemma 5.3.

Estimate of the T.. term in (5.22):

This is the hardest term, however we treat it in someways similar to the first two terms. First we
separate out the different components of the velocity fields

| Toez| <

v'/3 3" Re <|k;y2m*4/3 ikwy, 9, (i(k — k’)¢k_k/8ywk/)> ‘
k,k/#£0
%
yi/3 Z Re <|k|2m_4/3 1kwy, 8y(8y¢k,k/z'k"wk/)> ‘ =T, +7T,. (5.23)

k,k'#0
kK

_|_

The T, term is consistent using the o term in the energy along with the dissipation, as long as
m > 1/2. Indeed, we have for m > 1/2 using Lemma 5.3,

Tos > [k, ke
k,k'#£0
k#£k'

g2 1/3
< Dl/QD}Y/Qe*?"S*” / t’

14

R Y [P

poe [10ym [l 2

which is consistent with (5.15) and Theorem 5.5. Next, consider the more formidable T}, term. We
first distribute the derivative to treat each contribution separately

T, <

Y Re<|k:|2m4/3ikwk,8§¢k_k/ik’wkz>‘

k,k'#£0
kK

+

vy Re<\k|2m4/3ikwk,ay¢k_k/ik’8ywk/>‘:: w1+ Ty (5.24)
k,k'#0
k#k!

Consider the first term. We split it into HL and LH contributions based on the z-frequency

Tyq =

v (L bsii 2 + L ki<pp ) Re (P ko, 06y pik'w ) '
k,k'£0
k£k!

= |Tgr + Trul. (5.25)

Consider first the 77y term in (5.25). Using that |k| < 3 |k/| on the support of the summand and
m > 2/3, we have

1/3 -2/3

k., k' #£0
k#k!

m—2/3 2
k W/ HL2 Hayqﬁk_k,

Lo "

Then we observe that by (5.1) and Young’s convolution inequality,

a5 (T el ) (2 e
k#0 20

9 \1/2 )
) (e, )
k0
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1/3
SV—1/651/2Dﬂ6—36*V / t,

which is consistent with (5.15) and Theorem 5.5. Next consider the Ty term in (5.25), which

we instead estimate as follows, using that m > 2/3 and |k| + |k| < |k — k’| on the support of the
summand,

~2/3
Tar| S v ) Lijpn<ib—| H‘k\m / kwk‘

k. k' #£0
kAE

‘ k/wk/

o o [ = 1" B0

L2

1/3 +1/3 +1/3 52
S0 37 g [IK ] ol = K B
kK #£0

k£k!

2’

From here we use essentially the same argument as we did for the LH term. First we note that by
elliptic regularity,

H|k—k’\m“/3 ki

12 § H{k - k/‘m+1/3 We_—k/

2’

and that by Gagliardo-Nirenberg-Sobolev (and m > 2/3), we have

1/2 1/2 - —m m . n1/2 m— 1/2
> ekl S 3 ol 10yell 5" S w07 kI e mesgl| 5 [0/ 1612 Dy
k#0 k£0 k0
1/2 ) 1/4 s 9 \ 1/4 5 1/3
S V1/6<Z |k’2m+1/3> <Z H’k‘mwkHL2> <Z HV1/3 ‘k|mf / 8ywkHL2> 5 1/71/651/267 e
k0 k0 k0

Therefore, we similarly have
Tyl < V—1/651/21%”9—35*ul/?’t7

which is consistent with (5.15) and Theorem 5.5. This completes the treatment of the T}, ; term.

Next, we consider the T}, 2 term in (5.24), for which we introduce a commutator (writing com-
pletely on the physical-side for a moment):

|Ty,2‘ =

/3 <yam\m—2/3 Dtz Dy 40 | 0|2/ axw¢>

+ I/l/3 <|8:1:|m72/3 axw7£’ [8y¢7é7 |8x|m72/3]8y8xw7é> ‘ =: |Tm + Tc| (526)

Here, “m” is “main” and “c” is “commutator”. For the first term, we integrate by parts and use

Holder’s inequality after expanding in Fourier to obtain,

1 m— e
T = ‘2%/3 <|8x| 23 Doz, 0264 10, 8xw¢> '

< /3 Z H|k‘m+1/3 wka H’k/|m+1/3 W

k,k'£0;
k£k!

L2 [reaterm

Lo

Using (5.1) again, we therefore have

1/3
Tn| < V—1/651/2D56—35*u / t
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which is consistent with (5.15) and Theorem 5.5.
Finally we turn to the term with the commutator in (5.26), T, for which we expand on the
Fourier-side and use another frequency decomposition

1
m— m— m—2/3
T S v'/3 Z (L p—rr|<iir) /2 + 1|k—k’|>k’|/2)/1 |&|™ %2 || ‘W 23— |k / ‘ |0y - k' Oy | dy

k., k'#£0
kAE

=:Terg +TeHr.

For the T¢, 1 term we use the commutator estimate (which uses m > 2/3)

) k/#()?

which gives (using also |k — k’| < |k’| on the support of the summand)
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Then, we observe the following estimate, which follows from the Gagliardo-Nirenberg-Sobolev in-
equality,

L2

DN [LIREE (D IR
k0 k0

S T |
k0

kel 2 + 3|1k 0y
k40

< L/6pl/2 6./t
2 ™ B ’

Therefore, we obtain
—1/3¢1/2 —38,.1/3¢
Te.ra SV /50/ Dge vt

which is consistent with (5.15), Theorem 5.5.
Finally, we consider T, 1., for which the commutator is not relevant. Using that 0 < m—1/3 <1
and |k'| + |k| < |k — k| on the support of the summand, we have

Torr SvM° %7 Lpowizppye K™% [k ’!’f\m_w - |k/}m72/3‘ |0y Pt K Dyons

kK #£0
kAE

S/ Z 7/1/3 H|k|m+1/3WkHL2 H ’k? — k/‘m+1/3 ayqbk_k/

)
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Next, note m > 1/2 and Gagliardo-Nirenberg-Sobolev imply the following estimates

1/2
_ _5 ,1/3
Znaywkm(Z|||k|maywku;) ~ VDY

k0 k40
[t oy < 1k O3] 2

1/2 "
i k2o, )+ (1R o,

12 SJ H’k‘ wkHLz,
and therefore it follows that

I - 1/2 _ 1/3

o HL SV 1/381/27?5/ D’ly/2e 300t

which is consistent with (5.15) and Theorem 5.5. This completes the treatment of the N'Lg term.
Finally, we provide the proof of the main proposition 2.2, which directly implies Theorem 1.1:
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Proof of Proposition 2.2. We combine the decomposition (5.2), (5.10), Lemma 5.4 and Theorem
5.5 to obtain that

d 1 1/3 25,01/3¢ |1, 12m+2/3 CEL/?
7€ < —5Do — 66,0€ — 46D — 60.v D e k| EyJwi] + 7@.
k40
Recalling the definition of D = Dy + D + D (2.10), we observe that for §, < 7, the estimate
above implies (2.11). Integration in time yields the main result. O
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