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ABSTRACT
We consider the problem of structured tensor denoising in the presence of unknown permutations. Such
data problems arise commonly in recommendation systems, neuroimaging, community detection, and mul-
tiway comparison applications. Here, we develop a general family of smooth tensor models up to arbitrary
index permutations; the model incorporates the popular tensor block models and Lipschitz hypergraphon
models as special cases. We show that a constrained least-squares estimator in the block-wise polynomial
family achieves the minimax error bound. A phase transition phenomenon is revealed with respect to the
smoothness threshold needed for optimal recovery. In particular, we find that a polynomial of degree up to
(m − 2)(m + 1)/2 is sufficient for accurate recovery of order-m tensors, whereas higher degrees exhibit no
further benefits. This phenomenon reveals the intrinsic distinction for smooth tensor estimation problems
with and without unknown permutations. Furthermore, we provide an efficient polynomial-time Borda
count algorithm that provably achieves the optimal rate under monotonicity assumptions. The efficacy of
our procedure is demonstrated through both simulations and Chicago crime data analysis. Supplementary
materials for this article are available online, including a standardized description of the materials available
for reproducing the work.
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1. Introduction

Higher-order tensor datasets are becoming ubiquitously in mod-
ern data science applications, for instance, recommendation
systems (Bi, Qu, and Shen 2018), social networks (Bickel and
Chen 2009), and genomics (Wang, Fischer, and Song 2019).
Tensors provide effective representations of data structure that
classical vector- and matrix-based methods fail to capture. For
example, the music recommendation system (Baltrunas et al.
2011) records ratings of songs from users in various contexts.
This three-way tensor of user × song × context allows us to
investigate interactions between users and songs in a context-
specific manner.

Tensor estimation problems cannot be solved without impos-
ing structures. An appropriate reordering of tensor entries often
provides an effective representation of the hidden structure.
In the music recommendation example, suppose that we have
certain criteria available (such as, similarities of music genres,
ages of users, and importance of contexts) to reorder the songs,
users, and contexts. Then, the sorted tensor will exhibit smooth
structure, because entries from similar groups tend to have
similar values.

In this article, we develop a permuted smooth tensor model
based on the aforementioned motivation. We study a class of
structured tensors, called permuted smooth tensor model, of the
following form:

Y = � ◦ π + noise, where

�(i1, . . . , im) = f
(

i1
d

, . . . ,
im
d

)
, (1)
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where π : [d] → [d] is an unknown latent permutation, � is
an unknown order-m d-dimensional signal tensor, and f is an
unknown multivariate function with a certain notion of smooth-
ness, and �◦π denotes the permuted tensor after reordering the
indices along each of the m modes. Figure 1(a) shows an example
of this generative model for the matrix case m = 2. Our primary
goal is to estimate the permuted smooth signal tensor �◦π from
the noisy tensor observation Y of arbitrary order m.

1.1. Our Contributions

We develop a suite of statistical theory, efficient algorithms, and
related applications for permuted smooth tensor models (1).
Our contributions are summarized below.

First, we develop a general permuted α-smooth tensor model
of arbitrary smoothness level α > 0. We establish the statistically
optimal error rate and its dependence on model complexity.
Specifically, we express the optimal rate as a function of tensor
order m, tensor dimension d, and smoothness level α, given by

Rate(d) := d− 2mα
m+2α ∨ d−(m−1) log d. (2)

Table 1 summarizes the comparison of our work with pre-
vious results. Our framework substantially generalizes earlier
works that focus on only matrices with m = 2 (Gao, Lu, and
Zhou 2015; Klopp, Tsybakov, and Verzelen 2017) or Lipschitz
function with α = 1 (Balasubramanian 2021; Li et al. 2019). The
generalization enables us to obtain results previously impossible:
(i) As tensor order m increases, we demonstrate the failure of
previous clustering-based algorithms (Balasubramanian 2021;
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Figure 1. (a): Illustration of order-m d-dimensional permuted smooth tensor models with m = 2. (b): Phase transition of the mean squared error (MSE) (on the − logd
scale) as a function of smoothness α and tensor order m. Bold dots correspond to the critical smoothness level above which higher smoothness exhibits no further benefits
for tensor estimation.

Table 1. Comparison of our results with previous work.

Pananjady and Samworth (2022) Balasubramanian (2021) Li et al. (2019) Ours (MLE) Ours (Borda count)

Model structure monotonic Lipschitz Lipschitz α-smooth α-smooth & monotonic
Fixed grid design

√ × × × √

Error rate for order-m tensor
d−1 d− 2m

m+2 d−�m/3� d− 2mα
m+2α ∨ d−(m−1) d− 2mα

m+2α ∨ d−(m−1)

(e.g., when (m, α) = (3, 1)) (d−6/5) (d−1) (d−6/5) (d−6/5)

Minimax optimality
√ × × √ −∗

Polynomial algorithm
√ × √ × √

NOTE: For simplicity, we omit the log term in the rate. ∗The optimality is achieved under extra Lipchitz monotonicity conditions.

Gao, Lu, and Zhou 2015) and we develop a new block-wise poly-
nomial algorithm for tensors of order m ≥ 3; (ii) As smoothness
α increases, we demonstrate that the error rate converges to
a fast rate of O(d−(m−1)), thereby disproving the conjectured
lower bound O(d−2m/(m+2)) posed by earlier work (Balasub-
ramanian 2021). The results showcase the accuracy gain of
our new approach, as well as the intrinsic distinction between
matrices and higher-order tensors.

Second, we discover a phase transition phenomenon with
respect to the smoothness needed for optimal recovery in
model (1). Figure 1(b) plots the dependence of estimation
error in terms of smoothness level α for tensors of order m.
We characterize two distinct error behaviors determined by a
critical smoothness threshold; see Theorems 1–2 in Section 4.
Specifically, the accuracy improves with α in the regime α ≤
m(m − 1)/2, whereas the accuracy becomes a constant of α

in the regime α > m(m − 1)/2. The results imply a poly-
nomial of degree (m − 2)(m + 1)/2 (derived from m(m −
1)/2 − 1) is sufficient for accurate recovery of order-m tensors
of arbitrary smoothness in model (1), whereas higher degrees
bring no further benefits. The phenomenon is distinct from
matrix problems (Gao, Lu, and Zhou 2015; Klopp, Tsybakov,
and Verzelen 2017) and classical non-permuted smooth function
estimation (Tsybakov 2009), thereby highlighting the fundamen-
tal challenges in our new setting. These statistical contributions,
to our best knowledge, are new to the literature of permuted
smooth tensor problems.

Third, we propose two estimation algorithms with accuracy
guarantees: the least-squares estimation and Borda count esti-
mation. The least-squares estimation, although being computa-
tionally hard, reveals the fundamental model complexity in the
problem. The result serves as the benchmark and a useful guide

to the algorithm design. Furthermore, we develop an efficient
polynomial-time Borda count algorithm that provably achieves
a minimax optimal rate under an extra Lipschitz monotonicity
assumption. The algorithm handles a broad range of data types,
including continuous and binary observations.

