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Abstract

The spatial organization of chromatin is fundamental to gene regulation and essential for
proper cellular function. The Hi-C technique remains the leading method for unraveling 3D
genome structures, but the limited availability of high-resolution Hi-C data poses significant
challenges for comprehensive analysis. Deep learning models have been developed to pre-
dict high-resolution Hi-C data from low-resolution counterparts. Early CNN-based models
improved resolution but struggled with issues like blurring and capturing fine details. In con-
trast, GAN-based methods encountered difficulties in maintaining diversity and generalization.
Additionally, most existing algorithms perform poorly in cross-cell line generalization, where
a model trained on one cell type is used to enhance high-resolution data in another cell type.
In this work, we propose DiCARN (Dilated Cascading Residual Network) to overcome these
challenges and improve Hi-C data resolution. DiCARN leverages dilated convolutions and
cascading residuals to capture a broader context while preserving fine-grained genomic interac-
tions. Additionally, we incorporate DNase-seq data into our model, providing a robust frame-
work that demonstrates superior generalizability across cell lines in high-resolution Hi-C data
reconstruction. DiCARN is publicly available at https://github.com/OluwadareLab/DiCARN
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1 Introduction 1

Chromosome Conformation Capture (3C) technology is a molecular method used to analyze the 2

spatial organization of chromatin in a cell (Lieberman-Aiden et al., 2009). The technology provides 3

insights into the three-dimensional (3D) architectural arrangement of chromosomes, allowing re- 4

searchers to study the physical interactions between DNA segments that may be separated by large 5

genomic distances along the linear genome. In recent genetics research, high-throughput chromo- 6

some conformation capture (Hi-C) has emerged as the preferred 3C technique for deciphering and 7

analyzing spatial genome organization within the eukaryotic cell nuclei. It is a genome-wide ap- 8

proach to the study of three-dimensional chromatin conformation inside the nucleus ((Lieberman- 9

Aiden et al., 2009)). Lately, Hi-C has been the trailblazer technique in the exploration and char- 10

acterization of genomic structural components, including A/B compartments, TADs (Dixon et al., 11

2012), frequently interacting regions (FIREs) (Schmitt et al., 2016), stripes (Vian et al., 2018), 12

and enhancer-promoter interactions (Rao et al., 2014). Being a biochemical approach that allows 13

for an all-versus-all mapping of chromosomal and genome fragment interactions, Hi-C takes into 14

account the interaction between pair-read assays generated from a wet lab process, resulting in a 15

symmetric (n x n) contact matrix representation of the Interaction Frequencies (IF), where n is 16

the number of cells or evenly sized divisions of the genome called bins. The number indicated in 17

every matrix cell represents the count of paired-end reads across two bins. The sizes of these bins, 18

also known as ‘resolution,’ habitually range from 1 kiloBase (KB) to 2.5 MegaBase (MB), whose 19

range hinges on the sequencing depth. The relevance of Hi-C data is spiking geometrically owing 20

to its practicability in elucidating the genome organization. (Oluwadare et al., 2019) 21

However, a critical challenge in this research domain, is the limited availability of the required 22

Hi-C resolution for exhaustive studies of genomic structures. This challenge has inspired the use 23
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of Deep Learning (DL) models to predict the required high-resolution Hi-C data from the more 24

readily available low-resolution variants, sharing interest similarities with the Single-Image Super- 25

Resolution problem in the computer vision domain (He et al., 2016). 26

Zhang et al. (2018) pioneered high-resolution Hi-C data prediction with HiCPlus (Y. Zhang 27

et al., 2018), a CNN-based model inspired by SRCNN (Dong et al., 2014), which used a three- 28

layer CNN to impute high-resolution interaction frequencies. HiCNN (Liu and Z. Wang, 2019), 29

a 54-layer CNN was modeled after DRRN (Tai et al., 2017). Both methods laid the groundwork 30

for using CNNs in Hi-C enhancement, subsequent models focused on addressing challenges in 31

improving resolution and generalization. SRHiC (Z. Li and Dai, 2020) introduced a ResNet-based 32

approach (He et al., 2016) for Hi-C data enhancement, followed by the 2020 development of GAN- 33

based models like DeepHiC (Hong et al., 2020) and HiCSR (Dimmick, 2020), which improved 34

resolution enhancement by utilizing generator-discriminator networks. Later, HiCARN (Hicks and 35

