
CABLE LINKS, ANNULI AND SUTURED FLOER HOMOLOGY

FRASER BINNS AND SUBHANKAR DEY

Abstract. We apply sutured Floer homology techniques to study the knot and link Floer
homologies of various links with annuli embedded in their exteriors. Our main results
include, for large m, characterizations of links with the same link Floer homology as (n, nm)-
cables of L-space knots or the same knot Floer homology as (2, 2m)-cables of L-space knots.
Note that Knot Floer homology carries less grading data than Link Floer homology, so the
latter characterizations are stronger than former. These characterizations yield some new
link detection results.

1. Introduction

Knot Floer homology is a powerful link invariant due independently to Ozsváth-Szabó [27]
and J.Rasmussen [32]. Much attention has been devoted to the behavior of this invariant
under the operation of cabling, under which a torus link is tied into a prescribed knot,
see [14, 15, 9, 4]. In this note we consider a question in the opposite direction, namely:
if we know a link has the homology type of a cable, can we conclude anything about the
link? We will be especially interested in the case of (n,mn)-cables of L-space knots. For a
definition of L-space knots see Section 2. Here we use the convention that the meridional
wrapping number is mn, while the longitudinal wrapping number is n. If n = 0 then any
(n,mn)-cable is the empty link, so we take n ̸= 0 throughout this paper. Unless stated
otherwise we also take n > 0, primarily to state our results more concisely. See Remark 4.7
for some discussion.

Our main result is the following:

Theorem 3.1. Suppose K is a non-trivial L-space knot, m > 2g(K) − 1 and L is a link

with ĤFL(L) ∼= ĤFL(Kn,mn). Then L is isotopic to K ′
n,nm for some L-space knot K ′ such

that ĤFK(K ′) ∼= ĤFK(K).

The main ingredients in the proof of this theorem are the fact that link Floer homology
detects the Thurston norm [30, Theorem 1.1] and Juhász’s surface decomposition formula for
sutured Floer homology [21, Theorem 1.3]. This yields some detection results as immediate
corollaries:

Corollary 3.3. Link Floer homology detects:

(1) T (2, 3)n,mn for m > 1.
(2) T (2, 5)n,mn for m > 3.

The n = 2 case of item 1 in Corollary 3.3 was shown in [2, Theorem 5.1]. Corollary 3.3
follows from the fact that T (2, 3) and T (2, 5) are L-space knots and knot Floer homology
detects T (2, 3) [8, Corollary 1.5], and T (2, 5) [6, Theorem A], respectively. Indeed, since
K1,m is isotopic to K, the n = 1 case of this corollary is exactly the result that knot Floer
homology detects the T (2, 3) and T (2, 5).
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An almost identical approach, combined with the fact that knot Floer homology detects
the unknot [26], yields the following:

Theorem 3.2. Link Floer homology detects T (n, nm) for all 0 ̸= n ∈ Z,m ∈ Z.

This strengthens T (n, n) detection, a result given in [3, Theorem 6.1]. Note again that
the n = 1 case of this theorem is exactly the result that knot Floer homology detects the
unknot.

Using a variation of the proof of Theorem 3.1 we obtain the following stronger statement
for (2, 2n)-cables, oriented as the boundary of annuli:

Theorem 4.1. Suppose K is a non-trivial L-space knot, n > 2g(K)−1 and L is a link with

ĤFK(L) ∼= ĤFK(K2,2n). Then there is an L-space knot K ′ with ĤFK(K ′) ∼= ĤFK(K) such
that L is isotopic to K ′

2,2n.

This result is stronger than Theorem 3.1 because Link Floer homology carries less gradings
information – see Section 2 for details. In particular, rather than detecting the Thurston
norm of a link, knot Floer homology detects only the genus of the link [25, Theorem 1.1],
[26, Theorem 1.2]. Indeed, since the Knot Floer homology of a link with a given number of
components can be recovered from Link Floer homology, Theorem 4.1 implies Theorem 3.1
in the cases it applies. As with Theorem 3.3, Theorem 3.1 has some detection results as
immediate corollaries:

Corollary 4.2. Knot Floer homology detects:

(1) T (2, 3)2,2n oriented as the boundary of an annulus for n > 1
(2) T (2, 5)2,2n oriented as the boundary of an annulus for n > 3.

These follow from Theorem 4.1 in the same way that Corollary 3.3 follows from Propo-
sition 3.6. This corollary can be viewed as an extension of T (2, 2n) = T (2, 1)2,2n detection,
as shown in [3, Theorem 3.2]. We note that the proofs of Theorem 4.1, Theorem 3.1, Theo-
rem 3.2 Corollary 4.2 and Corollary 3.3 only use the Alexander gradings and the reduction
of the absolute Maslov grading mod two.

Similar techniques can be applied to understand the link Floer homologies of links with
high Euler characteristic surfaces embedded in their exteriors. Let U be the unknot, and ⊔
denote the split sum operation.

Proposition 5.1. Suppose L′ is a link such that ĤFL(L′) ∼= ĤFL(L⊔U). Then L′ is isotopic

to L′′ ⊔ U where L′′ is a link such that ĤFL(L′′) ∼= ĤFL(L).

The authors suppose that this result was already known, but were unable to find a reference
in the literature.

Let H± denote the positive or negative Hopf link.

Proposition 5.2. Suppose L′ is a link such that ĤFL(L′) ∼= ĤFL(L#H±). Then L′ is

isotopic to L′′#H± where L′′ is a link such that ĤFL(L′′) ∼= ĤFL(L).

