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Abstract

The spatial organization of chromatin is fundamental to gene regulation and essential for
proper cellular function. The Hi-C technique remains the leading method for unraveling 3D
genome structures, but the limited availability of high-resolution Hi-C data poses significant
challenges for comprehensive analysis. Deep learning models have been developed to pre-
dict high-resolution Hi-C data from low-resolution counterparts. Early CNN-based models
improved resolution but struggled with issues like blurring and capturing fine details. In con-
trast, GAN-based methods encountered difficulties in maintaining diversity and generalization.
Additionally, most existing algorithms perform poorly in cross-cell line generalization, where
a model trained on one cell type is used to enhance high-resolution data in another cell type.
In this work, we propose DICARN (Dilated Cascading Residual Network) to overcome these
challenges and improve Hi-C data resolution. DiCARN leverages dilated convolutions and
cascading residuals to capture a broader context while preserving fine-grained genomic interac-
tions. Additionally, we incorporate DNase-seq data into our model, providing a robust frame-
work that demonstrates superior generalizability across cell lines in high-resolution Hi-C data
reconstruction. DICARN is publicly available at https://github.com/OluwadareLab/DiCARN
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1 Introduction

Chromosome Conformation Capture (3C) technology is a molecular method used to analyze the
spatial organization of chromatin in a cell (Lieberman-Aiden et al., 2009). The technology provides
insights into the three-dimensional (3D) architectural arrangement of chromosomes, allowing re-
searchers to study the physical interactions between DNA segments that may be separated by large
genomic distances along the linear genome. In recent genetics research, high-throughput chromo-
some conformation capture (Hi-C) has emerged as the preferred 3C technique for deciphering and
analyzing spatial genome organization within the eukaryotic cell nuclei. It is a genome-wide ap-
proach to the study of three-dimensional chromatin conformation inside the nucleus ((Lieberman-
Aiden et al., 2009)). Lately, Hi-C has been the trailblazer technique in the exploration and char-
acterization of genomic structural components, including A /B compartments, TADs (Dixon et al.,
2012), frequently interacting regions (FIREs) (Schmitt et al., 2016), stripes (Vian et al., 2018),
and enhancer-promoter interactions (Rao et al., 2014). Being a biochemical approach that allows
for an all-versus-all mapping of chromosomal and genome fragment interactions, Hi-C takes into
account the interaction between pair-read assays generated from a wet lab process, resulting in a
symmetric (n x n) contact matrix representation of the Interaction Frequencies (IF), where n is
the number of cells or evenly sized divisions of the genome called bins. The number indicated in
every matrix cell represents the count of paired-end reads across two bins. The sizes of these bins,
also known as ‘resolution,” habitually range from 1 kiloBase (KB) to 2.5 MegaBase (MB), whose
range hinges on the sequencing depth. The relevance of Hi-C data is spiking geometrically owing
to its practicability in elucidating the genome organization. (Oluwadare et al., 2019)

However, a critical challenge in this research domain, is the limited availability of the required
Hi-C resolution for exhaustive studies of genomic structures. This challenge has inspired the use

10

11

12

13

14

15

16

17

18

19

21

22

23


https://github.com/OluwadareLab/DiCARN

of Deep Learning (DL) models to predict the required high-resolution Hi-C data from the more
readily available low-resolution variants, sharing interest similarities with the Single-Image Super-
Resolution problem in the computer vision domain (He et al., 2016).

Zhang et al. (2018) pioneered high-resolution Hi-C data prediction with HiCPlus (Y. Zhang
et al., 2018), a CNN-based model inspired by SRCNN (Dong et al., 2014), which used a three-
layer CNN to impute high-resolution interaction frequencies. HiCNN (Liu and Z. Wang, 2019),
a bd-layer CNN was modeled after DRRN (Tai et al., 2017). Both methods laid the groundwork
for using CNNs in Hi-C enhancement, subsequent models focused on addressing challenges in
improving resolution and generalization. SRHiC (Z. Li and Dai, 2020) introduced a ResNet-based
approach (He et al., 2016) for Hi-C data enhancement, followed by the 2020 development of GAN-
based models like DeepHiC (Hong et al., 2020) and HiCSR (Dimmick, 2020), which improved
resolution enhancement by utilizing generator-discriminator networks. Later, HHCARN (Hicks and
Oluwadare, 2022) introduced a more efficient cascading GAN, while DFHiC (B. Wang et al., 2023)
advanced the field with a dilated full convolution network, preserving positional information and
addressing previous shortcomings.

