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ABSTRACT: Pinholin S2168 is a viral integral membrane protein whose function
is to form nanoscopic “pinholes” in bacterial cell membranes to induce cell lysis as
part of the viral replication cycle. Pinholin can transition from an inactive to an
active conformation by exposing a transmembrane domain (TMD1) to the
extracellular fluid. Upon activation, several copies of the protein assemble via
interactions among a second transmembrane domain (TMD2) to form a single
pore, thus hastening cell lysis and viral escape. The following experiments provide
conformational descriptors of pinholin in active and inactive states and elucidate
the molecular driving forces that control pinholin activity. In the present study,
molecular dynamics (MD) simulations have been used to refine experimentally
derived conformational descriptors into an atomistically detailed model of irsS2168, an antiholin mutant. To provide additional
details about the thermodynamics of pinholin activation and to overcome large intrinsic kinetic barriers to activation, alchemical free
energy simulations have been conducted. Alchemical mutations reveal the change in folding free energy upon mutation. The results
suggest that alchemical mutations are an effective tool to rationalize experimental observations and predict the effects of site
mutations on conformational states for proteins integrated into lipid bilayers. S16F, A17Q, A17Q+G21Q, and A17Q+G21Q+G14Q
mutants reveal how changes in hydrophilicity and disruption of the glycine zipper motif influence pinholin’s thermodynamic
equilibrium, favoring the active conformation. These findings align with experimental observations from DEER spectroscopy,
demonstrating that mutations increasing the hydrophilicity of TMD1 promote activation by making TMD1 more likely to exit the
membrane and enter the extracellular fluid.

■ INTRODUCTION
Pinholin S21 describes a pair of proteins, namely an active
(S2168) that forms pores within membranes and an inactive
antipinholin (S2171) that slows the activation kinetics.1 Viral
phages balance the ratio of these two proteins to regulate the
timing of bacterial cell lysis. These proteins both have two
transmembrane domains, TMD1 and TMD2. TMD2 drives
the assembly of several S2168 pinholin copies to form pin holes
in the bacterial cell membrane. TMD1 inhibits the assembly of
TMD2 to prevent membrane pore formation. TMD1 locks the
protein in an inactive state until an allele-specific trigger
unlocks the transition.2 Upon an as-of-yet undiscovered
stimulus, TMD1 transitions from being integrated into the
membrane to being periplasm-exposed, activating individual
pinholin proteins. Subsequently TMD2 is free to oligomerize
with other proteins’ activated TMD2s to induce pore
formation. Pores disrupt the cell’s proton gradient, initiating
the lysis cascade.2a,3 This study will use pinholin irsS2168
(Figure 1) as a model for S2171 to analyze antiholin
mechanisms. The irsS2168 antiholin differs in structure from
wild type S2168 pinholin by the addition of a five amino acid
tail to the N-terminal end of TMD1. These additional amino
acids greatly inhibit TMD1 from exiting the membrane and
entering the extracellular fluid.

Pinholin’s function is intricately tied to its structure, and its
structure is dictated by its amino acid sequence. Hydrophobic
and hydrophilic amino acids and their interactions with the
local environment drive TMDs to embed in the cell membrane
in specific orientations. There is a delicate balance in
interactions of pinholin with its surroundings. In experiments,
charged lipid heads and hydrophobic tails prevent hydrophobic
moieties from entering the aqueous extracellular fluid or
cytoplasm. Interactions between the two TMDs determine
functionality of the protein.1,4 The favorable interactions
between TMD1 and TMD2 that lock pinholin in its inactive
state are thermodynamically balanced so the protein activates
at the appropriate time. Thus, the thermodynamics and
kinetics of activation are tightly controlled by evolution. One
crucial structural motif that drives TMD1-TMD2 interactions
and the locking of the protein into its inactive state is a glycine
zipper along the interface between the domains.1−5 Glycine
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zippers provide several localized stabilizing hydrogen bonds as
well as favorable geometry to interlock the zipper motifs.6 Even
small modifications to pinholin’s amino acid sequence have the
potential to greatly impact the protein’s structure, dynamics,
and function. Realizing this fact, many experimental groups
have studied pinholin and antiholin as model systems for
probing the structural transitions induced by mutation.1,4