Oluwadare, 2022) introduced a more efficient cascading GAN, while DFHiC (B. Wang et al., 2023) 36

advanced the field with a dilated full convolution network, preserving positional information and 37

addressing previous shortcomings. 38

Despite these improvements, challenges such as limited receptive fields, lack of global con- 39

text, and instabilities, particularly with mode collapse in GAN-based methods like HiCSR and 40

DeepHiC, persist. Mode collapse results from the generator’s failure to produce diverse, represen- 41

tative samples, leading to incomplete data reconstruction. Additionally, most existing approaches 42

have focused on architectural enhancements without integrating biologically relevant data, such 43

as chromatin accessibility data, that reveals the chromosomal regions actively involved in gene 44

regulation, which could provide more robust HR enhancement. In addition, existing algorithms 45

perform poorly for cross-cell line generalization, where a model is trained on one cell and used 46

for high-resolution enhancement of another cell. This limitation significantly affects the model’s 47

scalability and applicability in broader biological research, where variability across cell lines is 48

common. 49

In this work, we propose DiCARN (Dilated Cascading Residual Network), a novel approach to 50

overcoming these challenges. DiCARN improves model stability by employing dilated convolutions 51

for a larger receptive field and incorporates chromatin accessibility data, enabling more accurate 52

and biologically meaningful Hi-C resolution enhancement. 53

2 Materials and Method 54

2.1 Architecture 55

Our proposed model, DiCARN, implements a novel fusion of dilated convolutions, spatial self- 56

attention ((Vaswani et al., 2017; Q. Zhang et al., 2022)), and cascaded residual networks ((Ahn et 57

al., 2018)), with its visual outlay depicted in Figure 1. 58

2.1.1 Dilation 59

Typically, the kernels in a convolution are contiguous. Dilation follows the à trous algorithm, a 60

technique used to increase the receptive field of the convolution operation by spacing out the kernel 61

points without incrementing the number of parameters or the filter size ((X. Zhang et al., 2015)). 62

”Trous” is a French term for ”with holes”, essentially describing the implementation of dilated 63

convolutions as the inclusion of gaps in the vanilla convolution operation. 64

φi =
k∑
1

x[i+ d ∗ k] ∗ w[k] (1)

Equation 1 expresses this concept mathematically, where φi is the computed feature map, d is the 65

dilation rate, k denotes kernel size, w[k] symbolizes the kernel weights, and x[i] signifies the input 66

feature map. 67

We use dilated convolution within the residual module (Figure 1B) of our cascading layers and 68

at the tail end of the entire network (Figure 1D) just before the final enhanced output is produced. 69

2.1.2 Spatial Self-Attention 70

One of the long-standing challenges contending with CNN-based methods is their mode of treating 71

all data point loci equally, thereby fostering redundancy in their computation of low-resolution 72
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Figure 1: The DiCARN architecture comprises four major components. A shows the self-attention
module that follows every instance of the cascading layer. B elucidates the residual module, which
includes two dilated 3x3 convolutions, a ReLU activation function, a skip connection, and the 1x1
convolution in the concluding part. C outlines the cascading layer, which encapsulates the residual
modules separated by 1x1 convolutions

features ((Q. Zhang et al., 2022), (Lu and X. Hu, 2022)). In our effort to redress this problem, we 73

adopt the spatial self-attention method of Transformers ((Vaswani et al., 2017)). 74

The adoption of the spatial self-attention mechanism in our method (Figure 1A) is geared 75

towards fostering a dynamic focus on different parts of the original LR feature map, ensuring a 76

dynamic ability to model complex spatial dependencies and enhancing its ability to capture vital 77

contextual information across spatial dimensions. More details are provided in Supplementary 78

Section S1. 79

Utilizing the spatial self-attention mechanism in our method fosters a dynamic focus on dif- 80

ferent parts of the original LR feature map, ensuring a dynamic ability to model complex spatial 81

dependencies and enhancing its ability to capture vital contextual information across spatial di- 82

mensions. 83

2.1.3 Cascading ResNet 84

DiCARN employs a serialized cascade (Figure 1C) of multiple Residual Network (ResNet) modules 85