Despite these improvements, challenges such as limited receptive fields, lack of global con-
text, and instabilities, particularly with mode collapse in GAN-based methods like HiCSR and
DeepHiC, persist. Mode collapse results from the generator’s failure to produce diverse, represen-
tative samples, leading to incomplete data reconstruction. Additionally, most existing approaches
have focused on architectural enhancements without integrating biologically relevant data, such
as chromatin accessibility data, that reveals the chromosomal regions actively involved in gene
regulation, which could provide more robust HR enhancement. In addition, existing algorithms
perform poorly for cross-cell line generalization, where a model is trained on one cell and used
for high-resolution enhancement of another cell. This limitation significantly affects the model’s
scalability and applicability in broader biological research, where variability across cell lines is
common.

In this work, we propose DiCARN (Dilated Cascading Residual Network), a novel approach to
overcoming these challenges. DICARN improves model stability by employing dilated convolutions
for a larger receptive field and incorporates chromatin accessibility data, enabling more accurate
and biologically meaningful Hi-C resolution enhancement.

2 Materials and Method

2.1 Architecture

Our proposed model, DICARN, implements a novel fusion of dilated convolutions, spatial self-
attention ((Vaswani et al., 2017; Q. Zhang et al., 2022)), and cascaded residual networks ((Ahn et
al., 2018)), with its visual outlay depicted in Figure 1.

2.1.1 Dilation

Typically, the kernels in a convolution are contiguous. Dilation follows the & trous algorithm, a
technique used to increase the receptive field of the convolution operation by spacing out the kernel
points without incrementing the number of parameters or the filter size ((X. Zhang et al., 2015)).
"Trous” is a French term for ”"with holes”, essentially describing the implementation of dilated
convolutions as the inclusion of gaps in the vanilla convolution operation.

k
@i:Zx[i—Fd*k]*w[kj] (1)

1
Equation 1 expresses this concept mathematically, where ¢; is the computed feature map, d is the
dilation rate, k denotes kernel size, w[k] symbolizes the kernel weights, and xz[i] signifies the input

feature map.

We use dilated convolution within the residual module (Figure 1B) of our cascading layers and
at the tail end of the entire network (Figure 1D) just before the final enhanced output is produced.

2.1.2 Spatial Self-Attention

One of the long-standing challenges contending with CNN-based methods is their mode of treating
all data point loci equally, thereby fostering redundancy in their computation of low-resolution
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Figure 1: The DiCARN architecture comprises four major components. A shows the self-attention
module that follows every instance of the cascading layer. B elucidates the residual module, which
includes two dilated 3x3 convolutions, a ReLU activation function, a skip connection, and the 1x1
convolution in the concluding part. C outlines the cascading layer, which encapsulates the residual
modules separated by 1x1 convolutions

features ((Q. Zhang et al., 2022), (Lu and X. Hu, 2022)). In our effort to redress this problem, we
adopt the spatial self-attention method of Transformers ((Vaswani et al., 2017)).

The adoption of the spatial self-attention mechanism in our method (Figure 1A) is geared
towards fostering a dynamic focus on different parts of the original LR feature map, ensuring a
dynamic ability to model complex spatial dependencies and enhancing its ability to capture vital
contextual information across spatial dimensions. More details are provided in Supplementary
Section S1.

Utilizing the spatial self-attention mechanism in our method fosters a dynamic focus on dif-
ferent parts of the original LR feature map, ensuring a dynamic ability to model complex spatial
dependencies and enhancing its ability to capture vital contextual information across spatial di-
mensions.

2.1.3 Cascading ResNet

DiCARN employs a serialized cascade (Figure 1C) of multiple Residual Network (ResNet) modules
(Ahn et al., 2018). Each residual module consists of two 3 x 3 convolutional layers, followed by
a ReLU activation function, and incorporates a skip connection, enabling the network to retain
information from earlier layers. This architectural design enhances the training process by mitigat-
ing issues such as vanishing gradients. Furthermore, feature representation is progressively refined
in each cascading layer, as outputs from successive residual modules are combined to enhance the
network’s overall performance.