Young and co-workers performed a set of experiments to
measure the lethality, or propensity to activate and
oligomerize, of point mutations throughout the S2168 pinholin.
They assessed the effects of these mutations by applying them
to isolated TMD2 helices, and irsS2168 antiholin.2,3,7 These
point mutations focused on modulating the strength of
protein−solvent and protein−protein interactions. By record-
ing the relative triggering time and aggregation levels of mutant
holins with respect to the wild type, Young and co-workers
were able to surmise the importance of specific amino acids as
well as the mechanistic roles they play in pinholin activation
and assembly. In the current study, we will use molecular
simulations to probe some of the mutations performed by
Young and co-workers and Lorigan and co-workers on the
irsS2168 antiholin.1,2b Mutations to TMD1 of antiholin that
result in a lethal phage indicate a more drastic impact on the
function of pinholin, because the sole purpose of TMD1 is to
limit the function of the remainder of the protein.
Lorigan and co-workers selected four interesting mutations

from Young and co-workers’ studies to explore using double
electron−electron resonance (DEER) and continuous wave
electron paramagnetic resonance (CW-EPR) spectroscopy.1,4,8

DEER and CW-EPR spectroscopy are useful to assess
mutation-driven conformational changes of proteins embedded
in lipid membranes. Lorigan and workers discerned the
distance between spin labeled amino acids and the extent of
amino acid exposure to different solvation environments (i.e.,
hydrophobic lipid tails, hydrophilic lipid heads, and water).
Thus, these experiments confirm whether the protein is in its
inactive or active conformation, and other more subtle
structural differences between mutant and WT states can
also be gleaned. While these experiments provide useful
structural data, the results are often inferred from spectro-
scopic signals. The thermodynamic impact of these mutations

on structural stability and the locations of each atom in the
system are difficult or impossible to explore experimentally as
there are no characterization techniques that can probe
aqueous membrane energetics and structure simultaneously.
Molecular dynamics (MD) simulations can complement
experiments by providing molecular-level details of pinholin’s
structure and dynamics while also elucidating energetic
contributions to stability.
MD simulations have become an essential tool for studying

membrane proteins, providing insights that are difficult or
impossible to obtain through experimental techniques alone.
These simulations offer detailed information about the
structure, dynamics, and interactions of membrane proteins
within their lipid bilayer environments.9 Of particular relevance
to this study, several researchers have used MD to probe large
conformational changes upon the introduction of stimuli. For
instance, MD simulations have been used to investigate the
conformational dynamics of the G-protein coupled receptors
(GPCRs), providing crucial insights into their activation
mechanisms and interactions with ligands.10 Simulations of
the mechanosensitive channel of large conductance (MscL),
which elucidated the gating mechanisms in response to
membrane tension.11 MD studies on the water channel protein
aquaporin have provided a detailed understanding of its
selective water permeability and gating mechanisms.12

Through MD simulations, membrane protein behavior can
be observed in various conditions, the effects of different lipid
compositions can be explored, and the mechanisms of
protein−lipid interactions can be understood. This compre-
hensive approach allows for the examination of conformational
changes, stability, and functional dynamics of membrane
proteins, such as pinholin, under different conditions. MD
simulations can predict how mutations affect protein structure
and function, providing a deeper understanding of the
molecular basis of diseases and guiding the design of
therapeutic interventions. The integration of MD simulations
with experimental data, like DEER and CW-EPR spectroscopy,
creates a synergy that enhances our ability to rationalize the
behavior of membrane proteins and their roles in cellular
processes.4b,8,9

While MD simulations are a useful tool to investigate the
structural and energetic effects of protein mutations, the time
scales that simulations can probe are limited. For explicitly
solvated systems containing a lipid bilayer, pinholin, and a
solvent bath, it is reasonable to simulate a system for up to a
few microseconds at atomic resolution using widely available
computers. Coarse-grained simulations, which remove degrees
of freedom from the system by combining the contributions of
several atoms into one bead, can achieve time scales of tens to
hundreds of microseconds. Yet, these coarse-grained models
lack the detail to describe crucial interactions like those in a
glycine zipper. The transition of pinholin from the inactive to
the active state is much slower than can be probed by MD
simulations. Young and co-workers, however, observed
structural transitions on the minute time scale.2b,d Kinetic
limitations arise for two reasons. First, it is unknown what
stimulus causes activation, and without providing that stimulus,
activation is a rare event. There is no guarantee that a
simulation will capture the activation cycle. Second, protein
dynamics are severely hampered by the crowding of the lipid
membrane environment. Activation takes place on a time scale
much longer than hundreds of microseconds Even if the