(Ahn et al., 2018). Each residual module consists of two 3 × 3 convolutional layers, followed by 86

a ReLU activation function, and incorporates a skip connection, enabling the network to retain 87

information from earlier layers. This architectural design enhances the training process by mitigat- 88

ing issues such as vanishing gradients. Furthermore, feature representation is progressively refined 89

in each cascading layer, as outputs from successive residual modules are combined to enhance the 90

network’s overall performance. 91

2.2 Loss Function 92

The DiCARN model training employs the Mean Squared Error (MSE) loss function, leveraging 93

its effectiveness in minimizing the difference between predicted and target values. This choice also 94

aims to ensure computational simplicity and an exclusive focus on error minimization between 95

predicted and observed Hi-C matrices. Equation 2 depicts the MSE, where m is the IF dimension, 96

Pa,b and Qa,b are the ground truth and predicted IFs between distal loci a and b, respectively. 97

MSE =
1

m2

∑
a,b

(Pa,b −Qa,b)
2

(2)
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2.3 Data and Preprocessing 98

Our choice of Hi-C dataset is informed by the work of (Rao et al., 2014), which provides Hi-C 99

data for several human cell types (K562, HMEC, NHEK, and GM12878), as well as the CH12-LX 100

mouse cell line. All datasets are available in the NCBI GEO Accession Database under Accession 101

ID: GSE63525. We trained our model using the GM12878 cell data, ensuring balance by excluding 102

the X and Y chromosomes to avoid sex-related biases. Following the random chromosome selection 103

method used in (Hicks and Oluwadare, 2022), validation was performed using chromosomes 2, 6, 104

10, and 12, while chromosomes 1 through 22, excluding chromosomes 4, 14, 16, and 20, were used 105

for training. These excluded chromosomes were later utilized across cell lines for testing our model. 106

For usability ease, all data used was split into small blocks of 40x40 dimensions. 107

2.4 Evaluation Metrics 108

To ensure a fair comparison, we adopt the Structural Similarity Index Measure (SSIM) and the 109

Peak Signal-to-Noise Ratio (PSNR), the two favored computational metrics used in this research 110

domain (Hong et al., 2020). We also used GenomeDISCO (Ursu et al., 2018) for our concordance 111

measure and HiCRep (Yang et al., 2017) for the assessment of biological reproducibility. The SSIM 112

between two images x and y is mathematically expressed as shown in Equation (3) where µx and 113

µy are the mean intensities of images 114

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3)

x and y, σ2
x and σ2

y are the variances of images x and y, σxy is the covariance of images x and 115

y, C1 and C2 are stability constants. Equation (4) gives the mathematical representation of the 116

PSNR between two images. L is the maximum possible 117

PSNR = 10 · log10
(

L2

MSE

)
(4)

pixel value of the image (e.g., 255 for 8-bit images), while MSE is the Mean Squared Error between 118

the given images. 119

Equation 5 shows the mathematical derivation of the concordance score as proffered by GenomeDISCO.120

S(A1, A2) = 1−D(A1,t, A2,t) (5)

The concordance score given by this formula ranges between -1 and 1, where higher values 121

signify greater similarity between the subject contact maps. Given two denoised contact maps A1,t 122

and A2,t, the difference between them is calculated using the distance L1 as shown in Equation 123

(6). 124

D(A1,t, A2,t) =
1

N

∑
i,j

|A1,t(i, j)−A2,t(i, j)| (6)

HiCRep, whose computation is presented in Equation (7) is the measure of the stratum-adjusted 125

correlation coefficient (SCC) where Xk and Yk are the contact frequencies contained in the stratum 126

k, cov(Xk, Yk) is the measure of covariance 127

SCC =

∑K
k=1 cov(Xk, Yk)√∑K

k=1 var(Xk)
∑K

k=1 var(Yk)
(7)

between Xk and Yk, var(Xk) and var(Yk) are the variances of Xk and Yk within every stratum, K 128

is the sum total of strata. 129

3 Results 130

3.1 Hyperparameter search 131

Our proposed model is hinged on three key hyperparameters. (1) Number of Cascading Layers: 132

