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Abstract—Microwave radiometers operating on Earth-
observing satellites provide critical support for weather
forecasting as well as oceanographic, atmospheric, and
geophysical monitoring. Maintaining spectrum access is vital
for continued support of these observations which are easily
corrupted by any anthropogenic transmissions occurring within
the time-frequency space utilized by the radiometers. Despite
these requirements, spectrum sharing is also well motivated to
accommodate the ongoing expansion of high band 5G systems,
given the relative sparsity in time of radiometer spectrum
access at a specific location. In this paper, we propose a joint
queuing and game-theoretic model to evaluate the conditions
under which commercial users have incentive to utilize shared
spectrum in the face of preemptions by Earth Exploration
Satellite Service (EESS) users. The model is justified using
real traces of EESS Spectrum access, which are made publicly
available to the research community. We assume commercial
users are served by a provider charging a pay-as-you-go
admission fee. We determine that in such a scenario, the
resulting Nash Equilibrium is unique. However, increasing the
fraction of commercial users opting to utilize available spectrum
lowers the incentive for newly arriving users to follow suit,
impacting provider profits from admission fees. Furthermore,
we show that the socially optimal state is attained with the
profit-maximizing fee. These results demonstrate the potential
for temporal sharing between space-based Earth observing
microwave radiometers and commercial users in a manner
providing societal benefits.

Index Terms—Spectrum co-existence, passive users, network
economics, game theory, queuing theory.

I. INTRODUCTION

Microwave radiometers operating on Earth-observing satel-

lites provide measurements that are crucial for supporting high

impact applications, such as weather forecasting; monitoring

the oceans, atmosphere, land surface, and cryosphere; and for

understanding Earth’s geophysical processes [1]. The signals

observed by microwave radiometers are naturally-generated

thermal noise in the microwave portion of the spectrum, and

the desired information on geophysical processes is obtained

only if the observed thermal noise power (reported as a

“brightness temperature”) can be measured to a precision

approaching one part in 103 or better. Multiple emerging

scientific and operational applications are resulting in demands

for even higher precision in the geophysical products obtained,

due to the importance of understanding the evolution of

our changing planet and the impact on human activities on

these changes. Because the geophysical precision achieved is

determined by the time-bandwidth product of the spectrum

used in a microwave radiometer’s measurement, maintaining

and expanding spectrum access is crucial for supporting and

improving continued and future measurements.

Unfortunately, microwave radiometric measurements are

easily corrupted by any anthropogenic transmissions that occur

in the portion of time-frequency space used by the radiometer;

these transmissions are described as “radio frequency interfer-

ence” (RFI) to the microwave radiometer. The importance of

RFI-free observations has been recognized in past spectrum

allocation activities that have granted a primary or secondary

allocation for the passive Earth Exploration Satellite-Service
(EESS) [2]. As use of these bands for other applications has

continued to increase, the utility of secondary allocations is

being compromised, motivating new strategies for ensuring

future spectrum access. The recent concerns over RFI from

“high band” 5G systems to water vapor observing microwave

radiometers operating near 23 GHz [3], [4] provide clear

evidence of the challenges with traditional spectrum allocation

processes.

The potential for cooperative sharing within existing sec-

ondary allocations or other non-allocated bands is evident

when it is considered that a spaceborne microwave radiometer

observes a given location only for a small percentage of the

time (e.g. during a satellite overpass). As an example of these

properties, the upper left plot of Figure 1 displays “footprint”

locations (i.e. the location on the Earth’s surface that is being

observed at one instant of time) over an approximate 5 hour

period on August 8th, 2019 for the Global Microwave Imager

instrument (GMI, [5]). The approximate 94 minute period

of a single orbit typical for low Earth orbiting satellites is

evident, as well as the wide distribution of observations in

space over a relatively short time period. The temporal aspects

of radiometer access are further explored in Figure 2, which
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Fig. 1: Footprint locations for the GMI radiometer over an

example approximate 5 hour period.

Fig. 2: Time history of GMI vertical polarization antenna gain

at Columbus, OH over a selected 3 day period.

illustrates GMI antenna gains directed at Columbus, OH over

a 3 day period. It is noted that the access needs captured in

Figure 2 represent only a single satellite radiometer system

among many such systems.

Whether considered in bands currently allocated to EESS

applications on a secondary basis, to bands not currently

available for EESS observations, or as part of future more

dynamic spectrum allocation approaches, the sparse temporal

access needs of passive EESS users motivates a spectrum co-

existence framework whereby these users are granted access

that preempts transmissions by active commercial users. This

implies that whenever EESS users need access to a spectrum

band, commercial users must vacate that band. To assess the

viability of such a co-existence framework, this paper analyzes

its potential impact on the behavior of commercial participants,

including the provider of commercial services and its users.

Because commercial users are strategic and non-cooperative

in nature, game theory is the methodology of choice to analyze

interactions between these participants (also known as players
in the jargon of game theory). In this context, our objective is

to characterize the equilibrium outcomes of the game (i.e., the

Nash equilibria), as well as the resulting provider’s profit and

the efficiency of said equilibria. The well-established concept

of social welfare can be used to measure this efficiency. An

important goal is to evaluate how the social welfare at equi-

librium fares with respect to to the Pareto optimum: namely,

the optimal social welfare that could be achieved under a

(hypothetical) centralized allocation of resources. Ideally, the

social welfare at equilibrium should be as close as possible

to the Pareto optimum (the ratio between the latter and the

former is known as Price of Anarchy (PoA) [6]). The main

contributions of this paper in this context can be summarized

as follows:

1) We propose a framework for spectrum sharing between

passive EESS users and active commercial users, relying

on priority-based preemptions.