Figure 1. An illustration of the pinholin irsS2168 protein and its amino
acid sequence embedded in a DMPC lipid membrane. The color
coding of the text in the sequence matches its corresponding color
and moiety in the illustration.
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activation path were known, standard MD simulations would
not be long enough to transition between the two states.
To overcome these weaknesses of MD and uncover the

thermodynamics of the structural transition, alchemical
mutation free energy simulations can be used. Alchemical
calculations use MD to focus on the important end states of a
thermodynamic cycle rather than sampling the transitions. MD
simulations require a force field to describe the interatomic
potential energies among the atoms in the simulation box.13

Common force fields (e.g., AMBER and CHARMM families)
derive interaction potentials from quantum mechanical (QM)
calculations and from experimental data. In an alchemical
mutation simulations, interactions from one amino acid can be
decoupled from the system while another amino acid is
simultaneously coupled to the system as in eq 1. V is the total
system potential, VA is the system potential of state A, VB is the
system potential in state B and λ is the coupling parameter that
describes the system. This means that an amino acid can be
mutated out or mutated in at will. Furthermore, energetics of
these mutations can be analyzed.

= +V V V(1 )A B (1)

Seeliger and de Groot have demonstrated that the change in
thermal stability of a protein upon mutation can be accurately
estimated using alchemical mutations.14 In these simulations, a
four-state thermodynamic cycle is constructed containing the
folded wild type (WT), folded mutant, unfolded WT, and
unfolded mutant protein. In some cases, the authors used a
tripeptide rather than the unfolded state and still made
accurate predictions. This cycle describes the change in Gibbs
free energy of folding upon mutation (ΔΔGfold‑mut). The
transition from unfolded to folded states is a slow process. To
characterize the folding legs of the thermodynamic cycle,
prohibitively long standard MD simulations would be needed.
Therefore, the mutation legs of the thermodynamic cycle are
explored instead using alchemical mutation simulations. In this
study, we construct a similar cycle as described in the Methods
section. Because free energy is a state variable, the change in
unfolding free energy upon mutation can be calculated either
as (a) the difference between the free energy of folded versus
unfolded states for the mutant and WT proteins (ΔGfold) or
(b) the difference in the free energy of the mutant and WT
protein in the folded state versus the mutant and WT protein
in the unfolded state (ΔGmut). Seeliger’s method provides a
value of (ΔΔGfold‑mut) which gives the change in folding free
energy upon mutation.14 The ΔΔG we calculate is similar to
Seeliger. It is the change in activation energy upon mutation
(ΔΔGact‑mut)

■ METHODS
Atomistic Model Construction and Validation. An

atomistic representation of the irsS2168 pinholin was
constructed based upon structural descriptors provided in
Lorigan and co-worker’s previous work.1,4 The protein
structure was broken into five main parts, namely the N-
terminal tail, TMD1, the bridging beta strand, TMD2 and the
C-terminal tail. The Pro-Builder online tool15 was used to
generate a structure for each of these segments. The segments
were manually reoriented in VMD, and their coordinate files
were concatenated to best recreate the observed structural
constraints from Lorigan’s previous work. Relative TMD
penetration depth and angles were used, and the glycine zipper
motif was maintained for the inactive state. This process was

performed for both the inactive and active conformations
because both inactive and active conformations are needed to
construct the alchemical thermodynamic cycle. CHARMM
GUI Membrane Bilayer Builder was used to generate the
simulation box.16 The system is a ∼8 × 8 × 14 nm box
consisting of an irsS2168 pinholin protein embedded in a
DMPC membrane with a 0.15 M NaCl aqueous solution to
match experimental conditions in Lorigan’s studies. Simu-
lations used the CHARMM36m force field17 with CHARMM
TIP3P water18 (i.e., with LJ interactions on the hydrogen
atoms) and ions. Input files were generated for GROMACS.19

The penetration depth of each amino acid in the TMDs was
checked to ensure agreement with Lorigan and co-workers’
data.1,4b,8 Each of the four mutant proteins were created by
adding mutations (S16F, A17Q, A17Q+G21Q, and A17Q
+G21Q+G14Q) to the WT structure using CHARMM GUI.
This was done for both active and inactive states for the wild
type and each mutant, resulting in 10 total structures. Box
contents and dimensions are provided in Table S1.