Lastly, we illustrate the efficacy of our method through both
simulations and data applications. A range of practical settings
are investigated in simulations, and we show the outperformance
of our method compared to alternative approaches. Application
to Chicago crime data is presented to showcase the its use-
fulness. We identify the key global pattern and pinpoint local
smooth structure in the denoised tensor. Our method will help
practitioners efficiently analyze tensor datasets in various areas.
Toward this end, the package and all data used are released at
CRAN.

1.2. Related Work

Our work is closely related to but also clearly distinctive from
several lines of existing research. We review related literature for
comparison.

Structure learning with latent permutations. The estimation
problem of (1) falls into the general category of structured
learning with latent permutation. Models involving latent per-
mutations have recently received a surge of interest, including
graphons (Chan and Airoldi 2014; Klopp, Tsybakov, and Verze-
len 2017), stochastic transitivity models (Chatterjee 2015; Shah,
Balakrishnan, and Wainwright 2019), statistical seriation (Flam-
marion, Mao, and Rigollet 2019; Hütter et al. 2020), and graph
matching (Livi and Rizzi 2013; Ding et al. 2021). These methods,
however, are developed for matrices; the tensor counterparts
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are understood much less well. Table 1 summarizes the most
related works to ours. Pananjady and Samworth (2022) stud-
ied the permuted tensor estimation under isotonic constraints.
We find that our smooth model achieves a much faster rate
O(d−(m−1)) than the rate O(d−1) for isotonic models. The
works (Balasubramanian 2021; Li et al. 2019) studied similar
smooth models as ours, but we gain substantial improvement in
both statistics and computations. Balasubramanian (2021) devel-
oped a (non-polynomial-time) clustering-based algorithm with
a rate O(d−2m/(m+2)). Li et al. (2019) developed a (polynomial-
time) nearest neighbor estimation with a rate O(d−�m/3�). Nei-
ther approach investigates the minimax optimality. By con-
trast, we develop a polynomial-time algorithm with a fast rate
O(d−(m−1)) under mild conditions. The optimality of our esti-
mator is safeguarded by matching a minimax lower bound.

Low-rank tensor models. There is a huge literature on struc-
tured tensor estimation under low-rank models, including
CP models (Kolda and Bader 2009), Tucker models (Zhang
and Xia 2018), and block models (Wang and Zeng 2019).
These models belong to parametric approaches, because they
aim to explain the data with a finite number of parame-
ters (i.e., decomposed factors). Our permuted smooth tensor
model uses a different measure of model complexity than the
usual low-rankness. We use infinite number of parameters (i.e.,
smooth functions) to allow increasing model complexity. In
this sense, our method belongs to nonparametric approaches.
We emphasize that our permuted smooth tensor model does
not necessarily include low-rank models. Compared to low-
rank models, we utilize a different measure of model complexity.
When the underlying signal is precisely low-rank, then low-
rank methods are preferred. However, if the underlying signal
is high rank but has a specific structural pattern, then our
nonparametric approach better captures the intrinsic model
complexity.

Nonparametric regression. Our model is also related to non-
parametric regression (Tsybakov 2009). One may view the prob-
lem (1) as a nonparametric regression, where the goal is to
learn the function f based on scalar response Y(i1, . . . , im)

and design points (π(i1), . . . , π(im)) in R
m; see Figure 1(a).

However, the unknown permutation π significantly influences
the statistical and computational hardness of the problem. This
latent π leads to a phase transition in the estimation error; see
Figure 1(b) and Section 4. We reveal two components of error
for the problem, one for nonparametric error and the other
for permutation error. The impact of unknown permutation
hinges on tensor order and smoothness in an intriguing way, as
shown in (2). This is clearly contrary to classical nonparametric
regression.

Graphon and hypergraphon. Our work is also connected to
graphons and hypergraphons. Graphon is a measurable function
representing the limit of a sequence of exchangeable random
graphs (matrices) (Chan and Airoldi 2014; Gao, Lu, and Zhou
2015; Klopp, Tsybakov, and Verzelen 2017). Similarly, hyper-
graphon (Lovász 2012; Zhao 2015) is introduced as a limiting
function of m-uniform hypergraphs, that is, a generalization

of graphs in which edges can join m vertices with m ≥ 3.
While both our model (1) and hypergraphon focus on func-
tion representations, there are two remarkable differences. First,
unlike the matrix case where graphon is represented by bivariate
functions (Lovász 2012), hypergraphons for m-uniform hyper-
graphs should be represented as (2m−2)-multivariate functions;
see Zhao (2015, sec. 1.2). Our framework (1) represents the func-
tion using m coordinates only, and in this sense, the model shares
the common ground as simple hypergraphons (Balasubramanian
2021). We compare our method to earlier work in theory (Table 1
and Sections 4–5) and in numerical studies (Section 6). Second,
unlike typical simple hypergraphons where the design points
are random, our generative model uses equal-sized fixed design
points. The comparison of two approaches will be discussed in
Sections 2 and 4.

1.3. Notation and Organization

Let N,N+ denote the set of nonnegative integers and positive
integers, respectively. We use [d] = {1, . . . , d} to denote the
d-set for d ∈ N+. For a set S, |S| denotes its cardinality and
1S denotes the indicator function. For two positive sequences
{ad}, {bd}, we denote ad � bd if limd→∞ ad/bd ≤ c for some
constant c > 0, and ad 
 bd if c1 ≤ limd→∞ ad/bd ≤ c2 for
some constants c1, c2 > 0. Given a number a ∈ R, the function
�a� is the largest integer strictly smaller than a and the ceiling
function �a� is the smallest integer no less than a. We use O(·)
to denote big-O notation hiding logarithmic factors, and ◦ the
function composition.

Let � ∈ R
d×···×d be an order-m d-dimensional tensor,

π : [d] → [d] be an index permutation, and �(i1, . . . , im) the
tensor entry indexed by (i1, . . . , im). We sometimes also use
shorthand notation �(ω) for tensor entries with indices ω =
(i1, . . . , im). We call a tensor a binary-valued tensor if its entries
take value on {0, 1}-labels, and a continues-valued tensor if its
entries take values on a continuous scale. We define the Frobe-
nius norm ‖�‖2

F = ∑
ω∈[d]m |�(ω)|2 for a tensor � and the

∞-norm ‖x‖∞ = maxi∈[d] |xi| for a vector x = (x1, . . . , xd)
T .

We use �(d, d) = {π : [d] → [d]} to denote all permutations on
[d] and use �(d, k) = {π : [d] → [k]} to denote the collection
of all onto mappings from [d] to [k]. Given π ∈ �(d, k) and
� ∈ R

k×···×k, we use � ◦ π to denote the d-dimensional
tensor such that (� ◦ π)(i1, . . . , im) = �(π(i1), . . . , π(im))

for all (i1, . . . , im) ∈ [d]m. An event A is said to occur with
high probability if P(A) tends to 1 as the tensor dimension
d → ∞.