2.2  Loss Function

The DiCARN model training employs the Mean Squared Error (MSE) loss function, leveraging
its effectiveness in minimizing the difference between predicted and target values. This choice also
ailms to ensure computational simplicity and an exclusive focus on error minimization between
predicted and observed Hi-C matrices. Equation 2 depicts the MSE, where m is the IF dimension,
P, and Qg are the ground truth and predicted IFs between distal loci a and b, respectively.

1
MSE = W Z (Pa,b - Qa,b)2 (2)

a,b
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2.8 Data and Preprocessing %

Our choice of Hi-C dataset is informed by the work of (Rao et al., 2014), which provides Hi-C o
data for several human cell types (K562, HMEC, NHEK, and GM12878), as well as the CHI2-LX 100
mouse cell line. All datasets are available in the NCBI GEO Accession Database under Accession 1n
ID: GSE63525. We trained our model using the GM12878 cell data, ensuring balance by excluding 10
the X and Y chromosomes to avoid sex-related biases. Following the random chromosome selection 103
method used in (Hicks and Oluwadare, 2022), validation was performed using chromosomes 2, 6, 10
10, and 12, while chromosomes 1 through 22, excluding chromosomes 4, 14, 16, and 20, were used 105
for training. These excluded chromosomes were later utilized across cell lines for testing our model. 106
For usability ease, all data used was split into small blocks of 40x40 dimensions. 107

2.4 Fvaluation Metrics 108

To ensure a fair comparison, we adopt the Structural Similarity Index Measure (SSIM) and the 10
Peak Signal-to-Noise Ratio (PSNR), the two favored computational metrics used in this research 1o
domain (Hong et al., 2020). We also used GenomeDISCO (Ursu et al., 2018) for our concordance
measure and HiCRep (Yang et al., 2017) for the assessment of biological reproducibility. The SSIM 12
between two images x and y is mathematically expressed as shown in Equation (3) where u, and w3
fty are the mean intensities of images 114

(2papy + C1)(200y + C2)
(12 + p2 + C1)(02 + 02 + Ca)

SSIM (z,y) = (3)

r and y, 02 and 05 are the variances of images x and y, 04, is the covariance of images z and s
y, C1 and Cy are stability constants. Equation (4) gives the mathematical representation of the 1
PSNR between two images. L is the maximum possible 17

L2
PSNR=10-1 — 4
SNR=10-logyy (1157 ) ¢
pixel value of the image (e.g., 255 for 8-bit images), while M SE is the Mean Squared Error between 1
the given images. 119
Equation 5 shows the mathematical derivation of the concordance score as proffered by GenomeDISGO.

S(Al,AQ) = 1 - D(Al’t,AQ’t) (5)

The concordance score given by this formula ranges between -1 and 1, where higher values 1z
signify greater similarity between the subject contact maps. Given two denoised contact maps Aq; 12
and Asy, the difference between them is calculated using the distance L; as shown in Equation 1
(6). 124

1
D(A14,Azy) = N Z |A1e (4, 7) — A2, (4, )| (6)
N

HiCRep, whose computation is presented in Equation (7) is the measure of the stratum-adjusted 12
correlation coefficient (SCC) where X and Y} are the contact frequencies contained in the stratum 12
k, cov(Xy,Yy) is the measure of covariance 127

S, cov(Xy, V)
VK var(X,) SR var(Y)

between X and Yy, var(Xy) and var(Y}) are the variances of X}, and Y within every stratum, K s

SCC = (7)

is the sum total of strata. 120
3 Results 0
3.1 Hyperparameter search 131

Our proposed model is hinged on three key hyperparameters. (1) Number of Cascading Layers: 1z
HiCARN (Hicks and Oluwadare, 2022) performed a detailed hyperparameter search to determine 13
the optimal number of cascading blocks in their work. They found that five cascading blocks 1
provided the optimal result. Hence, we adopted the same number of blocks. (2) Self-Attention: 13



To determine how to incorporate self-attention, we experimented with different configurations and
the application of self-attention in different layers of our cascade architecture. Our optimal model
was obtained by applying spatial self-attention to only the first two cascade blocks (Figure 1D), as
shown in Supplementary Table S1. (3) Dilation Rate: To determine the dilation rate, we performed
a hyperparameter search across dilation rates 2 to 5 and configurations. Our results show that
dilation rate of 2 - with a configuration involving two dilated convolutions in the residual block
as featured in Figure 1B and a dilated convolution stack at the end of the network, Figure 1D
produced the optimal result (Supplementary Tables S2 and S3).

