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Abstract

In this work, we prove a threshold theorem for the 2D Navier-Stokes equations posed on the
periodic channel, T×[−1, 1], supplemented with Navier boundary conditions ω|y=±1 = 0. Initial
datum is taken to be a perturbation of Couette in the following sense: the shear component of the
perturbation is assumed small (in an appropriate Sobolev space) but importantly is independent

of ν. On the other hand, the nonzero modes are assumed size O(ν
1

2 ) in an anisotropic Sobolev
space. For such datum, we prove nonlinear enhanced dissipation and inviscid damping for the
resulting solution. The principal innovation is to capture quantitatively the inviscid damping,
for which we introduce a new Singular Integral Operator which is a physical space analogue of
the usual Fourier multipliers which are used to prove damping. We then include this SIO in the
context of a nonlinear hypocoercivity framework.

Contents

1 Introduction 1

2 Outline 4

3 Properties of the Inviscid Damping Energy Functional 8

4 The Linearized Problem 14

5 Nonlinear Estimates 21

References 36

1 Introduction

We study the 2D Navier-Stokes equations in the periodic channel (x, y) ∈ T×[−1, 1]= [−π, π]/∼× [−1, 1]
with inhomogeneous Navier boundary conditions

∂tv + (v · ∇)v +∇p = ν∆v, (1.1a)

∇ · v = 0, v2(t, x,±1) = 0, ∂yv1(t, x,±1) = 1, (1.1b)

v(t = 0, x, y) = vin(x, y). (1.1c)
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This problem corresponds to studying a fluid with Navier-type boundary conditions and applying
a fixed force (rather than a fixed velocity) which slides the top and bottom boundaries in opposite
directions. See for example [32] for derivations of Navier-type boundary conditions from kinetic
theory. The boundary conditions on the vorticity Ω = ∂yu1 − ∂xu2 reduce to simple Dirichlet
conditions, giving the system

∂tΩ+ v · ∇Ω = ν∆Ω,

v = ∇⊥∆−1Ω= (∂y∆
−1Ω,−∂x∆

−1Ω), Ω(t, x, y = ±1) = 1,

Ω(t = 0, x, y) = Ωin(x, y),

where the ∆−1 is taken with homogeneous Dirichlet conditions on y = ±1 so that v satisfies the
no-penetration condition v2(t, x,±1) = 0. It is straightforward to prove that all solutions of (1.1)
converge to the unique steady state selected by the boundary conditions, namely, the Couette flow:

v0 =

(
y
0

)

.

A class of questions which has received a lot of attention recently is that of a quantitative stability
threshold : given a norm on the initial data ∥·∥X , what is the largest γ ≥ 0 such that

∥v(0)− v0∥X ≪ νγ

implies that v(t) behaves roughly like the linearized problem for all time, where the exact quan-
tification of this varies from work-to-work, but generally involves at least observing the enhanced
dissipation characteristic of the linearized problem (discussed further below). See [9] for a detailed
discussion on thresholds in the context of the Couette flow. See e.g. [15, 16, 19, 21, 33, 34] and the
references therein for 2D, and see 3D [5,8,10,37] and the references therein for 3D. When studying
these kinds of high Reynolds number hydrodynamic stability problems, the mixing induced by the
shearing greatly influences the stability of the equilibrium, leading to two notable effects in 2D:
inviscid damping wherein the perturbation velocity decays in the linearized (or nonlinear) Euler
equations and enhanced dissipation, wherein the mixing accelerates the viscous dissipation, leading
to, for example rapid decay of the x-dependence on time-scales like ≈ ν−1/3 (rather than the decay
of the heat equation ≈ ν−1). Many works have studied these effects recently in the linearized
Navier-Stokes and Euler equations; see for example [7,23,25,26,31,35,38–40,42] and the references
therein for inviscid damping results and e.g. [11, 18, 19, 21, 27, 40] and the references therein for
results on enhanced dissipation (some results study both, such as [18,27], but such results are rare
outside of the Couette flow). There are also works on mixing and enhanced dissipation by laminar
flows in passive scalars, for example such as [1, 3, 4, 22] and the references therein.

The purpose of this paper is three-fold. The first two are: (1) to introduce a new energy
method for studying inviscid damping and enhanced dissipation; and (2) use this method to obtain
a stability threshold not just for the Couette flow, but for all shear flows close to Couette, namely
the ‘slowly-varying’ solutions

v(t) =

(
etν∆v0

0

)

, (1.2)

with ∥v0 − y∥H4 ≤ δ0 for a universal constant δ0 independent of ν. In [15], it was estimated that
γ ≤ 1/2 without boundaries (i.e. y ∈ R) with initial data in Sobolev spaces X = Hs with s > 1.

For the case of the Couette flow (rather than (1.2)) more work exists. In the case of T × R,

[34] improves the required regularity for γ ≤ 1/2 to H log
x L2

y. And it turns out to be optimal for
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low regularity even up to H1
xL

2
y [29]. For f0 = y without boundaries, this was later improved to

γ ≤ 1/3 for sufficiently high Sobolev regularity [33] and γ ∈ [0, 1/3] for suitable Gevrey classes [28],
which is expected to be sharp, due to the results of [20]. The regularity could be further relaxed
to Hs for s ≥ 3 in a upcoming paper [36]. When one has at least Gevrey-2 regularity on the other
hand, the result was proved with γ = 0 in [14] (i.e. the results are uniform-in-ν). For f0 = y and
Dirichlet boundary conditions in the channel, the stability threshold was proved with γ = 1/2 in
[16]. The method of that paper should also prove the corresponding result for the Navier boundary
condition case, which is easier than the Dirichlet case.

In our upcoming work [12], we extend the Gevrey-2 uniform-in-ν result of [14] to the channel in
the case with Navier boundary conditions. The proof works essentially in two steps: (1) to obtain
precise Gevrey regularity estimates on time-scales 1 ≪ t ≪ ν−ζ for some ζ > 1/3 (which contain
all of the results of e.g. [13, 24] and more) and then (2) apply the results of Theorem 1.1 below
for times t ≳ ν−ζ to obtain a global-in-time result. The third purpose of this paper is hence to
complete the proof of the theorem stated in [12] by solving step (2). We have made this step a
separate paper as the methods herein are largely different from [12], and moreover, the result and
the new energy method we introduce are of independent interest.

Let us now make the results more precise. We will consider initial conditions of the form

Ωin(x, y) = 1 +Win(y) + ωin(x, y),

where we will be assuming more regularity on Win but no ν-dependent smallness, whereas ωin

will be assumed small relative to ν. We define the heat extension (with homogeneous Dirichlet
conditions) of Win as

W (t, y) =
(
eνt∆yWin

)
(y), (1.3a)

and U be the resulting shear flow given by the corresponding Biot-Savart law (here G denotes the
Greens function for ∂yy with homogeneous Dirichlet conditions on interval [−1, 1])

U(t, y) = y+∂y

� 1

−1
G(y, y′)W (t, y′)dy′. (1.3b)

We write the solution of the Navier-Stokes equations as

Ω = 1+W (t, y) + ω(t, x, y),

reducing the problem to

∂tω + U∂xω−U ′′∂xϕ+ u · ∇ω = ν∆ω, (1.3c)

u = ∇⊥∆−1ω, ω(t, y = ±1) = 0, ω(0) = ωin, (1.3d)

which now contains time-dependent linear terms which are not perturbatively small in ν and do
not satisfy any straightforward energy estimates because of the non-local term U ′′∂xϕ (note that
U ′′ = ∂yyU is not sign-definite). Nevertheless, we obtain a new energy method capable of dealing
with the time-dependent linearized Navier-Stokes equations for Navier boundary conditions and
extracting both inviscid damping and enhanced dissipation at the same time (the same method
works, and is simpler, in T × R). The approach is nearly a physical-side analogue of the Fourier
multiplier energy method employed in [14] to solve the corresponding problem without a boundary.
Such a Fourier multiplier approach cannot be employed here due to the boundary, however, one
can find a singular integral operator that is essentially a physical-side analogue of the multiplier
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in [14] used therein to obtain the fundamental L2
tH

1
xL

2
y inviscid damping estimate on the velocity

field and which allows to integrate the U ′′∂xϕ linear term. Using this singular integral operator,
combined with a more standard hypocoercivity method to obtain the enhanced dissipation and
suitable nonlinear estimates, we obtain the following theorem purely via an energy method.

Theorem 1.1. Consider the equation (1.3) subject to compatibility condition Win

∣
∣
y=±1

= ωin

∣
∣
y=±1

≡
0. Then for all m ∈ (2/3, 1), ∃δ0, δ1 > 0 such that if

∥Win∥H4
y
≤ δ0,

∑

0≤j≤1

∥
∥
∥(ν1/3∂y)

j ⟨∂x⟩m− j
3 ωin

∥
∥
∥
L2

=: ϵ ≤ δ1
√
ν, (1.4)

then for all δ∗ > 0 sufficiently small (depending only on universal constants) and all ν ∈ (0, 1),
there hold

∑

0≤j≤1

∥
∥
∥⟨∂x⟩m− j

3 (ν1/3∂y)
jω ̸=(t)

∥
∥
∥
L2
x,y

≲ ϵe−δ∗ν1/3t, ∀t ∈ [0,∞);

∑

0≤j≤1

∥
∥
∥(ν1/3∂y)

jω0(t)
∥
∥
∥
L2
y

≲ ϵe−δ∗νt, ∀t ∈ [0,∞);

∑

0≤j≤1

∥
∥
∥eδ∗ν

1/3t |∂x|m+1− j
3 (ν1/3∂y)

ju ̸=

∥
∥
∥
L2
tL

2
x,y

≲ ϵ.

Remark 1.2. Note that while we require a little more than 2/3 of a derivative in x to be O(
√
ν)

in L2, we only require ∂yω to be O(ν1/6) in H
1/3+
x L2

y.

Remark 1.3. In the case of Dirichlet boundary conditions, the boundary layers will necessitate
a more complicated approach that cannot be done only with energy estimates. Nevertheless, the
proofs of [16] show that a strong understanding of the Navier case is extremely useful for making
progress on the Dirichlet case. The case of Dirichlet boundary conditions will be considered in
future work.

2 Outline

2.1 Linearized Problem

One of the primary challenges to Theorem 1.1 is obtaining sufficiently good estimates on the (time-
dependent) linearized problem that results from dropping the nonlinearity in (1.3). We believe
these could be obtained using a time-splitting argument similar to that used in [17] along with a
suitable variation of the resolvent estimates found in [16]. While effective and robust, this method
is also quite technical. One of our primary contributions here is to provide a more straightforward
method based solely on energy estimates.

Due to translation invariance, the linearized problem is best studied mode-by-mode in x. De-

noting ωk(t, y) :=
1

2π

� π

−π
ω(t, x, y)e−ikxdx, we have the mode-by-mode linearization given by

∂tωk + Uikωk−U ′′ikϕk − ν∆kωk = 0, (2.1a)

∆kϕk = ωk, (2.1b)

ϕk(±1) = 0, ωk(±1) = 0, (2.1c)

where ∆k := − |k|2 + ∂yy. We introduce a hypocoercive energy for (2.1), which simultaneously
captures the inviscid damping and the enhanced dissipation: for universal constants {c∗}∗∈{α, β, τ} ⊂
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(0, 1) to be specified below,

Ek[ωk] :=∥ωk∥2L2 + cαν
2

3 |k|− 2

3 ∥∂yωk∥2L2 − cβν
1

3 |k|− 4

3Re⟨ikωk, ∂yωk⟩
+ cτRe⟨ωk, Jk[ωk]⟩+ cτ cαν

2

3 |k|− 2

3 Re⟨∂yωk, Jk[∂yωk]⟩
=Re⟨ωk, (1 + cτJk)[ωk]⟩+ cαν

2

3 |k|− 2

3Re⟨∂yωk, (1 + cτJk)[∂yωk]⟩ − cβν
1

3 |k|− 4

3Re⟨ikωk, ∂yωk⟩.
(2.2)

Here the singular integral operator (SIO) Jk is given by

Jk[f ](y) := |k| p.v. k|k|

� 1

−1

1

2i(y − y′)
Gk(y, y

′)f(y′)dy′, (2.3)

where we denote Gk the Green’s function for ∆k := −|k|2 + ∂yy with homogeneous Dirichlet
boundary conditions, which has the explicit form:

Gk(y, y
′) = − 1

k sinh(2k)

{
sinh(k(1− y′)) sinh(k(1 + y)), y ≤ y′;
sinh(k(1− y)) sinh(k(1 + y′)), y ≥ y′.

(2.4)

The first three terms in (2.2) are the by-now standard hypocoercive energy for extracting opti-
mal enhanced dissipation from problems such as passive scalar shear flows (i.e. (2.1) with no
ikU ′′ϕk term); see for example [4, 22]. The last two terms in the energy simultaneously deal with
the non-local ikU ′′ϕk in the energy estimate (which would normally frustrate any straightforward
hypocoercivity estimate) and also extracts a L2

t Ḣ
1−δ
x L2

y inviscid damping estimate which is nearly
the optimal estimate expected from the 2D Couette flow [16], namely that

|k|2 ∥∇kϕk∥2L2
tL

2
y
≲ ∥ωk(0)∥2L2 .

In our case, the terms involving Jk will provide the following invisicd damping estimates

∑

0≤j≤1

|k|2
∥
∥
∥(ν1/3 |k|−1/3 ∂y)

j∇kϕk

∥
∥
∥

2

L2
tL

2
y

≲ Ek[ωk(0)].

We show below that Jk is a bounded operator, mapping L2 to L2, with a bound depends uniformly
in k, and so for appropriate choices of the parameters (see Section 4.5 for the details on how to set
the parameters {c∗}∗∈{α,β,τ}), we have

E[ωk] ≈ ∥ωk∥2L2 +
ν2/3

|k|2/3
∥∂yωk∥2L2 ,

with an implicit constant independent of ν and k.
The first main result of our work is the following linearized energy estimate, proved in Section

4.

