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Traditional approaches to undergraduate-level quantum mechanics require extensive mathematical prepara-
tion, preventing most students from enrolling in a quantum mechanics course until the third year of a physics
major. Here we describe an approach to teaching quantum formalism and postulates that can be used with
first-year undergraduate students and even high school students. The only pre-requisite is a familiarity with
vector dot products. This approach enables students to learn Dirac notation and core postulates of quantum
mechanics at a much earlier stage in their academic career, which can help students prepare for careers in
quantum science and engineering and advance the Second Quantum Revolution.

I. INTRODUCTION

Quantum mechanics is arguably the most important
course that an undergraduate physics major will take.
It is central to understanding many aspects of physics,
including astrophysics, particle physics, solid-state and
materials science, photonics, and, more recently, quan-
tum information science, engineering, and technology.

There is enormous enthusiasm for lowering the entry
barriers for quantum science and engineering, in order
to prepare a new generation of students to address the
challenges of the Second Quantum Revolution1,2. Many
educational activities are aimed at younger and less-
technically-advanced students, with the hope of prepar-
ing them for future careers in quantum industries.

In most university curricula, quantum mechanics is
taught as a one-semester or two-semester course, pref-
aced by modern physics and a full year of introductory
physics. In preparation for learning quantum mechan-
ics, students must first take courses in advanced calcu-
lus, complex analysis, differential equations, and linear
algebra.

Why do we wait so long to teach quantum mechan-
ics? Apart from curricular inertia, there is a broad con-
sensus that students simply cannot learn quantum me-
chanics at an earlier stage of their academic career. In
the early days of quantum theory (i.e., the dawn of the
First Quantum Revolution), quantum mechanics was not
taught to undergraduates, nor was it offered as a core
graduate course3. One of the reasons why quantum ed-
ucation was delayed until the advanced graduate level
was that the mathematical notation at the time was not
well developed. Dirac provided a pedagogical service to
the physics community by creating his namesake “Dirac
notation”4, which helped to codify and simplify opera-
tions that are often obscured by representation-specific
approaches or matrix-only representations of the Time-
Dependent Schrödinger Equation (TDSE). However, de-
spite this improved notation, a century after the intro-
duction of quantum mechanics, it is still a highly chal-
lenging course for students.

Many introductory textbooks adopt a “spins-first” ap-
proach to quantum mechanics to help students appreci-

ate the mathematical structure of quantum mechanics5,6,
while setting the stage for learning about quantum infor-
mation. Two-state quantum systems are not just spins,
but also “qubits” which can be used to store quantum
information. Dirac notation is generally not introduced
in modern physics courses that cover quantum mechan-
ics; introductory quantum textbooks have tended to use
Dirac notation sparingly, although some more modern
textbooks do employ Dirac notation more thoroughly7,8.

Efforts to make quantum mechanics more accessible to
students, so that they can be introduced to the subject
at an earlier state, have been described by, for exam-
ple, Zollman et al.9. Rudolf has developed an accessible
guide to quantum concepts (Q is for Quantum, Ref. 10)
which are necessary for quantum computing. Hands-on
approaches often involve visualization of wavefunctions
and de-emphasize the formal aspects of learning quan-
tum mechanics. Other efforts to introduce quantum me-
chanics include the development of a variety of quantum-
themed games11–24 designed to teach various aspects of
quantum mechanics.

Here we describe an approach to teaching quantum me-
chanics to students who have no more than one semester
of introductory physics. The material was developed as
a one-credit course that gives students an introduction
to how quantum mechanics works and provides a sound
foundation for future studies. We create a bridge to
learning Dirac formalism by extending the vector nota-
tion that students learn in an introductory calculus-based
physics course. This extension enables a one-to-one map
with Dirac notation, including the representation of oper-
ators. Elements of quantum theory are illustrated using
a “Bloch cube”, which is a simplified version of the Bloch
sphere. The Bloch cube enables introductory students to
manipulate quantum states with their hands, thus build-
ing intuition about many advanced quantum concepts.
This approach was developed and refined over a three-
year period with three groups of 5-10 first-year under-
graduate students by J.L. in collaboration with C.S. Stu-
dents have consistently provided very positive feedback
in post-instruction surveys regarding this approach.
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II. BREAKING DOWN THE SCHRÖDINGER

EQUATION

It is helpful to break down the TDSE (Eq. 1) into five
components, which correspond roughly to five mathemat-
ical pre-requisites, summarized in Table I.

iℏ
∂ |ψ⟩
∂t

= Ĥ |ψ⟩ (1)

TABLE I. Breaking down the TDSE.