This should be compared with a very similar result [3, Proposition 9.2]. Note however
that there is no hypothesis on Alexander gradings in the above statement. The main novelty
of Proposition 5.1 and Proposition 5.2 is the fact that their proofs uses Juhász’s sutured
decomposition formula [21, Theorem 1.3]. We note that Propositions 5.1 and 5.2 can be
used to produce infinite families of links which knot Floer Homology and Khovanov homology

2



cannot distinguish but which link Floer homology can detect, as in [3, Theorem 9.4]. For
example, these two propositions imply that link Floer homology detects all forests of unlinks
– that is links which arise from unlinks via iterated connect sums – while the knot Floer
homology and Khovanov homology are determined by the number of components and number
of split components alone.

Our final result is of a distinct flavour and uses different methods than those preceding.
View T (2, n) as the closure of a 2-braid. Denote by L′

n the link formed by taking T (2, n)
union its braid axis as shown in Figure 1, but with arbitrary orientation.

Theorem 6.1. Link Floer homology detects L′
n for all n ∈ Z.

This result can be thought of as the Floer homology analogue of the corresponding result
that Annular Khovanov homology detects all 2-braids – which follow from computations of
Grigsby-Licata-Wehrli [10, Proposition 15] and the fact that annular Khovanov homology
detects braids and the braid index by results of Grigsby-Ni [11, Corollary 1.2]. The n = 0
case is a special case of a result of Baldwin-Grigsby [1, Theorem 3.1], while the n = 1, 2 and
3 cases are proven in [3].

The outline of the paper is as follows: in Section 2 we briefly review sutured Floer homology
focusing on the properties that will be of use to us in subsequent sections. In Section 3, 4
and Section 5, we prove Theorem 3.1, Theorem 4.1 and related results. We conclude by
proving Theorem 6.1 in Section 6.

Acknowledgements. The first author would like to thank his advisor John Baldwin for
his ongoing support, as well as Gage Martin. He would also like to thank the audience from
his talk at the GSTGC conference at Georgia Tech for prompting him to think harder about
how Theorem 4.1 could be generalised, resulting in Theorem 3.1. We would also like to thank
Tye Lidman, Jen Hom, Matt Hedden and Zhenkun Li for their feedback and questions on
an earlier draft. We would also like to thank the referees for their detailed comments on the
first version of this paper. The second author would like to acknowledge partial support of
NSF grants DMS 2144363, DMS 2105525, and AMS-Simons travel grant.

2. Preliminaries on Sutured, Link and Knot Floer Homology

In this section we review aspects of sutured Floer homology which will be relevant in later
sections. We refer the reader to [20] and [21] for details.

A balanced sutured manifold is a pair (Y, γ) where Y is a 3-manifold such that each
component of Y has non-empty boundary and each component of ∂Y contains a component
of the suture, γ. Here a suture is a (perhaps disconnected) embedded 1-manifold in ∂Y
which separates ∂Y into two pieces of equal Euler characteristic. Y is also required to
satisfy some orientability conditions, see [20, Definition 2.1] for details. This definition is
due to Juhász [20, Definition 2.2]. A more general version of sutured manifolds were first
studied by Gabai in the context of taut foliations [7].

Sutured Floer homology is an invariant of sutured manifolds defined by Juhász [20]. Su-
tured Floer homology decomposes as a direct sum along relative spinc structures. It behaves
nicely under sutured manifold decompositions, see [21] for details. While sutured Floer ho-
mology and the other Floer theoretic invariants we study in this paper can be defined with
coefficients in Z, in this paper we take all coefficients to be in the field of two elements, F,
for simplicity. We note also that the pairing theorem for immersed curves [13, Theorem 1.2],
which we shall use in a couple of places, has only been proven with coefficients in F.
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We will be interested in a number of special cases of sutured Floer homology. The first
of these is Link Floer homology, which was originally due to Ozsváth-Szabó [29]. Link Floer
homology can be thought of as the sutured Floer homology of a link exterior with pairs of
meridional sutures. We call the spinc grading on link Floer homology the Alexander grading.
If L is an n-component link the Alexander grading can be thought of as an affine lattice
over Zn or indeed over H1(X(L)). Link Floer homology detects the Thurston norm of a link
exterior, see [30, Theorem 1.1] for a precise statement.

The second special case of sutured Floer homology that we will be interested in is knot Floer
homology, which is due independently to Ozsváth-Szabó [26] and J. Rasmussen [32]. Knot
Floer homology can be thought of as the sutured Floer homology of a knot exterior with
a pair of parallel oppositely oriented meridional sutures. We again call the spinc grading
on knot Floer homology the Alexander grading, and can think of it as taking values in
Z. We note that knot Floer homology can be extended to an invariant of links by the
process of knotification. This process takes an n component link in Y and yields a knot in
Y#n−1(S1 × S2) [27, Subsection 2.1]. An alternate description of Knot Floer homology
is discussed in Remark 4.4. Important properties of knot Floer homology include that it
detects the maximal Euler characteristic of a Seifert surface for a link [25, Theorem 1.1],[26,
Theorem 1.2] and that it categorifies the Alexander polynomial [27, Equation 1]. It follows
that link Floer homology detects the linking number of two component links by a result of
Hoste [19, Theorem 1]. We will indeed use a stronger version of Hoste’s result in Section 3
and Section 6.