2) We introduce economics underpinnings for this frame-

work using a joint queuing-theoretic and game-theoretic

formulation. Spectrum access by commercial users (aka

customers) is modeled using an M/G/1 queuing system

with server breakdowns (i.e., when EESS users are using

the spectrum, the server is “broken”). Strategic customers

decide whether or not to join the system considering

the reward of service, the cost of delay, the cost of

preemptions, and the provider’s admission fee.

3) We justify the model using real traces of spectrum access

from a collection of EESS satellites, which we make

available to the the research community [7].

4) We perform an equilibrium analysis of this model, prov-

ing the existence of a unique Nash Equilibrium, and

providing a closed-form expression for it.

5) We analyze the profit maximization, social welfare and

PoA of this system, as a function of the various statistical

traffic parameters and the economic costs. The analysis

shows that the profit maximization and social welfare

optimization objectives coincide for fixed queuing param-

eters. Therefore, it is not necessary for a regulatory body

to intervene to force a socially optimal outcome.

6) Through numerical analysis, we evaluate the impact of

the delay cost, the preemption cost, and EESS spectrum

usage on the behavior of customers and on the provider’s

profit. Under typical parameters, we find that delay has

greater impact than preemption on the customers’ behav-

ior and the resulting provider’s profit.

II. RELATED WORK

The economic analysis conducted in this paper relates to the

field of queuing games, which combines queuing and game

theory. The book by Hassin and Haviv is a standard reference

in this field [8]. A survey of more recent results can be found

in [9]. Within the field of queuing games, priority queues have

been treated extensively. Most of the related literature assumes

a non-preemptive service policy, whereby a low priority in

service cannot be preempted by a higher priority customer.

In contrast, our paper considers a preemptive-resume service

policy, whereby a low-priority customer in service may be

preempted by a higher priority customer (in our case, an EESS

user). Prior research shows that preemptive service may lead to

markedly different equilibrium outcomes than non-preemptive

service [10], [11].

To model spectrum disruption by higher priority users, our

work considers a specialized M/G/1 queuing model, namely
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Parameter Definition
λ, λee Arrival rate of customers and passive EESS users, respectively.
μ, μee Service rate of customers and EESS users, respectively (equal to 1 over mean service length).
μ′ The effective service rate of customers once service breakdowns are accounted for.
ρ′ The effective traffic load of customers (equal to arrival rate over effective service rate).

K, Kee Service variance parameter, where the second moment of service equals K/μ2 Kee/μ2
ee respectively for customers, EESS users.

Cd Cost of customer delay in the system per time unit.
Cp Cost of each preemption of a customer by an EESS user.
R Customer’s reward of getting service.
Q Customer queuing utility, that is the reward of service minus the average costs due to delay and preemption.
f Provider’s admission fee.
φ Fraction of customers joining the system.
φ∗ Mixed equilibrium.

φmax Equilibrium corresponding to profit-maximizing fee.
D Random variable representing the total system delay for customers joining the system.
P Average provider’s profit per time unit.

α, β Respectively, α � λee + μee, and β � 2λ2
ee +Keeλeeμ+ 4λeeμee + 2μ2

ee

TABLE I: Definition of parameters and variables related to the queuing game model. Note that φ∗, φmax, D, Q and P are

outcome variables determined by the analysis. The fee f is a parameter set by the provider. The variables α, β are notational

shorthands for certain repeating expressions. The other parameters are exogenous variables.

an M/G/1 queue with server breakdowns. The work by Avi-

Yitzhak and Naor introduces and analyzes several variants of

this model [12]. One variant (referred to as Model B in [12])

assumes that breakdowns occur only when the server is busy.

This also corresponds to the model analyzed in the probability

textbook of Ross [13, p. 531], which was adopted in previous

work on economic analysis of cognitive radios [14]. Since

breakdowns cannot occur when the system is empty, this

means that an arriving customer finding the system empty will

get served immediately. This model does not accurately reflect

spectrum sharing. In practice, a commercial user arriving while

an EESS user is using the spectrum should not be allowed to

access the spectrum immediately, even if it finds the system

empty (i.e., no other commercial user is present).

Another variant, corresponding to Model A in [12], con-

siders breakdowns that occur homogeneously in time. That

is, server breakdowns are independent of customer arrivals to

the queue. This model better reflects reality, since in practice

the on-off process characterizing EESS spectrum usage is

independent of arrivals of commercial users to the system.

In this paper, we adopt this variant. As a result, the economic

analysis differs from prior work [14]. Additionally, our eco-

nomic model explicitly captures the economic cost caused by

preemptions, which is typically ignored in prior work.