TDSE Component Mathematical Requirements

i Complex numbers

ℏ Algebra

∂/∂t Calculus, differential equations

|ψ⟩ Vectors

Ĥ Linear algebra

i: Complex arithmetic, multiplication, and complex
conjugation are taught in calculus-based or honors intro-
ductory physics courses.

ℏ: The Planck constant is just a number (with units),
emblematic of symbolic representation of numbers, and
ordinary algebraic manipulations.

∂/∂t: Calculus is often a co-requisite in introductory
physics courses. At a more advanced stage, students
learn about coupled and partial differential equations.

|ψ⟩: Vectors are used extensively in introductory
physics to describe the position and dynamics of objects,
and other fields (e.g., magnetic, electric) in three spatial
dimensions. Non-calculus-based courses often skip the
concept of unit vectors, whereas in calculus-based curric-
ula they are well developed and used.

H : Operators, linear algebra and matrix manipulation
are usually avoided in introductory physics courses.

To introduce quantum mechanics to introductory
physics students, we need to choose what is essential and
what can be left for more advanced instruction. Of the
mathematics skill requirements just outlined, the skills
least likely to be possessed by introductory students are
linear algebra and differential equations.

The linear algebra required to use Dirac notation can
be introduced by making an explicit analogy with unit
vectors. This analogy can be used not only to teach about
inner products, but also outer products and identity and
rotation operators, as described in Sec. III-IV. The Bloch
cube is introduced in Sec. V to provide a tangible repre-
sentation of quantum, states and the Born rule.

The requirement for differential equations is eliminated
because the TDSE can be “integrated out” to yield uni-
tary operators Û = exp[−iĤt/ℏ] with the property that

Û |ψ(0)⟩ = |ψ(t)⟩ (2)

assuming that Ĥ is time-independent. Eq. 2 serves as
a substitute for Eq. 1, which students do not need to
learn how to solve until later in their academic career.
While understanding the TDSE is essential to under-
standing the physical mechanisms by which states are
transformed, students at earlier stages in their physics
education can learn to work with the operators (in this
work, rotation operators) that represent these transfor-
mations. Sec. VI shows how the rotation operator is
introduced and illustrated with the Bloch cube. Then
in Sec. VII-VIII, we outline the lecture sequence for this
one-credit course and show how it compares to traditional
instruction.

III. VECTORS AND DOT-VECTORS

Introductory students learn about unit vectors and
scalar products, which are used to convert vector equa-
tions into a set of scalar equations. Here we review and
then extend the notation to make it more compatible
with Dirac “bra-ket” notation. We will restrict ourselves
to two dimensions, which is sufficient for mapping onto
two-state quantum systems. Unit vectors obey the stan-
dard set of orthogonality relations: x̂ · x̂ = 1, x̂ · ŷ = 0,

ŷ · x̂ = 0, ŷ · ŷ = 1. A general vector V⃗ can be written as:

V⃗ = Vxx̂+ Vy ŷ (3)

where Vx = x̂ · V⃗ and Vy = ŷ · V⃗ . Complete sets of
orthonormal unit vectors define coordinate systems.

