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Multiscale systems biology is having an increasingly powerful impact on our
understanding of the interconnected molecular, cellular, and
microenvironmental drivers of tumor growth and the effects of novel drugs
and drug combinations for cancer therapy. Agent-based models (ABMs) that
treat cells as autonomous decision-makers, each with their own intrinsic
characteristics, are a natural platform for capturing intratumoral
heterogeneity. Agent-based models are also useful for integrating the
multiple time and spatial scales associated with vascular tumor growth and
response to treatment. Despite all their benefits, the computational costs of
solving agent-based models escalate and become prohibitive when simulating
millions of cells, making parameter exploration and model parameterization
from experimental data very challenging. Moreover, such data are typically
limited, coarse-grained and may lack any spatial resolution, compounding
these challenges. We address these issues by developing a first-of-its-kind
method that leverages explicitly formulated surrogate models (SMs) to bridge
the current computational divide between agent-based models and
experimental data. In our approach, Surrogate Modeling for Reconstructing
Parameter Surfaces (SMoRe ParS), we quantify the uncertainty in the
relationship between agent-based model inputs and surrogate model
parameters, and between surrogate model parameters and experimental
data. In this way, surrogate model parameters serve as intermediaries
between agent-based model input and data, making it possible to use them
for calibration and uncertainty quantification of agent-based model parameters
that map directly onto an experimental data set. We illustrate the functionality
and novelty of Surrogate Modeling for Reconstructing Parameter Surfaces by
applying it to an agent-based model of 3D vascular tumor growth, and
experimental data in the form of tumor volume time-courses. Our method
is broadly applicable to situations where preserving underlying mechanistic
information is of interest, and where computational complexity and sparse,
noisy calibration data hinder model parameterization.
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1 Introduction

Validated mathematical models of tumor growth
mediated by complex microenvironmental interactions and
signals are increasingly being recognized as an invaluable aid
for elucidating mechanisms underpinning experimental and
clinical observations (Byrne, 2010; Franssen et al, 2019;
Butner et al., 2020; Butner et al., 2021). These models
often use continuum ordinary or partial differential
equations (ODEs/PDEs) to predict cancer cell number (or
densities) in time and/or space. Continuum approaches are a
common choice because they allow for rapid simulation and
open the door to advanced analyses (global sensitivity,
structural and practical identifiability, bifurcations, etc.)
that reveal key parameter relationships. They also enable
the use of time-course experimental data for parameter
estimation and model validation (Brouwer et al., 2017;
Eisenberg and Jain, 2017).

An alternative approach is a discretized method that
models cells as autonomous, decision making “agents,”
each with their own set of properties and behaviors. These
agent-based models (ABMs) have become a valuable tool in
translational systems oncology, which has goals of predicting
the effects of novel drugs and drug combinations on difficult-
to-treat tumors (Altrock et al., 20155 Wang et al., 2015;
Bergman et al., 2022). ABMs provide a logical structure for
capturing the multiple time and spatial scales associated with
cancer growth and progression because they allow for the
characterization of tumor heterogeneity at an individual cell
level that better reflects the complexity seen in vivo (Bergman
et al., 2022). One major advantage of ABMs over traditional
continuum ODE/PDE models is that they can generate
realistic 3-dimensional virtual tumors that current state-of-
art imaging technologies cannot infer from patient scans [for a
discussion on limitations of imaging in cancer, see for instance
(Bogdanovic et al., 2021; Ding et al., 2021; Martinez-Heras
et al., 2021)]. However, to make useful, reliable quantitative
predictions, ABMs need to relate to real-world data through

model parameterization and calibration (Byrne, 2010;
Eisenberg and Jain, 2017). Unfortunately, a significant
limitation of these models is that they can be

computationally expensive, especially as the number of
agents (cells) expands. Computational times and memory
requirements can become prohibitive when simulating
upwards of 10°-107 agents (Ghaffarizadeh et al, 2018).
This is in direct opposition to the fact that just one cubic
centimeter of tissue will contain 10°-10° cells and many in
vivo experiments begin with 10*-10° cells (Del Monte, 2009).
These computational costs are exacerbated when ABMs
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include molecular level details of cell signaling or targeted
(2018). The
stochasticity and heavy computational requirements of an
ABM
parameterization and for conducting rigorous parameter

therapeutics Ghaffarizadeh et al. inherent

are  significant  obstacles  for  data-driven
space exploration and sensitivity analyses (Norton and
Popel, 2016; Zhang et al., 2020; Broniec et al., 2021).
Moreover, experimental data is typically limited, coarse-
grained and may lack any spatial resolution, resulting in
issues of parameter identifiability (Eisenberg and Jain, 2017).

There is hence a need for developing new theoretical and
computational frameworks that can bridge this gap between
ABM parameters and real-world data. Estimating ABM
parameters from noisy experimental data is particularly
challenging because ABM behavior emerges from interactions
among many individuals and the computational expense scales
with the number of parameters (Broniec et al., 2021). One
approach for exploring ABMs is to run extensive Monte Carlo
simulations, but this is infeasible for complex models (Nardini
etal, 2021). Bayesian methods are not ideal because they rely on
prior knowledge about the probability distributions of the
components being modeled, which is rarely available (Broniec
etal., 2021). Some researchers have used genetic algorithms (GA)
together with agent-based models for parameter space
exploration and parameter estimation (Calvez and Hutzler,
2005; Lee et al, 2015); however, GAs require a very large
of thus

computational expense issues (Broniec et al., 2021). Yet

number iterations to converge, exacerbating
another approach entails the derivation of coarse-grained
ODE/PDEs (mean-field models) to predict average outputs of
the ABM. However, such mean-field models typically fail to
accurately describe ABM dynamics in certain parameter regimes
(Klank et al., 2018; Nardini et al., 2021).