HiCARN (Hicks and Oluwadare, 2022) performed a detailed hyperparameter search to determine 133

the optimal number of cascading blocks in their work. They found that five cascading blocks 134

provided the optimal result. Hence, we adopted the same number of blocks. (2) Self-Attention: 135
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To determine how to incorporate self-attention, we experimented with different configurations and 136

the application of self-attention in different layers of our cascade architecture. Our optimal model 137

was obtained by applying spatial self-attention to only the first two cascade blocks (Figure 1D), as 138

shown in Supplementary Table S1. (3) Dilation Rate: To determine the dilation rate, we performed 139

a hyperparameter search across dilation rates 2 to 5 and configurations. Our results show that 140

dilation rate of 2 - with a configuration involving two dilated convolutions in the residual block 141

as featured in Figure 1B and a dilated convolution stack at the end of the network, Figure 1D 142

produced the optimal result (Supplementary Tables S2 and S3). 143

3.2 Training, Validation, and Testing 144

In the training phase, we conduct a validation after every training epoch so that the progressive 145

performance of the model is accurately tracked and the optimally performing model weights are 146

saved accordingly. This validation performance is then benchmarked against existing state-of- 147

the-art methods (Figure 2). More results are presented in Supplementary Fig S1. The trainings 148

were done using the low-resolution (LR) Hi-C dataset downsampled from the 10kb high-resolution 149

variant made available in the GEO database accession number GSE63525. All models were trained 150

on an NVIDIA GeForce RTX 4090 GPU with 24GB of VRAM, and the system had 128GB of RAM. 151

Figure 2: Validation result for DiCARN and state-of-the-art algorithms. Using the SSIM metric,
the DiCARN validation results are contrasted with two state-of-the-art methods, HiCSR and
DFHiC.

3.3 DiCARN Performance on Same Cell Line Data 152

HiCSR (Dimmick, 2020) and DFHiC (B. Wang et al., 2023) were selected for comparison with our 153

model due to their demonstrated efficacy in GAN-based and CNN-based Hi-C data enhancement 154

pipelines, respectively. After training our model on the 40kb low-resolution GM12878 Hi-C dataset, 155

DiCARN consistently outperformed state-of-the-art models in both computational efficiency and 156

biological benchmarks when tested on previously unseen GM12878 chromosomes. As shown in 157

Table I, DiCARN’s same-cell prediction results exhibit superior performance relative to existing 158

models. Additionally, we evaluated the model’s performance using a 1/64 downsample ratio, with 159

the corresponding results provided in Supplementary Table S4. The training time and peak memory 160

usage of the examined models are documented in Supplementary Figures S6 and S7, respectively. 161

3.4 DiCARN Generalizability Test Across Unseen Cell Lines 162

Having trained the models on GM12878 cell type data only, we show in Table II that DiCARN 163

generalizes better than existing state-of-the-art methods on the Lymphoblast cell line (K562), the 164

Mammary Epithelial cell line (HMEC), and the human Epidermal Keratinocytes cell line (NHEK). 165
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Table I: DiCARN is benchmarked against existing methods based on same-cell GM12878 data with
a downsampling ratio of 1/16 and it shows the highest performance on Average.

Metrics Method Chr 4 Chr 14 Chr 16 Chr 20 Average

SSIM
HiCSR 0.93 0.9101 0.908 0.9086 0.9142
DFHiC 0.9292 0.9093 0.9055 0.9074 0.9129
DiCARN 0.9315 0.912 0.9111 0.9097 0.9161

PSNR
HiCSR 36.8908 35.446 33.9085 34.9226 35.292
DFHiC 36.7807 35.3461 33.609 34.7944 35.1326
DiCARN 36.9576 35.4686 33.9062 34.9067 35.3098

Genome Disco
HiCSR 0.9146 0.9219 0.904 0.9256 0.9165
DFHiC 0.9151 0.922 0.9045 0.9253 0.9167
DiCARN 0.9175 0.9243 0.9073 0.9273 0.9191

HiCRep
HiCSR 0.9179 0.8932 0.9408 0.8621 0.9035
DFHiC 0.9178 0.8928 0.9406 0.862 0.9033
DiCARN 0.9188 0.8928 0.9409 0.8622 0.9037