The sharing framework considered in this paper resembles

that of Citizens Broadband Radio Service (CBRS) [15] in

that EESS-passive users will be considered as incumbents

empowered with preemptive priority. This implies that when-

ever EESS users need access to a certain spectrum band,

commercial users must vacate that band. To manage access and

enforce the appropriate priority of the various users, we envi-

sion a Spectrum Access System (SAS) to monitor the spectrum

space and communicate the availability of a requested channel

to transmit. Eichen discusses the feasibility and practical

considerations in building such a CBRS-like framework for

sharing the spectrum between passive scientific users and

active users [16]. Our work contributes theoretical foundations

to reason about such a spectrum sharing framework. Our work

also incorporates an open spectrum access model [17] where

customers pay as they go, as the model for individual users to

opt in favor of joining the system. This model also incorporates

the impacts of service. Our model evaluates the impact of

service interruptions on the delay performance and strategic

choices of commercial users, and the effect of such choices

on the profit of a commercial provider and the social welfare

of the system. A key and unique contribution of our paper

consists of the validation of the statistical models with actual

time series of spectrum access by EESS satellites.

III. ECONOMIC MODEL

In this section, we present our economic model, including

the game-theoretic formulation. Table I summarizes the nota-

tion of our model.

A. Spectrum Usage Model and Customer Delay Analysis

We start by introducing a statistical model that accounts

for the spectrum usage of EESS users and commercial users

(we refer to the latter simply as customers). We assume

that customers wait in a queue for service, hence our model

incorporates a queuing-theoretic component.

EESS spectrum usage represents an on-off process. In the

on-state, spectrum is available to customers for an exponen-

tially distributed amount of time with rate parameter λee.

During this time, the server is in a working state processing

customers. We assume that customers are served in a First-

Come First-Served (FCFS) order. This assumption allows us

to capture a sense of the impact of customer traffic on the

system while remaining tractable. Alternative regimes such as

processor sharing capture the behavior of individual customers

being processed simultaneously, however service is divided

among all customers and the total service rate is the same as

under FCFS [18]. Thus, we view FCFS as an approximation

of customer batch arrival behavior, not of individual users.

Meanwhile, in the off-state, EESS users are using spectrum.

During this time, the server is broken (and getting repaired),

and no customers are processed. The distribution of the
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repair time is general with mean 1/μee and second moment

Kee/μ
2
ee. Once spectrum is again available, any preempted

customers reenter service from the point of interruption (cor-

responding to a preemptive-resume model [19, p. 67]).

Customers arrive to the system according to a continuous

Poisson process with rate λ. The work of Willkomm et
al. [20] justifies the Poisson process assumption for arrivals

of customers, based on measurements of spectrum usage in

cellular networks. Due to the costs associated with delay and

preeemption and the provider’s admission fee, only a fraction

0 ≤ φ ≤ 1 of the customers join the queue. The value of φ is

determined as the solution of a queuing game; as the customer

process is a continuous one we do not have a fixed number

of customers or EESS users a priori, therefore we frame

our solutions in terms of the fraction of customers joining

the queue based on their statistical knowledge. This game is

discussed in detail in Sections III-C and IV. The distribution

of the spectrum usage time by each customer follows a general
distribution with mean 1/μ and second moment K/μ2.

Since server breakdowns occur independently of customer

arrivals, the system under consideration is modeled as an

M/G/1 queue with server breakdowns occurring homoge-

neously in time (Model A in [12]). The solution of the model in

question is equivalent to a queue with the following modified

parameters. Let X ′ represent the service time. The mean

service time is E[X ′] = 1/μ′2 where

μ′ =
μ

1 + λee/μee
. (1)

The resulting effective traffic load is ρ′ = λφ/μ′ and the

system is stable if and only if ρ′ < 1. The formula for the

delay of a customer in the system is [12]:

E[D] =
(Kee/μee)(1− μ′/μ) + λφK(1/μ′2)

2(1− ρ′)
+

1

μ′ . (2)

The first term in Eq. (2) represents the delay of a customer

in the queue (also known as waiting time in the literature

on queuing theory). We note that even when λ → 0 the

waiting time does not vanish; that is, even if the customers’

demand is very low, a customer may have to wait upon arrival

due to the spectrum currently being held by an EESS user.

The second term represents the effective mean service time

of a customer. This quantity is greater than 1/μ because a

customer may be preempted by an EESS user while being

served. Specifically, because EESS users hold the spectrum

for the following fraction of time

1/μee

1/μee + 1/λee
=

λee/μee

1 + λee/μee
,

customers can only access the spectrum for the remaining

fraction of time, that is,

1− λee/μee

1 + λee/μee
=

1

1 + λee/μee
.

Hence, the effective service rate μ′ is smaller than μ and given

by Eq. (1).

Satellite Space Agency Sensor Source
Aqua NASA AMSU-A [21]

GCOM-W JAXA AMSR2 [22]
GPM Core Observatory NASA GMI [23]

Metop-B EUMETSAT AMSU-A [24]
Metop-C EUMETSAT AMSU-A [24]

NOAA-15 NOAA AMSU-A [25]
NOAA-18 NOAA AMSU-A [26]
NOAA-19 NOAA AMSU-A [26]

JPSS-1 (NOAA 20) NOAA ATMS [27]
JPSS-2 (NOAA 21) NOAA ATMS [27]

Sentinel-3A ESA MWR [28]
Sentinel-3B ESA MWR [28]
Sentinel-6A EUMETSTAT AMR-C [29]

SNPP NOAA ATMS [26]

TABLE II: EESS radiometers included in our traces.