To address some of these challenges, we develop an approach
that uses an explicitly formulated surrogate model (SM) that will
bridge ABM simulations and experimental data. Surrogate
models (also called metamodels or response surfaces) are
computationally cheaper models designed to approximate the
dominant features of a complex model, here, the ABM (Blanning,
1975; Regis and Shoemaker, 2005; O’Hagan, 2006; Asher et al.,
2015). They have been used extensively in engineering
applications (see (Palar et al., 2019) for a review) and weather
forecasting [see (Vlahogianni, 2015; Schultz et al, 2021) for
recent reviews]. Specifically, we employ model selection to
infer an SM directly from both ABM output and experimental
data so that we accurately capture aggregate ABM dynamics. In
our approach, Surrogate Modeling for Reconstructing Parameter
Surfaces (SMoRe ParS), we quantify the relationship between
parameter values across the two types of models (ABM and SM)
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and between SM parameters and experimental data. Thus, SM
parameters act as interlocutors between ABM inputs and data
that can be used for calibration and uncertainty quantification of
ABM parameters.

Indeed, parameterizing ABMs with SMs that use machine
learning algorithms, where the SM does not have a closed
form, is becoming increasingly popular. Using examples from
finance, (Lamperti et al., 2018; Zhang et al., 2020) describe a
surrogate modeling method for ABM calibration that
combines supervised machine-learning and iterative
sampling. These methods can learn a surrogate model as
the approximation of the original system with a relatively
small number of training points by using an iterative sampling
algorithm that intelligently searches the response surface. In
(Perumal and van Zyl, 2020), different sampling methods and
SMs derived from machine learning algorithms are integrated
with a temporal ABM that describes infectious disease
epidemiology to test how these strategies affect parameter
space exploration. They show that surrogate assisted methods
perform better than standard sampling methods in that they
better identify the most likely parameter vector by matching
the synthetic data distribution it generates with a real data
distribution.

Our method differs from the approaches mentioned above
in several ways. Two major differentiators of our approach
are: 1) The SM equations are explicitly formulated, this
formulation being informed by the experimental data; and
2) SM parameters are distinctly mapped to both, the ABM the
input parameters, as well as the calibration data set. In this
way, our strategy enables the SM to be informed by both the
ABM output, and the experimental data. We also infer ABM
parameter regions that correspond to the data and propagate
uncertainty via SM parameters to ABM parameters. Finally,
by making such an explicit connection between ABM input,
SM parameters and the data, we can account for inherent
differences in dimensionality or physical units between ABM
output and experimental data.

In the sections below we describe the details of our new methods
for narrowing the current divide between computationally intense,
difficult  to
approaches and experimental data. We then demonstrate the

analyze/parameterize ~computational modeling

usefulness and novelty of our approach by applying it to an

ABM of vascular tumor growth and experimental data in the
form of tumor volume time-courses.

2 Methods

2.1 Surrogate modeling for reconstructing
parameter surfaces (SMoRe ParS)

To accurately compare ABM output with real world data, we
propose our novel methodology, SMoRe ParS. A schematic
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diagram of the full approach is provided in Figure 1. SMoRe
ParS is a six-step strategy that users can implement as follows.

Step 1: Use real-world data to inform SM formulation and
variables

First, determine the formulation of the SM from a real-world
(experimental) data set. In particular, the goal is to determine
both, the type of model to use (ODE, PDE, Boolean, etc.), and the
variables needed for the model formation. For instance, time-
course data would suggest a system of ODEs, whereas spatially
resolved data might accommodate a PDE SM. Additionally, the
quantities measured in the data set should inform the choice of
SM variables. For instance, tumor volume measurements would
suggest tumor cell numbers as a SM variable.

Step 2: Generate ABM data

In this step, identify a subset of ABM parameters of interest,
say Z) Apme Dased on some predetermined criteria. For instance,
in a model of chemotherapy, one might select parameters such
as cancer cell proliferation rate and death rate, that is the input
parameters that are directly relevant to the treatment of interest.
Next, generate ABM output for a broad range of the chosen
parameter values. Specifically, vary ABM parameters one at a
time to sample along the boundary of the parameter space, and
also select several parameter combinations at non-boundary
points, to generate reference points in the interior. For each
parameter combination, the ABM should be simulated multiple
times to get meaningful average behavior. Finally, process the
generated ABM
dimensionality or physical units between ABM output and

output for inherent differences in
SM variables, if necessary. For instance, if the ABM output
is a spatially resolved time-course of a growing tumor and a
variable in the SM is total number of tumor cells as a function of
time alone, then the number of tumor cells in the ABM
simulations should be integrated over its spatial domain.

Step 3: Perform SM model selection

Select several potential models as SM candidates and test
their ability to capture both the experimental data and the ABM
output. Then perform model selection to arrive at a “most likely”
SM. There are numerous model selection approaches to choose
from when selecting the best model to move forward with,
including probabilistic Information Criteria (Anderson and
Burnham, 2004; Burnham and Anderson, 2004) or resampling
methods (Efron, 1983; Shao, 1996). Others (Nardini et al., 2021)
have proposed learning equations directly from data as a method
to arrive at a consensus model.

Step 4: Reconstruct SM parameter surfaces from ABM
output

Next, infer a quantitative relationship between each of the
<y PSMis - - - > Psmay and
selected ABM parameters, Z)ABM. This is done by fitting SM

SM input parameters, Z)SM = {Psm1>- -

parameters to ABM output generated in Step 2, for instance by
performing maximum likelihood estimation (MLE) (Millar,
2011). A key advantage of our method is that any uncertainty
in SM parameters is also quantified in this step. For example, if
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Schematic for implementing the SMoRe ParS method.
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MLE is used to estimate SM parameter values, then the profile
likelihood approach Eisenberg and Jain (2017) can be employed
to quantify this uncertainty.