The experiment in this phase is based on the 1/16 ratio downsampled datasets for training and 166

testing. The results maintain that DiCARN retains superior potential to generalize to unseen cell 167

lines. We also present a visualization comparison of the corresponding structure similarity index 168

measure for chromosomes 4, 14, and 20 for the different algorithms in Figure 3 . 169

Figure 3: Heatmap visualization of the cross-cell enhancement results for DiCARN in comparison
with state-of-the-art models (HiCSR and DFHiC) on chromosomes 4, 14, and 20 of the K562 cell
line.
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Table II: Performance benchmarking of state-of-the-art methods in contrast with DiCARN across
unseen cell lines using average scores on test data. The results suggest that DiCARN retains its
ability to restore the fidelity of in silico Hi-C data from unseen cell lines.

Cell Line Method SSIM PSNR MSE

K562
HiCSR 0.9485 34.7512 0.0003
DFHiC 0.9472 34.1669 0.0003
DiCARN 0.9498 35.2087 0.0003

HMEC
HiCSR 0.9748 35.2839 0.0002
DFHiC 0.9737 34.7582 0.0003
DiCARN 0.9757 35.2237 0.0002

NHEK
HiCSR 0.9721 35.093 0.0002
DFHiC 0.9705 34.0983 0.0003
DiCARN 0.9739 35.4481 0.0002

3.5 Enhancing Generalizability with Chromatin Accessibility Data from DNase-seq 170

3.5.1 3.5.1. Chromatin Accessibility - DNase-seq Data 171

DNase-seq data denotes cell-type-specific chromatin accessibility and is a crucial marker in assessing 172

3D spatial organization due to its unique association with genomic regulatory elements (Yueqi Qiu 173

et al., 2023). A recent application of chromatin accessibility data by Wang et al. (H. Wang et al., 174

2022) proposed a linear regression model to impute 3D distances between loci using DNase-seq 175

data, thereby enhancing high-resolution 3D genome reconstruction accuracy. 176

Building upon this, we propose a novel approach for high-resolution Hi-C enhancement that 177

leverages DNase-seq data to address the limitations of conventional Hi-C enhancement algorithms. 178

We derive interaction frequencies (IF) from the DNase-seq and ultimately utilize this data to 179

augment our training set and improve the generalizability of our model. The IF derived from 180

DNase-seq is cell-type specific and is expected to enable accurate predictions across different bio- 181

logical contexts. 182

To calculate asynchronous interaction frequencies from DNase-seq, we employ a linear regression 183

model, as shown in Equation (8) (H. Wang et al., 2022). 184

ϵk,l = α1Rk + α2Rl + α3Dk,l (8)

Our DNase-based IF imputation procedure, which enhances the resolution of 3D genomic maps, 185

begins with the normalization of raw Hi-C interaction counts using Knight-Ruiz (KR) normaliza- 186

tion to produce a normalized interaction frequency matrix. This matrix is then symmetrized to 187

maintain consistency, and a Pairwise Distance (PD) matrix is generated to reflect spatial prox- 188

imities among genomic loci. Due to the size of the interaction matrices, we fragment the data 189

into manageable chunks, mapping each chunk to the corresponding DNase-seq signal using bed- 190

tools ((Quinlan and Hall, 2010)), thereby aligning chromatin accessibility data with the genomic 191

coordinates. The DNase signal across each fragment is averaged to provide a summary measure 192

of chromatin accessibility for each genomic region. Using these genomic distances and DNase 193

signals as input, we predict distances using the pre-trained model defined in Equation (8) where 194

ϵk,l represents the predicted interaction frequency between fragments k and l, Rk and Rl denote 195

the DNase-seq signal levels for fragments k and l, Dk,l is the 1D genomic distance between these 196

fragments, while α1, α2, and α3 are fitting parameters derived from imputed 3D distances ((H. 197

Wang et al., 2022)). Subsequently, the imputed distances are converted into interaction frequencies 198