Generating Hybrid Topology and Equilibration. Using
the pmx python library, the active and inactive starting models
(before minimization and equilibration) have mutant amino
acids inserted in place of the wild type amino acids.20 The pmx
library contains topologies for CHARMM36m. The state of
these mutant amino acids is numerically represented by the λ
parameter, which is anywhere between zero and one (zero
being WT and one being mutated). Energy minimization used
the steepest descent method for up to 5000 steps. A series of
short equilibration simulations were conducted to bring the
system to a stable state. Leonard-Jones interactions were cutoff
at 1.2 nm with a force-switch applied from 1.0 to 1.2 nm.
Particle mesh Ewald (PME) electrostatics were used for one-
range interactions. During these equilibration simulations, the
time step was increased from 1 to 2 fs, position restraints on
the lipid headgroups were relaxed, and the Berrendsen barostat
was used to maintain pressure at 1 bar.21

Model Validation Simulation. GROMACS 2020 was
used to run all simulations.19 The velocity-rescaling thermostat
was used to maintain a temperature of 298.15 K.22 In
production simulations, the Parrinello−Rahman barostat was
used to maintain a pressure of 1 bar. An integration time step
of 2 fs was used for numerical integration. After 3 ns of
equilibrium simulation, the trajectory was examined using
MDAnalysis23 to mark any changes in pinholin penetration
depth, TMD angles, and positions of amino acids observed in
Lorigan’s experiments.24 This validation indicated that the
starting structures were near their experimentally observed
values. Validation comparisons are presented in the Results
section

Generating Starting Structures. Once equilibrated, the
models were simulated for 500 ns in the NPT ensemble to
generate sets of unique initial frames for the mutation sample
population. Identical temperature and pressure parameters
were used from the model validation simulations. In order to
get an accurate ΔΔG value we performed 50 unique transitions
for each mutation. Starting structures for these mutations were
obtained by taking one frame every nanosecond from the last
50 ns of the 500 ns trajectory. One nanosecond of equilibrium
simulation between each starting frame ensured that each of
these transitions was performed with an independent starting
point.

Mutational Analysis. A fast-growth approach was used in
these simulations. In fast-growth methods, the system does not

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.4c03302
J. Phys. Chem. B 2024, 128, 8762−8770

8764

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.4c03302/suppl_file/jp4c03302_si_001.pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.4c03302?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


reach equilibrium at each λ value, but statistical analysis allows
the thermodynamic quantities to be calculated.25 For
transitions between the two λ states, the longer the transitions
(i.e., smaller d(λ), and larger number of time steps) the more
accurate the change in energy for a given mutation. At some
point longer simulations have diminishing returns.13 It is
important to optimize for efficiency, so we performed three
different test transitions at increasingly large time scales.
Transitions of the S16F mutation were run over (100, 500, and
2000 ps). It was determined that 500 ps achieved statistically
identical results to 2000 ps. This analysis is presented in Figure
S1 for 100 and 2000 ps transitions. For each transition there is
a change in enthalpy. The derivative of enthalpy with respect
to λ provides a work value described in eq 2.

=W Hd
d

d
0

1

(2)

When we perform many of these transitions (50 forward and
50 reverse) we can check whether the work values follow a
normal distribution. Some analysis methods require a Gaussian
distribution for both the forward (WT to mutant) and reverse
(mutant to WT) transitions. Normal distributions provide
evidence that the sampling is not biased by large structural
drifts or bimodal distributions. The convergent ΔG mutation
lies between the two sample means, as demonstrated by
Jarzynski and others.25

Thermodynamic Cycle. A crucial element of the analysis
is the application of a shortcut between thermodynamic end
states. This cycle allows us to probe the thermodynamic impact
of our mutations on the activation cycle without sampling slow
transitory behavior which would be computationally impos-
sible using MD alone.
Figure 2 illustrates the thermodynamic cycle implemented

for this study. This cycle was inspired by Seeliger and co-
workers who used the cycle to probe the effects of mutations
on protein thermal stability.14 The difference in ΔG between
the transitions of A → C and B → D is desired, but a
thermodynamically identical transition between states A → B
and C → D can be performed with less effort. The free energy

of these four states are state values independent of the path
taken. In our simulations we probe ΔΔGact‑mut.