Let Kn denote the core of n-surgery on a knot K. An L-space knot is a knot K for which

rank(ĤFK(Kn)) = n for some n ≥ 0. Note that this is a non-standard definition of an L-space
knot, but follows quickly from the immersed curve interpretation for the surgery formula in
bordered Floer homology. More specifically, the immersed curve interpretation of bordered

Floer homology allows one to compute rank(ĤFK(Kn)) by counting the intersections of two
multi-curve in a torus: one of slope n – under an appropriate parametrization – and a
multi-curve determined by K [12, Remark 52]. In the case that K is an L-space knot the
multi-curve associated to K has a particularly simple form, see [13, Section 7.5] for details.
Alternatively this follows from work of Hedden [16, Theorem 4.1], [17, Theorem 1.4], or
Eftekhary [5, Theorem 1.2]. The unknot, U , is an example of an L-space knot. Note that

rank(ĤFK(Un)) = |n| for all n. If K is a non-trivial L-space knot then rank(ĤFK(Kn)) = n
if and only if n > 2g(K) − 1, again see [12, Remark 52] for details. L-space knots have
many strong properties, including that their knot Floer homologies are determined by their
Alexander polynomials.

3. Link Floer homology and (n, nm)-cables

In this section we prove the main theorem of this paper. Throughout this section we give
Kn,nm the orientation induced by an orientation on K.

Theorem 3.1. Suppose K is a non-trivial L-space knot, m > 2g(K) − 1 and L is a link

with ĤFL(L) ∼= ĤFL(Kn,mn). Then L is isotopic to K ′
n,nm for some L-space knot K ′ such

that ĤFK(K ′) ∼= ĤFK(K).

The above result is also true in the case that K is the unknot:

Theorem 3.2. Link Floer homology detects T (n, nm) for all n,m.
4



We have separated these two results purely for expository purposes. Taking K to be the
trefoil or cinquefoil and combining Theorem 3.1 with the corresponding detection results
for knot Floer homology due to Ghiggini [8, Corollary 1.5] and Farber-Reinoso-Wang [6,
Theorem A] implies the following:

Corollary 3.3. Link Floer homology detects:

(1) T (2, 3)n,mn for m > 1.
(2) T (2, 5)n,mn for m > 3.

The outline of the proof of Theorem 3.1 is as follows. Using the fact that link Floer
homology detects the Thurston polytope [30, Theorem 1.1], we obtain a family of annuli
embedded in X(L) along which we perform a sutured decomposition. Understanding this
manifold allows us to use Juhász’s result [21, Theorem 1.3] to deduce information about
X(L).

We begin by proving the link Floer homology of (n, nm)-cables of L-space knots have

certain properties. Set ĤFL(L, Ik) :=
⊕
x∈Ik

ĤFL(L, x) where

Ik = {(A1, A2, . . . , An) : k(n− 1) = (n− 1)An −
∑

1≤i≤n−1

Ai)}.

Proposition 3.4. Let K be a non-trivial L-space knot with m > 2g(K)− 1. Then:

rank(ĤFL(Kn,nm, I1)) = 2n−2m.

We note that this proposition can be deduced from a complete computation of the link
Floer homology due to Gorsky-Hom [9, Theorem 3]. However, we give a proof using Juhász’s
sutured decomposition formula [21, Theorem 1.3], which fits more naturally with the per-
spective we take in this paper.

We also fix some notation. Let L be a link with n components {Li}1≤i≤n. H1(∂X(L)) is
generated by the homology classes of curves {µi, λi}1≤i≤n where µi and λi are respectively
meridians and longitudes of Li.

Proof of Proposition 3.4. Let K be an L-space knot. In X(Kn,nm) there is a family of
annuli, {Ai}1≤i≤n−1, where Ai has boundary representing −m[µi] − [λi] + m[µn] + [λn] in
H1(∂X(Kn,nm)), for 1 ≤ i ≤ n − 1. Each annulus Ai can be realized by taking the trace
of an isotopy from the i ̸= nth component and the nth component of Kn,nm. Decomposing
X(Kn,nm) along Σ =

⋃
1≤i≤n−1

Ai yields the manifold X(K) with n−1 parallel pairs of sutures

of slope m[µ]+[λ], where µ and λ are the meridian and longitude of K respectively. Call this
sutured manifold (Y, γ). Since (Y, γ) is obtained by adding n − 2 pairs of parallel sutures
to the exterior of K in S3 with a pair of parallel sutures of slope n, it follows from [22,

Proposition 9.2] that SFH(Y, γ) is given by ĤFK(Km)⊗V ⊗(n−2), where V is a rank 2 vector
space. Thus SFH(Y, γ) is of rank 2n−2 ·m. Juhász’s theorem [21, Theorem 1.3] then implies

that rank(ĤFL(Kn,nm, I1)) = 2n−2m. Here the fact that k = 1 follows from the fact that
χ(Σ) = 0, r(Ai, t0) = 0 for all i ∈ {1, 2, . . . , n} and I(Σ) = 0, following Juhász’s notation
from [21, Lemma 3.9]. □

We can prove a stronger version of Proposition 3.4 for the unknot, U .

Lemma 3.5. rank(ĤFL(T (n, nm), I1)) = 2n−2|m| for all m ̸= 0.
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Proof. If m ̸= 0 then the proof follows exactly as in the proof of Lemma 3.4. T (n, 0) is the

n-component unlink, for which it is readily computed that rank(ĤFL(T (n, 0), I1)) = 0. □

The bulk of the work in proving Theorem 3.1 is contained in the proof of the following
proposition.

Proposition 3.6. Let K be a non-trivial L-space knot and m > 2g(K)− 1. Suppose that L

is a link such that ĤFL(L) ∼= ĤFL(Kn,mn). Then L is the (n,mn)-cable of an L-space knot
K ′.