Proposition 2.1. For suitable choices of the parameters {c∗}∗∈{α,β,τ} (2.2), and for any H1 solu-
tions to (2.1)k ̸=0, the following holds for all sufficiently small δ∗ > 0 that are independent of ν and
k,

e2δ∗ν
1/3|k|2/3tEk[ωk(t)] +

1

4
cτ

� t

0
e2δ∗ν

1/3|k|2/3s |k|2 ∥∇kϕk(s)∥2L2 ds ≤ Ek[ωk(0)], ∀t ≥ 0,
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and, more specifically, the following energy estimate holds:

d

dt
Ek[ωk] ≤ −8δ∗Dk[ωk]− 8δ∗ν

1/3 |k|2/3Ek[ωk],

where Dk is given by

Dk := Dk,γ + cαDk,α + cβDk,β + cτDk,τ + cτ cαDk,τα, (2.5a)

Dk,γ := ν ∥∇kωk∥2L2 := ν∥ikωk∥2L2 + ν∥∂yωk∥2L2 , (2.5b)

Dk,α := ν |k|−2/3
∥
∥
∥∇k(ν

1/3∂y)ωk

∥
∥
∥

2

L2

, (2.5c)

Dk,β := ν1/3 |k|2/3 ∥ωk∥2L2 , (2.5d)

Dk,τ := |k|2 ∥∇kϕk∥2L2 , (2.5e)

Dk,τα := ν2/3 |k|4/3 ∥∇k∂yϕk∥2L2 . (2.5f)

Here ∇k := (ik, ∂y). Furthermore, we define the notation D∗ :=
∑

k ̸=0Dk,∗, ∗ ∈ {γ, α, β, τ, τα}.

The definition of Jk comes from a physical-side representation of a Fourier multiplier employed
in the works [10,14,15,41]. In the case of T×R, a similar physical-side SIO as Jk was used in the
recent work [30]. In [6], the Fourier multiplier was employed for the same purpose of dealing with
the non-local term in the linearized equation (2.1). In the work [15,41], the problem was re-written
in the coordinates f(t, z, y) = ωk(t, z + ty, y) and a norm based on the following energy estimate
for the linearized Euler equations was made

d

dt
∥M(t, k, ∂y)fk∥2L2 + (1− Cδ0)

∥
∥
∥
∥
∥

√

−∂tM
M Mfk

∥
∥
∥
∥
∥

2

L2

≤ 0,

where the Fourier multiplier M is chosen such that

M(0, k, η) = 1,
d

dt
M(t, k, η) = − |k|2

k2 + |η − tk|2
M(t, k, η).

Undoing the coordinates shows that the term involving ∂tM/M is in fact |k|2 ∥∇kϕk∥2L2 . The
operator M(t, k, ∂y) is order zero and ∥Mf∥L2 ≈ ∥f∥L2 , which has led to the use of the word “ghost
multiplier” (in analogy with the ghost energy method of Alinhac [2]). One explicitly computes that
(using that arctan is odd),

M(t, k, η) = exp

(� t

0

1

1 +
∣
∣τ − η

k

∣
∣2
dτ

)

= exp
(

arctan(t+
η

k
)− arctan(

η

k
)
)

.

Undoing the shift,

M(t, k, η − tk) = exp
(

arctan
η

k
− arctan(

η

k
− t)

)
t→∞−−−→ exp

(

arctan
η

k
+ π/2

)

.

For η/k > 0 as η → ∞ this expands as

exp
(

arctan
η

k
+ π/2

)

≈ eπ
(

1 + arctan
η

k
+ π/2 + ...

)

.
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We observe that the inverse Fourier transform of arctan is given by

�
R

eiηy arctan
η

k
dη = − 1

iyk

�
R

eiηy
|k|2

|k|2 + |η|2
dη = − k

iy
GR;k(y),

where GR;k would be the fundamental solution of −∆k on R. The resulting singular integral
operator should be the most important aspect of M on the physical-side.

An alternative, purely physical space, point of view motivating the definition of Jk is as follows.
One may consider the following toy model on T× R, ∂tf + ikyf = ick∆−1

k f , with 0 < c ≪ 1. The
term on the right-hand side is a stand-in for the nonlocal term. Next, we commute this equation
with an abstract SIO Jk, which commutes with ∂t and ∆−1

k , but not with the transport iky. This
will generate the commuted equation ∂tJkf + ikyJkf = [iky, Jk]f + ick∆−1

k Jkf . If we represent
Jkf(y) by

�
Ik(y, y

′)f(y′)dy′, we find the criteria that the commutator ik
�
(y− y′)Ik(y, y

′)f(y′)dy′

needs to absorb the nonlocal term cik
�
GR;k(y − y′)f(y′)dy′. Given this, our Jk is a natural

adaptation to the setting of the channel.
These two explanations motivate the definition of Jk, though it is not a priori clear why using

Jk should be sufficient to deduce inviscid damping, even without further adaptation to the time-
dependent shear flow. The properties of Jk are outlined in Section 3 while the proof that its use
provides the desired inviscid damping is in Section 4.4.

2.2 Nonlinear Problem

For the nonlinear problem we use the following natural nonlinear extension of the linear energy
functional (with the time-decay built in):

E0 := e2δ∗νt∥ω0∥2L2 + cαe
2δ∗νt∥ν1/3∂yω0∥2L2 , (2.6a)

E ̸= :=
∑

k ̸=0

e2δ∗ν
1/3t |k|2mEk[ωk], (2.6b)

E := E0 + E ̸=. (2.6c)

This energy comes with the associated dissipation functional

D0 := e2δ∗νtν∥∂yω0∥2L2 + cαe
2δ∗νtν∥ν1/3∂2

yω0∥2L2 , (2.7a)

D ̸= :=
∑

k ̸=0

e2δ∗ν
1/3t |k|2mDk[ωk]. (2.7b)

We also use the corresponding notation for the dissipation operators such as Dk,γ , Dk,α, etc. as in
(2.5)

D(∗) :=
∑

k ̸=0

e2δ∗ν
1/3t |k|2mDk,(∗)[ωk]. (2.8)

We note that the definitions D∗ and D∗ differ by |k|2m factor and the time weight e2δ∗νt, e2δ∗ν
1/3t.

For future convenience we also define

DE := νE0 + ν1/3
∑

k ̸=0

e2δ∗ν
1/3t |k|2m+2/3Ek[ωk]. (2.9)

Finally, we define

D := D0 +D ̸= +DE . (2.10)

Theorem 1.1 is an immediate consequence of the following energy estimate, proved in Section 5.
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Proposition 2.2. There exists a constant C0, depending only on the parameters δ∗, δ0, and m ∈
(2/3, 1) such that

d

dt
E + 4δ∗D ≤

(
C0ν

−1E
)1/2D. (2.11)

Here E and D are defined in (2.6c) and (2.10). In particular, the bound (2.11) implies that if

E|t=0 ≤ δ2
∗

C0
ν, then the following global estimate

sup
t≥0

E(t) + 2δ∗

� ∞

0
D(s)ds ≤ E(0)

holds.

2.3 Notations

Throughout the paper, the constant C will change from line to line. For A,B ≥ 0, we use the
notation A ≲ B to highlight that there exists a constant C > 0 such that A ≤ CB.

To avoid introducing too many symbols, we further define ‘local variables’, denoted as T···,
for example, T0 ̸= and T ̸=0. These notations represent terms that appear during the estimation
in each subsection. Once a subsection is concluded, these notations will be redefined in the next
subsection.

3 Properties of the Inviscid Damping Energy Functional

Here we develop some properties on the operator J. For future notational convenience, we denote

Jk,ϵ[f ] := |k| k

|k|

� y−ϵ

−1

Gk(y, y
′)

2i(y − y′)
f(y′)dy′ + |k| k

|k|

� 1

y+ϵ

Gk(y, y
′)

2i(y − y′)
f(y′)dy′, (3.1)

so that by definition,

Jk[f ] = lim
ϵ→0

Jk,ϵ[f ]. (3.2)

We first prove that Jk extends to a bounded linear operator Jk : L2 → L2.

Lemma 3.1. The singular integral operator Jk extends to a bounded linear operator on L2 → L2

and moreover

∥Jk∥L2→L2 ≲ 1.

Remark 3.2. Note that we therefore have ∀f ∈ L2, limϵ→0 ∥Jk[f ]− Jk,ϵ[f ]∥ = 0.

Proof. We decompose

1

|k|Jkf =
k

|k|p.v.
� 1

−1
Gk(y, y

′)
f(y′)

2i(y − y′)
dy′

=
k

|k|p.v.
�
[−1,1]−(y− 1

k
,y+ 1

k
)
Gk(y, y

′)
f(y′)

2i(y − y′)
dy′ +

k

|k|p.v.
� y+ 1

k

y− 1

k

Gk(y, y
′)

f(y′)

2i(y − y′)
dy′

=
k

|k|p.v.
�
[−1,1]−(y− 1

k
,y+ 1

k
)
Gk(y, y

′)
f(y′)

2i(y − y′)
dy′ +

k

|k|Gk(y, y)p.v.

� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′
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+
k

|k|p.v.
� y+ 1

k

y− 1

k

[Gk(y, y
′)−Gk(y, y)]

f(y′)

2i(y − y′)
dy′

=T1 + T2 + T3.

The strategy is as follows: for T1, we use a Schur-type estimate and the rapid decay of Gk(y, y
′) to

gain integrability. For T2, we use properties on the (truncated) Hilbert transform. For T3, we use
L∞
y L1

y′ + L∞
y′ L

1
y bounds to gain the 1/k.

Bound of T1 : The bound of T1 is perhaps the most subtle, because it relies on the properties of
Gk. Nevertheless, we may split T1 = T1,≤ + T1,≥, where

T1,≤ :=
k

|k|p.v.
� y− 1

k

−1
Gk(y, y

′)
f(y′)

2i(y − y′)
dy′ (3.3)

T1,≥ :=
k

|k|p.v.
� 1

y+ 1

k

Gk(y, y
′)

f(y′)

2i(y − y′)
dy′. (3.4)

These two operators are treated analogously, so we focus on T1,≥. First of all, we notice that we
can remove the principle value due to excising the point y′ = y, and we therefore can write

T1,≥f =
k

|k|

�
Gk(y, y

′)

2i(y − y′)
1y+ 1

k
(y′)f(y′)dy′ =

� 1

−1
Kk(y, y

′)f(y′)dy′ (3.5)

By using Schur’s test, we have

∥T1,≥f∥L2 ≲ (∥Kk∥L∞

y L1

y′
+ ∥Kk∥L∞

y′
L1
y
)∥f∥L2 (3.6)

Therefore, we need to estimate

∥Kk(y, ·)∥L1

y′
=

� 1

y+ 1

k

|Gk(y, y
′)|

|y − y′| dy′ ≲

� 1

y+ 1

k

sinh(k(1− y′)) sinh(k(1 + y))

k|y − y′| sinh(2k) dy′ (3.7)

≲

� 1

y+ 1

k

[ek(1−y′) − e−k(1−y′)][ek(1+y) − e−k(1+y)]

k|y − y′|e2k dy′ (3.8)

=

� 1

y+ 1

k

ek(1−y′)ek(1+y)

k|y − y′|e2k dy′ + Err1, (3.9)

where the error integral above is defined as follows:

Err1 :=

� 1

y+ 1

k

e−k(1−y′)[ek(1+y) − e−k(1+y)]

k|y′ − y|e2k +

� 1

y+ 1

k

[ek(1−y′) − e−k(1−y′)]e−k(1+y)

k|y − y′|e2k (3.10)

The main contribution simplifies as follows

� 1

y+ 1

k

ek(1−y′)ek(1+y)

k|y − y′|e2k dy′ =

� 1

y+ 1

k

e−k(y′−y)

k(y′ − y)
dy′ =

1

k

� k(1−y)

u=1

e−u

u
du ≲

1

k
. (3.11)

The estimation of the term Err1 is simpler, and can be controlled as above by using the following
bounds on the numerators:

e−k(1−y′)[ek(1+y) − e−k(1+y)] ≲ek(1−y′)ek(1+y),

9



[ek(1−y′) − e−k(1−y′)]e−k(1+y) ≲ek(1−y′)ek(1+y).

Taking the supremum in y, we obtain the bound ∥Kk∥L∞

y L1

y′
≲ 1/k.

We now need to estimate the quantity ∥Kk∥L∞

y′
L1
y
≲ 1/k. We therefore fix a y′ in the range

1/k ≤ y′ ≤ 1. We then have

∥Kk(·, y′)∥L1
y
=

�
Gk(y, y

′)

(y′ − y)
1(y ≤ y′ − 1

k
)dy =

� y′− 1

k

y=0

Gk(y, y
′)

|y − y′| dy

≲

� y′− 1

k

y=0

ek(1−y′)ek(1+y)

k(y′ − y)e2k
dy =

� y′− 1

k

y=0

e−k(y′−y)

k(y′ − y)
dy

≲
1

k

� ky′

1

e−u

u
du ≲

1

k
.

Therefore, inserting these kernel bounds into (3.6), we have

∥T1,≥f∥L2 ≲ (∥Kk∥L∞

y L1

y′
+ ∥Kk∥L∞

y′
L1
y
)∥f∥L2 ≲

1

k
∥f∥L2 .

By applying the analogous argument also to T1,≤, we have

∥T1f∥L2 ≲
1

k
∥f∥L2 . (3.12)

Bound of T2 : For the operator T2, we use the boundedness properties of the truncated Hilbert
transform. In particular, we proceed as follows:

∥T2f∥L2 =∥ k

|k|Gk(y, y)p.v.

� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′∥L2 ≲ ∥Gk(y, y)∥L∞

y
∥p.v.

� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′∥L2

≲
1

k
∥p.v.

� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′∥L2 . (3.13)

It remains thus to estimate the L2 → L2 boundedness of the operator above. To do so, we realize
this as the difference between the classical Hilbert transform, and the truncated Hilbert transform.
Indeed, define

Hf :=p.v.

� 1

−1

f(y′)

2i(y − y′)
dy′ (3.14)

Hδf :=p.v.

� y−δ

−1

f(y′)

2i(y − y′)
dy′ +

� 1

y+δ

f(y′)

2i(y − y′)
dy′, (3.15)

T 2 :=p.v.

� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′ (3.16)

with the convention that

p.v.

� y−δ

−1

f(y′)

2i(y − y′)
dy′ = 0, if y − δ < −1;
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p.v.

� 1

y+δ

f(y′)

2i(y − y′)
dy′ = 0, if y + δ > 1.

Then, we have

T 2 = Hf −H1/kf,

from which the L2 → L2 boundedness of T 2 follows from the classical corresponding boundedness
estimates (uniform in δ):

∥Hf∥L2 ≲ ∥f∥L2 , ∥Hδf∥L2 ≲ ∥f∥L2 .

Therefore, continuing from (3.29), we have

∥T2f∥L2 ≲
1

k
∥T 2f∥L2 ≲

1

k
∥f∥L2 . (3.17)

Bound of T3 : For the operator T3, we use Schur’s Test again. In this case, we have

� y+ 1

k

y− 1

k

|Gk(y, y
′)−Gk(y, y)|
|y − y′| dy′ ≲ sup

y,y′
∥Gk(y, y

′)−Gk(y, y)

|y − y′|
∣
∣
∣

� y+ 1

k

y− 1

k

dy′ ≲
1

k
,

� y′+ 1

k

y′− 1

k

|Gk(y, y
′)−Gk(y, y)|
|y − y′| dy ≲ sup

y,y′
∥Gk(y, y

′)−Gk(y, y)

|y − y′|
∣
∣
∣

� y′+ 1

k

y′− 1

k

dy ≲
1

k
.

Therefore, again by applying Schur’s test, we have

∥T3f∥L2 ≲
1

k
∥f∥L2 . (3.18)

Combining the bounds (3.12), (3.17), (3.30), we obtain the desired result.

The next lemma captures the commutator between ∂y and Jk.

Lemma 3.3. If f ∈ H1 then Jk[f ] ∈ H1 we define

[∂y, Jk] = Hk,

where

Hk[f ] = |k|p.v.
� 1

−1

Hk(y, y
′)

2i(y − y′)
f(y′)dy′,

where Hk is a continuous function given by the formula

Hk(y, y
′) := −sinh(k(y + y′))

sinh(2k)
(3.19)

Proof. Consider the regularizations

1

|k|J
ϵ
k[f ](y) :=

� 1

−1

Gk(y, y
′)(y − y′)

(y − y′)2 + ϵ2
f(y′)dy′.

11



Integrating by parts (and using the boundary conditions), we have

1

|k|(J
ϵ
k[∂yf ]− ∂yJ

ϵ
k[f ]) =

� 1

−1

(y − y′)

(y − y′)2 + ϵ2
(
−∂y′Gk(y, y

′)− ∂yGk(y, y
′)
)
f(y′)dy′.

The right-hand side passes to the limit in L2 to Hk. If ∂yf ∈ L2 then Jϵk[∂yf ] passes to the limit
in L2 as well. It follows that Jϵk[f ] ∈ H1 and ∂yJ

ϵ
k[f ] is given by the above formula. First of all, a

direct computation yields

∂yGk(y, y
′)

=− 1

sinh(2k)







sinh(2k)
2 +

1

4
e2k(ek(y−y′) − 1) +

1

4
e−2k(1− e−k(y−y′))

︸ ︷︷ ︸

=:H(y−y′)

−1
2 sinh(k(y

′ + y)), y ≤ y′;

− sinh(2k)
2 +

1

4
e−2k(ek(y−y′) − 1) +

1

4
e2k(1− e−k(y−y′))

︸ ︷︷ ︸

=:H(y−y′)

−1
2 sinh(k(y

′ + y)), y ≥ y′.

We now observe that we can rewrite the kernel ∂yGk(y, y
′) using the notations y−y′ = η, y+y′ = ζ

as follows:

∂yGk(y, y
′)

=− 1

sinh(2k)

(

−1

2
sinh(2k)sign(η) +

(
1

2
sinh

(
(−2 + |η|)k

)
+

1

2
sinh(2k)

)
η

|η| −
1

2
sinh(kζ)

)

=:J(η) +H(η) + S(ζ). (3.20)

Here ‘J ’ is the jump part, ‘H’ is the C1 part and ‘S’ is the smooth part. We notice that functions
of the η variable are annihilated by −∂y − ∂y′ , and therefore only the “S” term contributes to the
commutator. Indeed, we have that

−∂yGk(y, y
′)− ∂y′Gk(y, y

′) = −sinh(k(y + y′))

sinh(2k)
. (3.21)

We have the following commutator estimate on Hk.

Lemma 3.4. There holds the estimate

∥Hk∥L2→L2 ≲ |k|. (3.22)

Proof. We decompose in a similar manner to Lemma 3.1, as follows:

1

|k|Hkf =p.v.

� 1

−1
Hk(y, y

′)
f(y′)

2i(y − y′)
dy′

=
k

|k|p.v.
�
[−1,1]−(y− 1

k
,y+ 1

k
)
Hk(y, y

′)
f(y′)

2i(y − y′)
dy′ +

k

|k|p.v.
� y+ 1

k

y− 1

k

Hk(y, y
′)

f(y′)

2i(y − y′)
dy′

=
k

|k|p.v.
�
[−1,1]−(y− 1

k
,y+ 1

k
)
Hk(y, y

′)
f(y′)

2i(y − y′)
dy′ +

k

|k|Hk(y, y)p.v.

� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′

+
k

|k|p.v.
� y+ 1

k

y− 1

k

[Hk(y, y
′)−Hk(y, y)]

f(y′)

2i(y − y′)
dy′

12



=T1 + T2 + T3.

We will now provide bounds on T1, T2, T3 successively.

Bounds on T1: We again split into T1 = T1,≥ + T1,≤, where we define

T1,≥f :=
k

|k|p.v.
� 1

y′=y+ 1

k

Hk(y, y
′)

f(y′)

2i(y − y′)
dy′, (3.23)

T1,≤f :=
k

|k|p.v.
� y− 1

k

y′=−1
Hk(y, y

′)
f(y′)

2i(y − y′)
dy′. (3.24)

By symmetry it suffices to estimate T1,≥. For this, we have the kernel

K(y, y′) := 1(y′ ≥ y +
1

k
)Hk(y, y

′)
1

2i(y′ − y)
. (3.25)

We will first fix a y and compute the L1
y′ norm. Indeed, we have

∥K(y, ·)∥L1

y′
≲

� 1

y′=y+ 1

k

sinh(k(y + y′))

(y′ − y) sinh(2k)
dy′ ≲

� 1

y′=y+ 1

k

ek(y+y′)

(y′ − y)e2k
dy′

≲e−2k(1−y)

� k(1−y)

1

eu

u
du ≲ 1. (3.26)

Taking now the supremum in y, we obtain ∥K∥L∞

y L1

y′
≲ 1. We now fix a y′ in the range 1/k ≤ y′ ≤ 1.

Then we compute

∥K(·, y′)∥L1
y
≲

� y′− 1

k

y=0

sinh(k(y + y′))

(y′ − y) sinh(2k)
dy ≲

� y′− 1

k

y=0

ek(y+y′)

(y′ − y)e2k
dy

≲e−2k(1−y′)

� y′k

1

e−u

u
du ≲ e2k(1−y′). (3.27)

Taking now the supremum in y′ over the range 1/k ≤ y′ ≤ 1, we conclude ∥K∥L∞

y′
L1
y
≲ 1. By

applying the analogous argument also to T1,≤, we have

∥T1f∥L2 ≲ ∥f∥L2 . (3.28)

Bounds on T2: For the operator T2, we have

∥T2f∥L2 =∥ k

|k|Hk(y, y)p.v.

� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′∥L2 ≲ ∥Hk(y, y)∥L∞

y
∥p.v.

� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′∥L2

≲∥p.v.
� y+ 1

k

y− 1

k

f(y′)

2i(y − y′)
dy′∥L2 . (3.29)

Above, we have used the bound

∥Hk(y, y)∥L∞

y
≲ ∥sinh(2ky)

sinh(2k)
∥L∞

y
≲ 1.
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From here, the desired bound follows from the corresponding boundedness of the truncated Hilbert
transform, just as in Lemma 3.1.

Bounds on T3: For the operator T3, we use Schur’s Test again. In this case, we have

� y+ 1

k

y− 1

k

|k| |Hk(y, y
′)−Hk(y, y)|

k|y − y′| dy′ ≲ sup
y,y′

∥Hk(y, y
′)−Hk(y, y)

k|y − y′|
∣
∣
∣

� y+ 1

k

y− 1

k

|k|dy′ ≲ 1,

� y′+ 1

k

y′− 1

k

|k| |Hk(y, y
′)−Hk(y, y)|

k|y − y′| dy ≲ sup
y,y′

∥Hk(y, y
′)−Hk(y, y)

k|y − y′|
∣
∣
∣

� y′+ 1

k

y′− 1

k

|k|dy ≲ 1.

Therefore, again by applying Schur’s test, we have

∥T3f∥L2 ≲∥f∥L2 . (3.30)

Bringing the bounds on T1, T2, T3 together finishes the proof of the lemma.

Finally we point out the following symmetry properties.

Lemma 3.5. For all f, g ∈ L2 there holds

Jk[f ] = −Jk[f ]

and
� 1

−1
f̄Jk[g]dy = −

� 1

−1
Jk[f̄ ]gdy, (3.31)

which in particular, implies Jk = J∗k.

Proof. The first identity follows by definition. For the latter, we have

� 1

−1
f̄Jk[g]dy =

� 1

−1
f̄ lim

ϵ→0
J
ϵ
k[g]dy = lim

ϵ→0

� 1

−1
f̄Jϵk[g]dy

= lim
ϵ→0

� 1

−1
f̄(y)

( �
|y′−y|≥ϵ

Gk(y, y
′)

2i(y − y′)
g(y′)dy′

)

dy

= lim
ϵ→0

� 1

−1
g(y′)

( �
|y−y′|≥ϵ

Gk(y, y
′)

2i(y − y′)
f̄(y)dy

)

dy′

=− lim
ϵ→0

� 1

−1
g(y′)

( �
|y−y′|≥ϵ

Gk(y
′, y)

2i(y′ − y)
f̄(y)dy

)

dy′

=−
�

gJk[f̄ ]dy
′,

which is the desired result.

4 The Linearized Problem

In this section we prove Proposition 2.1, which specifically concerns the linearized problem (2.1).
To this end, we begin by computing the time derivative of the energy (2.2)

1

2

d

dt
Ek[ωk] =

1

2

(
d

dt
∥ωk∥2L2 + cαν

2

3 |k|− 2

3

d

dt
∥∂yωk∥2L2 + cβν

1

3 |k|− 4

3

d

dt
Re⟨ikωk, ∂yωk⟩
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+cτ
d

dt
Re⟨ωk, Jk[ωk]⟩+ cτ cαν

2

3 |k|− 2

3

d

dt
Re⟨∂yωk, Jk[∂yωk]⟩

)

=:Tγ + Tα + Tβ + Tτ + Tτα. (4.1)

Each term is confronted in the following individual subsections. Since this entire section is k-by-k,
we omit the k’s whenever it is clear from context. Without loss of generality, we assume k > 0 in
this section.

4.1 Estimate of the Tγ Terms

The basic L2 energy estimate is almost immediate.

Lemma 4.1 (Tγ Estimate). Under the hypotheses of Proposition 2.1, we have the following

1

2

d

dt
∥ωk∥2L2 + ν∥∇kωk∥2L2 ≲ δ0 |k|−1Dk,τ . (4.2)

Here the parameter δ0 is defined in (1.4) and the diffusion term Dk,τ is defined in (2.5). The
implicit constant depends on ∥U∥C3 .

Proof. By direct calculation we have

1

2

d

dt
∥ωk∥2L2 + ν∥∇kωk∥2L2 = Re ik⟨U ′′ϕk, ωk⟩.

The latter term is estimated as follows using integration by parts, Cauchy-Schwarz, and the small-
ness assumption (1.4),

|Re ik⟨U ′′ϕk, ωk⟩| =|Re ik⟨U ′′ϕk,∆kϕk⟩| ≲ |Re ik⟨U ′′∇kϕk,∇kϕk⟩|+ |Re ik⟨U ′′′ϕk,∇kϕk⟩|
≲∥U ′∥C2 |k|∥∇kϕk∥2L2≲ ∥W∥H4 |k|−1Dk,τ ≲ δ0|k|−1Dk,τ ,

which completes the proof.

4.2 Estimate of the Tα Terms

The following is also a relatively straightforward calculation.

Lemma 4.2 (Tα Estimate). Under the hypotheses of Proposition 2.1, we have the following

1

2

d

dt
ν2/3|k|−2/3 ∥∂yωk∥2L2 + ν(ν2/3|k|−2/3) ∥∇k∂yωk∥2L2 ≲ δ0Dk,γ + δ0ν

1/3|k|2/3 ∥ωk∥2L2 . (4.3)

Here δ0, Dk,γ are defined in (1.4) and (2.5). The implicit constant depends on ∥U∥C3.

Proof. We compute the time-derivative

1

2

d

dt
∥∂yωk∥2L2 = νRe ⟨∆k∂yωk, ∂yωk⟩ − Re

〈
ikU ′ωk, ∂yωk

〉
+Re

〈
∂y(U

′′ikϕk), ∂yωk

〉
.

Using that ∆kωk = ∂yyωk = 0 on the boundary {y = ±1}, we may still integrate by parts on the
first term, which gives rise to the desired dissipation term,

νRe ⟨∆k∂yωk, ∂yωk⟩ = −ν ∥∇k∂yωk∥2L2 .