The rest of the article is organized as follows. Section 2
presents the permuted smooth tensor model and its connection
to smooth function representation. In Section 3, we establish the
approximation error based on block-wise polynomial approx-
imation. Then, we develop two estimation algorithms with
accuracy guarantees: the least-squares estimation and Borda
count estimation. Section 4 presents a statistically optimal but
computationally challenging least-squares estimator. Section 5
presents a polynomial-time Borda count algorithm with the
same minimax optimal rate under an extra Lipschitz mono-
tonicity assumption. Simulations and data analyses are pre-
sented in Section 6. We conclude the article with a discussion
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in Section 7. All proofs and extensions are deferred to the
Appendix.

2. Smooth Tensor Model with Unknown Permutation

Suppose we observe an order-m d-dimensional data tensor from
the following model,

Y = � ◦ π + E , (3)

where π : [d] → [d] is an unknown latent permutation,
� ∈ R

d×···×d is an unknown signal tensor under certain
smoothness (to be specified in the next paragraph), and E
is a noise tensor consisting of zero-mean, independent sub-
Gaussian entries with variance bounded by σ 2. The general
model allows both continuous- and binary-valued tensors. For
instance, in binary tensor problems, the entries in Y are {0, 1}-
labels from a Bernoulli distribution, and the entrywise variance
of E depends on the mean. For simplicity, we assume σ = 1
throughout the article. We call (3) the Gaussian model if E con-
sists of iid N (0, 1) entries, and call (3) the sub-Gaussian model
if E consists of independently (but not necessarily identically)
distributed sub-Gaussian entries.

We now describe the smooth model on the signal �. Assume
there exists a multivariate function f : [0, 1]m → R underlying
the signal tensor, such that

�(i1, . . . , im) = f
(

i1
d

, . . . ,
im
d

)
, for all (i1, . . . , im) ∈ [d]m.

(4)

For a multi-index κ = (κ1, . . . , κm) ∈ N
m and a vector x =

(x1, . . . , xm)T , we denote |κ| = ∑
i∈[m] κi, κ! = ∏

i∈[m] κi!,
xκ = ∏

i∈[m] xκi
i , and the derivative operator ∇κ = ∂ |κ|

∂xκ1
1 ···∂xκm

m
.

Assume the generative function f in (4) is in the α-Hölder
smooth family (Wasserman 2006; Tsybakov 2009).

Definition 1 (α-Hölder smooth). Let α > 0 and L > 0 be two
positive constants. A function f : [0, 1]m → R is called α-Hölder
smooth, denoted as f ∈ F(α, L), if∑

κ :|κ|=�α−1�

1
κ! |∇κ f (x) − ∇κ f (x0)| ≤ L‖x − x0‖α−�α−1�∞

holds for every x, x0 ∈ [0, 1]m.

The Hölder smooth function class is one of the most popular
function classes considered in the nonparametric regression lit-
erature (Gao, Lu, and Zhou 2015; Klopp, Tsybakov, and Verzelen
2017). In addition to the function class F(α, L), we also define
the smooth tensor class based on discretization (4),

P(α, L) =
{
� ∈ R

d×···×d : �

is generated from (4) and f ∈ F(α, L)
}

.

Combining (3) and (4) yields our proposed permuted smooth
tensor model. The unknown parameters are the smooth tensor
� ∈ P(α, L) and latent permutation π ∈ �(d, d). The
generative model is illustrated in Figure 1(a) for the case m = 2
(matrices). We provide an example to show the applicability of
our permuted smooth tensor model.

Example 1 (Co-authorship networks). Consider a co-authorship
network consisting of d nodes (authors) in total. We say there
exists a hyperedge of size m between nodes (i1, . . . , im) if the
authors i1, . . . , im have co-authored at least one paper. The
resulting m-uniform hypergraph is represented as an order-m
(symmetric) adjacency tensor. Our model is then expressed as

EY(i1, . . . , im) = P((i1, . . . , im) have co-authored together)

= f
(

π(i1)
d

, . . . ,
π(im)

d

)
,

for all i1 < · · · < im. We interpret the permutation π as the
affinity measures of authors, and the function f represents the m-
way interaction between authors. The parametric model (Wang
and Li 2020) imposes logistic function f (x1, . . . , xm) = (1 +
exp(−βx1x2 · · · xm))−1. By contrast, our nonparametric model
allows unknown f and learns the function directly from data.

Our model (4) assumes an equal-sized grid design
{1/d, 2/d, . . . , d/d} from the generative function f . One can
also extend the model to unbalanced designs; that is, the signal
tensor is generated from f based on

�(i1, . . . , im) = f (xi1 , . . . , xim), for all (i1, . . . , im) ∈ [d]m.
(5)

where the design points {xi}i∈[d] may be modeled as either
fixed latent variables or iid random variables from a probability
distribution supported on [0, 1]. The random design model
has been developed in the literature of graphons and hyper-
graphons (Chan and Airoldi 2014; Gao, Lu, and Zhou 2015;
Klopp, Tsybakov, and Verzelen 2017; Balasubramanian 2021).
Our article will focus on the grid design (4), and we will also
discuss the extension to (5) whenever possible.

Our model has equal dimension and the same permutation
along m modes. The results for non-symmetric tensors with m
distinct permutations are similar but require extra notations; for
brevity we exclude this case from the theoretical analysis and
instead evaluate its empirical performance in the Appendix A.2.

3. Block-Wise Tensor Estimation

Our general strategy for estimating the permuted smooth tensor
is based on the block-wise tensor approximation. In this section,
we first introduce the tensor block model (Wang and Zeng 2019;
Han et al. 2022). Then, we extend this model to block-wise
polynomial approximation.

3.1. Tensor Block Model

Tensor block models describe a checkerboard pattern in the
signal tensor. The block model provides a meta structure to
many popular models including the low-rankness (Gao et al.
2016) and isotonic tensors (Pananjady and Samworth 2022).
Here, we use tensor block models as a foundation for estimating
permuted smooth models.

Specifically, suppose that there are k clusters among d entities,
and the cluster assignment is represented by a clustering func-
tion z : [d] → [k]. Then, the tensor block model assumes that
the entries of signal tensor � ∈ R

d×···×d take values from a core
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tensor S ∈ R
k×···×k according to the clustering function z; that

is,

�(i1, . . . , im) = S(z(i1), . . . , z(im)), for all
(i1, . . . , im) ∈ [d]m. (6)

Here, the core tensorS collects the entry values of m-way blocks;
the core tensor S and clustering function z ∈ �(d, k) are
parameters of interest. A tensor � satisfying (6) is called a block-
k tensor. Tensor block models allow various data types, as shown
below.

Example 2 (Gaussian tensor block model). Let Y be a
continuous-valued tensor. The Gaussian tensor block model
draws independent normal entries according toY(i1, . . . , im)

ind∼
N(S(z(i1), . . . , z(im)), σ 2). The mean model belongs to (6), and
noise entries are iid N(0, σ 2). The Gaussian tensor block model
has served as the statistical foundation for many tensor cluster-
ing algorithms (Wang and Zeng 2019; Han et al. 2022).