Proof. Suppose ĤFL(L) is as in the statement of the theorem. We first note that L does
not contain any split unknotted components, since for each i there exists a generator of link
Floer homology with ith Alexander grading nonzero. Since link Floer homology detects the
Thurston norm, L and Kn,mn have equivalent Thurston norm. We thus have that there is
an Euler characteristic 0 surface, denoted by Σ, with:

(1) [Σ] = (n− 1) PD[µn]−
∑

1≤i≤n−1

PD[µi] ∈ H2(X(L)), ∂(X(L)))

Here we view [µi] as generators ofH
1(X(L)) corresponding to meridians of each component

of L. Since L does not have split unknot components, Σ must be a collection of embedded
annuli. Let Li denote the ith component of L.
We now seek to simplify Σ while preserving [Σ] ∈ H2(X(L), ∂(X(L))) so that on each

boundary component of X(L), the components of ∂Σ are coherently oriented. If A1, A2

are two connected components of Σ with boundary components on ∂(ν(Li)) for some i
then [∂A1|∂ν(Li)] = ±[∂A2|∂ν(Li)] ∈ H1(∂ν(Li)). Suppose there are annuli A1, A2 for which
[∂A1|∂ν(Li)] = −[∂A2|∂ν(Li)] ∈ H1(∂ν(Li)). We may assume these are adjacent in the sense
that ∂ν(Li)− (Σ−A1 −A2) contains a path from A1 to A2. We can form a surface Σ′ with
one fewer component than Σ representing [Σ′] = [Σ] ∈ H2(X(L)), ∂(X(L))) by merging the
two annuli near ∂ν(Li). Iterating we see that without loss of generality we may take all
components of ∂Σ to carry the same orientation in each ∂ν(Li). We relabel this surface as
Σ.

Equation 3 implies that Σ must have at least n − 1 boundary components on ∂(X(Ln))
and at least one boundary component on each of ∂(X(Li)) for 1 ≤ i ≤ n − 1. Since the
components of ∂Σ are all oriented in the same direction on ∂ν(Li) for each i, it follows
that Σ must indeed have exactly one boundary component on each of ∂(X(Li)) for each
1 ≤ i ≤ n− 1 and exactly n− 1 boundary components on ∂(X(Ln)). It follows in turn that
Σ consists of (n − 1) annuli, Ai, 1 ≤ i ≤ n − 1, where Ai has a boundary component on
∂(ν(Ln)) and another on ∂(ν(Li)) with i ̸= n. It follows that L is a (n, pn)-cable of Ln for
some p. In particular ℓk(Li, Lj) = p for all i ̸= j.
Now, by a result of Hoste [19, Theorem 1], if L′ is a link with components L′

i then the
Conway polynomial determines the co-factors of the matrix M(L′) with entries given by
li,j = ℓk(L′

i, L
′
j) for i ̸= j, and li,i = −

∑
1≤j≤n,j ̸=i ℓk(L

′
i, L

′
j). Consider the (n, qn)-cable of

some knot K ′. Observe that any co-factor of M(K ′
n,qn) is given by qn−1 det(A) where A

is defined by ai,j = 1 for i ̸= j, ai,i = 1 − n. Note that det(A) ̸= 0. Since Link Floer
homology determines the Conway polynomial, Kn,mn and the (n, pn)-cable of Ln have the
same Conway polynomial. It follows in turn that p = m.

Let K ′ = Ln. Decomposing the exterior of the (n,mn)-cable of K ′ along Σ, we find a
sutured manifold with underlying smooth manifold given by X(K ′). The sutures are given by
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2(n− 1) parallel copies of curves of slope m. By [22, Proposition 9.2], this has sutured Floer

homology given by ĤFL(L, I1) ∼= ĤFK(K ′)⊗ V ⊗(n−2). It follows that ĤFK(K ′)⊗ (F2)⊗(n−2)

is of rank 2n−2m whence K ′ is an L-space knot. □

Proposition 3.6 is also true in the case that K is trivial:

Lemma 3.7. Suppose ĤFL(L) ∼= ĤFL(T (n, nm)) for some m ∈ Z. Then L is the (n, nm)-
cable of an L-space knot.

Proof. If m ̸= 0 the result follows from Lemma 3.5 just as Proposition 3.6 follows from
Proposition 3.4. T (n, 0) is the n component unlink which Link Floer homology is known to
detect. □

To conclude the proof of Theorem 3.1 we will need the following lemma:

Lemma 3.8. If K and K ′ are L-space knots with ∆Kn,mn(t) = ∆K′
n,mn

(t) for any m ∈ Z
then ĤFK(K ′) ∼= ĤFK(K).

Proof. Suppose K and K ′ are as in the statement of the lemma. Then

∆K(t) = ∆K′(t) =
∆Kn,mn(t)

∆T (n,mn)(tn)
.

See [23, Theorem 6.15], where the statement is given in the case that Kn,mn is a knot. The

proof still holds in the link case. SinceK ′ andK are L-space knots ĤFK(K ′) ∼= ĤFK(K). □

We can now conclude the proof of the main theorem.

Proof of Theorem 3.1. Suppose L,K are is in the statement of the theorem. Then L is an
(n,mn)-cable of an L-space knot K ′ by Proposition 3.6, whence Lemma 3.8 implies that

ĤFK(K ′) ∼= ĤFK(K), as required. □

T (m,mn) detection also follows quickly:

Proof of Theorem 3.2. Suppose ĤFL(L) ∼= ĤFL(T (m,mn)). Then Lemma 3.7 implies L is
the (n, nm)-cable of an L-space knot K ′. Lemma 3.8 implies that L has the same knot Floer
homology as the unknot, whence K ′ is the unknot by [26], as desired. □

We conclude by proving the remaining two families of detection results.