The second and third terms are handled via Cauchy-Schwarz, elliptic regularity and the smallness
assumption (1.4),

∣
∣Re

〈
ikU ′ωk, ∂yωk

〉∣
∣ ≲ ∥W∥H4 |k| ∥ωk∥L2 ∥∂yωk∥L2 ≲ δ0 |k| ∥ωk∥L2 ∥∂yωk∥L2 ,
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∣
∣Re

〈
∂y(U

′′ikϕk), ∂yωk

〉∣
∣ ≲ δ0 ∥ωk∥L2 ∥∂yωk∥L2 ,

which completes the desired estimates after noting that

ν2/3

|k|2/3 |k| ∥ωk∥L2 ∥∂yωk∥L2 ≲ ν ∥∇kωk∥2L2 + ν1/3|k|2/3 ∥ωk∥2L2 ≈ Dk,γ + ν1/3|k|2/3 ∥ωk∥2L2 .

4.3 Estimate of the Tβ Terms

As in the case with standard hypocoercivity approaches, the cross-term Tβ , produces the enhanced
dissipation.

Lemma 4.3. There holds the following,

− ν1/3

|k|4/3
d

dt
Re⟨ikωk, ∂yωk⟩+ ν1/3 |k|2/3

∥
∥
∥

√
U ′ωk

∥
∥
∥

2

L2

≲ D
1/2
k,γD

1/2
k,α.

Here, the parameter δ0 and the dissipation {Dk,γ ,Dk,α} are defined in (1.4), (2.5). The implicit
constant depends on ∥U∥C3 .

Proof. Here we have by integration by parts (using that ωk, ϕk vanish on the boundary),

d

dt
Re⟨ikωk, ∂yωk⟩ = Re⟨ik(−ikUωk+U ′′ikϕk + ν∆kωk), ∂yωk⟩

+Re⟨ikωk, ∂y(−ikUωk+U ′′ikϕk + ν∆kωk)⟩

= |k|2
∥
∥
∥

√
U ′ωk

∥
∥
∥

2

L2

−2Re |k|2
〈
U ′′ϕk, ∂yωk

〉

+ Im k ⟨ωk, ν∂y∆kωk⟩+ Im k ⟨∂yωk, ν∆kωk⟩ .

The first term on the right hand side is the dissipation and the remaining terms are error terms.
To treat the first error term, we integrate by parts (using the boundary conditions) and elliptic
regularity to obtain

∣
∣
∣2Re |k|2

〈
U ′′ϕk, ∂yωk

〉
∣
∣
∣ ≲

(∥
∥U ′′

∥
∥
L∞

∥k∂yϕk∥L2 +
∥
∥U ′′′

∥
∥
L∞

∥kϕk∥L2

)
|k| ∥ωk∥L2

≲ δ0 |k| ∥ωk∥2L2 .

For the latter error terms note that by integrating by parts and Cauchy-Schwarz,

|Im k ⟨ωk, ν∂y∆kωk⟩+ Im k ⟨∂yωk, ν∆kωk⟩| ≲ ν |k| ∥∂yωk∥L2

(
|k|2 ∥ωk∥L2 + ∥∂yyωk∥L2

)
,

which completes the desired estimate upon noting that

ν4/3 |k|−1/3 ∥∂yωk∥L2

(
|k|2 ∥ωk∥L2 + ∥∂yyωk∥L2

)
≲ (ν ∥∇kωk∥L2)

1/2
(

ν5/3|k|−2/3 ∥∇k∂yωk∥L2

)1/2
.
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4.4 Estimates of the Tτ and Tτα Terms

The most interesting contribution relative to existing works on hypocoercivity is that of Tτ (and
Tτα). First, we prove the main result for Tτ and below we provide the estimate on Tτα.

Lemma 4.4. Under the regularity hypotheses on W (1.4), for all δ0 > 0 sufficiently small (depend-
ing only on universal constants), the following estimate holds

d

dt
Re⟨ωk, Jk[ωk]⟩+

1

8
Dk,τ ≲ Dk,γ .

The implicit constant depends on ∥U∥C3 .

Remark 4.5. In the case of the Euler equations (ν = 0), one simply obtains

d

dt
Re⟨ωk, Jk[ωk]⟩+

1

8
Dk,τ ≤ 0,

proving the L2
tH

1
xL

2
y inviscid damping estimate for L2 initial data.

Proof. First of all, since the SIO Jk is symmetric (Lemma 3.5), we obtain from the equation (2.1)
that

1

2

d

dt
Re⟨ωk, Jk[ωk]⟩ = Re

〈
−Uikωk+U ′′ikϕk + ν∆kωk, Jk[ωk]

〉
=: T1 + T2 + T3. (4.4)

The most straightforward term is that arising from the dissipation, T3. Using the symmetry Lemma
3.5 and the [∂y, Jk]-commutator estimate (Lemma 3.3, Lemma 3.4), we have (using that ωk vanishes
on the boundary and that Jk is bounded),

T3 = νRe

� 1

−1
∆kωkJk[ωk]dy = νRe

� 1

−1
Jk[∆kωk]ωkdy

= νRe

�
(
−Jk[∇kωk]∇kωk + [Jk, ∂y](∂yωk)ωk

)
dy

≤ ν
(
∥Jk∥L2→L2 + |k|−1 ∥[Jk, ∂y]∥L2→L2

)
∥∇kωk∥2L2 ≲ ν ∥∇kωk∥2L2 ≲ Dk,γ ,

which is our desired estimate on T3 in (4.4).
Next, we estimate T2. By Lemma 3.3, 3.4, and ωk = ∆kϕk, we have

T2 = Re

� 1

−1

(
ikU ′′ϕk

)
∇k · Jk[∇kϕk] + [Jk, ∂y][∂yϕk]dy

= Re

� 1

−1
−∇k

(
ikU ′′ϕk

)
· Jk[∇kϕk] +

(
ikU ′′ϕk

)
[Jk, ∂y][∂yϕk]dy

≲ |k|
∥
∥U ′′

∥
∥
C1

(
∥Jk∥L2→L2 + |k|−1 ∥[Jk, ∂y]∥L2→L2

)
∥∇kϕk∥2L2 ≲ δ0Dk,τ .

where the last line used Lemma 3.1. This is sufficient to estimate T2 in (4.4).
Finally we turn to the most interesting contribution, T1 which will lead to the negative-definite

term. By Taylor’s theorem,

U(y)− U(y′) = U ′(y)(y′ − y) +
1

2
U ′′(y)(y′ − y)2 +

1

2

� y′

y
U ′′′(s)(y′ − s)2ds.
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Note that remainder satisfies

r(y, y′) :=
1

2(y − y′)

� y′

y
U ′′′(s)(y′ − s)2ds ∈ L∞, (4.5a)

∣
∣r(y, y′)

∣
∣ ≲

∥
∥U ′′′

∥
∥
L∞

∣
∣y − y′

∣
∣2 , (4.5b)

∣
∣∂yr(y, y

′)
∣
∣+
∣
∣∂y′r(y, y

′)
∣
∣ ≲

∥
∥U ′′′

∥
∥
L∞

∣
∣y − y′

∣
∣ , (4.5c)

∣
∣∂y′∂yr(y, y

′)
∣
∣ ≲

∥
∥U ′′′

∥
∥
L∞

. (4.5d)

Next, by the definition of Jk and Lemma 3.5, we have

T1 =− k

2
Re (⟨iUωk, Jkωk⟩+ ⟨Jk[iUωk], ωk⟩)

=
|k|2
4

Re

� 1

−1
p.v.

(� 1

−1
U(y)ωk(y)

1

(y − y′)
Gk(y, y

′)ωk(y′)dy
′

)

dy

− |k|2
4

Re

� 1

−1
p.v.

(� 1

−1
ωk(y)

1

(y − y′)
Gk(y, y′)U(y′)ωk(y′)dy′

)

dy

=
|k|2
4

Re

� 1

−1

� 1

−1
ωk(y)

(U(y)− U(y′))

(y − y′)
Gk(y, y

′)ωk(y
′)dy′dy

=
|k|2
4

Re

� 1

−1

� 1

−1
ωk(y)

U ′(y)(y − y′)

(y − y′)
Gk(y, y

′)ωk(y
′)dy′dy

+
|k|2
8

Re

� 1

−1

� 1

−1
ωk(y)U

′′(y)(y − y′)Gk(y, y
′)ωk(y

′)dy′dy

+
|k|2
4

Re

� 1

−1

� 1

−1
ωk(y)r(y, y

′)Gk(y, y
′)ωk(y

′)dy′dy

=:T11 + T12 + T13. (4.6)

The term T11 leads to −Dk,τ . Indeed, applying the relation ∆kϕk = ωk and integrating by parts
(using the boundary condition that ϕk vanishes on the boundary),

T11 =
|k|2
4

Re

� 1

−1
U ′∆kϕkϕkdy = −|k|2

4

∥
∥
∥

√
U ′∇kϕk

∥
∥
∥

2

L2

− |k|2
4

Re

�
U ′′∂yϕkϕkdy

≤ −|k|2
4

∥
∥
∥

√
U ′∇kϕk

∥
∥
∥

2

L2

+
|k|2
4

∥
∥U ′′

∥
∥
L∞

∥∂yϕk∥L2 ∥ϕk∥L2 .

Therefore, for ∥Win∥H4 ≤ δ0 sufficiently small depending only on universal constants, there holds

T11 ≤ −|k|2
6

∥∇kϕk∥2L2 . (4.7)

Next, consider T12, which we begin by making the replacement ωk = ∆kϕk and integrating by parts
in both y and y′ (noting that the Green’s function vanishes on the boundary in both variables, i.e.
Gk(±1, y′) = Gk(y,±1)= ∂yGk(y,±1) = ∂y′Gk(±1, y′) = 0) to obtain

T12 =
1

8
|k|2Re

� 1

−1

� 1

−1
∆kϕk(y)U

′′(y)(y − y′)Gk(y, y
′)∆kϕk(y

′)dy′dy

=
1

8
|k|2Re

� 1

−1

� 1

−1
∇k,yϕk(y) · ∇k,y

(

∇k,y′
(
U ′′(y)(y − y′)Gk(y, y

′)
)
· ∇k,y′ϕk(y

′)

)

dy′dy.
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We will return to this estimate in a moment. We observe the following estimates on the integral
kernels N = U ′′(y)(y − y′)Gk(y, y

′)

∥Nk∥L2

y,y′
≲
∥
∥U ′′

∥
∥
L∞

|k|−2 ,

∥∂yNk∥L2

y,y′
+
∥
∥∂y′Nk

∥
∥
L2

y,y′
≲
∥
∥U ′′′

∥
∥
L∞

|k|−1 ,
∥
∥∂y∂y′Nk

∥
∥
L2

y,y′
≲
∥
∥U ′′′

∥
∥
L∞

,

which follow from the the formula for Gk, (2.4), and direct calculation. Therefore, by Cauchy-
Schwarz, we have

T12 ≲ δ0 |k|2 ∥∇kϕk∥2L2 , (4.8)

which suffices to treat this term. We similarly set up T13, which we treat in essentially the same
manner:

T13= −Re
|k|2
4

� 1

−1

� 1

−1
∇k,yϕk(y) · ∇k,y

(
∇k,y′

(
r(y, y′)Gk(y, y

′)
)
· ∇k,y′ϕk(y

′)
)
dy′dy,

where in order to integrate by parts twice we needed to use that rGk does not have a singularity in
the second derivative at y = y′ (unlike Gk). Next we record the relevant estimates on rGk. Recall
that we assume k > 0 without loss of generality in this section. First, note that by (2.4) and (4.5),

|rGk| ≲ δ0
|y − y′|2

|k| sinh(2k)

{
sinh(k(1− y′)) sinh(k(1 + y)), y ≤ y′;
sinh(k(1− y)) sinh(k(1 + y′)), y ≥ y′.

|∂y(rGk)| ≲ δ0
|y − y′|

|k| sinh(2k)

{
sinh(k(1− y′)) sinh(k(1 + y)), y ≤ y′;
sinh(k(1− y)) sinh(k(1 + y′)), y ≥ y′.

+ δ0
|y − y′|2
sinh(2k)

{
sinh(k(1− y′)) cosh(k(1 + y)), y ≤ y′;

| − cosh(k(1− y)) sinh(k(1 + y′))|, y ≥ y′.

∣
∣∂y′(rGk)

∣
∣ ≲ δ0

|y − y′|
|k| sinh(2k)

{
sinh(k(1− y′)) sinh(k(1 + y)), y ≤ y′;
sinh(k(1− y)) sinh(k(1 + y′)), y ≥ y′.

+ δ0
|y − y′|2
sinh(2k)

{
| − cosh(k(1− y′)) sinh(k(1 + y))|, y ≤ y′;
sinh(k(1− y)) cosh(k(1 + y′)), y ≥ y′.

∣
∣∂y∂y′(rGk)

∣
∣ ≲ δ0

1

|k| sinh(2k)

{
sinh(k(1− y′)) sinh(k(1 + y)), y ≤ y′;
sinh(k(1− y)) sinh(k(1 + y′)), y ≥ y′.

+ δ0
|y − y′|
sinh(2k)

{
| − cosh(k(1− y′)) sinh(k(1 + y))|, y ≤ y′;
sinh(k(1− y)) cosh(k(1 + y′))|, y ≥ y′.

+ δ0
|y − y′|
sinh(2k)

{
| − cosh(k(1− y′)) sinh(k(1 + y))|, y ≤ y′;
sinh(k(1− y)) cosh(k(1 + y′)), y ≥ y′.

+ δ0
|k| |y − y′|2
sinh(2k)

{
cosh(k(1− y′)) cosh(k(1 + y)), y ≤ y′;
cosh(k(1− y)) cosh(k(1 + y′)), y ≥ y′.

.