Tensor block models have shown great success in discovering
hidden group structures for many applications (Wang and Zeng
2019; Han et al. 2022). Despite the popularity, the constant
block assumption is insufficient to capture delicate structure
when the signal tensor is complicated. This parametric model
aims to explain data with a finite number of blocks; such an
approach is useful when the sample outsizes the parameters. Our
nonparametric model (4), by contrast, uses an infinite number
of parameters (i.e., smooth functions) to allow growing model
complexity. We change the goal of the tensor block model from
clustering to approximating the generative function f in (4). In
our setting, the number of blocks k should be interpreted as a
resolution parameter (i.e., a bandwidth) of the approximation,
similar to the notion of the number of bins in histogram and
polynomial regressions (Wasserman 2006).

3.2. Block-Wise Polynomial Approximation

The block tensor (6) can be viewed as a discrete version of
piece-wise constant function. This connection motivates the
use of block-wise polynomial tensors to approximate α-Hölder
functions. Now we extend (6) to the block-wise polynomial
models.

We introduce some additional notation. For a given block
number k, we use z ∈ �(d, k) to denote the balanced clustering
function that partitions [d] into k equally-sized clusters, such
that z(i) = �ki/d�, for all i ∈ [d]. The collection of inverse
images {z−1(j) : j ∈ [k]} is a partition of [d] into k disjoint and
equal-sized subsets. We use Ek to denote the m-way balanced
partition, i.e., a collection of km disjoint and equal-sized subsets
in [d]m, such that

Ek = {z−1(j1) × · · · × z−1(jm) : (j1, . . . , jm) ∈ [k]m}.

Let � ∈ Ek denote an element in Ek. We propose to
approximate the signal tensor � in (4) using degree-� poly-
nomial tensors within each block � ∈ Ek. Specifically, let
B(k, �) denote the class of block-k degree-� polynomial tensors,
that is,

B(k, �) =
{
B ∈ R

d×···×d : B(ω)

=
∑
�∈Ek

Poly�,�(ω)1{ω ∈ �} for all ω ∈ [d]m
}

,

(7)

where Poly�,�(·) denotes a degree-� polynomial function in
R

m, with coefficients depending on block �; that is, a constant
function Poly0,�(ω) = β0

� for � = 0, a linear function
Poly1,�(ω) = 〈β�, ω〉+β0

� for � = 1, and so forth. Here β0
� and

β� denote unknown coefficients in polynomial function. Note
that the degree-0 polynomial block tensor reduces to the equal-
sized constant block model (6). We generalize the constant block
model to degree-� polynomial block tensors (7), analogous to
the generalization from k-bin histogram to k-piece-wise polyno-
mial regression in nonparametric statistics (Wasserman 2006).

The smoothness of the function f in (4) plays an important
role in the block-wise polynomial approximation. The following
proposition explains the role of smoothness in the approxima-
tion.

Proposition 1 (Block-wise polynomial tensor approximation).
Suppose � ∈ P(α, L). Then, for every block number k ≤ d
and degree � ∈ N, we have the approximation error

inf
B∈B(k,�)

1
dm ‖� − B‖2

F � L2

k2 min(α,�+1)
.

Proposition 1 implies that we can always find a block-wise
polynomial tensor close to the signal tensor generated from α-
Hölder smooth function f . The approximation error decays with
the block number k and degree min(α, � + 1).

4. Statistical Limits via Least-Squares Estimation

We develop two estimation methods based on the block-wise
polynomial approximation. We first introduce a statistically
optimal but computationally inefficient least-squares estimator.
The least-squares estimation serves as a statistical benchmark
because of its minimax optimality. In Section 5, we present a
polynomial-time algorithm with a provably same optimal rate
under monotonicity assumptions.

We propose the least-squares estimation for model (3) by
minimizing the Frobenius loss over the block-k degree-� poly-
nomial tensor family B(k, �) up to permutations,

(�̂LSE, π̂LSE) = arg min
�∈B(k,�),π∈�(d,d)

‖Y − � ◦ π‖F . (8)

The least-squares estimator (�̂LSE, π̂LSE) depends on two tuning
parameters: the number of blocks k and the polynomial degree
�. The optimal choice (k∗, �∗) will be provided below.

Theorem 1 establishes the error bound for the least-squares
estimator (8). Note that � and π are in general not separably
identifiable; for example, when the true signal is a constant
tensor, then every permutation π ∈ �(d, d) gives equally good
fit in statistics. We assess the estimation error on the composi-
tion � ◦ π to avoid this identifiability issue. For two order-m
d-dimensional tensors �1, �2, define the mean squared error
(MSE) as MSE(�1, �2) = d−m‖�1 − �2‖2

F .
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Theorem 1 (Least-squares estimation error). Let m ≥ 2. Con-
sider the sub-Gaussian model (3) with � ∈ P(α, L). Let
(�̂LSE, π̂LSE) denote the least-squares estimator in (8) with a
given (k, �). Then, for every k ≤ d and degree � ∈ N, we have

MSE(�̂LSE ◦ π̂LSE, � ◦ π)

� L2

k2 min(α,�+1)︸ ︷︷ ︸
approximation error

+ km(� + m)�

dm︸ ︷︷ ︸
nonparametric error

+ log d
dm−1︸ ︷︷ ︸

permutation error

(9)

with high probability. In particular, setting �∗ = min(�α − 1�, (m−
2)(m+1)/2) and k∗ = c1dm/(m+2 min(α,�∗+1)) yields the optimized
error rate

(9) � Rate(d) =
{

c2d− 2mα
m+2α , when α < m(m − 1)/2,

c3d−(m−1) log d, when α ≥ m(m − 1)/2.
(10)

Here, the function Rate(d) is given in (2), and the constants
c1, c2, c3 > 0 depend on the model configuration (m, L, α) but
not on the tensor dimension d; see Appendix C.2 for details.

We discuss the asymptotic error rate as d → ∞ while treat-
ing other model configurations fixed. The final least-squares
estimation rate (10) has two sources of error: the nonpara-
metric error d− 2mα

m+2α and the permutation error d−(m−1) log d.
Intuitively, in the tensor data analysis problem, we can view
each tensor entry as a data point, so sample size is the total
number of entries, dm. The unknown permutation results in
log(d!) ≈ d log d complexity, whereas the unknown genera-
tive function results in d−2mα/(m+2α) nonparametric complexity.
When the function f is smooth enough, estimating the func-
tion f becomes relatively easier compared to estimating the
permutation π . This intuition coincides with the fact that the
permutation error dominates the nonparametric error when
α ≥ m(m − 1)/2.