At this stage, for a given SM parameter psy ;> estimates for its
appropriate range of values (e.g., 95% confidence bounds) should
be calculated at each of the sampled ABM parameter
combinations. Assuming that psy; and its confidence bounds
(C.B.;) are continuous but unknown functions of the ABM
parameters reconstruct these functions—or
The 95% bound
estimates found above correspond to discrete points on the

Panw
hypersurfaces—as  follows. confidence
upper and lower 95% confidence hypersurfaces (see Step 4 in
Figure 1). Now, “fill in” the unknown upper and lower
hypersurfaces, for instance, using polynomial or quadratic
interpolation [see (Smith, 2013) for an overview of these
methods]. That is, reconstruct parameter response surfaces
that psyi; lies within. The completion of this step will result in
an explicit (numerical) relationship between SM parameters and
ABM parameters, that also preserves information on uncertainty
in the SM parameters. That is:

Psmi = ff(;)ABM) * C'B'f(;)ABM)' 1)

In the above hypersurface relationship, the function f; is not
explicitly determined, rather, it is numerically approximated.

Step 5: Estimate SM parameters from real-world data

In the next step, estimate values of SM input parameters
]_;SM from the real-world data, for instance by performing
maximum likelihood estimation (MLE) as in the previous
step. Ideally at this stage, practical identifiability of the SM
model should be investigated to arrive at identifiable
of SM
identifiability examines how real-world considerations, such

combinations input  parameters. Practical
as noise or sampling frequency, affect one’s ability to uniquely
estimate model parameters from a given data set (Jacquez and
Greif, 1985). This additional step of finding the practically
identifiable combinations of SM parameters will help
constrain the desired ABM parameter space that maps to
real-world data in the next step.

Step 6: Infer regions of ABM parameter space that
correspond to real-world data

In the final step of SMoRe ParS$, overlay the ranges on data-
derived SM parameters in the previous step on the inferred
relationship between SM parameters and ABM parameters
found in Step 4. This yields regions of ABM parameter space
that correspond to experimental data. Specifically, for each
data-informed choice of SM parameter vector Z)SM, regions
in ABM parameter-hyperspace are obtained via projection
mapping for all its components, psy;. The intersection of
these regions yields ABM parameter ranges that correspond
to that specific choice of Z)SM. Repeat this for several choices of
Z)SM—constrained by the practical identifiability information
from Step 5—and take the union of the resulting ABM regions
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to arrive at the desired ranges in parameter values that match
with the experimental data.

2.2 Proof of concept: Vascular tumor
growth

In this section we work through the set up of a detailed proof
of concept of our new method. To demonstrate the functionality
and originality of our approach, we apply it to a 3D, multi-grid,
on-lattice ABM of stem-cell driven vascular tumor growth.

2.2.1 SM formulation and variables

We use experimental data from the breast cancer literature in
the form of tumor volume time-courses [see Figure 5A in (Zhou
et al,, 2019)]. These data suggest that a single ODE tracking the
number of tumor cells over time is an appropriate formulation
for the SM.

2.2.2 ABM formulation

The ABM of vascular tumor growth implemented here is a
simplified form of previous models (Norton et al., 2018; Ventoso
and Norton, 2020; Fischel et al, 2021). The simplified version
consists of two modules: a tumor module and a vasculature
module. Both modules are on-lattice, but they occupy different
grids. The overall simulation domain is a cube of side 1 mm. As in
(Norton et al., 2018), the tumor is initiated with cancer cells,
progenitor and stem, placed in one corner of the grid. Cells
cannot leave the boundary of the simulation domain. The
vascular network at tumor initiation consists of mature vessels,
each comprised of individual segments located along the grid
boundaries closest to the initial tumor. This initial set up is
visualized in Figure 2. The ABM simulates a tumor growing on
the surface of healthy, vascularized tissue, which acts as an additional
source of oxygen. The simulation is run for 300 iterations, each
iteration corresponding to ~ 6 h. For more information on model
assumptions, setup and simulation methodology, we refer the reader
to (Norton et al., 2017; Ventoso and Norton, 2020; Fischel et al.,
2021). A list of parameter values used for baseline simulations of the
ABM is provided in Table 1 and an algorithm for simulating the
ABM is outlined in the Appendix and Figure 9 (adapted from
Ghaffarizadeh et al., 2018).

2.2.2.1 Tumor module

The tumor module resides on a 50 x 50 x 50 lattice, in which
each cancer cell can only occupy one lattice point. The cancer cells
have two proliferative phenotypes: stem cells and progenitor cells,
and two migratory phenotypes: high and low migration.
Proliferating stem cells have a certain probability of division that
remains fixed at predetermined values throughout our simulations.
Cancer stem cells are also assumed to have limitless replicative
potential (Hanahan and Weinberg, 2000). Progenitor cell behavior is
determined by two main input parameters: pg, the division
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Iterations = 50 Iterations = 100

lterations = 200 Iterations = 250

FIGURE 2
Storyboard showing a typical ABM simulation of vascular tumor growth, depicting the locations in space of normoxic (teal circles) and hypoxic
(purple circles) tumor cells, along with vasculature (red curves).

TABLE 1 Baseline parameter values used for ABM simulations. For a complete list, see (Norton et al., 2017).