B. Validation of Delay Model with Traces of EESS Spectrum
Access

To validate this delay model (i.e. Eq. 2), we leverage traces

of actual EESS spectrum access [7]. Our traces incorporate

information on spectrum access at a specific location by

the 14 microwave radiometers listed in Table II. The listed

sensors each observe in multiple frequency bands throughout

the spectrum, with all including measurements at or near 23.8

GHz. The 14 systems in Table II were selected according to

existing team access to their datasets; access for an additional

14 instruments observing near 23.8 GHz was not yet acquired,

thus the results to be shown represent only approximately

50% of the currently expected EESS access requests. Level 1

brightness temperature data from each sensor over the month

of September 2023 was identified for situations in which the

instrument’s observation occurred within 100 km of latitude

42.36 deg, longitude −70.06 deg (i.e. Boston, MA). The 100

km distance is intended in part to protect the radiometer

from transmissions either within the instrument antenna’s main

beam or from sidelobes of the antenna pattern, although more

precise studies using a more accurate instrument antenna

pattern model would be required to confirm the exact spatial

exclusion zone for a given instrument. There are 783 unique

satellite passes identified in this period, with mean time

between arrivals of 3,387 seconds, mean access duration of

26.71 seconds, and a variance slightly greater than that of an

exponential distribution. In terms of the model parameters, this

yields λee = 3× 10−4, μee = 0.04, and Kee = 2.11.

We apply a simulation in which the EESS users are gener-

ated from the trace data, and commercial users are generated

according to a distribution derived from studies of commercial

cognitive radios under high usage [30]. The commercial users

have a mean service time of 6.47 seconds (μ = 0.16)

distributed with a variance slightly greater than deterministic

(K = 1.49). Customers joining the system arrive according

to a (thinned) Poisson process with mean arrival rates ranging

from λφ = 0.13 to λφ = 0.15 (i.e. the mean inter-arrival time

ranges from 6.86 s to 7.67 s). These values yield effective

traffic rates in the range ρ′ ∈ [0.85, 0.95] (i.e. resulting in

a heavy traffic system while respecting the stability criteria

ρ′ < 1). As seen in Figure 3, when plotting the simulated
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Fig. 3: Validation of delay model. The analytical curve is

plotted using Equation (2). The simulated curve leverages

trace data from radiometers listed in Table II and customer

traffic parameters derived from previous measurement studies

of commercial cognitive radios [30]. The figure shows ex-

cellent agreement between the two curves, with the analysis

consistently falling within the 95% confidence interval of the

simulation at all simulated values.

delay times against the analytical values expected from E[D],
the simulated values for the customer delays fall within a

95% confidence interval of the expected value based on 30

iterations of the simulation. This shows that the trace data is

consistent with the M/G/1 breakdown model, even if EESS

user arrivals do not necessarily conform to a Poisson process.

As a result, we proceed with our analysis based on the delay

model established in Section III-A.

In evaluating the trace data, we make a simplifying assump-

tion that the presence of a radiometer results in the unavail-

ability of the spectrum of interest. While this ignores potential

re-allocations to white space (for example, the AMSU and

ATMS instruments have a bandwidth of 270 MHz while others

have a 400 MHz bandwidth), it is also important to recall that

the included instruments do not represent every radiometer

observing in the 23.8 GHz band. Thus, we err on the side

of a conservative estimate of the rate of spectrum usage by

EESS radiometers. We further note that the results shown are

intended only to provide an example of the temporal properties

of current EESS user spectrum access in a commonly used

frequency channel, without suggesting that any particular band

should be prioritized for future spectrum sharing. In addition,

as the number of EESS satellites continues to grow, it should

be expected that spectrum access will become more frequent,

which motivates the exploration of economic impacts for a

range of spectrum access parameters. We conduct such a study

in Section IV-C.

C. Reward Model and Game Formulation

In defining the reward and subsequent queuing game, we

leverage classical assumptions on M/G/1 queues in general

[31], and unobservable queues in particular as customers

are unable to cooperate with each other [32]. In particular,

we assume that customers are homogeneous with identical

reward R for successful service, that they do not balk from

the queue after joining, customers are risk neutral and seek

to maximize their net benefit, and users in the system have

a sense of the statistical parameters of the queue despite

being unable to directly observe the queue sizes. By extension,

we assume that customers have a means to accurately assess

spectrum usage to determine the statistical parameters. As a

result, customers have two choices, to utilize the spectrum,

or to not do so. A customer which does not join the queue

has a reward of 0 from failing to achieve service, but a cost

of 0 from avoiding the queue in the first place. Thus, to

join the queue and utilize spectrum, the utility for doing so

must be non-negative. We additionally assume that the stability

condition ρ′ < 1 holds even when all customers join the queue

and φ = 1.

As the reward R is constant, the defining element of

individual utility will be the costs. In turn, the costs are a

reflection of the customers’ Quality of Service requirements.

These are reflected as costs of delay and preemption. The delay

cost equals CdE[D], where Cd > 0 is the per-time unit cost

imposed by the customers for delay time, and E[D] is the

expression for the delay from Equation (2). The parameters Cd

and Cp respectively reflect the level of customers’ tolerance to

delay and preemption. For each of these parameters, a higher

value implies higher customer’s sensitivity to the associated

QoS metric. The preemption cost equals the per-preemption

cost Cp > 0 multiplied by the expected number of preemptions

during a service period λee/μ; derived from the EESS arrival

rate λee, the mean customer service rate. WLOG, we let

R = 1, thus all considered costs are normalized with respect
to the reward received.