Remark 1 (Comparison to nonparametric regression). We now
compare our results with existing work in the literature. In
the vector case with m = 1, our model reduces to the
one-dimensional regression problem such that yi = θπ(i) +
εi, for all i ∈ [d], where θi = f (i/d) and unknown π ∈ �(d, d).
A similar analysis of Theorem 1 shows the error rate

1
d

∑
i∈[d]

(θ̂LSE
i − θi)

2 �
(

d− 2α
2α+1 + log d

)
, (11)

under the choice of �∗ = 0 and k∗ 
 d
1

1+2 min(α,1) . Notice
that d−2α/(2α+1) is the classical nonparametric minimax rate for
α-Hölder smooth functions (Tsybakov 2009) with known per-
muted design points {π(i)}d

i=1. By contrast, our model involves
unknown π , which results in the nonvanishing permutation rate
log d in (11).

Remark 2 (Breaking previous limits on matrices/tensors). In the
matrix case with m = 2, Theorem 1 implies that the best
rate is obtained under �∗ = 0, that is, the block-wise constant
approximation. This result is consistent with existing literature
on smooth graphons (Bickel and Chen 2009; Gao, Lu, and Zhou
2015; Klopp, Tsybakov, and Verzelen 2017), where constant

block model (see Section 3.1) is developed for estimation. In
the tensor case with m ≥ 3, earlier work (Balasubramanian
2021) suggests that constant block approximation (�∗ = 0)
may remain minimax optima. Our Theorem 1 disproves this
conjecture, and we reveal a much faster rate d−(m−1) com-
pared to the conjectured lower bound d−2m/(m+2) (Balasubra-
manian 2021) for sufficiently smooth tensors. We demonstrate
that a polynomial up to degree (m − 2)(m + 1)/2 is suffi-
cient (and necessary; see Theorem 2) for accurate estimation
of order-m permuted smooth tensors. For example, permuted
α-smooth tensors of order-3 require quadratic approximation
(�∗ = 2) with k∗ 
 d1/3 blocks, for all α ≥ 2. The results
show the clear difference between matrices and higher-order
tensors.

We now show that the rate in (10) cannot be improved.
The lower bound is information-theoretical and thus applies
to all estimators including, but not limited to, the least-squares
estimator (8) and Borda count estimator introduced in the next
section.

Theorem 2 (Minimax lower bound). The estimation problem
based on the Gaussian model (1) obeys the minimax lower
bound

inf
(�̂,π̂)

sup
�∈P(α,L),π∈�(d,d)

P

(
MSE(�̂ ◦ π̂ , � ◦ π) � Rate(d)

)
≥ 0.8, (12)

where the function Rate(d) is given in (2).

The lower bound in (12) matches the upper bound
in (10), demonstrating the statistical optimality of the con-
vergence speed Rate(d) = d− 2mα

2α+m ∨ d−(m−1) log d. The
two-component error reveals the intrinsic model complexity.
In particular, the permutation error d−(m−1) dominates non-
parametric error d−2mα/(m+2α) for sufficiently smooth ten-
sors. This phenomenon is contrary to classical nonparametric
regression.

Remark 3 (Phase transition). We conclude this section by
summarizing an interesting phase transition phenomenon. Fig-
ure 1(b) plots the optimal convergence speed Rate(d). The
impact of unknown permutation hinges on the tensor order and
smoothness. The accuracy improves with respect to smoothness
in the regime α ≤ m(m − 1)/2; however, in the regime
α > m(m − 1)/2, the accuracy becomes a constant with
respect to smoothness. The result implies a polynomial of degree
(m − 2)(m + 1)/2 is sufficient for accurate recovery of order-m
tensors, whereas higher degree brings no further benefits. This
full picture of error dependence, to our best knowledge, is new
to the literature.

Remark 4 (Extension to random designs). Our theory assumes
fixed balanced designs (4). We can extend the results to random
designs (5) by imposing extra conditions on the distribution
{xi}i∈[d] and generalizing the definition of P(α, L), B(k, �) and
(�̂LSE, π̂LSE). Theorems 1 and 2 remain valid under this modifi-
cation; see the Appendix F for details.
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5. Computational Limits and Polynomial-Time
Algorithms

We point out that the least-squares estimator (�̂LSE, π̂LSE) usu-
ally requires exponential-time algorithms, even in the simple
matrix case (Gao, Lu, and Zhou 2015). Specifically, this section
will show the general nonexistence of polynomial-time algo-
rithms with rate (2) under certain conditions. This fundamental
computational limit highlights the need of extra assumptions to
achieve the optimal rate (2) from a computational standpoint.

5.1. Computational Limits under HPC Detection
Conjecture

The hypergraphic planted clique (HPC) detection conjecture
plays an important role in constructing the computational limits
of our problem. We briefly introduce the HPC hardness conjec-
ture.

Consider an m-uniform hypergraph G = (V , E), where V is
a set of vertices and E is a set of hyperedges. An Erdös-Rényi
random hypergraph, denoted by Gm(d, 1/2), is a random m-
uniform hypergraph with d vertices and probability 1/2 for each
of the hyperedge connections. The hypergraphic planted clique
(HPC) with clique size κ > 0, denoted by Gm(d, 1/2, κ), is gen-
erated from Erdős-Rényi random hypergraph in the following
way. First we generate an Erdős-Rényi random hypergraph from
Gm(d, 1/2). Then we independently pick κ vertices with uniform
probability from d vertices. Finally, we obtain the Gm(d, 1/2, κ)

by including only the hyperedges whose vertices all belong to the
picked τ vertices. The HPC detection refers to the hypothesis
testing problem,

H0 : G ∼ Gm(d, 1/2) v.s. H1 : G ∼ Gm(d, 1/2, κ). (13)

The earlier work (Luo and Zhang 2022) presents the following
hardness conjecture for testing (13).

Conjecture 1 (HPC detection conjecture (Luo and Zhang 2022)).
Consider the HPC problem in (13) and let m ≥ 2 is be fixed inte-
ger. Suppose lim supd→∞ log κ/ log

√
d ≤ 1 − τ , for any τ >

0. Then, for any polynomial-time test sequence {φ}d : G �→
{0, 1}, we have

lim inf
d→∞

{
PH0(φ(G) = 1) + PH1(φ(G) = 0)

} ≥ 1
2

,

Now we construct the computational lower bound based on
Conjecture 1.

Theorem 3 (Computational lower bound under general designs).
Assume Conjecture 1 holds. Define the smooth tensor class
under general designs, Pgen = {� : � is generated from (5)
with fixed latent variables {xi}i∈[d] and f ∈ F(α, L)}. Consider
the Gaussian model (3) with α > m/2. There exists no polyno-
mial algorithm that achieves the statistical optimal convergence
Rate(d); that is,

1
Rate(d)

inf
�̂ Polynomial-time

sup
�∈Pgen

MSE(�̂, �) → ∞,

as d → ∞. (14)

Theorem 3 shows the impossibility of a polynomial-time
estimator to achieve the optimal statistical rate in the general
model. The intuition in the proof is to show the best bound for
polynomial-time tensor estimation as d−m/2, in the absence of
extra model structures. The condition α > m/2 is a technical
assumption to facilitate the proof. Theorem 3 is not a weakness
of our proposed estimator; rather, (14) reveals the non-avoidable
statistical-computational gap as a nature of the smooth tensor
estimation problem.