To help students understand bra-ket notation, we start
by introducing a new type of vector, called the “dot-
vector”, in which the “·” is attached to the unit vec-
tors to define a new vector space. The dot-vector can be
disarmingly introduced by making reference to the Dr.
Seuss story about Sneetches25. In that children’s story,
there are two kinds of Sneetches: Star-Bellied Sneetches
and Plain-Bellied Sneetches. Other than the fact that one
sports a star on its belly, they look identical. By analogy,
we can define, for every unit vector x̂ or ŷ, a correspond-
ing dot-vector x̂· and ŷ·, as shown in Figure 1. A general

dot-vector W⃗ · in the two-dimensional dot-vector space
can be written as:

W⃗ · = Wxx̂ ·+Wy ŷ· (4)

where Wx and Wy are scalar coefficients. The scalar

product between W⃗ · and V⃗ is given by:

W⃗ · V⃗ = (Wxx̂ ·+Wy ŷ·)(Vxx̂+Vy ŷ) = WxVx+WyVy (5)

where we have taken advantage of the orthonormality
relations defined above. The class of operations that
students learn to manipulate vectors applies similarly to
dot-vectors. In this sense, the distinction between vec-
tors and dot-vectors is superficial, not unlike the stars
that some Sneetches wear on their bellies.
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Dot vector Vector

(a) (b)

FIG. 1. Dot-Vec notation developed to help introduce Dirac
notation. (a) Dot-vector x̂·. (b) vector ŷ. Products of dot-
vectors and vectors can yield scalars or operators, depending
on their relative ordering.

By combining vectors and dot-vectors in the opposite
order, we can create operators which transform vectors
into other vectors. An extremely useful operator is the
identity operator, which can be written as follows:

1 = x̂x̂ ·+ŷŷ· (6)

Acting the identity operator 1 on the vector V⃗ yields:

(x̂x̂ ·+ŷŷ·)V⃗ = x̂x̂ · V⃗ + ŷŷ · V⃗ = Vxx̂+ Vy ŷ. (7)

where Vx = x̂ · V⃗ and Vy = ŷ · V⃗ . The identity oper-
ator provides an explicit method for resolving a vector
into components, which is something that introductory
students are often asked to do when solving vector equa-
tions.

Another type of operator is one that produces a rota-
tion in the xy plane. For example, the operatorR rotates
vectors counterclockwise by 90◦.

R = ŷx̂ · −x̂ŷ· (8)

The rotation properties can be seen by its effect on
three test vectors, illustrated in Fig. 2.

FIG. 2. Effect of R operator on (a) x̂, (b) ŷ, (c) (x̂+ ŷ)/
√
2.

An important conceptual leap which is necessary for
understanding quantum mechanics is the mapping be-
tween orthogonal vectors and distinct states of a system.

TABLE II. Dot-Vec / Bra-Ket notation analogy.

Dot-Vec Bra-Ket

x̂ |+z⟩
ŷ |−z⟩

x̂ · x̂ = 1 ⟨+z|+z⟩ = 1

x̂ · ŷ = 0 ⟨+z|−z⟩ = 0

ŷ · x̂ = 0 ⟨−z|+z⟩ = 0

ŷ · ŷ = 1 ⟨−z|−z⟩ = 1

x̂x̂· |+z⟩⟨+z|
x̂ŷ· |+z⟩⟨−z|
ŷx̂· |−z⟩⟨+z|
ŷŷ· |−z⟩⟨−z|

Unit vectors in quantum mechanics can represent mu-
tually distinguishable states and not just directions in
space. For example, we can imagine that x̂ represents
the “heads” state of a coin, while ŷ represents the “tails”
state.

FIG. 3. Unit vectors can represent states of matter. Operator
F flips the state of a coin.

The action of flipping over a coin can be described by
the operator F = x̂ŷ ·+ŷx̂·.

IV. DIRAC NOTATION

After extending the existing vector notation to include
dot-vectors (which we will refer to as “Dot-Vec” nota-
tion), the analogy with Dirac (bra-ket) notation can be
introduced. Ket states are associated with unit vectors,
and Bra states are associated with unit dot-vectors. The
scalar products defined for x̂ and ŷ are mapped onto the
scalar product relations for Dirac bras and kets. The
analogy is summarized in Table II.

A. Operators

With this identification, we can use some of the tools
developed for vectors to resolve a general state |ψ⟩ into
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FIG. 4. Bloch sphere and Bloch cube. (a) Bloch sphere. (b)
Top view of Bloch cube. (c) Bottom view of Bloch cube. (d)
Fold-out pattern of Bloch cube.

components along |+z⟩ and |−z⟩ using the identity op-

erator 1̂ = |+z⟩⟨+z|+ |−z⟩⟨−z|.