■ RESULTS
Model Validation. To begin the analysis of folding

thermodynamics, the structural model was validated first.
Penetration depth was calculated by measuring the distance of
alpha carbons from the average center of the membrane.
RMSF was calculated for alpha carbons using the GROMACS
utility rmsf. RMSF and relative mobility are not the same
measurement, but they should closely correlate to one another.
Also, the depth parameter from experiments does not directly
provide a length value. So, MD penetration depth is used as a
strongly corelated proxy. When comparing the structure of
inactive irsS2168 model constructed for MD and the structural
characteristics derived from CW-EPR measurements from
Ahammad et al, results are qualitatively similar. Figure 3
overlays the results from the MD model and experiments.
The values around the penetration depth of TMD1 were

more stretched across the x-axis due to a slight mismatch in its
helical tilt (35° vs 31°). This also explains the lower mobility
observed in MD simulations compared to the experimentally
derived values. For TMD2, the values for both penetration
depth and mobility are characteristically similar to exception of

Figure 2. An illustration of the thermodynamic legs between the four
states of irsS2168 investigated in this study: (A) the inactive
conformation of the wild type (λ = 0), (B) the inactive mutant (λ
= 1), (C) the active conformation of the wild type (λ = 0), and (D)
the active mutant. By performing transitions between wild type and
mutant (λ 0-> 1) states transitions are met with low kinetic barriers.

Figure 3. Comparison of simulated model (black line) vs data from
CW-EPR measurements performed by Ahammad et al. (red dot).4

Adapted from ref 4. Copyright 2020 American Chemical Society.
Amino acids in TMD1 are highlighted in pink and those in TMD2 are
highlighted in cyan. (A) Average depth of penetration of amino acids
within the DMPC membrane where 1 is the center, 0 is either surface
of the bilayer. (B) Mobility data comparison between root mean
squared fluctuation of the alpha carbons along the backbone of the
simulated system (left axis) and the relative mobility of spin-labeled
side chains extrapolated from the central line width of CW-EPR
spectra (right) where the higher the value the more motion that
residue experiences.
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an outlying point at residue position G48 where the depth
parameter resulted in a value above 1.0, indicating this is the
closest amino acid to the center of the membrane. The
residues that constitute the terminal tails or the connecting
bridge between TMDs explore in the aqueous media.
Differences in solvated dynamics are expected due to different
time scales between simulations and experiments. Based upon
these validating calculations, we proceeded with probing
thermodynamics.

ΔΔG Calculations. ΔΔG calculations describing the
thermodynamic impact of pinholin mutations were performed
for four mutations: S16F, A17Q, A17Q+G21Q, and A17Q
+G21Q+G14Q. To show one set of results, data from the
S16F mutation are illustrated in Figure 4. Data for other

mutations are presented in Figure S2. S16F is an interesting
mutation because despite being the most significant change in
hydrophobicity out of all the mutations, it shows the most
insignificant impact on activation. A17Q, G21Q, and G14Q
were selected because the increase in hydrophilicity of TMD1
through these mutations were observed to increase the
propensity of activation in experiments.1,2b

We observe that there is much higher overlap between the
forward and reverse Gaussian distributions while irsS2168 is in
the active conformation. While within the membrane, the shift
to and from a much larger, more hydrophobic amino acid is
expected to have a larger difference in free energy so this
comes as no surprise. Additionally, the S16 amino acid is part
of a charged region that is theorized to remain partially
embedded within the membrane even after activation making
the shift to a larger hydrophobic amino acid less

thermodynamically impactful, allowing for a larger overlap
between forward and reverse transitions.4b

The S16F mutation is predicted to have little impact on
pinholin activation thermodynamics (ΔΔG = −2.97 ± 2.26
kJ/mol). A slight trend toward preferring activation is
observed, but error analysis suggests low statistical insignif-
icance. Positive values of ΔΔG mean the mutation is
unfavorable for activation, and negative values of ΔΔG mean
it is thermodynamically favorable. A17Q, G14Q, and G21Q
mutations replace the WT amino acid with a more hydrophilic
mutant, which should increase TMD1’s propensity toward
activating and exposing itself to an aqueous environment.1,2b,27

In addition to the thermodynamic drive toward activation,
conformationally these mutations break the important glycine
zipper motif that stabilizes the two TMDs in the inactive
conformation. As the hydrophilicity of TMD1 increases and
the glycine zipper motif is disassembled through additive
mutations, the ΔΔG values should steadily increase.