5.2. Borda Count Algorithm

The earlier section has shown the impossibility of polynomial-
time algorithms in the general model. In this section, we restrict
ourselves to a sub-model with extra monotonicity structures;
this structure makes polynomial-time algorithms possible. We
introduce a notion of marginal monotonicity for the generative
functions.

Definition 2 (Marginal monotonicity). Let β ≥ 0 be a nonnega-
tive constant. A function f : [0, 1]m → R is called β-monotonic,
denoted as f ∈ M(β), if the following holds for all d:

(
i − j

d

)1/β

� g(i) − g(j), for all j ≤ i ∈ [d], (15)

where we define the score function g(i) =
d−(m−1)

∑
(i2,...,im)∈[d]m−1 f (i, i2, . . . , im) for i ∈ [d].

We refer to F(α, L) ∩ M(β) as the monotonic-plus-smooth
function class. This class was initially proposed in previous liter-
ature of graphons. The work (Chan and Airoldi 2014) proposes
the Lipschitz monotonic function to facilitate the analysis of
sorting-merging algorithm for matrix estimation; their setting
is a special case of our Definition 2 with (α, β , m) = (1, 1, 2).
Inspired by earlier work, we consider the similar monotonic-
plus-smooth function class F(α, L) ∩ M(β) under general
configuration {(α, β , m) : α > 0, 0 < β min(α, 1) ≤ 1, m ≥ 2}.
Note that the constraint β min(α, 1) ≤ 1 is due to the automatic
constraint between joint smoothness and marginal smoothness.
A large value of β in (15) implies the steepness of g.

Now we introduce the Borda count estimation that consists
of two stages. The procedure is illustrated in Figure 2. Define the
empirical score function τ : [d] → R as

τ(i) = 1
dm−1

∑
(i2,...,im)∈[d]m−1

Y(i, i2, . . . , im).

1. Sorting stage: The sorting stage is to rearrange the observed
tensor Y so that the score function τ of sorted tensor is
monotonically increasing. Define a permutation π̂BC such
that

τ ◦ (π̂BC)−1(1) ≤ τ ◦ (π̂BC)−1(2)

≤ · · · ≤ τ ◦ (π̂BC)−1(d).

Then, we obtain sorted observation Ỹ = Y ◦ (π̂BC)−1,
illustrated in Figure 2(b).
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Figure 2. Illustration of Borda count estimation. We first sort tensor entries using the proposed procedure, and then estimate the signal by block-wise polynomial
approximation.

2. Block-wise polynomial approximation stage: Given sorted
observation Ỹ , we estimate the signal tensor by block-wise
polynomial tensor based on the following optimization,

�̂BC = arg min
�∈B(k,�)

‖Ỹ − �‖F , (16)

where B(k, �) denotes the block-k degree-� tensor class in (7).
An example of this procedure is shown in Figure 2(c). The
estimator �̂BC depends on two tuning parameters: the num-
ber of blocks k and polynomial degree �. The optimal choice
of (k∗, �∗) is provided in Theorem 4.

The following theorem ensures the statistical accuracy of the
Borda count estimator.

Theorem 4 (Estimation error for Borda count algorithm under
marginal monotonicity). Consider the sub-Gaussian model (3)
with f ∈ F(α, L) ∩ M(β). Denote a constant c(α, β , m) :=

m(m−1)β min(α,1)
2(m−(m−1)β min(α,1))

. Let (�̂BC, π̂BC) be the Borda count
estimator with �∗ = min (�α − 1�, �c(α, β , m)�) and k∗ 

dm/(m+2 min(α,�∗+1)) in (16). Then, we have

MSE(�̂BC ◦ π̂BC, � ◦ π)

�

⎧⎨
⎩d− 2mα

m+2α when α < c(α, β , m),(
log d
dm−1

)β min(α,1)

when α ≥ c(α, β , m).
(17)

The estimation bound (17) comes from the approximation
error (Proposition 1), nonparametric error (Theorem 1), and
permutation error (Lemma 3 in Appendix C.5).

Remark 5 (Sufficiently smooth tensors). When the generative
function is infinitely smooth (α = ∞) with Lipschitz monotonic
score (β = 1), our estimation error (17) becomes

MSE(�̂BC ◦ π̂BC, � ◦ π) � d−(m−1) log d, (18)

under the choice of degree and block number

�∗ = (m − 2)(m + 1)/2 and k∗ 
 d
m

m+2(�∗+1) . (19)

Now, we compare the rate (18) with the classical low-rank esti-
mation (Kolda and Bader 2009; Zhang and Xia 2018; Wang and
Li 2020). The low-rank tensor model with a constant rank is
known to have MSE rate O(d−(m−1)) (Wang and Li 2020). Our
infinitely smooth tensor model achieves the same rate up to the
negligible log term.

Hyperparameter tuning. Our algorithm has two tuning param-
eters (k, �). The theoretically optimal choices of (k, �) are given
in Theorems 1 and 4. In practice, since model configuration is
unknown, we search (k, �) via cross-validation. Based on our
theorems, a polynomial of degree �∗ = (m − 2)(m + 1)/2
is sufficient for accurate recovery of order-m tensors, whereas
higher degree brings no further benefit. The practical impacts
of hyperparameter tuning are investigated in Section 6.

5.3. Possible Relaxation of Monotonicity

We emphasize that the permutation in our model (3) allows for
flexibility in our monotonic-plus-smooth assumptions. Specifi-
cally, strict constraint of the target function f ∈ F(α, L)∩M(β)

is not necessary; our results remain valid if a permutation π

exists such that (f ◦ π) belongs to that class. We provide two
examples to illustrate the flexibility.

Example 3 (Non-monotonic function made monotonic by per-
mutation). Consider the quadratic function f (x, y, z) = (x −
0.5)2 +yz. Although f is non-monotonic, we find that the tensor
generated from f can be equivalently represented, up to a small
perturbation, as f̄ ◦ π , where π is a permutation that reorders
the indices to achieve monotonicity, and f̄ is a monotonic-plus-
smooth function. The function f̄ is constructed by reordering
the indices along the x-axis index to ensure marginal mono-
tonicity. The exact expressions of (π , f̄ ) are provided in the
Appendix B. This alternative representation allows us to apply
Borta count algorithm and Theorem 4 to this non-monotonic
function.

Example 4 (Decomposable monotonicity with Lipschitz smooth
factors). Let R ∈ N+ be a constant, and {gr,i(·) : [0, 1] → R}
be a set of Lipschitz smooth (α = 1) functions for all (r, i) ∈
[R] × [m]. Based on earlier example (3), every univariate Lip-
schitz smooth function can be made monotonic-plus-smooth
up to permutations. Therefore, decomposable smooth functions
of the form f (x1, . . . , xm) = ∑

r∈[R] gr,1(x1) · · · gr,m(xm) and
the corresponding low-rank tensors are also monotonic-plus-
smooth up to permutations.