3.2 Training, Validation, and Testing

In the training phase, we conduct a validation after every training epoch so that the progressive
performance of the model is accurately tracked and the optimally performing model weights are
saved accordingly. This validation performance is then benchmarked against existing state-of-
the-art methods (Figure 2). More results are presented in Supplementary Fig S1. The trainings
were done using the low-resolution (LR) Hi-C dataset downsampled from the 10kb high-resolution
variant made available in the GEO database accession number GSE63525. All models were trained
on an NVIDIA GeForce RTX 4090 GPU with 24GB of VRAM, and the system had 128GB of RAM.

SSIM Validation Scores

0.9
0.8
o 0.7
o
A
0.6 1
057 hicsr
DICARN
—— DFHIC
0 20 40 60 80 100

Epochs

Figure 2: Validation result for DICARN and state-of-the-art algorithms. Using the SSIM metric,
the DiCARN validation results are contrasted with two state-of-the-art methods, HiCSR and
DFHiC.

3.8 DiCARN Performance on Same Cell Line Data

HiCSR (Dimmick, 2020) and DFHiIiC (B. Wang et al., 2023) were selected for comparison with our
model due to their demonstrated efficacy in GAN-based and CNN-based Hi-C data enhancement
pipelines, respectively. After training our model on the 40kb low-resolution GM12878 Hi-C dataset,
DiCARN consistently outperformed state-of-the-art models in both computational efficiency and
biological benchmarks when tested on previously unseen GM12878 chromosomes. As shown in
Table I, DICARN’s same-cell prediction results exhibit superior performance relative to existing
models. Additionally, we evaluated the model’s performance using a 1/64 downsample ratio, with
the corresponding results provided in Supplementary Table S4. The training time and peak memory
usage of the examined models are documented in Supplementary Figures S6 and S7, respectively.

3.4 DiCARN Generalizability Test Across Unseen Cell Lines

Having trained the models on GM12878 cell type data only, we show in Table IT that DICARN
generalizes better than existing state-of-the-art methods on the Lymphoblast cell line (K562), the
Mammary Epithelial cell line (HMEC), and the human Epidermal Keratinocytes cell line (NHEK).
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Table I: DICARN is benchmarked against existing methods based on same-cell GM12878 data with
a downsampling ratio of 1/16 and it shows the highest performance on Average.
Metrics Method | Chr 4 | Chr 14 | Chr 16 | Chr 20 | Average
HiCSR 0.93 0.9101 0.908 0.9086 0.9142
SSIM DFHiC 0.9292 0.9093 0.9055 0.9074 0.9129
DiCARN | 0.9315 0.912 0.9111 0.9097 0.9161
HiCSR | 36.8908 | 35.446 | 33.9085 | 34.9226 35.292
PSNR DFHIiC | 36.7807 | 35.3461 33.609 34.7944 35.1326
DiCARN | 36.9576 | 35.4686 | 33.9062 | 34.9067 | 35.3098
HiCSR 0.9146 0.9219 0.904 0.9256 0.9165
Genome Disco | DFHiC 0.9151 0.922 0.9045 0.9253 0.9167
DiCARN | 0.9175 0.9243 0.9073 0.9273 0.9191
HiCSR 0.9179 0.8932 0.9408 0.8621 0.9035
HiCRep DFHiC 0.9178 0.8928 0.9406 0.862 0.9033
DiCARN | 0.9188 0.8928 0.9409 0.8622 0.9037

The experiment in this phase is based on the 1/16 ratio downsampled datasets for training and
testing. The results maintain that DICARN retains superior potential to generalize to unseen cell
lines. We also present a visualization comparison of the corresponding structure similarity index
measure for chromosomes 4, 14, and 20 for the different algorithms in Figure 3 .

chr4 chri4 chr 20

Ground Truth

LR

DICARN
SSIM:0.9315 SsiM: 0.912 SSIM: 0.9097

HiCSR
S0 ssm;o.mﬁi P SSIM: 0.9086

DEHIC

SSIM: 0.9292 S5IM: 0.9093 SSIM: 0.9074

Figure 3: Heatmap visualization of the cross-cell enhancement results for DICARN in comparison
with state-of-the-art models (HiCSR and DFHiC) on chromosomes 4, 14, and 20 of the K562 cell
line.