Computational Comparison to Experimental. No prior
thermodynamic data are available for direct comparison
between theory and experiments. Comparing the data
experimentally derived from CW-EPR spectroscopy to the
simulated probability values, a bridge can be formed between
the two studies. A17Q, A17Q+G21Q, and A17Q+G21Q
+G14Q mutations were probed with DEER to measure
distance distributions between spin-labeled S8 and L53
amino acids located on TMD1 and TMD2 respectively.1,8

When these two spin labels are close to one another the
protein is in the inactive state. When these two spin labels
move apart, the protein is in the active state. Figure 5 compares
the activation signature measured with DEER to alchemically
calculated ΔΔG values. The mutations simulated in this study
were selected because of the extensive kinetic data collected by
both Lorigan and co-workers and Young and co-workers. The
mutations are particularly interesting because of they all
increase the hydrophilicity of TMD1, but S16F does not seem
to increase activation at all. Additionally, the remaining
mutations replace parts of the glycine zipper motif which is
important to the stability of the inactive form.
As previously stated, the propensity of activation for the

irsS2168 protein tends to increase with the addition of more
hydrophilic amino acids and with the progressive degradation
of the glycine zipper motif. The alchemical thermodynamic
cycle provides values that agree with experimentally derived
probabilities.

Differences in Analysis Methods. To validate the
selection of BAR for analyzing these simulations, data were
reanalyzed using the Crooks Gaussian Intersection method
(CGI)28 and the Jarzynski equality.25 CGI is best used for
systems where the work distributions of the forward and
reverse processes are Gaussian,28 Jarzynski is best used for
calculating free energy changes from nonequilibrium work
measurements,25 and BAR is best used for estimating free
energy differences with high statistical efficiency from minimal
data.26 The pinholin simulations presented here could fall into
either case. Therefore, CGI and Jarzynski are used to
independently validate the BAR results.29 The data for S16F,
A17Q, A17Q+G21Q, and A17Q+G21Q+G14Q mutations is
listed in Table 1. While data are similar for all three methods
(aside from the A17Q+G21Q+G14Q mutation) there are
some key differences to discuss. BAR and Jarzynski methods
produce very similar ΔΔG values, however as Jarzynski returns
a bootstrap standard error for both forward and reverse

Figure 4. Work distributions calculated using the Bennet acceptance
ratio (BAR)26 for (A) inactive and (B) active conformations of
irsS2168 as they transition forward from WT to mutant (pink) and in
reverse from mutant to WT (blue). The Gaussian fit for each
distribution is overlaid on top with a black dotted line, and the
calculated ΔG value for the transition is marked by a vertical dashed
line.
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mutations the magnitude of the error is much larger than BAR.
CGI follows the same trend as the other two methods aside
from the A17Q+G21Q+G14Q mutation where assumedly the
separation between the forward and reverse Gaussian
distributions is too large to get an accurate measurement.
The general agreement of these three analysis methods apart
from the most extreme mutation strengthens confidence in the
selection of BAR.

■ DISCUSSION
This investigation has revealed new capabilities of non-
equilibrium alchemical mutation methods. Kinetic boundaries
dictate the rate of protein structural transitions. These kinetic
boundaries are quite impactful in simulated systems. When
kinetic barriers increase, time scales quickly exceed those
accessible by standard MD simulations. Thermodynamics,
however, describes the equilibrium states of the system.
Calculated changes in free energy of a simulated system can be

described without reference to rare events or slow kinetics.
The simulation results reported here demonstrate that theory
can be effective tool for predicting real-life behavior.
Having a computational procedure that describes thermody-

namic driving forces for membrane proteins saves many
person-hours of experimental work. Furthermore, atomistic
simulations provide atomistic structural detail which can be
used to form and test mechanistic hypotheses about
thermodynamics. Being able to explore and disqualify mutants
through simulation before devoting efforts toward wet-lab
experiments streamlines experimental design. Fortunately, the
nonequilibrium approaches demonstrated in this study are
highly parallelizable. Thus, many low-power computers
working in concert can compete with more expensive
machines.
The atomistic model produced by the simulations

conformed to measurements and analysis from previous
studies DEEER/CW-EPR that developed a working model of
pinholin.1−4,7,8 BAR has smaller error bars than CGI and
Jarzynski, this is especially true when comparing the A17Q
+G21Q+G14Q mutation where the CGI ΔΔG value was
roughly half of that measured by BAR. Trends in ΔΔG from
BAR agree with the conformational trends reported by
Ahammad et al.1,4,8 as well as the kinetic trends observed by
Young and co-workers.2,3,7