1̂ |ψ⟩ = |+z⟩ ⟨+z|ψ⟩+ |−z⟩ ⟨−z|ψ⟩ = ψ+ |+z⟩+ ψ− |−z⟩
(9)

where ψ+ = ⟨+z|ψ⟩ and ψ− = ⟨−z|ψ⟩.
When students are comfortable with scalar products

and operators using Dirac notation, it is possible to dis-
cuss how it relates to quantum physics. In keeping with
a “spins-first” approach, we restrict our attention to the
two-dimensional space spanned by |+z⟩ and |−z⟩, which
can also labeled |0⟩ and |1⟩ in the context of quantum in-
formation and qubits, to describe a physical system that
can be in one of two possible distinct states. We avoid de-
scribing any specific physical system, e.g., spin-1/2, since
these concepts can increase the cognitive load of students.
Additionally, in the first semester of college-level intro-
ductory physics, students have not been exposed to the
idea of magnetic fields or spins. The abstract nature of
the labels used to describe the two-state system is com-
pensated by a “hands-on” approach involving a Bloch
Cube, which is described in the next Section below.

V. BLOCH CUBE

Quantum states in two dimensions are often repre-
sented in terms of the Bloch sphere (Figure 4(a)). Here
we simplify the Bloch sphere by fashioning it into a six-
sided “Bloch cube” (Figure 4(b,c)). Opposite faces of
the cube represent distinct states, and are labeled |±n⟩,
n = x, y, z. The allowed states are restricted to the six
possible states represented on the Bloch cube. While
only certain states are represented, the set is sufficiently
rich to illustrate most of the important quantum con-
cepts. Bloch cubes (Figure 5), like a deck of cards, can
be used in multiple exercises or games to illustrate im-
portant quantum concepts.

It is important for students to understand that, even
though we work with states labeled |+x⟩, |+y⟩, and |+z⟩,
none of these states are “orthogonal” to each other. Stu-
dents should be told over and over that distinct states are
those which are situated on opposite faces of the Bloch

FIG. 5. Bloch Cubes. The smaller ones are made from blank
ceramic cubes and covered with laser-printed labels. The
larger Bloch Cubes use a different “qubit” labeling in which
|+z⟩ = |0⟩ and |−z⟩ = |1⟩, and other states are expressed in
this basis.

Cube. There are many opportunities for instructors to
emphasize this crucial point during instruction, but the
Bloch Cube can help remind students of this.

The Bloch Cube can be used to represent the quantum
state of two-state system. We will work with a conven-
tion that the state of a Bloch Cube is whatever side is
facing upwards. This convention is useful for students
who are working with the Bloch Cubes themselves. The
convention can be adjusted if one is giving instruction to
a class, in which the side of the Bloch Cube that is facing
the students can serve as the Bloch Cube state.

A. Quantum Measurements and the Born Rule

The Born rule predicts the likelihood of a measurement
outcome, and it can be presented as a postulate. If the
system is in a state |ψ⟩, the probability of measuring it
to be |ϕ⟩ is given by

P (|ψ⟩ → |ϕ⟩) = |⟨ϕ|ψ⟩|2 (10)

To illustrate this idea with the Bloch cube, we can
define (according to standard conventions) the following
superposition states (Eq. 11):

|+x⟩ = 1√
2
(|+z⟩+ |−z⟩) (11a)

|−x⟩ = 1√
2
(|+z⟩ − |−z⟩) (11b)

|+y⟩ = 1√
2
(|+z⟩+ i |−z⟩) (11c)

|−y⟩ = 1√
2
(|+z⟩ − i |−z⟩) (11d)
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TABLE III. Born rule probabilities | ⟨□|□⟩ |2 for Bloch cube
states.