Therefore, it follows that

∥rGk∥L2

y,y′
≲ δ0 |k|−2 ,

∥∂y(rGk)∥L2

y,y′
+
∥
∥∂y′(rGk)

∥
∥
L2

y,y′
≲ δ0 |k|−1 ,
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∥
∥∂y∂y′(rG)

∥
∥
L2

y,y′
≲ δ0.

Therefore, by Cauchy-Schwarz, we have

T13 ≲ δ0|k|2 ∥∇kϕk∥2L2 ≲ δ0Dk,τ ,

which completes the desired estimate.

Next, let us consider the Tτα, for which we prove the following.

Lemma 4.6. Under the hypotheses of Proposition 2.1, there holds for δ0 sufficiently small,

d

dt
|k|−2/3 d

dt
Re⟨(ν1/3∂y)ωk, Jk[(ν

1/3∂y)ωk]⟩+
1

12
Dk,τα ≲ Dk,α +

(

ν1/3|k|2/3 ∥ωk∥2L2

)1/2
D

1/2
k,γ .

The implicit constant depends on ∥U∥C3 .

Proof. Taking the derivative of (2.1), we have

(
∂t + ikU − U ′′ik∆−1

k − ν∆k

)
∂yωk = −ikU ′ωk + ikU ′′′∆−1

k ωk + ikU ′′[∂y,∆
−1
k ]ωk

=: Ck,1 + Ck,2 + Ck,3.

It is important to note however, that the boundary conditions are different. In particular, ∂yωk

has Neumann boundary conditions ∂yyωk|y=±1 = 0. However, one can check that the contributions
from the left-hand side behave similarly to the case of Tτ , and therefore we obtain

|k|−2/3 d

dt
Re⟨(ν1/3∂y)ωk, Jk[(ν

1/3∂y)ωk]⟩+
1

8
Dk,τα ≲ Dk,α +

3∑

j=1

|k|−2/3 ν2/3Re ⟨∂yωk, Jk[Ck,j ]⟩ .

With straightforward estimates we have

∥Ck,1∥L2 + ∥Ck,2∥L2 ≲ |k| ∥ωk∥L2 .

To estimate the commutator Ck,3, we explicitly write down the expression,

∥Ck,3∥L2 ≤|k|∥U ′′∥L∞

∥
∥
∥
∥

� 1

−1

(
∂yGk(y, y

′)ωk(y
′)−Gk(y, y

′)∂y′ωk(y
′)
)
dy′
∥
∥
∥
∥
L2
y

≤|k|∥U ′′∥L∞

∥
∥
∥
∥

� 1

−1

(
∂yGk(y, y

′) + ∂y′Gk(y, y
′)
)
ωk(y

′)dy′
∥
∥
∥
∥
L2
y

≲∥U ′′∥L∞∥|k|ωk∥L2 ≲ δ0∥|k|ωk∥L2 .

These estimates imply (using Lemma 3.1),

|k|−2/3 d

dt
Re⟨(ν1/3∂y)ωk, Jk[(ν

1/3∂y)ωk]⟩+
1

8
Dk,τα ≲ Dk,α + ν2/3 |k|1/3 ∥ωk∥L2 ∥∂yωk∥L2

≲ Dk,α +
(

ν1/3|k|2/3 ∥ωk∥2L2

)1/2
D

1/2
k,γ ,

which completes the lemma.
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4.5 Completing the Linearized Estimate

Putting together Lemmas 4.1, 4.2, 4.3, 4.4, and 4.6 we obtain for some universal constant K0,

d

dt
Ek + 2cβν

1/3|k|2/3
∥
∥
∥

√
U ′ωk

∥
∥
∥

2

L2

+Dk,γ + cαDk,α +
cτ
8
Dk,τ +

cαcτ
12

Dk,τα

≤ K0δ0Dk,τ + cαK0δ0Dk,γ + cαK0δ0ν
1/3|k|2/3 ∥ωk∥2L2 +K0cβD

1/2
k,γD

1/2
k,α

+K0cτDk,γ +K0cτ cαDk,α +K0cτ cα

(

ν1/3|k|2/3 ∥ωk∥2L2

)1/2
D

1/2
k,γ .

Therefore, it follows that if

cτ <
1

32K0
, K0δ0 <

cτ
32

, cα < min

{
1

8K0δ0
, 1

}

,
cα
cβ

<
1

25K0
,

c2β
2cα

<
1

25K2
0

.

then we have (assuming without loss of generality that K0 ≥ 32).

K0cβD
1/2
k,γD

1/2
k,α ≤ 1

10
Dk,γ +

5

2
K2

0c
2
βDk,α ≤ 1

10
Dk,γ +

1

5
cαDk,α,

K0cτ cα

(

ν1/3|k|2/3 ∥ωk∥2L2

)1/2
D

1/2
k,γ≤

cβ
10

ν1/3|k|2/3 ∥ωk∥2L2 +
5

2

c2τ c
2
αK

2
0

cβ
Dk,γ ≤ cβ

10
ν1/3|k|2/3 ∥ωk∥2L2 +

1

10
Dk,γ .

then, we have the monotonicity estimate

d

dt
Ek +

1

36
Dk + c(cτ , cα, cβ)ν

1/3|k|2/3Ek ≤ 0,

where c(cτ , cα, cβ) > 0. This in particular, also implies the stated exponential decay estimate. We
also impose the condition

c2β ≤ 1

4
cα +

1

4
(1− cτ )

to ensure the Ek is coercive. While the procedure for setting the coefficients is by-now classical, we
record an example for clarity (assuming without loss of generality thatK0 > 32(1 + supk ̸=0 ∥Jk∥L2→L2)),

cτ =
1

64K0
, δ0 <

1

(64K0)2
, cα = K−9

0 , cβ = K−6
0 .

5 Nonlinear Estimates

5.1 Some Preliminary Lemmas

Lemma 5.1. We have the following estimates

∥∂yϕ0∥L∞ ≲ E1/2
0 e−δν∗t,

∥
∥∂2

yϕ0

∥
∥
L∞

≲ ν−1/6E1/2
0 e−δ∗νt.

Here E0 is defined in (2.6a).

Proof. By Gagliardo-Nirenberg-Sobolev inequality, and elliptic regularity, we obtain

∥∂yϕ0∥L∞ ≲

∥
∥
∥
∥

� 1

−1
∂yG0(·, y′)ω0(t, y

′)dy′
∥
∥
∥
∥
L∞

≲ ∥ω0∥L1 ≲ E1/2
0 e−δ∗νt,

∥
∥∂2

yϕ0

∥
∥
L∞

≲ ∥∂yω0∥1/2L2 ∥ω0∥1/2L2 ≲ ν−1/6E1/2
0 e−δ∗νt.

Here G0(y, y
′) is the Green’s kernel of ∆y with Dirichlet boundary condition. Since G0(y, y

′) is of
the form a|y − y′|+ by + cy′ for some constants, we have the bound ∥∂yG0∥∞ ≤ C.
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Lemma 5.2. The following estimates hold

∑

k ̸=0

|k|1+2m ∥ωk∥2L2 ≲ν−1/2D3/4
β D1/4

γ e−2δ∗ν1/3t,

∑

k ̸=0

|k|2m+4/3 ∥ωk∥2L2 ≲ν−2/3D1/2
γ D1/2

β e−2δ∗ν1/3t.

Proof. Both estimates are proved using the same interpolation trick; let us just show the numerology
for the first:

∑

k ̸=0

ν1/2 |k|1+2m ∥ωk∥2L2 =
∑

k ̸=0

(ν1/4 |k|1/2+ 3

2
m) ∥ωk∥3/2L2 (ν1/4 |k|1/2+ 1

2
m) ∥ωk∥1/2L2

≲




∑

k ̸=0

ν1/3 |k|2/3+2m ∥ωk∥2L2





3/4


∑

k ̸=0

ν |k|2+2m ∥ωk∥2L2





1/4

≲ D3/4
β D1/4

γ ,

which is the desired result.

Lemma 5.3. There hold the following estimates:

∑

k ̸=0

|k|2m |k|3 ∥ϕk∥2L∞ ≲ Dτe
−2δ∗ν1/3t.

Similarly,

∑

k ̸=0

|k|2m |k|3
∥
∥
∥(ν1/3 |k|−1/3 ∂y)ϕk

∥
∥
∥

2

L∞

≲ Dταe
−2δ∗ν1/3t.

Finally, for m > 2/3,

∑

k ̸=0

∥
∥∂2

yϕk

∥
∥
L∞

≲ ν−1/6E1/2
̸= e−δ∗ν1/3t. (5.1)

Proof. By Gagliardo-Nirenberg-Sobolev and Cauchy-Schwarz,

∑

k ̸=0

|k|2m |k|3 ∥ϕk∥2L∞ ≲
∑

k ̸=0

|k|2m |k|
∥
∥
∥|k|1/2∂yϕk

∥
∥
∥
L2

∥
∥
∥|k|3/2ϕk

∥
∥
∥
L2

≲ Dτe
−2δ∗ν1/3t.

A similar argument applies to the second estimate as well.
Finally, to prove (5.1), we apply elliptic regularity

∥|k|2ϕk∥L2 ≲ ∥ωk∥L2 , ∥∂y|k|2ϕk∥L2 ≲ ∥∂yωk∥L2 ,

which are natural consequences of testing the elliptic equation in (2.1) by functions {ϕk, ∂yϕk}.
Combining them with the Gagliardo-Nirenberg interpolation yields that

∑

k ̸=0

∥
∥∂2

yϕk

∥
∥
L∞

≤
∑

k ̸=0

(∥ωk∥L∞ +
∥
∥|k|2ϕk

∥
∥
L∞

) ≲
∑

k ̸=0

(∥∂yωk∥1/2L2 ∥ωk∥1/2L2 +
∥
∥|k|2∂yϕk

∥
∥
1/2

L2 ∥|k|2ϕk∥1/2L2 )
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≲ν−
1

6

∑

k ̸=0

|k|−m+ 1

6

(

ν
1

6 ∥|k|m− 1

3∂yωk∥1/2L2

)

∥|k|mωk∥1/2L2

≲ν−
1

6

(
∑

k ̸=0

|k|−2m+ 1

3

)1/2(∑

k ̸=0

∥
∥
∥ν

1

3 |k|m− 1

3 ∂yωk

∥
∥
∥
L2

∥|k|mωk∥L2

)1/2

≲ ν−
1

6E1/2e−δ∗ν1/3t.

Here, we have used the constraint m > 2/3 to guarantee that |k|−2m+ 1

3 ∈ ℓ1k ̸=0. Hence, we have the
result.

5.2 Zero Frequency Energy

Expanding the linear and nonlinear contributions of the zero frequency energy gives

1

2

d

dt
E0 = L0 +NL0+δ∗νE0, (5.2)

where

L0 := e2δ∗νtRe ⟨ω0, ν∂yyω0⟩+ cαe
2δ∗νtν2/3Re ⟨∂yω0, ν∂yyyω0⟩

NL0 := −e2δ∗νtRe ⟨ω0, (u · ∇ω)0⟩−cαe
2δ∗νtν2/3Re ⟨∂yω0, ∂y(u · ∇ω)0⟩ .

The estimates of these contributions are summarized in the following lemma.

Lemma 5.4. There exists a universal constant C (independent of ν) such that

L0 +NL0+δ∗νE0 ≤ −1

4
D0 − 3δ∗νE0 +

CE1/2

√
ν

D. (5.3)

Proof. First consider L0. Using that ω0(t,±1) = ∂yyω0(t,±1) = 0, we may integrate by parts and
obtain the following

L0 = −e2δ∗νtν ∥∂yω0∥2L2 − cαν
5/3e2δ∗νt

∥
∥∂2

yω0

∥
∥
2

L2
.

By Poincaré inequality, for δ∗ < 1/8 we have

L0 ≤ −1

2
D0 − 4δ∗νE0. (5.4)

This completes the treatment of the linear contributions.
Consider the nonlinear terms next. First, by the Biot-Savart law we have,

NL0 = −e2δ∗νtRe

〈

ω0, ∂y




∑

k ̸=0

ikϕkω−k





〉

+ cαν
2/3e2δ∗νtRe

〈

∂yω0, ∂
2
y




∑

k ̸=0

ikϕkω−k





〉

=: T0 + Tα.

(5.5)

Consider T0 first. Integrating by parts in y, (noting that ω0 vanishes on the boundary),

|T0| = e2δ∗νt

∣
∣
∣
∣
∣
∣

Re

〈

∂yω0,
∑

k ̸=0

ikϕkω−k

〉
∣
∣
∣
∣
∣
∣

≲ e2δ∗νt ∥∂yω0∥L2

∑

k ̸=0

∥ikϕk∥L∞ ∥ω−k∥L2 ≲
E1/2
̸=√
ν
D1/2

0 D1/2
τ ,

(5.6)

which suffices, as this is controlled by the right-hand side of (5.3).
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For Tα we have by integration by parts (here we are using both that ikϕk and ω−k vanish on
the boundary),

|Tα| ≲ e2δ∗νtν2/3

∣
∣
∣
∣
∣
∣

〈

∂yω0, ∂
2
y




∑

k ̸=0

ikϕkω−k





〉
∣
∣
∣
∣
∣
∣

≲ e2δ∗νtν2/3

∣
∣
∣
∣
∣
∣

〈

∂2
yω0, ∂y




∑

k ̸=0

ikϕkω−k





〉
∣
∣
∣
∣
∣
∣

≲ e2δ∗νtν2/3
∥
∥∂2

yω0

∥
∥
L2




∑

k ̸=0

∥ik∂yϕk∥L∞ ∥ω−k∥L2 +
∑

k ̸=0

∥ikϕk∥L∞ ∥∂yω−k∥L2



 =: Tα;1 + Tα;2.