Given this formulation, we define a queuing utility func-

tion Q(φ) as the individual utility of the customers opting to

utilize spectrum, which is the reward minus the costs of delay

and preemption:

Q(φ) � 1−
(
CdE[D] + Cp

λee

μ

)
. (3)

However, we must also account for the existence of a provider

managing spectrum access. We assume that we have an open

spectrum access model [17] where the provider charges users

who charges an admission fee f to each customer joining

the system, in a pay as you go manner akin to in-flight

WiFi passes used on airliners today [33]. The provider incurs

no other reward, nor faces ongoing costs related to access

management. As a result, the provider’s utility equals its

reward: f multiplied by the number of customers accessing the

spectrum. Conversely, the utility a customer considers when

joining the spectrum access queue equals

Q(φ)− f. (4)

It is this quantity that is the focus of our optimization efforts.
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IV. ECONOMIC ANALYSIS

In this section, we present an analysis of the economic

aspects of the game introduced in the previous section: the

conditions under which a given fraction φ of customers opting

to utilize the spectrum is an equilibrium state, the conditions

where the equilibrium state is subsequently a socially optimal

one, whether a provider profit maximization state coincides

with a socially optimal state, and a sensitivity analysis derived

from spectrum access traces. Due to space limitation, proofs

of some the claims are omitted from this version of our paper.

A. Equilibrium Analysis

As established in Equation (4), the customers’ individual

utility will depend on the queuing costs and the admission fee.

The fee f however is set by the provider, who is free to set it at

whatever level it so chooses. An important case is one where a

customer is indifferent between its options for some φ∗. That

is, f = Q(φ∗), resulting in a utility of 0. This results in a Nash

Equilibrium state where a fraction φ∗ of customers join the

queue, and the remainder do not. The provider optimizes the

fee f as a function of Q(φ). To determine specific equilibrium

conditions, we assert the following:

Lemma 1: Increasing the fraction of customers utilizing

spectrum decreases the utility of all customers in the queue,

regardless of the values of the queuing parameters for customer

or EESS users.

The proof amounts to computing the derivative of Q(φ) and

determining that it is monotone decreasing for all φ regardless

of which values the parameters take. This customer behavior

is referred to in the literature as Avoid the Crowd [8]. With this

in mind, we define f0 � Q(0) and f1 � Q(1) respectively.

Letting α � λee +μee and β � 2λ2
ee +Keeλeeμ+4λeeμee +

2μ2
ee be notational shorthands for repeating expressions, we

thus have

f0 = 1− Cd

(
α

2
+

1

μ′

)
− Cp

λee

μ
, and (5)

f1 = 1− Cd
(K − 2)λα3 + μμeeβ

2μμeeα(λα− μμee)
− Cp

λee

μ
, (6)

We also define the following expression for the mixed

state φ∗ which is a solution to f = Q(φ∗):

φ∗ �
μμee

(
2μeeα(Cpλee + (f − 1)μ) + Cdβ

)
λα2

(
2μee(Cpλee + (f − 1)μ)− Cd(K − 2)α

) . (7)

This leads to the following claim:

Theorem 1: Given fixed parameters, a fixed admission fee

f , and f0, f1 as defined in Equations (5) and (6), there exists

always a unique equilibrium state determined as follows:

1) If f ≥ f0, the equilibrium is φ = 0 (i.e. no customer

utilizes the spectrum);

2) If f ≤ f1, the equilibrium is φ = 1 (i.e. all customers

utilize the spectrum);

3) If f1 < f < f0, the equilibrium is the mixed equilibrium

φ∗ ∈ (0, 1), where φ∗ is equal to the expression in

Equation (7) (i.e. a fraction φ∗ of customers join the

queue, the remaining 1− φ∗ do not).

Proof: From Lemma 1, Q(φ) is monotone decreasing.

Thus, the maximum value of Q(φ) is f0, and the minimum

is f1, for φ ∈ [0, 1]. Subsequently, it follows that f0 is the

lowest admission fee which ensures that no customers have

incentive to join the queue; f0 is defined in terms of the φ = 0
equilibrium, thus by definition f = f0 yields an equilibrium

where no customers have incentive to utilize spectrum. If the

admission fee is set higher than f0, then the fee is certainly

higher than any customer is willing to pay to join the queue,

which has the same effect. This demonstrates the first claim.

Similarly, f1 will be the highest admission fee ensuring

that all customers have incentive to join the queue and utilize

spectrum. Certainly f = f1 is defined in terms of the φ = 1
equilibrium; and any fee less than f1 must also result in all

customers having incentive to utilize spectrum as the provider

would be charging a lower admission fee than every customer

is willing to pay, thus demonstrating the second claim.

If otherwise f1 < f < f0, then it is the case that there exists

some φ∗ ∈ (0, 1) such that f = 1 − C(φ∗). By definition,

this is an equilibrium state. That no other φ �= φ∗ can be an

equilibrium is a consequence of the customers’ behavior as

demonstrated in Lemma 1. If φ < φ∗, the utility is positive,

and a newly arriving commercial user has incentive to utilize

the spectrum. Conversely, if φ > φ∗, the utility is now negative

and therefore there is no incentive for newly arriving customers

to utilize the spectrum. Therefore, the mixed equilibrium φ∗

is unique, where φ∗ is defined in Equation (7).