Table II: Performance benchmarking of state-of-the-art methods in contrast with DICARN across
unseen cell lines using average scores on test data. The results suggest that DICARN retains its
ability to restore the fidelity of in silico Hi-C data from unseen cell lines.
Cell Line | Method | SSIM | PSNR MSE
HiCSR 0.9485 | 34.7512 | 0.0003
K562 DFHiC 0.9472 | 34.1669 | 0.0003
DiCARN | 0.9498 | 35.2087 | 0.0003
HiCSR 0.9748 | 35.2839 | 0.0002
HMEC DFHiC 0.9737 | 34.7582 | 0.0003
DiCARN | 0.9757 | 35.2237 | 0.0002
HiCSR 0.9721 35.093 | 0.0002
NHEK DFHiC 0.9705 | 34.0983 | 0.0003
DiCARN | 0.9739 | 35.4481 | 0.0002

3.5  Enhancing Generalizability with Chromatin Accessibility Data from DNase-seq
3.5.1 3.5.1. Chromatin Accessibility - DNase-seq Data

DNase-seq data denotes cell-type-specific chromatin accessibility and is a crucial marker in assessing
3D spatial organization due to its unique association with genomic regulatory elements (Yueqi Qiu
et al., 2023). A recent application of chromatin accessibility data by Wang et al. (H. Wang et al.,
2022) proposed a linear regression model to impute 3D distances between loci using DNase-seq
data, thereby enhancing high-resolution 3D genome reconstruction accuracy.

Building upon this, we propose a novel approach for high-resolution Hi-C enhancement that
leverages DNase-seq data to address the limitations of conventional Hi-C enhancement algorithms.
We derive interaction frequencies (IF) from the DNase-seq and ultimately utilize this data to
augment our training set and improve the generalizability of our model. The IF derived from
DNase-seq is cell-type specific and is expected to enable accurate predictions across different bio-
logical contexts.

To calculate asynchronous interaction frequencies from DNase-seq, we employ a linear regression
model, as shown in Equation (8) (H. Wang et al., 2022).

€pl = a1 Ry + asR; + Oéng,l (8)

Our DNase-based IF imputation procedure, which enhances the resolution of 3D genomic maps,
begins with the normalization of raw Hi-C interaction counts using Knight-Ruiz (KR) normaliza-
tion to produce a normalized interaction frequency matrix. This matrix is then symmetrized to
maintain consistency, and a Pairwise Distance (PD) matrix is generated to reflect spatial prox-
imities among genomic loci. Due to the size of the interaction matrices, we fragment the data
into manageable chunks, mapping each chunk to the corresponding DNase-seq signal using bed-
tools ((Quinlan and Hall, 2010)), thereby aligning chromatin accessibility data with the genomic
coordinates. The DNase signal across each fragment is averaged to provide a summary measure
of chromatin accessibility for each genomic region. Using these genomic distances and DNase
signals as input, we predict distances using the pre-trained model defined in Equation (8) where
€x,; represents the predicted interaction frequency between fragments k and !, R;, and R; denote
the DNase-seq signal levels for fragments k and I, Dy is the 1D genomic distance between these
fragments, while aq, s, and ag are fitting parameters derived from imputed 3D distances ((H.
Wang et al., 2022)). Subsequently, the imputed distances are converted into interaction frequencies
(Lieberman-Aiden et al., 2009). The final reassembly process involves combining these IF matrix
fragments into a complete matrix for the chromosome, followed by a KR normalization to ensure
consistency with the original Hi-C data. Ultimately, this process produces a DNase-inferred IF
matrix that supplements Hi-C data to refine resolution and improve interpretability across diverse
cell types.