Parameter description
Progenitor cell division limit (div,,)
Progenitor division probability (pg;,)

Stem cell division probability

Iterations = 150

Iterations = 300

Parameter value
8-15
0.05-0.245 per iteration

0.05 per iteration

10.3389/fmolb.2022.1056461

@® Normoxic Cells
@® Hypoxic Cells
— \/asculature

Source
See text
See text

Norton et al. (2017)

Stem cell symmetric division probability 0.05 Norton et al. (2017)
Initial number of mature vessels 8 Ghaffarizadeh et al. (2018)
Initial number of stem cells 20 Norton et al. (2017)
Initial number of progenitor cells 80 Norton et al. (2017)

High migration rate

Low migration rate

8.3 ym per hour

0.83 ym per hour

Norton et al. (2017)

Norton et al. (2017)

Probability of daughter cell to be a high migratory cell

Maximum vessel branching probability

5%

0.2 per iteration

Norton et al. (2017)

Norton and Popel (2016)

Senescent cell death probability

Frontiers in Molecular Biosciences
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probability of the cell; and divyy,, the number of times a cell can
divide before becoming senescent. A stem cell proliferates less often
than a progenitor cell and can divide symmetrically into two stem
cells or asymmetrically into a stem cell and a progenitor cell.
Progenitor cells can only divide symmetrically into two
progenitor cells. Each daughter cell, whether stem or progenitor,
has a certain fixed probability of being a high migratory cell.

2.2.2.2 Vasculature module

The vasculature module resides on a 500 x 500 x 500 lattice,
which is 10-fold finer than the tumor module lattice because
microvessel diameter is typically smaller than the size of a tumor
cell (Tsuji et al., 2002; Hao et al., 2018). The initial vasculature is
made up of mature segments which are oxygenated. In each
simulation step, a new branch or sprout can form at a random
location along a mature segment with a certain probability, if there is
a hypoxic tumor cell within a certain distance of the vessel. The
sprout’s movement is dictated by a tip cell and its length, by
proliferating stalk cells. Tip cells migrate towards the nearest
source of vascular endothelial growth factor (VEGF) (Gerhardt
et al, 2003), which in our model are breast cancer cells
(Linderholm et al, 2009). A sprout can fuse with another sprout
if the two tips cells are close to one another, or with a stalk cell if the
tip cell is close enough to it, through a process called anastomosis.
Blood can only flow in new vasculature when such loops are
completed (Chaplain et al., 2006). Blood-bearing vessels release
oxygen and thus govern normoxic and hypoxic regions within
the tumor. Cancer cells in hypoxic regions have a reduced
proliferation probability and an increased migration rate (Lin
et al,, 2012).

2.2.2.3 ABM parameters of interest

Although the ABM has a number of input parameters, those
governing progenitor cell proliferation emerge as a natural choice
for several reasons. The experimental data comprises tumor
volume time-courses, and the bulk of a growing tumor is due
to non-stem cancer cells (Morton et al., 2011). Further, since this
is a proof of concept study, we wanted to minimize the degrees of
freedom, and emphasize ease of visualization. We therefore select
Paiv and divy;,,, defined earlier, as ABM parameters of interest.

2.2.2.4 ABM output

From each ABM simulation run at specific values of p4;, and
diviim, we record the number of cancer cells, the number of
hypoxic cells, the number of stem cells, and the number of cell
divisions, at each iteration. We also collect additional
information at the final iteration of the simulation including
the locations of all cancer cells and the location of the vasculature
within their respective grids. Values of ABM parameters at which
we generate output are all possible pairwise combinations from
paiv = {0.05, 0.125, 0.245} and divy,, = {8, 12, 15}.
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2.2.3 Model selection

We consider three classical models of tumor growth as
candidates for our SM, namely, generalized Gompertz,
generalized logistic, and Von Bertalanffy. The equations for
each of these models can be found in Table 2. To assess
goodness of fit and parsimony for each of the models we use
AIC (Akaike Information Criterion) and BIC (Bayesian
Information Criterion) (Burnham and Anderson, 2004). These
are statistical techniques that involve a scoring method that uses
the maximum of a log-likelihood function or the residual sum of
squares (RSS) to choose the best among candidate models.

2.2.4 SM parameter surface reconstruction

For every sampled combination of ABM parameters pg;, and
divim, we fit the SM model parameters to ABM output by
minimizing the weighted sum of squared residuals:

ICOED) (z_ygwy @

i

where: z; denotes averaged ABM output generated at time point i; o;,
the corresponding standard error; and y; (;)SM), the SM output at
time point 7 as predicted by parameters Z)SM. We then use the profile
likelihood method outlined in (Eisenberg and Jain, 2017), which
exploits uncertainty in data (here, ABM output) to infer information
on estimated parameters. Specifically, each estimated SM parameter
Psm; is “profiled” by fixing it across a range of values and the
remaining parameters are estimated for each fixed value of pgy;
(Venzon and Moolgavkar, 1988; Murphy and Van der Vaart, 2000).
The maximum value of the likelihood function for each parameter
value yields the likelihood profile for that parameter (Eisenberg and
Jain, 2017). The likelihood profiles are also used to calculate
confidence bounds based on a likelihood threshold. The
parameter values at which the profile crosses the threshold (on
either side of the optimal parameter value) define the confidence
interval at a particular level of significance (Eisenberg and Jain, 2017),
here taken to be 95%. Bilinear interpolation—followed by a
coordinate transformation for ease of visualization—is used to
infer upper and lower bounding hypersurfaces as functions of
ABM parameters, for each SM parameter psyy .

2.2.5 Estimate SM parameters from experimental
data

We now fit the SM model parameters to the xenograft time-
course data in (Zhou et al, 2019) by once again minimizing a
weighted sum of squared residuals as described in the previous
step. Next, we repeat the profile likelihood method described above,
but now, with the experimental data. We additionally uncover
practically identifiable combinations of SM input parameters,
following the approach outlined in (Eisenberg and Jain, 2017).
This is done by fitting rational functions (for instance) to the
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parameter relationships inferred from the profile likelihood graphs
(Eisenberg and Hayashi, 2014).

2.2.6 Infer regions of ABM parameters space that
correspond to experimental data

Lastly, the identifiable ranges for the data-derived SM parameters
found in Step 5 are overlaid on the interpolated map between SM and
ABM parameters generated in Step 4 giving us the specific regions of
ABM parameter space that correlate with the experimental data.
Specifically, for each of our chosen SM parameters, we generate
regions in the p;,~divj;,,, (ABM) parameter-plane. The intersection of
these regions yield ranges for p;;, and divy,, that correspond to a
specific choice of our SM parameters. We repeat this process for
multiple choices of our SM parameters and take the union of the
resulting ABM regions to arrive at the desired ranges for p,;, and divj;,,
that match with the experimental data.