We conclude the equilibrium analysis by noting that no

restriction was placed on the value of the admission fee f .

Thus negative values are admitted, in which case f is instead

an admission subsidy. While a profit maximizing provider has

no incentive to set a negative admission fee, providers with

other objectives may benefit from paying a subsidy (e.g. a

public utility which has an objective of spectrum utilization

inducing customers to join the queue when the reward is

less than the costs of delay and preemption). As a result,

this analysis is applicable to situations beyond the profit

maximizing scenario.

B. Profit Maximization and Social Welfare

Under our model, a monopolistic provider controls the level

at which the admission fee f is set. As such, the game is dom-

inated by the provider’s actions, notwithstanding preemptions

caused by EESS users. As we consider a commercial shared

spectrum setting, we assume that the provider’s objective is

profit maximization. Because customer arrivals form a random

process, we define the profit in terms of expectation per time

unit. Equilibrium states are defined in terms of the relationship

between the admission fee f and the customer queuing utility

Q(φ). The rate of customers who join the queue equals λφ.

Therefore, the profit expression to optimize is

P =

{
λφQ(φ) if Q(φ) > 0,

0 if Q(φ) ≤ 0.
(8)
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As the provider is monopolistic, optimizing P potentially

results in a non-optimal state in terms of the social welfare,

or net utility, of all users combined. Specifically, the Price of
Anarchy (PoA) is defined as the ratio of the optimal social

welfare to the social welfare at a given equilibrium state [34].

A PoA of 1 represents a scenario where the equilibrium state

is also a socially optimal one; values greater than 1 represent

wasted costs from non-cooperation. However, we claim that

in this setting, this is not a concern.

Theorem 2: The admission fee f which maximizes the

provider profit yields the socially optimal state.

Proof: As with the profit, we consider the social welfare

in terms of expected value per time unit due to the number

of customers being a random variable. In this light, the

utility of the λ customers depends on whether or not they

utilize spectrum. The utility of the provider is simply the

admission fees collected from customers opting to utilize

spectrum access. This results in the following expression:

λ (φ[Q(φ)− f ] + (1− φ)0) + λφf (9)

As the payment of f from customer to provider has a net

social utility of 0, and customers opting against utilizing

spectrum have a utility of 0, the resulting expression simplifies

to λφQ(φ), which is the expression for P when Q(φ) > 0.

From Lemma 1, we know that Q(φ) is monotone decreasing

in φ. Thus, the value can transition from positive to negative

at most once in the interval φ ∈ [0, 1]. If it does, then there

also exists some interval (0, φ′) where λφQ(φ) is positive.

Thus, the maximum value of the social welfare must exist in

the interval (0, φ′). As the expression is equivalent to P , this

also yields the profit maximizing equilibrium from which the

corresponding admission fee f is derived. Otherwise, if there

is no transition between positive and negative values of Q(φ),
it must be the case that Q(φ) < 0 for any φ > 0. Therefore, the

social utility must also be negative in this interval. Therefore

the socially optimal state is φ = 0, where no customers join

the queue, yielding a social utility of 0. However, this is also

the maximum profit a provider will realize in this scenario as

no customer will utilize spectrum without being paid a subsidy

to overcome the lack of incentive to join the queue.

From Lemma 1, we know that Q(φ) is monotone decreasing

in φ. Thus, the value can transition from positive to negative at

most once in the interval φ ∈ [0, 1]. Further, λφ is non-negative

for all φ in the interval. As a consequence, if there exist φ′ for

which 1 − C(φ) is positive for φ ∈ [0, φ′), then there exists

φ∗ ∈ [0, φ′) such that the optimal social welfare is positive,

and the resulting welfare coincides with the maximum provider

profit.

Otherwise, for any φ > 0, the social welfare is negative,

implying there is no incentive to join the queue, therefore

the socially optimal state is φ = 0, yielding a social utility

of 0. However, this is also the maximum profit a provider will

realize in this scenario as no customer will utilize spectrum

without being paid a subsidy to overcome the lack of incentive

to join the queue.

As the provider profit maximization state is socially optimal,

the PoA is 1 by definition. By extension, it is not necessary

for a regulatory body to intervene for the purposes of inducing

a socially optimal state (so long as the provider is acting in a

rational manner). While such an outcome has been observed

in prior studies for classical queues [32], that it continues to

hold here is not obvious at first glance, due to the cost of

preemptions and the generality of our model regarding the

distribution of breakdown periods.

Given that computing the optimal social state and profit

maximization state are equivalent, we compute the fee f > 0
corresponding to the equilibrium φ∗ > 0 which optimizes the

profit P . We define the following quantities, where α, β are

the shorthand values defined earlier (see Table I):

Cd =
2μeeα(μ− Cpλee)

β
; (10)

Cd =
2(Cpλee − μ)μeeα(μμee − λα)2

(K − 2)λα3(λα− 2μμee)− μ2μ2
eeβ

; (11)

φmax =
μμee

λα
−

√
Cdμ2μ2

ee(Keeλeeμ+Kα2)

λ2α3(Cd(K − 2)α− 2(Cpλee − μ)μee)
.

(12)

The following theorem establishes the profit-maximizing fee.

Theorem 3: Let f1 be given by Equation (6), Cd, Cd,

and φmax be given by Equations (10)-(12), and the queuing

parameters be fixed and valid. Then the provider maximizes

its profits under the following conditions:

1) All the customers join the queue (i.e., φ = 1) and f = f1,

if 0 < Cp < μ/λee and 0 < Cd ≤ Cd.