3.5.2 Improving Generalizability Across Unseen Cell Lines with DNase-seq Data

To further enhance the generalizability of our model, we incorporate DNase-inferred IF data into
the existing training dataset through a targeted data augmentation strategy intended to bolster
the model’s predictive capacity across various cell lines. This strategy is explored in two configu-
rations. In the target DNase scenario, DNase-imputed interaction frequency data from the target
cell line’s test chromosomes is appended to the original Hi-C training dataset, after which the
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augmented dataset is used to retrain the DICARN model. This model is called DICARN-DNase-
T(Supplementary Fig. S2). Specifically, these chromosomes correspond to those downsampled for
testing. We hypothesize that DNase-seq inferred IF data from the target cell type provides valuable
insights into Hi-C interactions, facilitating enhanced model generalizability across varying biological
contexts.

The source DNase scenario, on the other hand, utilizes DNase-inferred IF data from the source
cell type’s training chromosomes and adds it to the source dataset for training. This model is called
DiCARN-DNase-S (Supplementary Fig. S3). We hypothesize that including source DNase-based
data not only augments the training set but also endows the model with a deeper understanding of
chromatin dynamics beyond the source cell type.

In this study, the source dataset is the GM12878 Hi-C dataset, and the target cell is the cell
line on which we are testing the generalization.

Given that DNase data is expected to improve biological reproducibility, we evaluate our
model’s performance using Hi-C analysis metrics the Stratum-adjusted Correlation Coefficient
(SCC) through HiCRep, and the concordance score by GenomeDISCO. These metrics provide
more biologically significant analysis measures compared to standard image evaluation metrics.

3.6 DiCARN-DNase: Enhancing DiCARN with DNase-seq for Cross-Cell Line
Generalization

Table IIT highlights the HiCRep scores obtained for both configurations (DiICARN-DNase-T and

DiCARN-DNase-S), where we demonstrate that at least one implementation of the DNase-augmented

models outperforms the vanilla DICARN model. Additionally, the results indicate that both aug-
mentation strategies are viable, as each shows improvement over the vanilla model labelled Di-
CARN in at least one instance, thereby supporting our hypothesis. Our study also shows that
there is no clear preference for one over the other as they could be viable options for both. The
GenomeDISCO scores are presented in Supplementary Table S5 and Fig. S4.

Table IIT: HiICRep Average Score Comparison of DICARN and its DNase-based variants on 1/16

downsampled K562 Cell Line dataset.

Cell Method Chr 4 |Chr 14 |[Chr 16 [Chr 20 |Avg
DiCARN 0.893 |0.8466 |0.9354 |0.8478 |0.8807
K562 |DiCARN-DNase-S [0.8914 |0.8452 [0.9334 [0.8469 |0.8792
DiCARN-DNase-T [0.8931 |0.8466 |0.9417 |0.8465 |0.884
DiCARN 0.7302 |0.7794 |0.8193 |0.6986 |0.7570
HMEC |DiCARN-DNase-S |0.7181 [0.7716 [0.8140 [0.6923 [0.7490
DiCARN-DNase-T [0.7223 |0.7752 |0.8187 [0.7132 |0.7574
DiCARN 0.8161 |0.8158 |0.8493 |0.7217 |0.8007
NHEK |DiCARN-DNase-S [0.8172 |0.8153 |0.8482 [0.7293 |0.8012
DiCARN-DNase-T |0.8195 |0.8196 [0.8516 |0.7312 |0.8055

3.7 Enhancing Generalizability of State-of-the-art Models with DNase-seq Data

Following the enhancement capability boost recorded by DiCARN when influenced by the IF
imputed from the DNase-seq data, we proceeded to appropriate this data augmentation innovation
to some existing models in the Hi-C resolution enhancement research domain, including HiCSR
(Dimmick, 2020), HICARN (Hicks and Oluwadare, 2022), HICNN(Liu and Z. Wang, 2019), and
DFHiC (B. Wang et al., 2023) to test the generalizability of the DNase idea to other models. From
the HiCRep results presented in Table IV, it is observed that the data augmentation approach
worked in ten of twelve scenarios. More results are provided in Supplementary Table S6 and Fig.
S5. Tt is also observed that the DFHiC was the base method in the two instances where the approach
was challenged. However, the majority of results obtained from the test for applicability to other
methods established the proposition that the fusion of DNase with in silico LR GM12878 Hi-C
data improves the cell-to-cell Hi-C reproducibility capabilities of deep learning-based methods.
This exception leads us to believe that the data augmentation might be sensitive to the algorithm
of the method.