(Lieberman-Aiden et al., 2009). The final reassembly process involves combining these IF matrix 199

fragments into a complete matrix for the chromosome, followed by a KR normalization to ensure 200

consistency with the original Hi-C data. Ultimately, this process produces a DNase-inferred IF 201

matrix that supplements Hi-C data to refine resolution and improve interpretability across diverse 202

cell types. 203

3.5.2 Improving Generalizability Across Unseen Cell Lines with DNase-seq Data 204

To further enhance the generalizability of our model, we incorporate DNase-inferred IF data into 205

the existing training dataset through a targeted data augmentation strategy intended to bolster 206

the model’s predictive capacity across various cell lines. This strategy is explored in two configu- 207

rations. In the target DNase scenario, DNase-imputed interaction frequency data from the target 208

cell line’s test chromosomes is appended to the original Hi-C training dataset, after which the 209
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augmented dataset is used to retrain the DiCARN model. This model is called DiCARN-DNase- 210

T(Supplementary Fig. S2). Specifically, these chromosomes correspond to those downsampled for 211

testing. We hypothesize that DNase-seq inferred IF data from the target cell type provides valuable 212

insights into Hi-C interactions, facilitating enhanced model generalizability across varying biological 213

contexts. 214

The source DNase scenario, on the other hand, utilizes DNase-inferred IF data from the source 215

cell type’s training chromosomes and adds it to the source dataset for training. This model is called 216

DiCARN-DNase-S (Supplementary Fig. S3). We hypothesize that including source DNase-based 217

data not only augments the training set but also endows the model with a deeper understanding of 218

chromatin dynamics beyond the source cell type. 219

In this study, the source dataset is the GM12878 Hi-C dataset, and the target cell is the cell 220

line on which we are testing the generalization. 221

Given that DNase data is expected to improve biological reproducibility, we evaluate our 222

model’s performance using Hi-C analysis metrics the Stratum-adjusted Correlation Coefficient 223

(SCC) through HiCRep, and the concordance score by GenomeDISCO. These metrics provide 224

more biologically significant analysis measures compared to standard image evaluation metrics. 225

3.6 DiCARN-DNase: Enhancing DiCARN with DNase-seq for Cross-Cell Line 226

Generalization 227

Table III highlights the HiCRep scores obtained for both configurations (DiCARN-DNase-T and 228

DiCARN-DNase-S), where we demonstrate that at least one implementation of the DNase-augmented 229

models outperforms the vanilla DiCARN model. Additionally, the results indicate that both aug- 230

mentation strategies are viable, as each shows improvement over the vanilla model labelled Di- 231

CARN in at least one instance, thereby supporting our hypothesis. Our study also shows that 232

there is no clear preference for one over the other as they could be viable options for both. The 233

GenomeDISCO scores are presented in Supplementary Table S5 and Fig. S4. 234

Table III: HiCRep Average Score Comparison of DiCARN and its DNase-based variants on 1/16
downsampled K562 Cell Line dataset.

Cell Method Chr 4 Chr 14 Chr 16 Chr 20 Avg

K562
DiCARN 0.893 0.8466 0.9354 0.8478 0.8807
DiCARN-DNase-S 0.8914 0.8452 0.9334 0.8469 0.8792
DiCARN-DNase-T 0.8931 0.8466 0.9417 0.8465 0.884

HMEC
DiCARN 0.7302 0.7794 0.8193 0.6986 0.7570
DiCARN-DNase-S 0.7181 0.7716 0.8140 0.6923 0.7490
DiCARN-DNase-T 0.7223 0.7752 0.8187 0.7132 0.7574

NHEK
DiCARN 0.8161 0.8158 0.8493 0.7217 0.8007
DiCARN-DNase-S 0.8172 0.8153 0.8482 0.7293 0.8012
DiCARN-DNase-T 0.8195 0.8196 0.8516 0.7312 0.8055

3.7 Enhancing Generalizability of State-of-the-art Models with DNase-seq Data 235

Following the enhancement capability boost recorded by DiCARN when influenced by the IF 236

imputed from the DNase-seq data, we proceeded to appropriate this data augmentation innovation 237

to some existing models in the Hi-C resolution enhancement research domain, including HiCSR 238

(Dimmick, 2020), HiCARN (Hicks and Oluwadare, 2022), HiCNN(Liu and Z. Wang, 2019), and 239