Proof of Corollary 3.3. Suppose L is a link with knot Floer homology of one of the two given
types. Note that T (2, 3) and T (2, 5) are L-space knots. Thus Theorem 3.1 implies L is a
(n, nm)-cable of a knot with the same knot Floer homology as T (2, 3), or T (2, 5) respectively.
The result then follows from the fact that knot Floer homology detects both of these knots [8,
Corollary 1.5], [6, Theorem A]. □

4. Knot Floer homology and (2, 2n)-cables of L-space knots

In this section we prove a stronger version of Theorem 3.1 for (2, 2n)-cables in the context
of knot Floer homology. Throughout this section we orient (2, 2n)-cables links in such a way
that they bound an annulus.
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Theorem 4.1. Let K be a non-trivial L-space knot with n > 2g(K) − 1. Then ĤFK(L) ∼=
ĤFK(K2,2n) if and only if L is the (2, 2n) cable of an L-space knot K ′ with ĤFK(K ′) ∼=
ĤFK(K).

Note that a stronger version of the above result is true for the unknot, namely that knot
Floer homology detects T (2, 2n) for all n [3, Theorem 3.2].
Again this yields some detection results as corollaries:

Corollary 4.2. Knot Floer homology detects:

(1) T (2, 3)2,2n oriented as the boundary of an annulus for n > 1
(2) T (2, 5)2,2n oriented as the boundary of an annulus for n > 3

We begin by proving the knot Floer homology of (2, 2n)-cables of L-space knots satisfy
the following properties:

Proposition 4.3. Let K be a non-trivial L-space knot, n > 2g(K) − 1. Then ĤFK(K2,2n)
satisfies the following:

(1) max{A : ĤFK(K2,2n, A) ̸= 0} = 1

(2) rank(ĤFK(K2,2n, 1)) = n.

Again these conditions can be deduced from [9, Theorem 3], but we provide a proof using
Juhász’s surface decomposition theorem [21, Theorem 1.3] and a skein exact triangle for knot
Floer homology.

Remark 4.4. While the knot Floer homology of a multi-component link was originally
defined via knotification, it can alternately be defined as the sutured Floer homology of
the link exterior equipped with parallel pairs of oppositely oriented meridional sutures. In
this context the Alexander grading can be defined by evaluating spinc structures on the
image of Seifert surface for L in H2(X(L), ∂(X(L))). The correspondence between these two
approaches is given in [29, Theorem 1.1], see [29, Section 10] for further details.

Proof. The maximal Euler characteristic surface bounding a (2, 2n)-cable knot is an annulus
if K is non-trivial, whence condition 1 follows. Decomposing along that annulus gives the
exterior of Kn, which has sutured Floer homology of rank n since K is an L-space knot and
n > 2g(K)− 1, proving condition 2. □

Lemma 4.5. Suppose L is a link with ĤFK(L) ∼= ĤFK(K2,2n) for some knot K. Then L
has two components.

Proof. Suppose L is as in the statement of the Lemma. Observe that L and K2,2n have the
same Conway polynomial. Also K2,2n has linking number −n and two components. By [19,
Theorem 1], the coefficient of z in the Conway polynomial is n ̸= 0. On the other hand,
for an m component link, the Conway polynomial has minimum possible degree m− 1 [18,
Lemma 2.1]. It follows that L has at most 2 components. Recall that there is a spectral

sequence from ĤFL(L) to ĤF(#m−1(S1 × S2)), where m is the number of components of

L [27, Lemma 3.6]. Moreover, rank(ĤF(#m−1(S1 × S2))) is odd if and only if m = 1 [28,

Lemma 9.1]. Thus since rank(ĤFK(L)) is even it follows that L cannot be a knot, so that
L has exactly two components. □
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We now prove Theorem 4.1 using the following Lemma, noting the key properties listed
in Proposition 4.3.

Lemma 4.6. Suppose K is a non-trivial L-space knot and ĤFK(L) ∼= ĤFK(K2,2n) with
n > 2g(K)−1. Then L is isotopic to K ′

2,2n where K ′ is an L-space knot with 2g(K ′)−1 < n.

Proof. Suppose K,n are as in the statement of the Theorem. By Lemma 4.5, we have that
L has two components.
Since the maximal Alexander grading is 1 and L has non-zero linking number, L bounds

an annulus. Decomposing along this annulus yields a sutured manifold with sutured Floer

homology given by ĤFK(K ′
n) for some knot K ′. Note that rank(ĤFK(K ′

n)) = n, hence K ′

is indeed an L-space knot with 2g(K ′)− 1 < n. □

Proof of Theorem 4.1. Suppose K, L are as in the statement of the theorem. Lemma 4.6
implies that L is given by K ′

2,2n for some L-space knot K ′. Applying Lemma 3.8 shows that

ĤFK(K) ∼= ĤFK(K ′), as desired. □

Proof of Corollary 4.2. Suppose L is a link with knot Floer homology of one of the two given
types. Note that T (2, 3) and T (2, 5) are L-space knots. Thus Theorem 4.1 implies L is a
(2, 2n)-cable of a knot with the same knot Floer homology as T (2, 3) or T (2, 5) respectively.
The result then follows from the fact that knot Floer homology detects each of these two
knots [8, Corollary 1.5], [6, Theorem A]. □

We conclude this section with the following remark:

Remark 4.7. Versions of Theorem 4.1 and Theorem 3.1 as well as Corollary 4.2 and Corol-
lary 3.3 can be obtained for (n,mn) cables with n < 0. The relevant proofs in this section
and Section 3 follow through in the n < 0 case if we take m < 1− 2g(K).

5. Unlink and Hopf link Summands, and Link Floer Homology

In this section we study the link Floer homology of links obtained by adding meridional
components or split unknots. We obtain results very similar to [3, Proposition 9.2] with
techniques similar to those applied to prove Theorem 3.1 and Theorem 4.1.

Here we take L to be a link, H± to be the positive and negative Hopf links and U be the
unknot.