3.8 3.8. DiCARN-DNase: Leading Performance in Hi-C Data Enhancement Across
Cell Lines

The integration of DNase-seq data significantly enhances the performance of both our model and
existing algorithms. To assess the overall performance of the algorithms (including both vanilla
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Table IV: Using HiCRep for reproducibility assessment, we show the performance scores of the
DNase-based data augmentation approach for four existing DL methods across three cell lines.
Each vanilla method is contrasted with its corresponding Target DNase (e.g. HiCSR-DNase-T)
and Source DNase (e.g. HICSR-DNase-S) variants. We observe that the majority of the test cases
support the DNase proposition.

Cell Method Chr 4 |Chr 14|Chr 16|Chr 20|Avg
HiCSR 0.8913 |0.8444 [0.9304 |0.8414 |0.8769
HiCSR-DNase-S 0.8929 [0.8469 |0.9295 |0.8444 |0.8784
HiCSR-DNase-T  |0.8923 |0.8445 [0.9304 |0.8441 |0.8778
DFHiC 0.8905 |0.8423 [0.9338 [0.8424 (0.8773
DFHiC-DNase-S  |0.8903 [0.8424 |0.9256 [0.8333 |0.8729

K562 DFHiC-DNase-T  |0.8869 [0.8398 |0.9307 [0.8367 |0.8735
HiCARN 0.8928 |0.8444 |0.9375 |0.8496 |0.8811
HiCARN-DNase-S |0.8968 [0.8482 |0.9289 [0.8571 |0.8828
HiCARN-DNase-T |0.8913 [0.8424 |0.9324 |0.849 |0.8788
HiCNN 0.8956 |0.8477 [0.9257 |0.8378 |0.8767
HiCNN-DNase-S  [0.8946 |0.8478 [0.941 |0.8538 [0.8843
HiCNN-DNase-T [0.8903 |0.8434 [0.9359 |0.847 [0.8792
HiCSR 0.7296 |0.7793 [0.8201 |0.6998 |0.7572
HiCSR-DNase-S 0.7223 |0.7734 |0.8155 [0.6935 [0.7512
HiCSR-DNase-T  |0.74 0.7734 |0.8554 10.694 |0.7657
DFHiC 0.7328 |0.7775 [0.8212 [0.6997 |0.7578
DFHiC-DNase-S  |0.7244 |0.7791 |0.8257 [0.705 |0.7586

HMEC DFHiC-DNase-T  |0.738 |0.7844 |0.8244 [0.7019 |0.7622
HiCARN 0.7269 0.776 |0.8191 [0.6947 [0.7542
HiCARN-DNase-S [0.7192 |0.7693 |0.8143 |0.6926 |0.7498
HiCARN-DNase-T [0.7312 |0.7796 [0.8218 |0.7012 [0.7585
HiCNN 0.7182 |0.7711 |0.8144 |0.6952 |0.7497
HiCNN-DNase-S  |0.7182 |0.7719 |0.815 [0.6966 |0.7504
HiCNN-DNase-T [0.7257 |0.7762 [0.8163 |0.6957 [0.7535
HiCSR 0.8165 |0.8152 [0.8498 |0.7242 |0.8014
HiCSR-DNase-S 0.8191 |0.8169 [0.8509 [0.7282 |0.8038
HiCSR-DNase-T  |0.8194 |0.817 |0.8509 [0.7283 |0.8039
DFHiC 0.8168 |0.8167 [0.8504 [0.7239 [0.8029
DFHiC-DNase-S  |0.8121 [0.8126 |0.8469 [0.7189 |0.7976

NHEK DFHiC-DNase-T  |0.8131 [0.8152 |0.8487 |0.7177 |0.7987
HiCARN 0.8157 |0.8136 [0.8462 [0.7229 |0.7996
HiCARN-DNase-S |0.8123 [0.8083 |0.8405 [0.7246 |0.7964
HiCARN-DNase-T [0.8186 |0.8163 |0.8494 [0.7266 |0.8027
HiCNN 0.82 0.8159 |0.8 0.73 0.7915
HiCNN-DNase-S  [0.8223 |0.8183 |0.841 [0.73 0.8029
HiCNN-DNase-T |0.8089 [0.806 |0.8392 |0.717 |0.7928

and DNase-augmented variants) across different cell lines, we constructed a ranking table based
on HiCRep scores, which measure consistency across three cell lines using the average results
from four test chromosomes. The scores for DICARN are presented in Table 111, while the results
for the other four algorithms are provided in Table IV . As shown in the ranking table (Table
V), the DICARN models demonstrated superior performance, achieving an average rank of 2.3.
Specifically, DICARN ranked first for NHEK, second for K562, and fourth for HMEC, indicating
a high degree of generalizability across cell lines, based on the HiCRep scores.