DFHiC (B. Wang et al., 2023) to test the generalizability of the DNase idea to other models. From 240

the HiCRep results presented in Table IV, it is observed that the data augmentation approach 241

worked in ten of twelve scenarios. More results are provided in Supplementary Table S6 and Fig. 242

S5. It is also observed that the DFHiC was the base method in the two instances where the approach 243

was challenged. However, the majority of results obtained from the test for applicability to other 244

methods established the proposition that the fusion of DNase with in silico LR GM12878 Hi-C 245

data improves the cell-to-cell Hi-C reproducibility capabilities of deep learning-based methods. 246

This exception leads us to believe that the data augmentation might be sensitive to the algorithm 247

of the method. 248

3.8 3.8. DiCARN-DNase: Leading Performance in Hi-C Data Enhancement Across 249

Cell Lines 250

The integration of DNase-seq data significantly enhances the performance of both our model and 251

existing algorithms. To assess the overall performance of the algorithms (including both vanilla 252
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Table IV: Using HiCRep for reproducibility assessment, we show the performance scores of the
DNase-based data augmentation approach for four existing DL methods across three cell lines.
Each vanilla method is contrasted with its corresponding Target DNase (e.g. HiCSR-DNase-T)
and Source DNase (e.g. HiCSR-DNase-S) variants. We observe that the majority of the test cases
support the DNase proposition.

Cell Method Chr 4 Chr 14 Chr 16 Chr 20 Avg

K562

HiCSR 0.8913 0.8444 0.9304 0.8414 0.8769
HiCSR-DNase-S 0.8929 0.8469 0.9295 0.8444 0.8784
HiCSR-DNase-T 0.8923 0.8445 0.9304 0.8441 0.8778
DFHiC 0.8905 0.8423 0.9338 0.8424 0.8773
DFHiC-DNase-S 0.8903 0.8424 0.9256 0.8333 0.8729
DFHiC-DNase-T 0.8869 0.8398 0.9307 0.8367 0.8735
HiCARN 0.8928 0.8444 0.9375 0.8496 0.8811
HiCARN-DNase-S 0.8968 0.8482 0.9289 0.8571 0.8828
HiCARN-DNase-T 0.8913 0.8424 0.9324 0.849 0.8788
HiCNN 0.8956 0.8477 0.9257 0.8378 0.8767
HiCNN-DNase-S 0.8946 0.8478 0.941 0.8538 0.8843
HiCNN-DNase-T 0.8903 0.8434 0.9359 0.847 0.8792

HMEC

HiCSR 0.7296 0.7793 0.8201 0.6998 0.7572
HiCSR-DNase-S 0.7223 0.7734 0.8155 0.6935 0.7512
HiCSR-DNase-T 0.74 0.7734 0.8554 0.694 0.7657
DFHiC 0.7328 0.7775 0.8212 0.6997 0.7578
DFHiC-DNase-S 0.7244 0.7791 0.8257 0.705 0.7586
DFHiC-DNase-T 0.738 0.7844 0.8244 0.7019 0.7622
HiCARN 0.7269 0.776 0.8191 0.6947 0.7542
HiCARN-DNase-S 0.7192 0.7693 0.8143 0.6926 0.7498
HiCARN-DNase-T 0.7312 0.7796 0.8218 0.7012 0.7585
HiCNN 0.7182 0.7711 0.8144 0.6952 0.7497
HiCNN-DNase-S 0.7182 0.7719 0.815 0.6966 0.7504
HiCNN-DNase-T 0.7257 0.7762 0.8163 0.6957 0.7535

NHEK

HiCSR 0.8165 0.8152 0.8498 0.7242 0.8014
HiCSR-DNase-S 0.8191 0.8169 0.8509 0.7282 0.8038
HiCSR-DNase-T 0.8194 0.817 0.8509 0.7283 0.8039
DFHiC 0.8168 0.8167 0.8504 0.7239 0.8029
DFHiC-DNase-S 0.8121 0.8126 0.8469 0.7189 0.7976
DFHiC-DNase-T 0.8131 0.8152 0.8487 0.7177 0.7987
HiCARN 0.8157 0.8136 0.8462 0.7229 0.7996
HiCARN-DNase-S 0.8123 0.8083 0.8405 0.7246 0.7964
HiCARN-DNase-T 0.8186 0.8163 0.8494 0.7266 0.8027
HiCNN 0.82 0.8159 0.8 0.73 0.7915
HiCNN-DNase-S 0.8223 0.8183 0.841 0.73 0.8029
HiCNN-DNase-T 0.8089 0.806 0.8392 0.717 0.7928