Remark 6 (Other monotonicity assumptions). One may also con-
sider other assumptions such as isotonic functions (Pananjady
and Samworth 2022). Define an isotonic function class M

M = {f : [0, 1]m → R
∣∣ f (x1, . . . , xm) ≤ f (x′

1, . . . , x′
m) when

xi ≤ x′
i for i ∈ [m]}. (20)
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Table 2. Smooth functions in simulation.

Model ID f (x, y, z) CP rank Tucker rank ≥ (α, β) Isotonic

1 xyz 1 (1, 1, 1) (∞, 1)
√

2 (x + y + z)/3 3 (2, 2, 2) (∞, 1)
√

3 (1 + exp(−(3x2 + 3y2 + 3z2))−1 9 (4, 4, 4) (∞, 1/2)
√

4 log(1 + max(x, y, z)) ≥ 100 ≥ (50, 50, 50) (1, 1)
√

5 exp
(− max(x, y, z) − √

x − √
y − √

z
) ≥ 100 ≥ (50, 50, 50) (1/2, 1)

√

NOTE: We define the numerical CP/Tucker rank as the minimal rank r for which the relative approximation error is below 10−4. The reported rank in the table is estimated
from a 100 × 100 × 100 signal tensor generated by (4).

The isotonic functions (20) concerns the joint monotonicity,
where as our monotonicity (2) concerns the marginal mono-
tonicity. The isotonic functions belong to M(β) with β = 0
based on our Definition 2. In fact, we find that for isotonic
functions, Theorem 4 can be sharpened to achieve the rate
rate(g) = d− 2mα

m+2α ∨ d−(m−1) log d. Intuitively, while π̂BC does
not consistently estimate π , the tensor � ◦ π̂BC is still a good
consistent estimator of � ◦ π . The detailed statement can be
found in the Appendix C.6.

We show below that, in the special Lipschitz situation α =
β = 1, neither the marginal monotonic or the isotonic assump-
tions alter the minimax rate of Theorem 2, except for a negligible
logarithmic factor. Specifically, let M be either the isotonic
function class (20) or Lipschitz monotonic function class with
β = 1 in (15). We establish the following minimax lower bound
for the class F(1, L) ∩ M.

Theorem 5 (Statistical minimax lower bound for monotonic–
plus-Lipschitz functions). Consider the Lipschitz smooth tensor
class with extra monotonicity
PM = {� : � is generated from (4) and f ∈ F(1, L) ∩ M}.

Then, the estimation problem based on Gaussian model (1)
obeys the minimax lower bound

inf
(�̂,π̂)

sup
�∈PM ,π∈�(d,d)

P

(
MSE(�̂ ◦ π̂ , � ◦ π) � Rate(d)/ log d

)
≥ 0.8.

Theorem 5 shows that, in the special Lipschitz situation
α = β = 1, the extra monotonicity assumption renders no
changes to the minimax optimal rate of the problem, except
for a negligible logarithmic factor. Therefore, our Borda count
algorithm achieves computational and statistical optimality in
the region F(1, L) ∩ M. The optimality may not be attained in
the absence of monotonicity, that is, in the situationF(α, L)/M.
Since the statistical-computational gap is non-avoidable in gen-
eral, our imposed monotonicity assumptions fill in the gap in
several cases. For general (α, β), the optimality of Borda count
algorithm is unknown; we discuss the proof challenges in the
Appendix E.

6. Numerical Analysis

6.1. Synthetic Data

We simulate order-3 d-dimensional tensors based on the per-
muted smooth tensor model (4). Both symmetric and non-
symmetric tensors are investigated. The symmetric tensors

are generated based on functions f in Table 2, and the non-
symmetric set-up is described in the Appendix A.2. The gen-
erative functions involve compositions of operations such as
polynomial, logarithm, exponential, square roots, etc. Notice
that considered functions cover a reasonable range of model
complexities from low rank to high rank. Two types of noise
are considered: Gaussian noise and Bernoulli noise. For the
Gaussian model, we simulate continuous-valued tensors with
iid noises drawn from N(0, 0.52). For the Bernoulli model, we
generate binary tensors Y using the success probability tensor
� ◦ π . The permutation π is randomly chosen. For space
consideration, only results for Models 1, 3, and 5 are presented
in the main paper. The rest is presented in the Appendix A.1.
We first examine impacts of model complexity to estimation
accuracy. We then compare Borda count estimation with alter-
native methods under a range of scenarios. Extensions to non-
symmetric tensors and extra simulation results are provided in
the Appendix A.

Impacts of the number of blocks, tensor dimension, and polyno-
mial degree. The first experiment examines the impact of the
block number k and degree of polynomial � for the approx-
imation. We fix the tensor dimension d = 100, and vary
the number of blocks k ∈ {1, . . . , 15} and polynomial degree
� ∈ {0, 1, 2, 3}. Figure 3 demonstrates the tradeoff in accuracy
determined by the number of groups for each polynomial degree.
The results confirm our bias-variance analysis in Theorem 1.
While a large block number k provides less biased approxima-
tion, this large k renders the signal tensor estimation difficult
within each block due to a small sample size. In addition, we
find that degree-2 polynomial approximation gives the smallest
MSE among considered polynomial approximations for models
1–3. By Remark 5, plugging (α, m) = (∞, 3) in (19) gives the
theoretical choice (k∗, �∗) = (d7/3, 2). The results are consistent
with our simulation.

The second experiment investigates the impact of the ten-
sor dimension d for various polynomial degrees. We vary the
tensor dimension d ∈ {10, . . . , 100} and polynomial degree
� ∈ {0, 1, 2, 3} in each model configuration. We set the optimal
number of blocks to the configuration that gives the best accu-
racy. Figure S1 compares the estimation errors among different
polynomial approximations. The result verifies that the degree-
2 polynomial approximation performs the best under the suffi-
cient tensor dimension, which is consistent with our theoretical
results. We emphasize that this phenomenon is different from
the matrix case where the degree-0 polynomial approximation
gives the best results (Gao, Lu, and Zhou 2015; Klopp, Tsybakov,
and Verzelen 2017).
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Figure 3. MSE versus the number of blocks based on different polynomial approximations. Columns 1–3 consider the Models 1, 3, and 5, respectively. Panel (a) is for
continuous tensors, whereas (b) is for the binary tensors.

Comparison with alternative methods. We compare our
method (Borda count) with several popular alternative
methods.

• SVD (Spectral) (Xu 2018) performs universal singular-value
thresholding (Chatterjee 2015) on unfolded tensors.

• Least-squares estimation (LSE) (Han et al. 2022) uses spectral
k-means to approximately solve the optimization (8) with
constant block approximation (� = 0).

• Least-squares estimation (BAL) (Balasubramanian 2021)
uses count-based statistics to approximately solve the opti-
mization (8) with constant block approximation (� = 0). This
algorithm is only available for binary observations, so we only
use it for comparison under the Bernoulli model.

We choose degree-2 polynomial approximation as our theo-
rems suggested, and vary tensor dimension d ∈ {10, . . . , 100}
under each model configuration. Possible hyperparameters are
the block number for Borda count, LSE and BAL, and the
singular-value threshold for Spectral. Hyperparametes are set
to achieve the best performance in the outputs.