2) A fraction φ = φmax of the customers join the queue, and

f = Q(φmax), if 0 < Cp < μ/λee and Cd < Cd < Cd.

3) Otherwise, the provider is unable to generate profit.

Proof: To show this result, we claim that P is either

monotone with respect to φ, or unimodal with a unique max-

imum over the interval φ ∈ (0, 1). From this, we determine

that the maximum value of P depends on the values of Cd

and Cp and the queuing parameters:

• If 0 < Cp < μ/λee and 0 < Cd ≤ Cd, P increases

with respect to φ over the entire interval. Therefore, the

maximum value of P occurs at φ = 1 with corresponding

admission fee f = f1 as previously defined.

• If on the other hand 0 < Cp < μ/λee and Cd <
Cd < Cd, P is a unimodal function increasing for

φ ∈ (0, φmax) and decreasing from φ ∈ (φmax, 1).
Therefore, the maximum value of P occurs at φ = φmax,

with corresponding admission fee f = Q(φmax).
• Otherwise, P is monotone decreasing with respect to φ,

and as P = 0 when φ = 0, no admission fee f > 0 results

in provider profits. Therefore, the maximum value of P
occurs at φ = 0, and no customers opt to join the queue.

Thus, we find that while the provider profit maximization is

socially optimal, in general not all customers are incentivized

to join the queue in a profit maximization scenario. The costs
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Fig. 4: Plot of the profit optimizing equilibrium φmax resulting

from cost of delay Cd in the range (0, 0.2), for cost of

preemption Cp ∈ {1, 10, 100, 1000}, using the parameters for

EESS users and customers derived in Section III-B with an

effective traffic load of ρ′ = 0.9 when φ = 1 (i.e. all customers

join). We see that as Cd increases in this range, the profit

maximizing equilibrium rapidly drops to 0; conversely, Cp

must be very large relative to the reward to produce regions

where φmax = 0 for any delay cost. These results show that

customers are primarily sensitive to the delay cost.

of queuing delay and preemption must be sufficiently small

relative to the queuing parameters for φ = 1 to be the profit

maximizing equilibrium. This is of particular concern when

considering scenarios in which customer traffic approaches the

saturation point - the more customers present, the more likely

preemptions occur despite the EESS radiometers occupying

the spectrum for a small fraction of time.

C. Numerical Results

We next perform numerical analyses to illustrate our theoret-

ical results. We utilize the EESS and commercial distributions

derived in Section III-B: i.e., EESS users follow arrival and

service distributions where λee = 3 × 10−4, μee = 0.04 and

Kee = 2.11; and commercial users follow arrival distribution

λ = 0.14, with service distribution μ = 0.16 and K = 1.5,

such that if φ = 1 the effective load is ρ′ = 0.9.

a) Evaluating the Impact of the Delay and Preemption
Costs: We begin by evaluating the result of Theorem 3, using

our derived parameters to visualize the relationship between

the costs of delay Cd and preemption Cp and their impact

on the profit maximizing equilibrium state φmax. The results

for Cd ∈ (0, 0.2) and Cp ∈ {1, 10, 100, 1000} are plotted in

Figure 4. We find that so long as Cp < μ/λee = 515.33, there

will be regions where φmax = 1 and profit is maximized when

all customers join the queue. This follows from a consequence

of the fact that the rate of EESS arrivals λee is much smaller

than the mean customer service length 1/μ. Thus, while users

are sensitive to preemptions, unless the cost of preemption is

3 to 4 orders of magnitude greater than the reward, there will

exist scenarios where customers will opt to join the queue, as

the likelihood of preemption is relatively small.

Conversely, the profit maximizing equilibrium φmax drops

to 0 rapidly as a function of Cd for fixed values of Cp <
μ/λee, demonstrating that the customers are more sensitive

to delay than preemption in this setting. Indeed, while Cp

represents a per-preemption cost with a low probability of

being incurred, Cd is a per-time unit delay cost incurred until

the completion of service. Thus, in this scenario, values of

Cd less than 20% of the reward result in scenarios where

customers lack incentive to join the queue and the maximum

profit is 0. Thus, customers are more sensitive to each other’s

traffic, than they are to the effects of preemption.

b) Evaluating the Impact of EESS Spectrum Usage Pa-
rameters: Having established sensitivity to preemption, we

consider the impact of changes in spectrum usage by EESS

radiometers on customer behavior. Indeed, future EESS usage

requirements may entail more frequent arrival times than cur-

rently observed. This drives interest in analyzing the sensitivity

of the equilibrium states as λee varies from 3 × 10−4 and

6 × 10−4 to represent a doubling of EESS arrivals over the

currently observed frequency. There are no other changes to

the queuing parameters, resulting in an effective load range

ρ′ ∈ [0.9, 0.91] when φ = 1.

We let Cd = 13 × 10−3 and Cp ∈ {1, 10, 100}. Note that

for λee = 3 × 10−4, φmax = 1 for each of the selected

values of Cp. Plotting the corresponding profit maximizing

equilibria in Figure 5(a), we find that when Cp is sufficiently

small (i.e. within one order of magnitude of the value of the

reward), the profit maximizing equilibrium remains φmax = 1.