and DNase-augmented variants) across different cell lines, we constructed a ranking table based 253

on HiCRep scores, which measure consistency across three cell lines using the average results 254

from four test chromosomes. The scores for DiCARN are presented in Table III, while the results 255

for the other four algorithms are provided in Table IV . As shown in the ranking table (Table 256

V), the DiCARN models demonstrated superior performance, achieving an average rank of 2.3. 257

Specifically, DiCARN ranked first for NHEK, second for K562, and fourth for HMEC, indicating 258

a high degree of generalizability across cell lines, based on the HiCRep scores. 259

3.9 3.9. Benchmark on 3D Genome Reconstruction and TAD Detection 260

The ability of the data from these models to recover Topologically Associating Domains (TADs) 261

plays a critical role in exploring functional genomics and regulating gene expression by controlling 262

enhancer-promoter interactions (Dixon et al., 2012) and also plays an important role towards 263

usefulness. In this study, we employed TopDom (Shin et al., 2016) to detect TADs from region 264

60Kb to 2.45Mb region of K562 cell line chromosome 14 using the imputed Hi-C data and the 265

ground truth data. We assessed their concordance through the Measure of Concordance (MoC) 266

metric (Higgins et al., 2022). A higher MoC score is better. The results indicate that the DNase- 267
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Figure 4: The TAD recovery assessment of the Baseline algorithm (Vanilla) compared versus the
DNase-based variants. We used the 60Kb to 2.45Mb region of the chr14 in the K562 cell line for
this procedure. The procedure was also executed across other methods to show their TAD recovery
abilities. The heatmaps are tagged with their corresponding MoCs to show the improvement of
the DNase-based models on the vanilla variants.

Figure 5: Evaluation of Groundtruth consistency with output from DiCARN variants for chromo-
some 20 of the K562 cell line using the 300MB to 350MB region. Reconstructed 3D structures for
DNase-based DiCARN records more consistency based on the SCC scores than its vanilla variant.

based variants for most algorithms closely match the ground truth, underscoring the impact of 268

DNase-seq data on enhancing Hi-C data (Figure 4). 269

Furthermore, we evaluated the structural similarity of the 3D genome reconstructed from both 270

the imputed and ground truth data. Using 3DMax (Oluwadare et al., 2018), we reconstructed 271

structures for region 300Mb to 350Mb of K562 cell line chromosome 20 and compared them via the 272

Spearman Correlation Coefficient (Figure 5). The results demonstrate that the DNase-augmented 273

DiCARN model showed greater concordance with the ground truth than the vanilla DiCARN 274

model. Overall, these findings affirm the potency of DNase-seq augmentation in the prediction 275

accuracy of 3D genomic structures. 276

4 Conclusion 277

In this study, we introduce DiCARN, an attention-based Dilated Cascading ResNet model for the 278

recovery of high-resolution Hi-C data necessary for biological and computational exploits of genomic 279

structures. Eminently, our study pivots on the introduction of a novel approach involving distal 280

inferences from the chromatin accessibility DNase data of human cell lines for the augmentation 281

of LR interaction frequency data. The practicality of this innovation was tested and established 282

using biological reproducibility and structural similarity metrics. It is important to note that the 283
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Table V: Comparative Performance Rankings of DiCARN and Other Models Across Cell Lines. The
number represent rank in terms of performance where a lower number indicates better performance
(e.g., a ranking of 1 is better than 5)

Cell DiCARN HiCSR HiCARN DFHiC HiCNN
K562 2 4 3 5 1
HMEC 4 1 3 2 5
NHEK 1 4 5 2 2
Avg 2.3* 3 3.66 3 2.66**

inclusion of DNase-seq data has been universally beneficial across all models, including existing 284

state-of-the-art models This study emphasizes how the use of DNase-seq data has elevated the 285

performance of both our model and others. 286
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