The first term is estimated using the following

∑

k ̸=0

∥ik∂yϕk∥L∞ ∥ω−k∥L2 ≲
∑

k ̸=0

|k|
∥
∥∂2

yϕk

∥
∥
1/2

L2
∥∂yϕk∥1/2L2 ∥ω−k∥L2

≲
∑

k ̸=0

|k|1/3 ∥|k|mω−k∥2L2 ≲
∥
∥
∥|∂x|m+1/3ω ̸=

∥
∥
∥
L2

∥|∂x|mω ̸=∥L2 ,

provided m > 1/3, yielding the estimate

Tα;1 ≲ ν−1/3E1/2D1/2
0 D1/2

β .

The Tα;2-term is estimated with the following

∑

k ̸=0

∥ikϕk∥L∞ ∥∂yω−k∥L2 ≲
∑

k ̸=0

|k|−2m
∥
∥|k|m+2ϕk

∥
∥
1/2

L2

∥
∥
∥|k|m+2/3∂yϕk

∥
∥
∥

1/2

L2

∥
∥
∥|k|m−1/3∂yω−k

∥
∥
∥
L2

≲ ν−1/3D1/2
τ E1/2

̸= e−2δ∗ν1/3t.

Hence we have that

|Tα| ≲ Tα;1 + Tα;2 ≲ ν−1/2E1/2D. (5.7)

yielding the desired estimate. Combining (5.4), (5.5), (5.6), (5.7) yields the result (5.3).

5.3 Non-zero Frequency Energy

First of all, we identify the expressions of the main terms to estimate. Define the following

Lk :=− Uikωk + U ′′ikϕk + ν∆kωk; (5.8)

NLk :=(∇⊥ϕ · ∇ω)k =

∞∑

k′=−∞

∇⊥
k−k′ϕk · ∇k′ωk′ . (5.9)

Expanding the linear and nonlinear contributions of the nonzero frequency energy gives

d

dt
E ̸= = L ̸= +NL ̸=+2δ∗ν

1/3E ̸=. (5.10)

Thanks to the definitions (2.2), (2.6a), (2.6b), (2.6c), (2.7a), (2.7b), (2.10), we obtain

L ̸= :=2e2δ∗ν
1/3t
∑

k ̸=0

|k|2mRe ⟨ωk, (I + cτJk)Lk⟩
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+ 2cαe
2δ∗ν1/3t

∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yωk, (I + cτJk)ν
1/3 |k|−1/3 ∂yLk

〉

− cβe
2δ∗ν1/3t

∑

k ̸=0

ν1/3 |k|2m−4/3

(

Re ⟨ikωk, ∂yLk⟩+Re ⟨ikLk, ∂yωk⟩
)

; (5.11)

NL ̸= :=2e2δ∗ν
1/3t
∑

k ̸=0

|k|2mRe ⟨ωk, (I + cτJk)NLk⟩

+ 2cαe
2δ∗ν1/3t

∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yωk, (I + cτJk)ν
1/3 |k|−1/3 ∂yNLk

〉

− cβe
2δ∗ν1/3t

∑

k ̸=0

ν1/3 |k|2m−4/3 (Re ⟨ikωk, ∂yNLk⟩+Re ⟨ikNLk, ∂yωk⟩)

=:NLγ,τ +NLα,τα +NLβ . (5.12)

Here we group the γ, τ terms and α, τα terms together because they share main features. The
goal of this subsection is devoted to the proof of the following lemma.

Theorem 5.5. There exists a universal constant C (independent of ν) such that

L ̸= +NL ̸=+2δ∗ν
1/3E ̸= ≤ −4δ∗D ̸= − 6δ∗ν

1/3
∑

k ̸=0

e2δ∗ν
1/3t |k|2m+2/3Ek[ωk]+

CE1/2

√
ν

D.

Here the D ̸=, D are defined in (2.7b), (2.10).

We divide the proof of Theorem 5.5 into three lemmas.

Lemma 5.6 (Estimate of the NLγ,τ ). There exists a universal constant C such that

|NLγ,τ | ≤
CE1/2

√
ν

D. (5.13)

Lemma 5.7 (Estimate of the NLα,τα). There exists a universal constant C such that

|NLα,τα| ≤
CE1/2

√
ν

D. (5.14)

Lemma 5.8 (Estimate of the NLβ). There exists a universal constant C such that

|NLγ,τ | ≤
CE1/2

√
ν

D. (5.15)

These lemmas implies Theorem 5.5:

Proof of Theorem 5.5. First of all, we observe that by Proposition 2.1, the linear part L ̸= has the
bound

L ̸= ≤ −8δ∗D ̸= − 8δ∗ν
1/3
∑

k ̸=0

e2δ∗ν
1/3t |k|2m+2/3Ek[ωk]. (5.16)

Moreover, the estimates presented in Lemma 5.6, 5.7, 5.8 yield that

|NL ̸=| ≤
CE1/2

√
ν

D.

So combining the two estimates above yields the conclusion.

The proof of each lemma are presented in the next three subsections. We further highlight that
the notation T ̸=0, T0 ̸=, T ̸= ̸=, Tx, Ty, etc. will be redefined after the conclusion of each subsection.
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5.3.1 The γ and τ Contributions

This subsection is devoted to the proof of Lemma 5.6.
We recall the definition of NLγ,τ (5.12):

NLγ,τ = 2e2δ∗ν
1/3t
∑

k ̸=0

|k|2mRe
〈

ωk, (I + cτJk)(∇⊥ϕ · ∇ω)k

〉

= 2e2δ∗ν
1/3t(T0 ̸= + T ̸=0 + T ̸= ̸=),

(5.17)

where the terms T0 ̸=, T ̸=0, T ̸= ̸= are defined as follows

T0 ̸= :=
∑

k ̸=0

|k|2mRe ⟨ωk, (I + cτJk)(∂yϕ0ikωk)⟩ ,

T ̸=0 :=
∑

k ̸=0

|k|2mRe ⟨ωk, (I + cτJk)(ikϕk∂yω0)⟩ ,

T ̸= ̸= :=
∑

k,k′ ̸=0
k ̸=k′

|k|2mRe
〈

ωk, (I + cτJk)(∇⊥
k−k′ϕk−k′ · ∇k′ωk′)

〉

.

A central challenge is dealing with the nonlinear contributions involving Jk.
Treatment of the T0 ̸= term in (5.17):
Through integration by parts, we observe that the first term in the T0 ̸= is zero. Hence,

T0 ̸= =
∑

k ̸=0

|k|2mRe ⟨ωk, cτJk(∂yϕ0ikωk)⟩ ,

which is then estimated via Hölder’s inequality and Lemma 3.1, yielding

|T0 ̸=| ≲
∑

k ̸=0

|k|2m+1 ∥ωk∥2L2 ∥∂yϕ0∥L∞ .

Next by Lemma 5.1 and 5.2, we have

|T0 ̸=| ≲ ν−1/2E1/2
0 D3/4

β D1/4
γ e−2δ∗ν1/3t−δ∗νt,

which is consistent with (5.13).
Treatment of the T ̸=0 term in (5.17):
We estimate this term with Hölder’s inequality and Lemma 3.1 to obtain

|T ̸=0| ≲
∑

k ̸=0

∥|k|mωk∥L2

∥
∥|k|m+1ϕk

∥
∥
L∞

∥∂yω0∥L2 ,

and hence by Lemma 5.3, we have

|T ̸=0| ≲ ν−1/2E1/2D1/2
τ D1/2

0 e−2δ∗ν1/3t−δ∗νt,

and so this term is consistent with Theorem 5.5.
Treatment of the T ̸= ̸= term in (5.17):
We rewrite the term with Lemma 3.5 and further divide as follows

T ̸= ̸= =
∑

k,k′ ̸=0
k ̸=k′

Re
〈

(1 + cτJk) |k|m ωk, |k|m (∇⊥
k−k′ϕk−k′ · ∇k′ωk′)

〉
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=
∑

k,k′ ̸=0
k ̸=k′

|k|2mRe
〈
(1 + cτJk)ωk, ∂y(i(k − k′)ϕk−k′ωk′)

〉
−
∑

k,k′ ̸=0
k ̸=k′

|k|2mRe ⟨(1 + cτJk)ωk, ik(∂yϕk−k′ωk′)⟩

=: Tx + Ty. (5.18)

To estimate Tx we use integration by parts, Cauchy-Schwarz, and Lemma 3.1, 3.3, 3.4 to obtain
the following, using that m ∈ (1/2, 1),

Tx≲
∑

k,k′ ̸=0
k ̸=k′

|k|2m(1 + ∥Jk∥L2→L2 + |k|−1∥[Jk, ∂y]∥L2→L2) ∥∇kωk∥L2

∥
∥(k − k′)ϕk−k′

∥
∥
L∞

∥ωk′∥L2

≲
∑

k,k′ ̸=0
k ̸=k′

|k|m ∥∇kωk∥L2

(∣
∣k − k′

∣
∣m +

∣
∣k′
∣
∣m
) ∥
∥(k − k′)ϕk−k′

∥
∥
L∞

∥ωk′∥L2

≲ ν−1/2D1/2
γ




∑

k ̸=0

∥
∥
∥

∣
∣k − k′

∣
∣1+m

ϕk−k′

∥
∥
∥

2

L∞





1/2


∑

k ̸=0

∥ωk∥L2



 e−δ∗ν1/3t

+ ν−1/2D1/2
γ




∑

k ̸=0

∥
∥
∣
∣k − k′

∣
∣ϕk−k′

∥
∥
L∞








∑

k ̸=0

|k|m ∥ωk∥2L2



 e−δ∗ν1/3t

≲
E1/2

√
ν
D1/2

τ D1/2
γ e−3δ∗ν1/3t,

where in the last line we used m > 1/2 to convert the ℓ1 sums into ℓ2 and then used Lemma 5.3.
This is hence consistent with (5.13) and Theorem 5.5.

To estimate Ty, we again use Cauchy-Schwarz, and Lemma 3.1 to obtain the following and
introduce a frequency decomposition

Ty ≲
∑

k,k′ ̸=0
k ̸=k′

(
1|k−k′|<|k′| + 1|k−k′|≥|k′|

)
∥
∥
∥|k|m+1/3 ωk

∥
∥
∥
L2

|k|m+2/3 ∥∂yϕk−k′∥L∞ ∥ωk′∥L2

=: Ty;LH + Ty;HL.

Estimating the Ty;LH terms we have by Lemma 5.2

Ty;LH ≲
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|<|k′|

∥
∥
∥|k|m+1/3 ωk

∥
∥
∥
L2

∣
∣k′
∣
∣m+2/3 ∥∂yϕk−k′∥L∞ ∥ωk′∥L2

≲ ν−1/3−1/6E1/2D3/4
β D1/4

γ e−3δ∗ν1/3t,

where in the last line we used that by the Gagliardo-Nirenberg-Sobolev inequality and m > 1/2 we
have,

∑

k ̸=0

∥∂yϕk∥L∞ ≲
∑

k ̸=0

∥
∥∂2

yϕk

∥
∥
1/2

L2
∥∂yϕk∥1/2L2 ≲ E1/2e−δ∗ν1/3t.

Therefore, Ty;LH is consistent with Theorem 5.5. For Ty;HL we instead make the estimate

Ty;HL ≲
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|≥|k′|

∥
∥
∥|k|m+1/3 ωk

∥
∥
∥
L2

∣
∣k − k′

∣
∣m+2/3 ∥∂yϕk−k′∥L∞ ∥ωk′∥L2 .
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Next, we note that by the Gagliardo-Nirenberg-Sobolev inequality, Hölder’s inequality, elliptic
regularity, and Lemma 5.3 we have,

∑

k ̸=0

|k|m+2/3 ∥∂yϕk∥L∞ ≲
∑

k ̸=0

|k|−1/2 |k|m
∥
∥
∥|k|1/3 ∂2

yϕk

∥
∥
∥

1/2

L2

∥
∥
∥|k|5/6 |k|−1/3 ∂yϕk

∥
∥
∥

1/2

L2

≲ ν−1/12−1/6D1/4
β D1/4

τα e−δ∗ν1/3t.

Therefore,

Ty;HL ≲ ν−5/12E1/2D3/4
β D1/4

τα e−3δ∗ν1/3t,

which is consistent with (5.13) and Theorem 5.5. This completes the treatment of the T ̸= ̸= terms.

5.3.2 The α and ατ Contributions

As in the previous subsection we begin with the same decomposition of the term NLα,τα (5.12):

1

2cα
e−2δ∗ν1/3tNLα,τα = T0 ̸= + T ̸=0 + T ̸= ̸=, (5.19)

T0 ̸= :=
∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yωk, (I + cτJk)ν
1/3 |k|−1/3 ∂y(∂yϕ0ikωk)

〉

,

T ̸=0 :=
∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yωk, (I + cτJk)ν
1/3 |k|−1/3 ∂y(ikϕk∂yω0)

〉

,

T ̸= ̸= :=
∑

k,k′ ̸=0
k ̸=k′

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yωk, (I + cτJk)ν
1/3 |k|−1/3 ∂y(∇⊥

k−k′ϕk−k′ · ∇kωk′)
〉

.

We note that all the T(∗) are refreshed in this subsection.
Treatment of the T0 ̸= term in (5.19):
Analogous to the treatment in the previous section we have by integration by parts (using that ωk

vanishes along the boundaries)

T0 ̸= = cτ
∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yωk, Jkν
1/3 |k|−1/3 ∂y(∂yϕ0ikωk)

〉

+
∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yωk, ν
1/3 |k|−1/3 ∂2

yϕ0ikωk)
〉

+
∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yωk, ν
1/3 |k|−1/3 ∂yϕ0ik∂yωk)

〉

=: T0 ̸=;1 + T0 ̸=;2 + T0 ̸=;3. (5.20)

The last term vanishes since ∂yϕ0 is purely real

T0 ̸=;3 =
∑

k ̸=0

|k|2mRe ik

�
|ν1/3 |k|−1/3 ∂yωk|2∂yϕ0dy = 0.