Initial State

Question Final State |+z⟩ |−z⟩ |+x⟩ |−x⟩ |+y⟩ |−y⟩
Z ⟨+z| 100% 0% 50% 50% 50% 50%

Z ⟨−z| 0% 100% 50% 50% 50% 50%

X ⟨+x| 50% 50% 100% 0% 50% 50%

X ⟨−x| 50% 50% 0% 100% 50% 50%

Y ⟨+y| 50% 50% 50% 50% 100% 0%

Y ⟨−y| 50% 50% 50% 50% 0% 100%

If a system is in the |+x⟩ state, students can calculate
that the probability of measuring +z is given by

P (|+x⟩ → |+z⟩) = |⟨+z|+x⟩|2 =
1

2
(12)

The full set of probabilities for measurement is summa-
rized in Table III. The rationale behind Eq. 11 is not pro-
vided to students by default, but students can be asked
to work out the entries in Table III based on those defi-
nitions, and can be asked to think about alternative def-
initions that would be consistent with Table III.

To simulate the measurement process with a Bloch
cube, students first choose an initial state, which by con-
vention can be the face-up state of the Bloch cube after
rolling. One of three possible questions can be asked
(Eq. 13(a-c)).

X Question: |+x⟩ state or |−x⟩ state? (13a)

Y Question: |+y⟩ state or |−y⟩ state? (13b)

Z Question: |+z⟩ state or |−z⟩ state? (13c)

If the question matches the state (e.g., Z question for
|+z⟩ state), then the state is unchanged. If the ques-
tion type differs from the face-up state (e.g., X question
for |+z⟩ state), the Bloch Cube is rolled and the state
changes to |+x⟩ if the roll lands on a positive face; other-
wise, the state changes to |−x⟩. A flowchart is illustrated
in Figure 6. An alternative to using a Bloch Cube to gen-
erate a probabilistic outcome would be to flip a coin.

VI. QUANTUM DYNAMICS

Solving the TDSE, even with a two-state quantum sys-
tem, generally involves calculus, differential equations,
and matrices, which are beyond the reach of most stu-
dents taking introductory physics. However, the TDSE
can be integrated to yield unitary operators that rep-
resent the formal solutions of the TDSE and corre-
spond to physical rotations. We represent unitary op-
erators as Û , where the “hat” is not to be confused
with the unit vectors and dot-vectors from before. A

FIG. 6. Example illustrating measurement using the Bloch
cube. The initial state is |−x⟩, and the Y Question is asked.
A coin is flipped and if it lands heads, the Bloch cube is
oriented to the |+y⟩ state; if it lands tails, the Bloch cube is
oriented in the |−y⟩ state.

unitary operator will in general take the form Û =
eiφ+ |+u⟩⟨+z|+eiφ− |−u⟩⟨−z|, so that Û |+z⟩ = eiφ+ |+u⟩
and Û |−z⟩ = eiφ− |−u⟩, where {|+u⟩ , |−u⟩} form an or-
thonormal basis. However, if the initial and final states
are restricted to the six faces of the Bloch cubes, this con-
strains the rotation angles to be integer multiples of 90◦.
Using this restriction, there is no need to teach students
about the TDSE or to define unitary operators. The re-
sulting system is simple enough to be readily understood
and yet rich enough to illustrate how operators transform
states.

We begin by defining rotation operators that rotate
the Bloch cube about the X, Y , and Z axes by 90◦ in
the clockwise direction (Figure 7). We can represent the

Ẑ unitary operation corresponding to 90◦ rotation about
the Z axis in two equivalent ways:

Ẑ = |+z⟩⟨+z|+ i |−z⟩⟨−z| (14a)

Ẑ = −i |+z⟩⟨+z|+ |−z⟩⟨−z| (14b)

The two forms of Ẑ differ only by a constant multiplica-
tive factor, which we explain is an arbitrary mathemat-
ical choice with no physical effects, similar to the choice
of zero potential energy in classical mechanics problems.
Note that with these definitions, Ẑ4 = +1; this is the
rotation operator for a Bloch cube and not for a spin-1/2

state. Acting with Ẑ or its inverse Ẑ−1 on |+z⟩ and |−z⟩,
does not change the state except for a factor of ±i. The
fact that |+z⟩ and |−z⟩ are eigenstates of Ẑ is intuitively
seen because the Bloch cube is being rotated about the
Z axis and hence does not transform into another state.