2.2.7 Applying knowledge gained from SMoRe
ParS to compare inferred tumor characteristics
Two distinct sets of ABM parameters are chosen from the
experimental data-informed region computed in the previous step,
namely, pg, = 0.18, div;;,, = 9 and pgi, = 0.24, divy,, = 11. At each
parameter combination, ABM simulations are repeated six times, and
used to calculate several metrics to distinguish between the resulting
virtual tumors: 1) The Euclidean distance of the farthest cancer cell
from the tumor at initiation; 2) the fractal dimension of the tumor
vasculature [using MATLAB Central File Exchange file boxcount
from F. Moisy (Moisy, 2008)]; 3) the surface area to volume ratio of
the tumor; and 4) the compactness of the tumor [using the formula

lterations = 50

o
T
o
<
T

Iterations = 200

FIGURE 3

Iterations = 100
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Comp = (Vol) 3% (367)/6/+/SA from (Limkin et al,, 2019)]. Here,
SA refers to the surface area of the tumor and Vol refers to the volume
of the tumor, calculated as follows. We use the Matlab function
alphaShape to find the volume and surface area that encloses all
points at which tumor cells are located in the 3D simulation domain.
To eliminate confounding effects from tumor cells that have migrated
away from the primary tumor mass, any regions of tumor cells
smaller than a cutoff threshold of pixel volume = 50 are first removed
using the Matlab function RegionThreshold.

3 Results
3.1 ABM simulations

To illustrate our ABM of 3D vascular tumor growth, we select
representative values of p4;, and divy;,, at which we generate ABM
output. Figure 2 depicts the progression over time of the resultant
tumor, showing normoxic (cyan) and hypoxic (purple) tumor
cells. Starting from a few cells in the corner of the grid, the tumor
expands within the simulation domain as cells proliferate and
tumor vasculature evolves. Figure 3 shows the concomitant
evolution of tumor vasculature.

3.2 Surrogate model selection

The candidate surrogate models are shown in Table 2
along with their information criterion (AIC/BIC) values

lterations = 150

Storyboard showing vasculature evolution within the tumor shown in Figure 2.
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TABLE 2 Information Criteria (AIC and BIC) for candidate surrogate models. Exp refers to experimental data.

Equation

associated with both ABM output and experimental data.
These results show that experimental data alone may not
distinguish between the models. However, when fitting to
ABM output, the generalized Gompertz (GG) and Logisitic

~1875 and e ** times as probable as the von

(GL) equations are e
Bertalanffy (vB) model to minimize information loss,
respectively. This means that GG and GL cannot explain
the ABM data better than vB. Our results confirm that

comparatively the vB growth model provides a better fit to

Generalized Gompertz 'fi_f;’ =N - yIln N) 45,696 61,629 5483.8 6793.1
Generalized Logistic %V =yN(1- N?‘) 43,839 59,771 5483.3 6792.6
von Bertalanffy dd—l;] =aN’ - AN 41,947 57,880 5483.7 6793.0

the ABM data. Therefore we select the vB model as our
surrogate. This agrees with findings in (Ghaffari Laleh
et al., 2022) where these and other test models were fit to
tumor volume time-courses from five different data sets.
The vB model has three input parameters («, f, y) of which a
is related to the environmental carrying capacity. This differs
significantly between the ABM (1 mm?) and the experimental
system (~2,000 mm?). Since the two carrying capacities are
uncorrelated, « cannot function as an interlocutor between

A X 10* B C

o | .

3| e 160 5

O | —SMFit » @

g 2150 160

8 140 140

80 160 240 .03 0.04 0.05 0.06 0.4 0.5
Iterations B Y

12
divjim,

10 ""’0'2

Paiy “ Py

FIGURE 4

Surrogate model parameter surface reconstruction from ABM output. (A) Best fit of surrogate model to averaged ABM output generated with

Paiv = 0.245 and div;i, = 8. (B,C) Profile likelihoods (solid blue lines) for estimated surrogate model parameters: (B) 8, and (C) y. Thresholds for the 95%
confidence intervals are shown as red lines and RSS stands for residual sum of squares. The left and right points of intersection of the blue and red
curves give the lower and upper bounds, respectively, for the estimated surrogate model parameter, corresponding to these specific values of
ABM parameters (pg, = 0.245 and div;,, = 8). (D—F) Lower and upper surface reconstruction for . (D) Lower bounds for § obtained from 95%
confidence thresholds like those shown in panel (B), for various choice of ABM parameters pg;, and divj,. (E) Lower bound surface for
reconstructed from the discrete points shown in panel (D). (F) Final lower (blue) and similarly reconstructed upper (orange) surfaces for p. (G—I)
Lower and upper surface reconstruction for y, following similar steps.
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the ABM and the experimental data. Therefore, we select 5 and y
as our SM parameters of interest.