Proposition 5.1. Suppose L′ is a link such that ĤFL(L′) ∼= ĤFL(L⊔U). Then L′ is isotopic

to L′′ ⊔ U where L′′ is a link such that ĤFL(L′′) ∼= ĤFL(L).

Proposition 5.2. Suppose L′ is a link such that ĤFL(L′) ∼= ĤFL(L#H±). Then L′ is

isotopic to L′′#H± where L′′ is a link such that ĤFL(L′′) ∼= ĤFL(L).

Note that the connect sum operation is not a well defined operation on links; it depends
on the component to which you connect sum. We suppress this to ease notation.

Proposition 5.2 is a version of [3, Proposition 9.2]. We note again that this yields infinite
families of links that link Floer homology detects but neither Khovanov homology nor knot
Floer homology detect – forests of unlinks, for example.

Let n(S, L) ≥ 0 denote the geometric intersection number of a surface S and an n com-
ponent link L. A result of Juhász [21, Lemma 3.10] implies that the maximum not trivial

A1 grading of ĤFL(L) is given by
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(2)
1

2
max{−2g(S)− n(S, L− L1) : ∂S = L1}

More specifically, [21, Lemma 3.10] states that the maximal non-trivial A1 grading is given
by 1

2
(χ(S ′) + I(S ′)− r(S ′, t)), where these quantities are defined in [21, Lemma 34], and S ′

is the image of S in the exterior of L. Equation 2 is the main technical tool we use to prove
our propositions.

Proof of Proposition 5.1. Suppose L and L′ are as in the statement of the theorem. Order
the components of L ⊔ U so that the named unknot U is the first component.

Since the maximal A1 grading of ĤFL(L′) is 0, we see that L′
1 – the first component of L′,

L′
1 – bounds a surface S with 0 = −2g(S) − n(S, L′ − L′

1). It follows that S is a disk and
n(S, L′ − L′

1) = 0, whence L′
1 is a split unlinked component of L′.

It thus suffices to show L′′ – the link consisting of the components of L′ without L′
1 – has

the same knot Floer homology as L. But this is immediate since

ĤFL(L)⊗ V ∼= ĤFL(L ⊔ U) ∼= V ⊗ ĤFL(L′′)

where here V is a rank 2 vector space supported in multi-Alexander grading 0. Thus, since

we are working with vector spaces over Z/2, ĤFL(L′′) ∼= ĤFL(L), as required. □

The proof of Proposition 5.2 requires a slightly more sophisticated analysis.

Proof of Proposition 5.2. Suppose L and L′ are as in the statement of the theorem. After
relabeling we may take the 1st component of L#H± to be the unknotted component of H±
which remains a component in L#H±.

Since the maximal A1 grading of ĤFL(L′) is 1, we see that L′
1 – the first component of L′

– bounds a surface S with −1 = −2g(S)−n(S, L−L′
1). It follows that S is a once punctured

disk. It follows that L′
1 is the meridian of a component L′

i of L
′ where i ̸= 1. That is, L′ is

of the form L′′#H±. Let L
′′
i be the component of L′′ corresponding to L′

i.
It thus suffices to show L′′ has the same Link Floer homology as L. Note that S ∩X(L)

is an annulus, A. Decomposing along this annulus yields a sutured manifold with sutured

Floer homology given by V ⊗ ĤFL(L′′). Here V is a rank 2 vector space supported in AL′′
i

grading ±1
2
and in AK grading 0 for all other K. Thus, since we are working with vector

spaces over Z/2, ĤFL(L′′) ∼= ĤFL(L), as required. □

6. A detection result for Link Floer homology

In this section we give another infinite family of detection results for link Floer homology.
Let Ln denote the closure of the 2-braid σn together with its braid axis, as shown in Figure 1,
with specified orientations. Let L′

n denote any copy of Ln with arbitrary orientation.

Theorem 6.1. Link Floer homology detects L′
n for all n ∈ Z.

For n := 2m+ 1 odd we take the first component of Ln, K1, to be the braid axis and K2,
the second component of Ln, to be the braid closure. Note that L−1 is T (2, 4) oriented as

the boundary of an annulus. We highlight some key features of ĤFL(L2m+1):

Lemma 6.2. Let m ∈ Z. ĤFL(L2m+1) satisfies the following conditions:
10



Figure 1. The link Ln. The highlighted crossing is one at which we consider
a resolution. On its right, a skein triple crossing is drawn.

(1) The maximum non-trivial A1 grading of ĤFL(L2m+1) is one and∑
A2∈Q

dim(ĤFL(L2m+1; (1, A2)) = 2.

(2) If m ≥ 0 the maximum A1+A2 grading in which ĤFL(L2m+1) is non-trivial is m+2
and ⊕

A1,A2∈Q

ĤFL(L2m+1;A1 + A2 = m+ 2)) ∼= F0.

(3) If m < −1 the maximum value of A1+A2 grading in which ĤFL(L2m+1) is non-trivial
is −m and ⊕

A1,A2∈Q

ĤFL(L2m+1;A1 + A2 = −m)) ∼= F−2m−2.

In the proof of part (2) and part (3) of this statement, we use the Skein exact triangle in
knot Floer homology. Note that there exist different Maslov grading conventions for knot

Floer homology. We use the convention that the Maslov grading for ĤFK(L) is Z+ n
2
-valued,

where n is the number of components of L. This is the convention used in [27].

Proof. The first part of the first statement follows from Equation 2. The second part follows
from the fact that the second component of L is braided about the first, which is unknotted,
combined with Martin’s braid axis detection result [24, Proposition 1].