To better understand the effects of these mutations on
folding free energy, it is important to consider the chemical
characteristics of each amino acid involved. First, S16F mutates
serine to phenylalanine. Serine is a polar amino acid with a
terminal hydroxyl group. Phenylalanine contains a large
hydrophobic side chain. A few competing effects drive S16F
activation thermodynamics. S16 packs tightly with the
neighboring protein structure in the membrane. When S16 is
exposed to the solvent, there should be little change in free
energy. F16 does not pack well with its neighbors in the
membrane structure. F16 can better form a helix when exposed
to the solvent, and its hydrophobicity encourages better helical
packing in the solvent exposed state. The relative magnitudes
of these packing, folding, and hydrophobic effects drive S16F
mutation-activation thermodynamics. Second, A17Q mutates
alanine to a glutamine. Alanine is nonpolar while glutamine is
polar. Glutamine also has a much larger side chain than
alanine. This leads to a double effect. Glutamine disrupts
folding in the deactivated state. Glutamine also prefers solvent
exposure. This leads to preference for the activated state. G21
and G14, were mutated into glutamine. Each increased the
overall hydrophilicity of TMD1 which reasonably increased the
thermodynamic drive for TMD1 to become solvent exposed in
the active state. Additionally, all three of these amino acids are
part of a glycine zipper motif (which includes G10, G14, A17,
G21, L28) helps maintain the inactive folded state.2a,b,5a

Glycine, being the smallest amino acid with the lowest
hydrophobicity on Whimley’s scale, can form divots along the

Figure 5. (A) Experimental and (B) computational trends observed
when A17Q (pink), A17Q+G21Q (cyan), and A17Q+G21Q+G14Q
mutations (black) are applied to irsS2168 protein. (A) shows the
normalized probability distributions of the measured distance
between spin labeled S8 and L53 amino acids. Peaks at 2.6 and 4.9
nm represent inactive and active conformations, respectively. Adapted
with permission from ref 1. Copyright 2020 Elsevier. Peaks at 2.6 nm
have been normalized to better illustrate the increasing probability of
activation. (B) shows the ΔΔG of each mutation set calculated using
BAR, along with the standard error. The more negative the ΔΔG
value, the more the irsS2168 mutant prefers the active conformation.

Table 1. Mutation ΔΔG Values and Trendsa

mutation (active-inactive) BAR ΔΔG [kJ/mol] CGI ΔΔG [kJ/mol] Jarzynski ΔΔG [kJ/mol]

S16F −2.97 ± 2.26 −4.24 ± 2.118 −3.23 ± 4.182
A17Q −13.05 ± 0.824 −11.88 ± 2.285 −13.02 ± 1.625
A17Q+G21Q −17.24 ± 1.778 −20.09 ± 4.026 −17.24 ± 3.298
A17Q+G21Q+G14Q −25.31 ± 3.222 −12.71 ± 9.214 −25.28 ± 7.043

aError bars are given as standard deviations calculated from forward and reverse variances.
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sides of alpha helices.6 When paired with another glycine
zipper motif along another α helix, the two divots nest together
to oligomerize or fortify the secondary structure of a protein.
Removing three key amino acids in the TMD1 glycine zipper
motif further reduces the integrity of the interactions with
TMD2 that keep pinholin stable in the inactive conformation.
A major impact of mutation on thermodynamics is derived

from the contributions that the amino acids make to the
protein structure. As the glycine zipper was successively
deconstructed, pinholin’s structure leaned further toward
favoring activation. However, when S16 underwent a
significant mutation the difference in free energy of activation
was statistically insignificant. If this serine is not important for
locking the inactive state, perhaps it instead more crucial to
other processes such as pore formation. Thus, alchemical free
energy simulations can be important tool for supporting,
refuting, or developing thermodynamically informed hypoth-
eses about membrane protein structure.