Figure 4 shows that our algorithm Borda count achieves
the best performance in all scenarios as the tensor dimension
increases. The poor performance of Spectral can be explained
by the loss of multilinear structure in the tensor unfolding pro-
cedure. The sub-optimality of LSE and BAL is possibly due to its
limits in both statistics and computations. Statistically, constant
block approximation results in sub-optimal rates compared to
polynomial approximation. Computationally, the least-squares

optimization (8) is computationally unstable. Figure 5 displays
true signal tensors of three models and corresponding observed
tensors of dimension d = 80 with Gaussian noise. We use
oracle permutation π to obtain the estimated signal tensor from
the estimated permuted signal tensor �̂ ◦ π̂ for the better
visualizations. We see that our Borda count achieves the best
signal recovery, thereby supporting the numerical results in
Figure 4.

6.2. Applications to Chicago Crime Data

The Chicago crime dataset consists of crime counts reported in
the city of Chicago, ranging from January 1st, 2001 to Decem-
ber 11th, 2017. The observed tensor is an order-3 tensor with
entries representing the log counts of crimes from 24 hr, 77
community areas, and 32 crime types. We apply our Borda
count method to Chicago crime dataset. Because the data tensor
is non-symmetric, we allow different number of blocks across
the three modes. Cross-validation results suggest the optimal
(k1, k2, k3) = (6, 4, 10), representing the block number for crime
hours, community areas, and crime types, respectively.

We first investigate the four community areas obtained from
Borda count algorithm. Figure 6(b) shows the four areas overlaid
on the Chicago map. Interestingly, we find that the clusters are
consistent with actual locations, even though our algorithm did
not take any geographic information such as longitude or lati-
tude as inputs. In addition, we compare the cluster patterns with
benchmark maps based on homicides and shooting incidents
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Figure 4. MSE versus the tensor dimension based on different estimation methods. Columns 1–3 consider the Models 1, 3, and 5 in Table 2, respectively. Panel (a) is for
continuous tensors, whereas (b) is for the binary tensors.

in Chicago shown in Figure 6(a). Our clusters share similar
geographical patterns with Figure 6(a). The results demonstrate
the power of our approach in detecting patterns from tensor
data.

Then, we examine the denoised signal tensor obtained from
our method and analyze the trends between crime types and
crime hours by the four areas in Figure 6(b). Figure 7 shows
the averaged log counts of crimes according to crime types and
crime hours by four areas. We find that the major difference
among four areas is the crime rates. Area 4 has the highest crime
rates, and the crime rates monotonically decrease from Area 4
to Area 1. The variation in crime rates across hour and type,
nevertheless, exhibits similarity among the four areas. Figure 7
shows that the number of crimes increases hourly from 8 p.m.,
peaks at night hours, and then drops to the lowest at 6 p.m. The
identified patterns among the four community areas highlight
the applicability of our method in real data.

Finally, we compare the prediction performance based on
constant block model and our permuted smooth tensor model.
Notice that constant block model uses � = 0 approximation,
whereas our permuted smooth tensor model uses � = 2 approx-
imation. We found that the mean squared prediction errors
for our model versus constant block model are 0.283 (0.006)
versus 0.399 (0.009), respectively. Here, the reported prediction
errors are averaged over five runs of cross-validation, with stan-
dard errors in parentheses. The block number (k1, k2, k3) with
best prediction performance is (6, 4, 10) for our models, and
(7, 11, 10) for constant block models. We see that the permuted
smooth tensor model substantially outperforms the classical
constant block models.

7. Conclusion and Discussions

We have presented a suite of statistical theory, estimation meth-
ods, and data applications for permuted smooth tensor models.
Two estimation algorithms are proposed with accuracy guaran-
tees: the (statistically optimal) least-squares estimation and the
(computationally tractable) Borda count estimation. In partic-
ular, we establish an interesting phase transition phenomenon
with respect to the critical smoothness level. We demonstrate
that a block-wise polynomial of order (m − 2)(m + 1)/2 is
sufficient and necessary for accurate recovery of order-m tensors,
in contrast to earlier beliefs on constant block approximation.
Experiments demonstrate the effectiveness of both theoretical
findings and algorithms.

We discuss several possible extensions from our work.
One limitation of our model is that we consider the one-

dimensional latent space embedding. The extension from the
one-dimensional latent space model to general dimensional
latent model is analogous to the extension from the block model
to the mixed membership model. Our parallel work (Lee and
Wang 2023) considers the general dimensional latent variable
model, by assuming a set of s-dimensional vectors a(k)

ik ∈ R
s

with s ≥ 1 and a latent function f : [0, 1]s × · · · × [0, 1]s → R

such that

�(i1, . . . , im) = f (a(1)
i1 , . . . , a(m)

im ), for all
(i1, . . . , im) ∈ [d1] × · · · × [dm].

This generalization extends the latent permutation π ∈ �(d, d)

to the set of latent vectors in [0, 1]s. However, we find that
this extension is not free. We need a stronger analytic function
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Figure 5. Performance comparison among different methods. The observed data tensors, true signal tensors, and estimated signal tensors are plotted for Models 1, 3, and
5 in Table 2 with fixed dimension d = 80. Numbers in parenthesis indicate the mean squared error.

Figure 6. Chicago crime maps. (a) is the benchmark map based on homicides and shooting incidents in community areas in Chicago (Jeremy 2020). (b) shows the four
clustered areas learned from 32 crime types using our method.
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Figure 7. Averaged log counts of crimes according to crime types, hours, and the four areas estimated by our Borda count algorithm. We plot the estimated signal tensor
entries averaged within four areas in the heatmap.

class with ∞-smoothness for the theoretical analysis. Compared
to this article, the analysis of analytic functions uses different
techniques and yields new results of its own. We refer readers
to Lee and Wang (2023) for independent interests.

Another limitation of our algorithm is the need for hyper-
parameter tuning. There is a vast literature on nonparamet-
ric estimation that focuses on adaptivity. For example, spa-
tially adaptive methods have been developed in the contexts
of wavelets (Donoho and Johnstone 1994), splines (Mammen
and Van De Geer 1997), and trend filtering (Tibshirani 2014);
tuning-free algorithms have been proposed for several shape-
constrained functions (Bellec 2018; Chatterjee and Lafferty
2019; Feng et al. 2022); see Cai (2012) for a review. Our work is
orthogonal to these advances, and in principle we can combine
these tools in our tensor estimation. In this article, we choose
the standard polynomial algorithm because of its simplicity. The
parsimony leads to easier analysis of the critical smoothness level
(m−2)(m+1)/2. Exploiting various nonparametric techniques
for tensor models warrants future research.

Supplementary Materials

The supplementary materials include all proofs and extra simulation results.
The R package for implementing the methods described in this article is
released at https://github.com/Chanwoost/Smooth-tensor-estimation-with-
unknown-permutations
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