For the T0 ̸=;2 term in (5.20), we have

T0 ̸=;2 ≲ ν2/3 ∥|k|m ∂yωk∥L2

∥
∥
∥|k|m+1/3 ωk

∥
∥
∥
L2

∥
∥∂2

yϕ0

∥
∥
L∞

.
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Since we have that ∂yyϕ0 = ω0, ∥∂yyϕ0∥L∞ = ∥ω0∥L∞ . By Gagliardo-Nirenberg-Sobolev, we have

∥
∥∂2

yϕ0

∥
∥
L∞

≲ ∥∂yω0∥1/2L2 ∥ω0∥1/2L2 ≲ ν−1/6E1/2
0 e−δ∗νt.

Therefore,

T0 ̸=;2 ≲ ν−1/6E1/2
0 D1/2

γ D1/2
β e−2δ∗ν1/3t−δ∗νt,

which is consistent with (5.14) and Theorem 5.5.
For the T0 ̸=;1 term in (5.20), we first apply the symmetry of Jk (Lemma 3.5) and integration

by parts (using that ωk vanishes on the boundary), to obtain that

T0 ̸=;1 = cτ
∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3
Jk∂yωk, ν

1/3 |k|−1/3 ∂y(∂yϕ0ikωk)
〉

= −cτ
∑

k ̸=0

|k|2mRe
〈

ν1/3 |k|−1/3 ∂yJk∂yωk, ν
1/3 |k|−1/3 (∂yϕ0ikωk)

〉

Then we use Lemma 3.1, 3.3 to estimate the commutators,

T0 ̸=;1 ≲ cτ
∑

k ̸=0

ν1/3 |k|m−1/3 (∥Jk∥L2→L2 + |k|−1∥[Jk, ∂y]∥L2→L2

)
∥∇k∂yωk∥L2

× ν1/3 |k|m+2/3 ∥ωk∥L2 ∥∂yϕ0∥L∞

≲
cτ

ν1/2

∑

k ̸=0

(

ν
∥
∥
∥ν1/3 |k|m−1/3∇k∂yωk

∥
∥
∥

2

L2

)1/2(

ν
∥
∥
∥|k|m+1 ωk

∥
∥
∥

2

L2

)1/4

×
(

ν1/3|k|2m+2/3 ∥ωk∥2L2

)1/4
∥∂yϕ0∥L∞ .

Now we recall Lemma 5.1 and the definition of Dα, Dβ , Dγ (2.5), (2.8), and then obtain

T0 ̸=;1 ≲
E1/2

ν1/2
D1/2

α D1/4
β D1/4

γ e−2δ∗ν1/3t−δ∗νt, (5.21)

which is consistent with Theorem 5.5. This completes the treatment of the T0 ̸= term.
Treatment of the T ̸=0 term in (5.19):
We use Lemma 5.3 to obtain

T ̸=0 ≲
∑

k ̸=0

|k|2m
∥
∥
∥ν1/3 |k|−1/3 ∂2

yωk

∥
∥
∥
L2

∥
∥
∥|k|2/3+m ϕk

∥
∥
∥
L∞

∥
∥
∥ν1/3∂yω0

∥
∥
∥
L2

≲ ν−1/2E1/2
0 D1/2

γ D1/2
τ ,

which is consistent with Theorem 5.5. This completes the treatment of the T ̸=0 term.
Treatment of the T ̸= ̸= term in (5.19):
The most troublesome term is the T ̸= ̸= term, which we treat now. We apply the symmetric property
of Jk (Lemma 3.5) to rewrite the term as follows,

T ̸= ̸= =
∑

k,k′ ̸=0
k ̸=k′

Re
〈

ν1/3 |k|m−1/3 (1 + cτJk)∂yωk, ν
1/3 |k|m−1/3 ∂y(∇⊥

k−k′ϕk−k′ · ∇k′ωk′)
〉

.

The estimate of T ̸= ̸= begins by integrating by parts in the term involving ∂yϕk−k′ik
′ωk′ , and ap-

plying Hölder’s inequality,

T ̸= ̸= =−
∑

k,k′ ̸=0
k ̸=k′

Re
〈

ν1/3 |k|m−1/3 (1 + cτJk)∂yωk, ν
1/3 |k|m−1/3 ∂y(i(k − k′)ϕk−k′∂yωk′)

〉
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−
∑

k,k′ ̸=0
k ̸=k′

Re
〈

ν1/3 |k|m−1/3 ∂y(1 + cτJk)∂yωk, ν
1/3 |k|m−1/3 (∂yϕk−k′ik

′ωk′)
〉

≲
∑

k,k′ ̸=0
k ̸=k′

∥
∥
∥ν1/3|k|m−1/3(1 + cτJk)∂yωk

∥
∥
∥
L2

ν1/3|k|m−1/3

×
(∥
∥(k − k′)∂yϕk−k′

∥
∥
L∞

∥∂yωk′∥L2 +
∥
∥(k − k′)ϕk−k′

∥
∥
L∞

∥
∥∂2

yωk′
∥
∥
L2

)

+
∑

k,k′ ̸=0
k ̸=k′

∥
∥
∥ν1/3|k|m−1/3∂y(1 + cτJk)∂yωk

∥
∥
∥
L2

ν1/3|k|m−1/3 ∥∂yϕk−k′∥L∞

∥
∥k′ωk′

∥
∥
L2 =:

3∑

j=1

T ̸= ̸=;j .

We note that to justify that Jk(∂yωk) is well-defined on the boundary, one can apply the Lemma
3.3 and 3.4 to get ∥∂yJkfk∥L2 ≤ ∥Jk∂yfk∥L2 + ∥[∂y, Jk]fk∥L2 ≤ ∥fk∥H1

k
< ∞. To estimate the term

T ̸= ̸=;1, we first apply Lemma 3.1, and introduce a frequency decomposition

T ̸= ̸=;1 ≲
∑

k,k′ ̸=0
k ̸=k′

(1|k−k′|<|k′|/2 + 1|k−k′|≥|k′|/2)
∥
∥
∥ν1/3|k|m−1/3∂yωk

∥
∥
∥
L2

ν1/3|k|m−1/3

×
∥
∥(k − k′)∂yϕk−k′

∥
∥
L∞

∥∂yωk′∥L2

=: T1;LH + T1;HL.

For the LH term we have

T1;LH ≲
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|<|k′|/2

∥
∥
∥ν1/3|k|m−1/3∂yωk

∥
∥
∥
L2

∥
∥
∣
∣k − k′

∣
∣ ∂yϕk−k′

∥
∥
L∞

1

ν1/6

∥
∥
∥ν1/2

∣
∣k′
∣
∣m−1/3

∂yωk′

∥
∥
∥
L2

,

Note that for m > 1/2 we have by Lemma 5.3,

∑

k ̸=0

∥|k| ∂yϕk∥L∞ ≲




∑

k ̸=0

|k|2m+3
∥
∥
∥|k|−1/3 ∂yϕk

∥
∥
∥

2

L∞





1/2

≲ ν−1/3D1/2
τα e−δ∗ν1/3t,

Therefore,

T1;LH ≲ ν−1/2E1/2D1/2
τα D1/2

γ e−3δ∗ν1/3t,

which is consistent with (5.14) and Theorem 5.5. For the HL contribution note that we have
instead

T1;HL ≲
∑

k,k′ ̸=0
k ̸=k′

∥
∥
∥ν1/3 |k|m−1/3 ∂yωk

∥
∥
∥
L2

∥
∥
∥ν1/3

∣
∣k − k′

∣
∣m+2/3

∂yϕk−k′

∥
∥
∥
L∞

∥∂yωk′∥L2 .

By Lemma 5.3 we have

T1;HL ≲ ν−1/2E1/2D1/2
τα D1/2

γ e−3δ∗ν1/3t,

which is consistent with (5.14) and Theorem 5.5. This completes the treatment of T ̸= ̸=;1.
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We turn to T ̸= ̸=;2 next, which we again begin with a frequency decomposition,

T ̸= ̸=;2 =
∑

k,k′ ̸=0
k ̸=k′

(1|k−k′|<|k′|/2 + 1|k−k′|≥|k′|/2)
∥
∥
∥ν1/3 |k|m−1/3 ∂yωk

∥
∥
∥
L2

ν1/3 |k|m−1/3

×
∥
∥(k − k′)ϕk−k′

∥
∥
L∞

∥
∥∂2

yωk′
∥
∥
L2

=: T2;LH + T2;HL.

To treat the first term we use that on the support of the summand |k − k′|+ |k| ≲ |k′| to obtain

T2;LH ≲
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|<|k′|/2

∥
∥
∥ν1/3 |k|m−1/3 ∂yωk

∥
∥
∥
L2

∥
∥
∣
∣k − k′

∣
∣ϕk−k′

∥
∥
L∞

∥
∥
∥ν1/3

∣
∣k′
∣
∣m−1/3

∂2
yωk′

∥
∥
∥
L2

.

Using Lemma 5.3 and m > 1/2 we have

T2;LH ≲ ν−1/2E1/2
̸= D1/2

τ D1/2
α e−3δ∗ν1/3t,

which is consistent with Theorem 5.5. For T2;HL notice that we similarly have (again using Lemma
5.3 and m > 1/2),

T2;HL ≲
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|≥|k′|/2

∥
∥
∥ν1/3 |k|m−1/3 ∂yωk

∥
∥
∥
L2

∥
∥
∥

∣
∣k − k′

∣
∣m+1

ϕk−k′

∥
∥
∥
L∞

∥
∥
∥∂y(

∣
∣k′
∣
∣−1/3

ν1/3∂y)ωk′

∥
∥
∥
L2

≲ ν−1/2E1/2D1/2
τ D1/2

γ e−3δ∗ν1/3t,

which is consistent with (5.14), Theorem 5.5.
Turning to T ̸= ̸=;τ3 we begin with a frequency decomposition

T ̸= ̸=;τ3 ≲
∑

k,k′ ̸=0
k ̸=k′

(

1
|k−k′|<

|k′|
2

+ 1
|k−k′|≥

|k′|
2

)∥
∥
∥ν1/3|k|m−1/3∂yJk∂yωk

∥
∥
∥
L2

ν1/3 |k|m−1/3 ∥∂yϕk−k′∥L∞

∥
∥k′ωk′

∥
∥
L2

= T3;LH + T3;HL.

To treat T3;LH first note that by Gagliardo-Nirenberg-Sobolev, m > 1/2, and elliptic regularity we
have

∑

k ̸=0

∥∇kϕk∥L∞ ≲
∑

k ̸=0

∥ωk∥1/2L2 ∥∇kϕk∥1/2L2 ≲ E1/2
k e−δ∗ν1/3t.

Combining this, the multiplier Lemma 3.1, 3.3, 3.4, Lemma 5.2, Gagliardo-Nirenberg inequality
and Young’s convolution inequality yields

T3;LH ≲
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|<|k′|/2ν
1/3
∥
∥
∥ν1/3|k|m−1/3∇k∂yωk

∥
∥
∥
L2

∥∂yϕk−k′∥L∞

∥
∥
∥

∣
∣k′
∣
∣m+2/3

ωk′

∥
∥
∥
L2

≲ ν−1/2E1/2D1/2
α D1/4

γ D1/4
β e−3δ∗ν1/3t,

which is consistent with Theorem 5.5. Finally, to treat T4;HL we have

T3;HL ≲
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|≥|k′|/2

∥
∥
∥ν1/3km−1/3∂2

yωk

∥
∥
∥
L2

ν1/3
∣
∣k − k′

∣
∣m−1/3−δ ∥∂yϕk−k′∥L∞

∥
∥
∥

∣
∣k′
∣
∣m+1/3

ωk′

∥
∥
∥
L2
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≲ ν1/3−1/6−1/2D1/2
α D1/2

β E1/2e−3δ∗ν1/3t,

where we used Gagliardo-Nirenberg-Sobolev and elliptic regularity to deduce

∑

k

|k|m−1/3 ∥∂yϕk∥L∞ ≲
∑

k

|k|−1/2 |k|m ∥ωk∥1/2L2

∥
∥
∥|k|1/3 ∂yϕk

∥
∥
∥

1/2

L2

≲ E1/2
̸= e−δ∗ν1/3t.

This is consistent with (5.14), Theorem 5.5, which then completes the treatment of T ̸= ̸=;3. Hence
the proof of Lemma 5.7 is completed.

5.3.3 The β Contributions

In this subsection, we prove Lemma 5.8. We decompose the NLβ-term in (5.12) as follows

e−2δ∗ν1/3tNLβ = −cβ
∑

k ̸=0

ν1/3 |k|2m−4/3
(

Re
〈

ikωk, ∂y(∇⊥ϕ · ∇ω)k

〉

+Re
〈

ik(∇⊥ϕ · ∇ω)k, ∂yωk

〉)

= Tβ;1 + Tβ;2.

Each term can be treated similarly due to integration by parts, hence we focus only on Tβ;1 without
loss of generality. We further note that we will only bound the absolute values of these terms, hence
the sign is not important. First, we separate the contributions of the zero and non-zero frequencies

Tβ;1 = −cβ
∑

k ̸=0

∞∑

k′=−∞

(
1k=k′,k′ ̸=0 + 1k ̸=k′,k′=0 + 1k ̸=k′,k′ ̸=0

)
ν

1

3 |k|2m− 4

3 Re
〈

ikωk, ∂y

(

∇⊥
k−k′ϕk−k′ · ∇k′ωk′

)〉

=: T0 ̸= + T ̸=0 + T ̸= ̸=. (5.22)

Estimate of the T0 ̸= term in (5.22):
Distributing the derivative and integrating by parts we have

|T0 ̸=| =
∣
∣
∣
∣

∑

k ̸=0

ν1/3 |k|−4/3 |k|2mRe ⟨ikωk, ∂yϕ0∂yikωk)⟩−
∑

k ̸=0

ν1/3 |k|−4/3 |k|2mRe
〈
ikωk, ∂

2
yϕ0ikωk)

〉
∣
∣
∣
∣

=

∣
∣
∣
∣

1

2

∑

k ̸=0

ν1/3 |k|2m+2/3Re
〈
ωk, ∂

2
yϕ0ωk)

〉
∣
∣
∣
∣
.