■ CONCLUSIONS
Within this investigation, we built and validated an accurate
atomistic model of irsS6821 pinholin within a DMPC bilayer.
We probed the thermodynamic contributions of four mutant
proteins toward activation. The models provided thermody-
namic data that agrees with experimental observations from
DEER and CW-EPR. Experiments lack precise atomistic data
and give few clues into the thermodynamic driving forces
behind activation. Alchemical free energy calculations compli-
ment these experiments well by providing models for
unobtainable experimental observations.
A campaign of mutations can be performed using scripted

alchemical methods, thus yielding quick and valuable
information. The effect of mutations on membrane-protein,
protein−protein, and protein-solution interactions are compli-
cated due to the multidimensionality of the problem.30 While
new methodologies are being studied to experimentally assess
mutations, thermodynamic computational methods could
provide the bulk free energy results that circumvent the
kinetic barriers each of these interactions impose.
Alchemical mutation simulations are a straightforward way

to probe the effects of point mutations that reveal themselves
over normally inaccessible time scales while under massive
kinetic constraints. The proof of concept provided in our work
supports the ability of alchemical mutational analysis to explore
mutational effects on other membrane bound proteins that
undergo large conformational changes. We envision applica-
tions toward larger holin proteins, pore forming membrane
oligomers, and other crucial membrane-bound proteins.
Kinetics of large conformational changes are difficult to

probe using standard MD. To alleviate this shortcoming,
several methods have been developed that could be applied to
pinholin in future studies. We will highlight three. First, long
Markov state models (MSMs) can be used to construct and
explore pathways between conformational end states.31 Recent
advances in constructing efficient MSMs allow researchers to
probe events on much longer time scales than would be
available to single-trajectory MD models. Second, hyper-
dynamics can boost a system out of energetic minima to
sample rare events like barrier crossings. The boosting
potential used in hyperdynamics must be carefully designed
and verified to ensure valid results.32 Third, infrequent
metadynamics is a related method to hyperdynamics. With
infrequent metadynamics, a time-dependent potential is added

to a collective variable infrequently to allow escape out of an
energy minimum.33 After the system escapes the minimum, the
simulation is halted, and additional trajectories are produced. A
set of trajectories is analyzed to recover kinetics. However,
there have been recent criticisms of the application of
infrequent metadynamics, so researchers should use this
method with caution.33b

The atomistic models used here were based around putative
models supported by experimental analysis. However, some
mutations may cause additional low energy conformers to arise
due to hydrogen or sulfur bonding between point mutations.
This would cause the thermodynamic cycle to have more than
four states which might not be described by experimental
data.34 To address this, lower cost methods like those
employed by Rosetta could be used to probe the energy
landscape to identify all probable conformers to analyze further
possible changes in state.35 End-point methods like molecular
mechanics with generalized born and surface area solvation
(MM/GBSA) or molecular mechanics Poisson−Boltzmann
surface area (MM/PBSA) can report the change in attractive,
repulsive, hydrogen bond, solvation, and more energy values
across the nonequilibrium transformation simulations.36 Addi-
tionally, with robust computational and experimental resour-
ces, this alchemical method could be automated to perform
alanine scanning alongside combinatorial alanine scanning.37

Taken together, the simulations described here provide
evidence that alchemical mutation simulations can be valuable
counterparts to experiments that probe large structural changes
of proteins embedded in lipid membranes. Systems like these
have important implications for biophysics, metabolism, drug
design, biocatalysis, and human health. A better understanding
of pinholin activation would greatly improve the feasibility of
phage therapy1,2d,38 an antibacterial method of using whole
bacteriophages to kill bacteria. Phage therapy is widely believed
to be an effective method to keep ahead of bacterial antibiotic
resistance. It is also believed that through targeted mutations
to the phage, the efficacy can be tuned and optimized to treat a
wide array of bacteria. Bacteria lysing being one of the main
concerns within the field, a proper mechanistic understanding
of the responsible proteins is necessary.
Improved phages could be designed through predictive

modeling.39 Pinholins could be tuned through mutation to
drive thermodynamic equilibrium toward activation. Alter-
natively, specialized phages could be designed to be compatible
with certain membrane lipid compositions. Thus, pinholins
could be designed to preferentially kill classes bacteria in which
the pinholin is activated by the bacteria’s lipid profile.40

Predictive modeling is helpful for reducing the strain on
experimentalists by using distributed computing to rationally
reduce the design space. Based upon the results presented in
this work, we believe there is sufficient evidence to use
alchemical mutations as a screening tool to test hypotheses in
silico. For example, an initial computational alanine scan could
identify the most impactful mutation sites. Those sites could
then be probed for mutations to other classes of residues (e.g.,
positively charged, negatively charged, polar, nonpolar). Taken
altogether, the results presented in this paper give researchers a
new tool to understand and predict the thermodynamics of
protein mutations and their effects on large conformational
changes for membrane-bound systems.
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