3.3 Parameter surface reconstruction

Figure 4 shows the results of the SM parameter surface
reconstruction from ABM output. Figure 4A depicts the best
fit of SM output (time-course of # of tumor cells) to ABM
output (time-course of # of tumor cells integrated over space)
for one specific combination of p,;, and divj;,,. The results of
the profile likelihood analysis, quantifying uncertainty in SM
parameters f3 and y for this choice of p,;, and divy;,,, are shown
in Figures 4B,C. Both parameters are identifiable from the
ABM output, as evidenced by u-shaped profiles. The 95%
confidence bounds for these fits correspond to discrete points
on the upper and lower 95% confidence hypersurfaces in (pg;,»
diviym, B) and (paiv» divim, y) space. Repeating this for all
sampled combinations of py;, and div,, yvields the sets of
discrete points that lie on the upper and lower hypersurfaces
of each SM parameter. As an illustration, Figures 4D,G show
the discrete points on the lower hypersurfaces for f and y,
Next, the “filled
interpolation, as shown in Figures 4E,H. Finally, Figures

respectively. surfaces are in” using

4F,I show the fully reconstructed upper (orange) and lower
(blue) hypersurfaces for 3 and y, respectively. For this region

of ABM parameter space, we are 95% confident that the SM
parameters lie in between these hypersurfaces.
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FIGURE 5
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3.4 SM parameter estimation from
experimental data

Figure 5A shows the results from fitting the SM parameters f3
and y to the experimental data for breast cancer xenografts taken
from (Zhou et al, 2019). From the subset profiles for each
parameter graphed in Figures 5C,D, we see that both
parameters are practically unidentifiable (or inestimatable)
from the experimental data set. Although each parameter on
its own is not estimable, the following practically identifiable
combination is inferred from parameter relationships between f
and y, shown in Figure 5B:

_ B+0.0164

Y= By 0.0392 3)

We remark that the values for  and y depicted in Figure 5B
are from within their respective 95% confidence bounds inferred
from Figures 5C,D.

3.5 Inferring regions of ABM parameter
space that correspond to experimental
data

For any pair of admissible values of f and y as determined
by Eq. 3, a corresponding region of ABM parameter space is
inferred from Figure 4F for S, and Figure 41 for y. The
intersection of these two regions gives the region of ABM

07T 0203 04 05

06 0.7 08 0.9

Surrogate model parameter estimation and practical identifiability analysis using breast cancer xenograft data from (Zhou et al,, 2019). (A)
Surrogate model fit to experimental tumor volume time-courses. (B) Inferred relationship between y and B using the profile-likelihood method
(Eisenberg and Jain, 2017), with combinations plotted as blue squares, and potential combination form plotted as a red curve. (C,D) Profile likelihoods
(solid blue lines) for estimated surrogate model parameters: (C) 8, and (D) y. Thresholds for the 95% confidence intervals are shown as red lines

and RSS stands for residual sum of squares.
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parameter space that maps to the experimental data for this
specific -y combination. Figure 6 shows these inferred
regions for three representative pairs of values of  and y.
Along each row, the first panel shows the ABM parameter
region corresponding to that value of f, the second panel
shows the ABM parameter region corresponding to that value
of y, and the third panel shows the intersection of these two
regions. Finally, Figure 7 shows the union of several such
common regions, for the range of possible values of § and y.
This is the desired region of ABM parameter space inferred
from the experimental data.

10.3389/fmolb.2022.1056461

3.6 Comparing metrics from the ABM
parameter space

Two distinct sets of parameters from within the inferred ABM
parameter space are chosen to illustrate how the same xenograft
volume time-course may come from tumors with very different
spatial microstructure. For each parameter set, ABM simulations are
repeated six times, and the number of tumor cells, the number of
hypoxic cells and the number of cancer cell divisions are recorded at
each time step. Additionally, we also calculate the compactness of
the tumor, the surface area to volume ratio of the tumor, the fractal

B=0.127

0.25

0.25

FIGURE 6

v=0.863

12 14
y=0.924
0.25
=
Q_-O
=
m
<
12 14
B = 0.397 v=0.948
0.25 0.25 025
—
0.2
0.15
0.01 0.01
0.05
8 10 14 0.05 10 12 1

12
ABM dlvIim

Regions in ABM parameter space corresponding to various choices of surrogate model parameter combinations that were inferred by fitting to
experimental data. Orange tinted areas represent regions in ABM parameter space for which that surrogate model parameter lies between its upper
and lower reconstructed surfaces. Purple and yellow tinted areas represent (inadmissible) regions when the surrogate model parameter is outside
these bounds. The first and second columns represent ABM regions corresponding to various choices of f and y, respectively. The third column
graphs the intersection of the admissible ABM parameter regions, with each entry corresponding to the pair of -y values from that row. The -y pairs
in each row are points that lie on the practically identifiable combination form plotted in Figure 5B.
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FIGURE 7

Region in ABM parameter space inferred from all possible

surrogate model parameter combinations that fit experimental

data equally well. The yellow and blue stars denote parameter sets

1and 2 (pgi, = 0.18, divji, = 9 and pgy, = 0.24, divym, = 11;
respectively, as discussed in Section 3.6 and Figure 8.

dimension of the 3D vasculature, and the distance of the farthest
cancer cell from the original tumor, at the end of simulations
(iterations = 300). Figure 8 shows how these features compare
between the two sets of simulations.

10.3389/fmolb.2022.1056461

As can be seen from Figure 8A, the mean number of cancer cells
of parameter set 2 is consistently larger than parameter set 1, with a
difference of about a thousand cells. Parameter set 1 has a relatively
small variation between runs as compared to parameter space 2.
Similarly, Figure 8B shows that the mean number of hypoxic cells is
consistently larger for parameter set 2 than 1. On the other hand,
although the number of cancer cell divisions is initially higher for
parameter set 2, both sets of simulations stabilize at a similar number
(Figure 8C). These findings are unsurprising, given that parameter
set 2 allows for a higher probability of division as well as number of
allowed divisions, than parameter set 1.