By Hölder’s inequality we have

|T0 ̸=| ≲
∑

k ̸=0

ν1/3
∥
∥
∥|k|1/3+mωk

∥
∥
∥

2

L2

∥
∥∂2

yϕ0

∥
∥
L∞

.

Upon applying Gagliardo-Nirenberg-Sobolev and the α term in the E0-energy, we have the estimate

∥
∥∂2

yϕ0

∥
∥
L∞

≲ ∥∂yω0∥1/2L2 ∥ω0∥1/2L2 ≲ ν−1/6E1/2
0 e−δ∗νt.

Combining the bounds above yields that,

|T0 ̸=| ≲ ν−1/6E1/2
0 Dβe

−2δ∗ν1/3t−δ∗νt,

which is consistent with (5.15), Theorem 5.5.
Estimate of the T ̸=0 term in (5.22):
Integrating by parts and using Hölder’s inequality yield that

|T ̸=0| =
∣
∣
∣
∣

∑

k ̸=0

ν1/3 |k|2m−4/3Re ⟨ik∂yωk, (ikϕk∂yω0)⟩
∣
∣
∣
∣
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≲
∑

k ̸=0

|k|−1/3 ∥|k|m ∂yωk∥L2

∥
∥
∥|k|m+1 ϕk

∥
∥
∥
L∞

(ν1/3 ∥∂yω0∥L2) ≲ ν−1/2D1/2
γ D1/2

τ E1/2
0 e−2δ∗ν1/3t−δ∗νt,

where in the last line we used the α term in the E0-energy (2.6a) and Lemma 5.3.
Estimate of the T ̸= ̸= term in (5.22):
This is the hardest term, however we treat it in someways similar to the first two terms. First we
separate out the different components of the velocity fields

|T ̸= ̸=| ≤
∣
∣
∣
∣
ν1/3

∑

k,k′ ̸=0
k ̸=k′

Re
〈

|k|2m−4/3 ikωk, ∂y(i(k − k′)ϕk−k′∂yωk′)
〉
∣
∣
∣
∣

+

∣
∣
∣
∣
ν1/3

∑

k,k′ ̸=0
k ̸=k′

Re
〈

|k|2m−4/3 ikωk, ∂y(∂yϕk−k′ik
′ωk′)

〉
∣
∣
∣
∣
=: Tx + Ty. (5.23)

The Tx term is consistent using the α term in the energy along with the dissipation, as long as
m > 1/2. Indeed, we have for m > 1/2 using Lemma 5.3,

Tx ≲
∑

k,k′ ̸=0
k ̸=k′

∥
∥
∥ν1/3|k|−1/3∂y|k|mωk

∥
∥
∥
L2

(
∣
∣k − k′

∣
∣m +

∣
∣k′
∣
∣m)

∥
∥
∣
∣k − k′

∣
∣ϕk−k′

∥
∥
L∞

∥∂yωk′∥L2

≲
E1/2

√
ν
D1/2

τ D1/2
γ e−3δ∗ν1/3t,

which is consistent with (5.15) and Theorem 5.5. Next, consider the more formidable Ty term. We
first distribute the derivative to treat each contribution separately

Ty ≤
∣
∣
∣
∣
ν1/3

∑

k,k′ ̸=0
k ̸=k′

Re
〈

|k|2m−4/3 ikωk, ∂
2
yϕk−k′ik

′ωk′

〉
∣
∣
∣
∣

+

∣
∣
∣
∣
ν1/3

∑

k,k′ ̸=0
k ̸=k′

Re
〈

|k|2m−4/3 ikωk, ∂yϕk−k′ik
′∂yωk′

〉
∣
∣
∣
∣
=: Ty,1 + Ty,2. (5.24)

Consider the first term. We split it into HL and LH contributions based on the x-frequency

Ty,1 =

∣
∣
∣
∣
ν1/3

∑

k,k′ ̸=0
k ̸=k′

(
1|k−k′|>|k′|/2 + 1|k′−k|<|k′|/2

)
Re
〈

|k|2m−4/3 ikωk, ∂
2
yϕk−k′ik

′ωk′

〉
∣
∣
∣
∣

=: |THL + TLH |. (5.25)

Consider first the TLH term in (5.25). Using that |k| ≤ 3
2 |k′| on the support of the summand and

m > 2/3, we have

|TLH | ≲
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|≤ 1

2
|k′|ν

1/3
∥
∥
∥|k|m−2/3 kωk

∥
∥
∥
L2

∥
∥
∥

∣
∣k′
∣
∣m−2/3

k′ωk′

∥
∥
∥
L2

∥
∥∂2

yϕk−k′
∥
∥
L∞

.

Then we observe that by (5.1) and Young’s convolution inequality,

|TLH | ≲
(
∑

k ̸=0

ν1/3
∥
∥
∥|k|m+1/3 ωk

∥
∥
∥

2

L2

)1/2(

ν1/3
∑

k′ ̸=0

∥
∥
∥

∣
∣k′
∣
∣m+1/3

ωk′

∥
∥
∥

2

L2

)1/2(∑

k ̸=0

∥
∥∂2

yϕk

∥
∥
L∞

)
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≲ν−1/6E1/2Dβe
−3δ∗ν1/3t,

which is consistent with (5.15) and Theorem 5.5. Next consider the THL term in (5.25), which
we instead estimate as follows, using that m > 2/3 and |k′| + |k| ≲ |k − k′| on the support of the
summand,

|THL| ≲ ν1/3
∑

k,k′ ̸=0
k ̸=k′

1 1

2
|k′|≤|k−k′|

∥
∥
∥|k|m−2/3 kωk

∥
∥
∥
L2

∥
∥k′ωk′

∥
∥
L∞

∥
∥
∥

∣
∣k − k′

∣
∣m−2/3

∂2
yϕk−k′

∥
∥
∥
L2

≲ ν1/3
∑

k,k′ ̸=0
k ̸=k′

1 1

2
|k′|≤|k−k′|

∥
∥
∥|k|m+1/3 ωk

∥
∥
∥
L2

∥ωk′∥L∞

∥
∥
∥

∣
∣k − k′

∣
∣m+1/3

∂2
yϕk−k′

∥
∥
∥
L2

.

From here we use essentially the same argument as we did for the LH term. First we note that by
elliptic regularity,

∥
∥
∥

∣
∣k − k′

∣
∣m+1/3

∂2
yϕk−k′

∥
∥
∥
L2

≲
∥
∥
∥

∣
∣k − k′

∣
∣m+1/3

ωk−k′

∥
∥
∥
L2

,

and that by Gagliardo-Nirenberg-Sobolev (and m > 2/3), we have

∑

k ̸=0

∥ωk∥L∞ ≲
∑

k ̸=0

∥ωk∥1/2L2 ∥∂yωk∥1/2L2 ≲ ν−1/6
∑

k ̸=0

|k|−m+1/6 ∥|k|mωk∥1/2L2

∥
∥
∥ν1/3 |k|m−1/3 ∂yωk

∥
∥
∥

1/2

L2

≲ ν−1/6

(
∑

k ̸=0

|k|−2m+1/3

)1/2(∑

k ̸=0

∥|k|mωk∥2L2

)1/4(∑

k ̸=0

∥
∥
∥ν1/3 |k|m−1/3 ∂yωk

∥
∥
∥

2

L2

)1/4

≲ ν−1/6E1/2e−δ∗ν1/3t.

Therefore, we similarly have

|THL| ≲ ν−1/6E1/2Dβe
−3δ∗ν1/3t,

which is consistent with (5.15) and Theorem 5.5. This completes the treatment of the Ty,1 term.
Next, we consider the Ty,2 term in (5.24), for which we introduce a commutator (writing com-

pletely on the physical-side for a moment):

|Ty,2| =
∣
∣
∣
∣
ν1/3

〈

|∂x|m−2/3 ∂xω ̸=, ∂yϕ ̸=∂y |∂x|m−2/3 ∂xω ̸=

〉

+ ν1/3
〈

|∂x|m−2/3 ∂xω ̸=, [∂yϕ ̸=, |∂x|m−2/3]∂y∂xω ̸=

〉
∣
∣
∣
∣
=: |Tm + Tc|. (5.26)

Here, “m” is “main” and “c” is “commutator”. For the first term, we integrate by parts and use
Hölder’s inequality after expanding in Fourier to obtain,

|Tm| =
∣
∣
∣
∣

1

2
ν1/3

〈

|∂x|m−2/3 ∂xω ̸=, ∂
2
yϕ ̸= |∂x|m−2/3 ∂xω ̸=

〉
∣
∣
∣
∣

≲ ν1/3
∑

k,k′ ̸=0;
k ̸=k′

∥
∥
∥|k|m+1/3 ωk

∥
∥
∥
L2

∥
∥
∥

∣
∣k′
∣
∣m+1/3

ωk′

∥
∥
∥
L2

∥
∥∂2

yϕk−k′
∥
∥
L∞

.

Using (5.1) again, we therefore have

|Tm| ≲ ν−1/6E1/2Dβe
−3δ∗ν1/3t,
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which is consistent with (5.15) and Theorem 5.5.
Finally we turn to the term with the commutator in (5.26), Tc, for which we expand on the

Fourier-side and use another frequency decomposition

|Tc| ≲ ν1/3
∑

k,k′ ̸=0
k ̸=k′

(1|k−k′|<|k′|/2 + 1|k−k′|≥|k′|/2)

� 1

−1
|k|m−2/3 |kωk|

∣
∣
∣|k|m−2/3 −

∣
∣k′
∣
∣m−2/3

∣
∣
∣

∣
∣∂yϕk−k′k

′∂yωk′
∣
∣ dy

=: Tc;LH + Tc;HL.

For the Tc;LH term we use the commutator estimate (which uses m > 2/3)
∣
∣
∣|k|m−2/3 −

∣
∣k′
∣
∣m−2/3

∣
∣
∣ ≲

∣
∣k′
∣
∣m−2/3−1 ∣∣k − k′

∣
∣ , k′ ̸=0,

which gives (using also |k − k′| ≲ |k′| on the support of the summand)

Tc;LH ≲ ν−1/6
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|<|k′|/2

∥
∥
∥ν1/6 |k|m+1/3 ωk

∥
∥
∥
L2

∥
∥
∥

∣
∣k − k′

∣
∣2/3 ∂yϕk−k′

∥
∥
∥
L∞

∥
∥
∥ν1/3

∣
∣k′
∣
∣m−1/3

∂yωk′

∥
∥
∥
L2

.

Then, we observe the following estimate, which follows from the Gagliardo-Nirenberg-Sobolev in-
equality,

∑

k ̸=0

∥
∥
∥|k|2/3 ∂yϕk

∥
∥
∥
L∞

≲
∑

k ̸=0

∥
∥
∥|k|1/3 ∂2

yϕk

∥
∥
∥

1/2

L2

∥|k|∂yϕk∥1/2L2 +
∑

k ̸=0

∥
∥
∥|k|2/3 ∂yϕk

∥
∥
∥
L2

≲
∑

k ̸=0

|k|−m−1/6
∥
∥
∥|k|m+1/3 ωk

∥
∥
∥
L2

≲ ν−1/6D1/2
β e−δ∗ν1/3t.

Therefore, we obtain

Tc;LH ≲ ν−1/3E1/2
α Dβe

−3δ∗ν1/3t,

which is consistent with (5.15), Theorem 5.5.
Finally, we consider Tc,HL, for which the commutator is not relevant. Using that 0 < m−1/3 < 1

and |k′|+ |k| ≲ |k − k′| on the support of the summand, we have

Tc,HL ≲ ν1/3
∑

k,k′ ̸=0
k ̸=k′

1|k−k′|≥|k′|/2 |k|m−2/3 |kωk|
∣
∣
∣|k|m−2/3 −

∣
∣k′
∣
∣m−2/3

∣
∣
∣

∣
∣∂yϕk−k′k

′∂yωk′
∣
∣

≲
∑

k,k′ ̸=0
k ̸=k′

ν1/3
∥
∥
∥|k|m+1/3ωk

∥
∥
∥
L2

∥
∥
∥

∣
∣k − k′

∣
∣m+1/3

∂yϕk−k′

∥
∥
∥
L∞

∥∂yωk′∥L2 .

Next, note m > 1/2 and Gagliardo-Nirenberg-Sobolev imply the following estimates

∑

k ̸=0

∥∂yωk∥L2 ≲

(
∑

k ̸=0

∥|k|m ∂yωk∥2L2

)1/2

≈ ν−1/2D1/2
γ e−δ∗ν1/3t,

∥
∥
∥|k|m+1/3 ∂yϕk

∥
∥
∥
L∞

≲
∥
∥|k|m ∂2

yϕk

∥
∥
1/2

L2

∥
∥
∥|k|m+2/3∂yϕk

∥
∥
∥

1/2

L2

+
∥
∥
∥|k|m+1/3 ∂yϕk

∥
∥
∥
L2

≲ ∥|k|m ωk∥L2 ,

and therefore it follows that

Tc,HL ≲ ν−1/3E1/2D1/2
β D1/2

γ e−3δ∗ν1/3t,

which is consistent with (5.15) and Theorem 5.5. This completes the treatment of the NLβ term.
Finally, we provide the proof of the main proposition 2.2, which directly implies Theorem 1.1:
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Proof of Proposition 2.2. We combine the decomposition (5.2), (5.10), Lemma 5.4 and Theorem
5.5 to obtain that

d

dt
E ≤ −1

2
D0 − 6δ∗νE0 − 4δ∗D ̸= − 6δ∗ν

1/3
∑

k ̸=0

e2δ∗ν
1/3t |k|2m+2/3Ek[ωk] +

CE1/2

√
ν

D.

Recalling the definition of D = D0 + D ̸= + DE (2.10), we observe that for δ∗ ≤ 1
16 , the estimate

above implies (2.11). Integration in time yields the main result.
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