The second statement can be deduced as follows. Consider the skein exact sequence [27,
Equation 8] corresponding to resolving the highlighted crossing in Figure 1. Here L2m+1 is
the positive resolution, the zero resolution is the torus knot T (2, 2m + 3) and the negative
resolution is T (2, 2m+1) connect sum a positive Hopf link, denoted by H+. Recall that H+

11



has knot Floer homology given by:

ĤFK(H+, A) ∼=


F1/2 if A = 1

F2
−1/2 if A = 0

F−3/2 if A = −1

0 otherwise.

Assume now that m ≥ 0. Note that both ĤFK(T (2, 2m+1)#H+) and ĤFK(T (2, 2m+3))

have maximal non-trivial Alexander grading m + 1. The generator of ĤFK(T (2, 2m + 3))
in Alexander grading m+ 1 has Maslov grading 0. Following [27, Equation 8], let V denote
the bigraded vector space

(3) V := F1[1]⊕ F2
0[0]⊕ F−1[−1]

where the subscript denotes the Maslov grading and [A] denotes the Alexander grading of

the generator. It follows that ĤFK(T (2, 2m+3))⊗V is rank one in the maximal non-trivial
Alexander grading, m + 2, with a generator of Maslov grading 1. Since the exact triangle

from [27, Equation 8] respects Alexander gradings, it follows that ĤFK(L2m+1) is rank one
in maximal non-trivial Alexander grading m+2. Indeed, it follows from the Maslov grading

shift formula that ĤFK(L2m+1) is supported in Maslov grading 1/2, which directly implies
the stated statement.

Assume now that m < −1. ĤFK((T (2, 2m + 1)#H+) has maximal non-trivial Alexan-
der grading −m. The generator in Alexander grading −m has Maslov grading −2m − 3

2
.

ĤFK(T (2, 2m + 3)) has maximal non-trivial Alexander grading −m − 2. It follows that

ĤFK(T (2, 2m+ 3))⊗ V is rank one in the maximal non-trivial Alexander grading, −m− 1.
Since the exact triangle from [27, Equation 8] respects Alexander gradings, it follows that

ĤFK(L2m+1) is rank one in maximal non-trivial Alexander grading −m. Indeed, it fol-
lows from the Maslov grading shift formula – see [31, Theorem 9.1.2], for example – that

ĤFK(L2m+1) is supported in Maslov grading −2m − 3
2
, which directly implies the stated

statement.
□

In the odd case, the key step in the proof of Theorem 6.1 is the following:

Proposition 6.3. Let n be odd. Suppose L is a link with ĤFL(L) ∼= ĤFL(L′
n). Then L is

isotopic to L′
m for some odd m.

Proof. Suppose L is as in the statement of the theorem. Then L is a two component link,
with ℓk(L) = ℓk(Ln) = 2 since the Conway polynomial, and hence Link Floer homology,

detects the linking number of two component links [19]. Note that ĤFL(L) is of rank 2 in
one of the maximal Ai gradings. Reorder the components of L so that this is the A1 grading.
Note that the A1 grading has span [−1, 1]. It follows from Equation 2 that L1 bounds a disk
which intersects L2 – the other component of L – twice geometrically or a genus one surface
which doesn’t intersect L2. However, ℓk(L) ̸= 0, so L2 must intersect any surface bounding
L1. It follows that L1 bounds a disk. Thus L1 is an unknot, which is fibered. Note also that
the L cannot have reducible exterior, again as ℓk(L) ̸= 0. It follows that L2 is braided about
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L1 by [24, Proposition 1]. Since ℓk(L) = 2, L2 is a two stranded braid about L1. Thus L is
isotopic to Lm for some odd m. □

It thus suffices to show the following:

Proposition 6.4. Let n and m be odd. Suppose ĤFL(L′
n)

∼= ĤFL(L′
m). Then m = n.

Proof. Fix m as in the statement of the Proposition. By reversing the orientation of the
second component of of L′

m if necessary we can arrange that the two components of L′
m have

positive linking number – that is we can change L′
m to Lm. Suppose n is an odd number with

ĤFL(L′
n)

∼= ĤFL(L′
m). Observe that after performing the same changes on L′

n as we did on

L′
m we obtain L±n and have that ĤFL(L±n) ∼= ĤFL(Lm). Here we again use the fact that

link Floer homology detects the linking number of two component links and [1, Equation 2].
The result then follows from Lemma 6.2, together with the fact that Link Floer homology
detects T (2, 4) [3, Theorem 3.2]. □

Theorem 6.1 now follows immediately from the preceding two results in the case that n is
odd.

For n := 2m even we take the first component of Ln, K1 to be the braid axis. As we did

earlier, we highlight some key features of ĤFL(L2m):

Lemma 6.5. Let m ∈ Z. ĤFL(L2m) satisfies the following conditions:

(1) The maximum non-trivial A1 grading of ĤFL(L2m+1) is one and∑
A2∈Q

dim(ĤFL(L2m+1; (1, A2)) = 4.

(2) If m ≥ 0 then the maximum value of A1 +A2 +A3 in which ĤFL(L2m) is non-trivial
is m+ 2 and ⊕

Ai∈Q

ĤFL(L2m;A1 + A2 + A3 = m+ 2) ∼= F0.

(3) If m < 0 then the the maximum value of A1 + A2 + A3 in which ĤFL(L2m) is non-
trivial is 1−m and⊕

Ai∈Q

ĤFL(L2m;A1 + A2 + A3 = 1−m) ∼= F−2m.

Proof. The first part of the first statement follows from Equation 2. The second part follows
from the fact that the second component of L is braided about the first, which is unknotted,
combined with Martin’s braid axis detection result [24, Proposition 1].