Interestingly, tumors generated from parameter set 2 are
significantly more compact than those generated from parameter
set 1 (p-value = .0357 using a two sample ¢-test, see Figure 8D).
This makes sense as parameter set 2 has a larger division
probability and cells can divide more times than parameter set
1. Therefore, they should generally reproduce more often and
longer before they become senescent, creating a larger, more
compact tumor. Although we do see that the variance for
parameter space 2 is much larger than parameter space 1,
meaning that while they tend to be more compact, there are
also cases in which they are less compact, similarly to parameter
space 1. In contrast, the surface area to volume ratio is
significantly lower for tumors from parameter set 1 than
parameter set 2, with a p-value of .0149 (see Figure 8E). The
average fractal dimensions of the final tumor vasculature are
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FIGURE 8

Metrics distinguishing ABM-simulated tumors using parameter set 1 (pg;, = 0.18 and div;, = 9, yellow curves and bars) and parameter set 2 (py;, =

0.24 and div,, = 11, blue curves and bars). (A) Mean and standard deviation of total cancer numbers at each iteration. (B) Mean and standard deviation
of total number of hypoxic cells at each iteration. (C) Mean and standard deviation of total number of cancer cell divisions at each iteration. (D—G)
Metrics calculated at simulation end-point (iterations = 300), with statistically significant differences indicated. (D) Compactness of the
simulated tumors. (E) Surface area-to-Volume ratio of the simulated tumors. (F) Fractal dimension of tumor vasculature. (G) Distance of the farthest
cancer cell from the origin (location of tumor cells at iteration 0).
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similar between the two parameter sets, with values within
193 and 197 (see Figure 8F). This is in line with
experimental results that found vessels from whole tumor
xenografts had fractal dimensions between 1.94 and 2.04 (Kim
et al, 2012). Finally, the distance from the original tumor of the
farthest cell at the end of the simulations, is also similar between
the two parameter sets (see Figure 8G).

4 Discussion

There is an unmet need to develop new theoretical and
computational frameworks that advance current efforts for
making critical connections between computationally complex
model (CCM) parameters and real-world data, which can be

10.3389/fmolb.2022.1056461

sparse and highly variable. To that end, we developed SMoRe
ParS, which is a potentially paradigm-shifting method for
parameter surface reconstruction that tackles this problem.
SMoRe ParS envisages an explicitly formulated, data-informed,
simpler, surrogate model (SM) as an intermediary that is used to
quantify the uncertainty in the relationship between CCM inputs
and SM parameters, and also between SM parameters and real-
world data. SM parameters, thus, serve as a link between difficult-to-
estimate CCM inputs and noisy data and enable calibration and
uncertainty quantification of CCM parameters that map directly
onto an experimental data set.

To illustrate the capability of SMoRe ParS$ to connect CCM
output and real-world data, we applied it to an ABM of 3D vascular
tumor growth as the CCM, and data from tumor xenograft growth
experiments as real-world data. Our method allowed us to
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construct an explicit mapping between ABM parameters and
which

information on uncertainty in inferred parameter values. We

tumor volume time-courses, encodes within it

then selected two distinct sets of ABM parameters that map
onto the same data set, to investigate any differences between
the Indeed,
distinguished the two sets of simulations. Variances in tumor

resultant simulated tumors. several trends
cell number time-courses shown in Figure 8 suggest that parameter
set 1 (lower probability of cell division and fewer number of
allowed cell divisions) is consistent with a slow growing tumor,
whereas parameter set 2 (higher probability of cell division and
greater number of allowed cell divisions) allows for both slower
and faster growing tumors. In fact, the variation within parameter
set 1 was consistently smaller than within parameter set 2 across all
metrics, except surface area to volume ratio (Figure 8). This
suggests that while in parameter set 1 all tumors grew relatively
similarly, in parameter set 2 the randomness of which cells could
proliferate or move could lead to a substantial difference in the
growth rate of the tumor. This is consistent with previous results
that showed if cells are surrounded by other cells, even if their
proliferation probability is high, they will not be able to divide
because there is not enough space, thus limiting the overall growth
of the tumor (Norton et al., 2017). Therefore, tumors that have the
capability of excessive growth may not be able to do so under
certain conditions where their growth is limited by spatial
inhibition. This also explains the trends in compactness and
surface area to volume ratio of the parameter sets. Tumors
generated from parameter set 1 were less compact than those
from parameter set 2, with a higher surface area-to-volume ratio,
indicating more space to grow. Both these metrics have been
suggested as predictors of malignancy in lung and head and neck
cancers Aerts et al. (2014), Bogowicz et al. (2017), He et al. (2014),
Wang et al. (2016). Our results suggest that tumors with very
distinct malignant potential could be “hiding” within aggregate,
macroscopic data.

In this paper, we chose to select the SM from a set of
phenomenological models because our main concern was
providing an easy to follow proof of concept example for
cellular-level tumor growth. In other applications, where for
example molecular or microenvironmental drivers of tumor
progression and treatment response are of interest, it is possible
to choose a mechanistic formulation of the surrogate. There are
several advantages to doing so, including being able to more fully
leverage the SM’s ability to directly connect the ABM to the
experimental data. A mechanistic SM would also have stand
alone value as it provides a more complete characterization of
the system and can be used for long term forecasting with
greater confidence. We remark that in our approach, only a
handful of ABM parameters can be considered at a time. In
general, the precise number would depend on the computational
complexity of the ABM and SM and how much experimental data is
available. Further, deriving a mechanistic SM that can match both
the experimental data and the ABM output may prove time-
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consuming. While we use cancer as an illustrative example and
as the subject of our future studies, SMoRe ParS can easily be applied
to a wide range of CCMs for basic biology and translational systems
biology investigations.
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Appendix A
Agent based model

The cancer agent-based model is made up of two main
modules: the vascular module and the cancer cell module, as
described in Section 2.2.2. Figure 9 shows a flow chart of how the
ABM is implemented.

Model setup

The cancer module is initialized with 100 cells, of which
20 are stem cells and 80 are progenitor cells. 5% of all cells are
assumed to have a higher migratory speed. Each progenitor
cell may divide at most div;, times before undergoing
senescence, and the initial pool of progenitor cells are
randomly assigned a division cycle count between 1 and
diviy,. The vascular module is initialized with eight
capillaries that are aligned along the edges of the simulation
grid, with two capillaries branching off of another. The floor of
the simulation domain is assumed to rest on healthy tissue and
acts as a constant source of oxygen.