3.9 3.9. Benchmark on 3D Genome Reconstruction and TAD Detection

The ability of the data from these models to recover Topologically Associating Domains (TADs)
plays a critical role in exploring functional genomics and regulating gene expression by controlling
enhancer-promoter interactions (Dixon et al., 2012) and also plays an important role towards
usefulness. In this study, we employed TopDom (Shin et al., 2016) to detect TADs from region
60Kb to 2.45Mb region of K562 cell line chromosome 14 using the imputed Hi-C data and the
ground truth data. We assessed their concordance through the Measure of Concordance (MoC)
metric (Higgins et al., 2022). A higher MoC score is better. The results indicate that the DNase-
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Figure 4: The TAD recovery assessment of the Baseline algorithm (Vanilla) compared versus the
DNase-based variants. We used the 60Kb to 2.45Mb region of the chrl4 in the K562 cell line for
this procedure. The procedure was also executed across other methods to show their TAD recovery
abilities. The heatmaps are tagged with their corresponding MoCs to show the improvement of
the DNase-based models on the vanilla variants.

Gr. Truth vs DICARN Gr. Truth vs DiCARN-DNase-S  Gr. Truth vs DICARN-DNase-T

K562
SCC:0.7021 SCC: 0.7095
NHEK 8 @
J J v
SCC:0.5069 SCC:0.4734 SCC: 0.547
> ) Q1
A )& ~
HMEC —J
& < “
Y 7y ’y
SCC:0.572 SCC:0.5703 SCC: 0.6084

Figure 5: Evaluation of Groundtruth consistency with output from DiCARN variants for chromo-
some 20 of the K562 cell line using the 300MB to 350MB region. Reconstructed 3D structures for
DNase-based DiCARN records more consistency based on the SCC scores than its vanilla variant.

based variants for most algorithms closely match the ground truth, underscoring the impact of
DNase-seq data on enhancing Hi-C data (Figure 4).

Furthermore, we evaluated the structural similarity of the 3D genome reconstructed from both
the imputed and ground truth data. Using 3DMax (Oluwadare et al., 2018), we reconstructed
structures for region 300Mb to 350Mb of K562 cell line chromosome 20 and compared them via the
Spearman Correlation Coefficient (Figure 5). The results demonstrate that the DNase-augmented
DiCARN model showed greater concordance with the ground truth than the vanilla DICARN
model. Overall, these findings affirm the potency of DNase-seq augmentation in the prediction
accuracy of 3D genomic structures.

4 Conclusion

In this study, we introduce DiCARN, an attention-based Dilated Cascading ResNet model for the
recovery of high-resolution Hi-C data necessary for biological and computational exploits of genomic
structures. Eminently, our study pivots on the introduction of a novel approach involving distal
inferences from the chromatin accessibility DNase data of human cell lines for the augmentation
of LR interaction frequency data. The practicality of this innovation was tested and established
using biological reproducibility and structural similarity metrics. It is important to note that the
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Table V: Comparative Performance Rankings of DICARN and Other Models Across Cell Lines. The
number represent rank in terms of performance where a lower number indicates better performance
(e.g., a ranking of 1 is better than 5)

Cell DiCARN | HiCSR| HiCARN | DFHiC| HiCNN
K562 2 4 3 ) 1
HMEC 4 1 3 2 5
NHEK 1 4 5 2 2
Avg 2.3* 3 3.66 3 2.66**

inclusion of DNase-seq data has been universally beneficial across all models, including existing
state-of-the-art models This study emphasizes how the use of DNase-seq data has elevated the
performance of both our model and others.
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available in the GEO Accession Database via GEO code GSE63525.
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