The second and the third statements can be deduced as follows. Consider the skein exact
sequence [27, Equation 8] corresponding to resolving the highlighted crossing in Figure 1.
Here L2m is the positive resolution, the zero resolution is the torus knot T (2, 2m + 2) and
the negative resolution is T (2, 2m) connect sum a positive Hopf link.

Assume now that m ≥ 0. ĤFK(T (2, 2m)#H+) has maximal non-trivial Alexander grading

m+1. ĤFK(T (2, 2m+2)) has maximal non-trivial Alexander grading m+1. The generator
in Maslov grading m + 1 has Maslov grading 0. Following [27, Equation 8], let V be as in

Equation 3. We have that ĤFK(T (2, 2m + 2)) ⊗ V is rank one in the maximal non-trivial
Alexander grading, m + 2, with a generator of Maslov grading 1. Since the exact triangle
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from [27, Equation 8] respects Alexander gradings, it follows that ĤFK(L2m) is rank one in
maximal non-trivial Alexander grading m + 2. Indeed, it follows from the Maslov grading

shift formula that ĤFK(L2m) is supported in Maslov grading 1/2, which directly implies the
statement.

Assume now that m < 0. ĤFK(T (2, 2m)#H+) has maximal non-trivial Alexander grad-
ing 1 − m. The generator in Alexander grading 1 − m has Maslov grading −2m + 1

2
.

ĤFK(T (2, 2m + 2)) has maximal non-trivial Alexander grading −m − 1. Let V be as in

Equation 3. It follows that ĤFK(T (2, 2m + 2)) ⊗ V is rank one in the maximal non-trivial
Alexander grading, −m. Since the exact triangle from [27, Equation 8] respects Alexander

gradings, it follows that ĤFK(L2m) is rank one in maximal non-trivial Alexander grading

1 − m. Indeed, it follows from the Maslov grading shift formula that ĤFK(L2m; 1 − m) is
supported in Maslov grading −2m+ 1

2
, which directly implies the statement.

□

In the even case, the key step in the proof of Theorem 6.1 is the following:

Proposition 6.6. Suppose n is even. Suppose L is a link with ĤFL(L) ∼= ĤFL(L′
n). Then

L is isotopic to L′
m for some even m.

Proof. Suppose L is as in the statement of the proposition. Recall that the Conway poly-
nomial determines the co-factors of the symmetric matrix with entries given by li,j =
ℓk(Li, Lj) = q for i ̸= j, and li,i = −

∑
1≤j≤n,j ̸=i ℓk(Li, Lj). Since Link Floer homology

determines the Conway polynomial, Link Floer homology also determines the cofactors of
the given matrix. Observe that for Ln the co-factors of this matrix are 1 + 2n ̸= 0. Let
K1, K2 and K3 be the components of L. Suppose ℓk(K1, K2) = ℓk(K1, K3) = 0. Then the
co-factors of this matrix are zero. If follows that at least one of ℓk(K1, K2), ℓk(K1, K3) is
non-zero.

Consider ĤFL(L). The span of the A1 grading is [−1, 1]. It follows from Equation 2 that
either: K1 bounds a disk which intersects L−K1 twice geometrically or K1 bounds a genus
one surface which does not intersect L−K1. Since at least one of ℓk(K1, K2), ℓk(K1, K3) is
non-zero, it follows that K1 is an unknot bounding a disk which intersects L−K1 twice.

Now, ĤFL(L) is of rank 4 in the maximal A1 grading and the span of the A1 grading
is [−1, 1]. Suppose that L has reducible exterior. Then we can write L = L′ ⊔ L′′, where
K1 is a component of L′ and L′′ has a single component. The Künneth formula for the

split sum of two links tells us that 2 rank(ĤFL(L′′)) · rank(ĤFL(L′;A1 = 1)) = 4. It follows

that rank(ĤFL(L′′)) ≤ 2, so that L′′ is an unknot, U . However, the grading information of

ĤFL(Ln) implies that it is not of the form ĤFL(L′ ⊔ U) for any L′. This is a contradiction,
so L has an irreducible exterior.

Since L has irreducible exterior and K1 is fibered, applying [24, Proposition 1], we find
that K1 is a braid axis for L − K1. Indeed, we have that L − K1 is a two stranded braid
about K1, since there is a disk bounded by K1 which intersects L−K1 twice. It follows that
L is of the form Lm for some even m. □

It only remains to show the following:

Proposition 6.7. Let n and m be even. Suppose ĤFL(L′
n)

∼= ĤFL(L′
m). Then m = n.
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Proof. Fix m as in the statement of the Proposition. Suppose the braided components
of L′

m are oriented in parallel. By reversing the orientation of the braid axis component
we can arrange that the braided components of L′

m have positive linking number with the
first component – that is we can change L′

m to Lm. Suppose n is an even number with

ĤFL(L′
n)

∼= ĤFL(L′
m). Observe that after performing the same changes on L′

n as we did on

L′
m we obtain a link L′′

n and have that ĤFL(L′′
n)

∼= ĤFL(Lm). The result then follows from
Lemma 6.5.

Suppose the braided components of L′
m are not oriented in parallel. By reversing the

orientation of a braided component, we can arrange that the braided components of L′
m

have positive linking number with the braid axis component – that is we can change L′
m

to Lm. Suppose n is an even number with ĤFL(L′
n)

∼= ĤFL(L′
m). Observe that after

performing the same changes on L′
n as we did on L′

m we obtain a link L′′
n and have that

ĤFL(L′′
n)

∼= ĤFL(Lm). The result then follows from Lemma 6.5. □

Theorem 6.1 now follows immediately from the preceding lemmas and propositions.
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[28] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and topological invariants for closed three-

manifolds. Annals of Mathematics, pages 1027–1158, 2004.
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