Vascular module

The vascular module starts to evolve once hypoxic cancer
cells appear in the simulation. These are an assumed source of
angiogenic factors such as VEGF. A cancer cell becomes
hypoxic once it is 200 microns away from a source of
oxygen, namely a mature capillary or the floor of the
simulation domain. The vascular network evolves as
follows. In each iteration, a cell lining a capillary has a
chance to generate a new tip cell, determined by local
hypoxic conditions. Each active tip cell determines whether
it migrates or proliferates. A tip cell can only proliferate if
there is no stalk cell in the sprout, in which case the tip cell
proliferates to produce a stalk cell behind it. Tip cells with stalk
cells behind them do not proliferate. Once a tip cell has
proliferated, we test whether it is adjacent to another tip
cell or vascular segment and if so, the two tip cells or the
tip cell and vascular segment anastomose. This results in the
formation of a closed loop which represents a blood-bearing
vessel that is a source of oxygen. All segments in such a vessel
are then marked as mature and can no longer proliferate or
migrate. If the tip cell does not proliferate, it checks whether it
can migrate. We introduce a variable migdist, which
determines how far the tip cell migrates. migdist cannot
exceed more than 1.5 times the length of the tip cell, and is
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calculated based on the local VEGF concentration. This, in
turn, is a function of the number of neighboring cancer cells.
Details on how migdist is computed are provided in (Norton
and Popel, 2016). The tip cell randomly migrates towards one
of its neighboring cancer cells, excluding cells that would cause
the tip cell to migrate backwards. The tip cell does not migrate
if it would cause it to leave the vascular grid. After migration,
the tip cell checks whether it can anastomose, as described
previously.

The second step of the vascular module involves stalk
cell decisions. Stalks cells’ main function is to proliferate
and push the tip cell forward. A stalk cell only proliferates
when it reaches the end of its cell cycle, and if there is
enough space. If a stalk cell proliferates, a new stalk cell
is created replacing the old tip cell. Afterwards a new tip
cell is created of 1 micron length in the direction of the old tip
cell. The old stalk cell then becomes a quiescent phalanx
cell which cannot proliferate or migrate. The new stalk cell
resets its cell cycle and the tip cell checks if it should
anastomose.

The last step of the vascular module allows for
vessel branching of phalanx cells. Neither tip cells nor stalk
cells are allowed to branch. Branching occurs due to the
presence of nearby hypoxic cells. Specifically, the phalanx
cell can only branch if there are hypoxic cells within
250 microns of it. The new branch creates a tip cell that is
extended in the direction of the nearest hypoxic cancer cell.
Once a phalanx cell has branched the two cells next to it cannot
branch.

Cancer module

The cancer module runs through each cancer cell in a
random order so as not to introduce bias. Each cancer cell
can migrate, proliferate, quiesce, senesce and/or die in each
iteration. First, the cell determines whether it is normoxic or
hypoxic by checking whether it is less than 200 microns from a
mature vessel. Hypoxic cells are more migratory, increasing
the speed they migrate 3-fold, and are less proliferative,
decreasing their chances to proliferate by half. In order for
the cancer cell to migrate or proliferate there must be available
space. If there is no available space, the cell becomes quiescent.
The cell decides whether it will migrate based on its migration
probability. The number of voxels the cell migrates is based on
its migration speed. Therefore, each migrating cell randomly
chooses an open space to migrate into and repeats this as many
times as its migration speed.

The next decision the cancer cell makes is whether it can
proliferate. Each cancer cell has its own proliferation rate
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depending on whether it is a stem cell or a progenitor cell and
whether it is hypoxic or not. If it is a progenitor cell, it can only
proliferate if it has not reached its division limit, divy;,,. In this
case, the progenitor cell decides whether it will divide based on
its proliferation probability p,;,. If it decides to proliferate, the
progenitor creates a new progenitor cell in a random adjacent
grid space and increases its division number by 1. The new
progenitor cell inherits the parent cell’s division number and
has a 5% probability of being highly migratory. Once a
progenitor cell has reached its division limit, it becomes
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senescent. Alternatively, if the current cancer cell is a stem
cell, it first decides whether it will divide based on its
proliferation probability. Then it decides whether it will
divide
asymmetrically into a progenitor cell. Stem cells have no

symmetrically into another stem cell or
division limit but if a stem cell creates a new progenitor
cell, the new progenitor cell has a full division limit of
divj;,,. At the end of the simulation, any cell that has been
hypoxic for 40 iterations dies. Each senescent cell has a 10%

probability of dying in each iteration.

frontiersin.org


https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1056461

	SMoRe ParS: A novel methodology for bridging modeling modalities and experimental data applied to 3D vascular tumor growth
	1 Introduction
	2 Methods
	2.1 Surrogate modeling for reconstructing parameter surfaces (SMoRe ParS)
	2.2 Proof of concept: Vascular tumor growth
	2.2.2 ABM formulation
	2.2.2.1 Tumor module
	2.2.2.2 Vasculature module
	2.2.3 Model selection
	2.2.4 SM parameter surface reconstruction
	2.2.5 Estimate SM parameters from experimental data
	2.2.6 Infer regions of ABM parameters space that correspond to experimental data
	2.2.7 Applying knowledge gained from SMoRe ParS to compare inferred tumor characteristics


	3 Results
	3.1 ABM simulations
	3.2 Surrogate model selection
	3.3 Parameter surface reconstruction
	3.4 SM parameter estimation from experimental data
	3.5 Inferring regions of ABM parameter space that correspond to experimental data
	3.6 Comparing metrics from the ABM parameter space

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References
	Appendix A
	Agent based model
	Model setup
	Vascular module
	Cancer module