Therefore, despite the increase in EESS traffic, the relatively

low sensitivity to preemption results in profit maximization

still occurring when all customers join the queue. Conversely,

if the cost of preemption is two orders of magnitude greater

than the reward (e.g. Cp = 100), then situations where φmax is

a mixed equilibrium state arise. Specifically, here we find that

λee > 3.49×10−4 results in φmax < 1. This EESS arrival rate

represents one arrival every 2,865 seconds, or a 16% increase

over the observed rate from our trace data. Thus, if customers’

intolerance to preemption is sufficiently high, a marginal

increase in EESS traffic may result in some customers not

wanting to join the queue and utilize the available spectrum.

However, even if λee doubles, the corresponding φmax = 0.93,

meaning that only 7% of the customers do not join the queue.

Thus, while profit maximization does not occur when all

customers join the queue, the vast majority of customers still

opt to do so in this scenario.

In Figure 5(b), we plot the corresponding provider profits

P for our scenarios. For Cp = 1 and Cp = 10, we find that

an increase in EESS traffic has a limited impact on provider

profits. However, in the case Cp = 100, the realized profit

decreases with the increased EESS traffic; while the likelihood

of preemption is still relatively low, the increased sensitivity

to preemption forces the provider to charge a lower fee to

convince customers to join the queue. As EESS traffic doubles,

the profit decreases by 40%, despite only 7% fewer customers
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(a) Optimal equilibrium vs. EESS arrival rate (b) Maximum profit vs. EESS arrival rate

Fig. 5: Plots of the profit maximizing equilibrium (left) and corresponding provider profit (right) as a function of EESS user

arrival rate, with customer queue statistics and EESS service parameters derived from Section III-B, and costs of delay and

preemption Cd = 13 × 10−3 and Cp ∈ {1, 10, 100}, respectively. We find that when the cost of preemption is not too high

(i.e. CP ≤ 10), increase in EESS traffic does not affect the optimal equilibrium (i.e., φmax = 1, throughout) and has a limited

impact on the provider’s profit. However, when Cp = 100, we see that increases in EESS traffic result in the profit maximizing

equilibrium becoming a mixed state (i.e, φmax < 1). In this case, the decreasing fraction of customers joining the queue results

in profits decreasing at a fast clip.

joining the queue. Yet, the doubling of EESS arrivals only

decreases the available white-space for customer transmissions

from 99.2% to 98.4%. Thus, marginal decreases in available

spectrum can result in profit decreases which are much larger.

Therefore, a high sensitivity to preemption could be a con-

cern as EESS usage of available spectrum changes, despite

customer behavior generally being dominated by sensitivity

to delay from other customers entering the system, as shown

in the previous example.

V. CONCLUSIONS

In this work we propose a spectrum sharing framework on

frequency bands utilized by the Earth Exploration Satellite-

Service, which comprises passive radiometers in orbit and

thus individual radiometers only requiring access to spectrum

for a brief period as they pass overhead in a given location.

Leveraging concepts from queuing theory and game theory,

we develop an economic model for spectrum sharing between

EESS users and a commercial tier. Utilizing September 2023

traces of EESS data from the Boston area [7], we demon-

strate that commercial user delay can be modeled using an

M/G/1 queue with server breakdowns, where the breakdown

periods caused by EESS arrivals follow a general distribution.

Accordingly, we develop a queuing game that captures the

customer rewards gained by spectrum access, as well as

costs proportional to the delay in the queue and frequency

of preemptions under service. We fully solve the game as

a function of the system parameters, including providing a

closed-form expression for the Nash equilibrium, which is

also proven to be unique. We further determine the regime

of parameters under which a commercial provider is ensured

to make profit and derive the profit-maximizing fee.

An important insight from the analysis is there is no

requirement for external intervention to induce a socially

optimal state, because the profit maximization and social wel-

fare optimization objectives coincide (i.e., the PoA equals 1).

This reduces the regulatory overhead required to administer

spectrum access on EESS bands. Further, our EESS trace

data suggests that 99.2% of spectrum capacity is available

on EESS bands, thus making such frequencies desirable for

commercial use as the probability of EESS preemption is low.

Indeed, generally customers are far more sensitive to delay

than preemption to the point where the cost of preemptions

must be one hundred times greater than the reward of service

to have an appreciable impact on customer decision-making.

In such a scenario, increases in EESS arrivals can result in

provider profit decreases of 40% compared to prior EESS

usage levels, despite only a 7% decrease in the fraction of

customers willing to utilize the spectrum and a 0.8% decrease

in spectrum availability for customers. Thus, when planning

spectrum access policies, customer sensitivity to preemption

must be carefully accounted for. Nevertheless, even in this

case, we find that there are significant societal benefits to such

a spectrum sharing paradigm, as a large fraction of potential

customers would be able to access spectrum and commercial

service would be profitable.

Future work includes further refinement of our model

through undertaking precise measurements of antenna patterns

to confirm the nature of each instrument’s exclusion zone,

in order to refine estimates of antenna usage for spectrum

planning purposes. Other open research directions include

impacts of estimation error, measurement noise, and Byzantine

behavior, intentional or otherwise, on the decision making
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process. Last, analysis of additional EESS spectrum bands

is required to determine which bands should be prioritized

for spectrum sharing, given availability for commercial use

balanced against customer tolerance for preemption and fre-

quency range requirements of commercial applications.
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