To understand the effect of Ẑ on the other four Bloch
cube states, one can rotate the Bloch cube 90◦ clockwise
about the Z axis. In general, Ẑ permutes the states as
follows: |+x⟩ → |+y⟩ → |−x⟩ → |−y⟩ → |+x⟩. Students

can see this mathematically by rewriting the Ẑ operator
in terms of its action on, for example, the |+x⟩ and |−x⟩
basis states. Students can also show mathematically that
Ẑ can be expressed as follows:

Ẑ = |+y⟩⟨+x|+ |−y⟩⟨−x| (15a)

Ẑ = |−x⟩⟨+y|+ |+x⟩⟨−y| (15b)
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FIG. 7. Illustration of Bloch cube clockwise 90◦ rotations
about X, Y , and Z axes.

Expressions like these are readily understood by exam-
ining the Bloch cube and remembering the definition for
the Ẑ unitary rotation. Similar expressions can be found
for rotations about the x and y directions.

In general, the Bloch cube serves as a “quantum aba-
cus” for computing a series of unitary operations. Stu-
dents can discover, for example, the non-commutative
nature of these operations by writing down a sequence of
operations in various orders and showing that the Bloch
cube ends up in a different state depending on the order
of operations.

VII. LECTURE SEQUENCE

This approach to teaching quantum mechanics was
used in a one-credit course, but the level of detail can
be expanded or compressed depending on the amount
of time available. The development of this course took
place with students who participated in a program ti-
tled “First Experiences in Quantum” (FEQ), held in the
Spring semester at the University of Pittsburgh. Most
students were first-year undergraduates who were also
signed up to work on a project in the research group of
a willing faculty member for 1-2 course credits. Because
any grade was assigned by the research advisor, the only
course assessment was a midterm test; there was no final
exam and no out-of-class assignemnts. Below is a list of
topics covered in the lectures.

1. Introduction and overview

2. Vectors and unit vectors in two dimensions

3. Dot products and introduction to Dot-Vec notation

4. More examples of Dot-Vec notation and coordinate
transformations

5. Dirac notation and analogy with Dot-Vec notation

6. Bloch cube and representation of quantum states

7. Bloch cube and Born rule

8. Bloch cube and quantum dynamics

9. Proving that unitary operators are represented by
Bloch cube rotation

10. Final assessment

Additional suggestions about how instructors may fol-
low the approach described here are given in the Sup-
plementary Material. Additional topics that cover more
advanced topics can be taught using Bloch Cubes, includ-
ing density matrix formalism, electron spin resonance,
quantum key distribution, and elements of quantum field
theory. These topics require the use of multiple Bloch
Cubes. For example, the density matrix is represented
by a set of Bloch cubes that represent the possible states
and their respective probabilities. The completely mixed
state would have half of the Bloch Cubes in a |+z⟩ state
and half in the |−z⟩ state. Quantum key distribution
(BBM92 type26) would use Bloch Cubes to represent
photon states measured Alice and Bob, as well as the
outcome of joint measurements. Electron spin resonance
involves rotations of states, which can be simulated using
Bloch Cubes. Inhomogeneous dephasing can be repre-
sented “digitally” by allowing some states to rotate faster
than others and advance by one quarter turn. A “pi
pulse” applied to all the spins followed by more spinning
will cause refocusing and spin-echo phenomena to be-
come apparent. Quantum field theory requires an array
of Bloch Cubes with particle existence represented by a
|z⟩ state and its absence represented by |−z⟩ state.

VIII. COMPARISON WITH TRADITIONAL

INSTRUCTION

The approach to teaching quantum mechanics de-
scribed here carefully postpones some topics. Specifi-
cally, the TDSE is not explicitly solved, and the unitary
operators that represent time evolution are not derived
from the TDSE. Hamiltonians, which appear promi-
nently during traditional instruction, do not appear any-
where. The main reason for this choice is that calculus,
and the more complex mathematics surrounding expo-
nentiation of operators and coupled ordinary differential
equations, is generally too advanced for introductory stu-
dents. However, the concept of eigenstates is introduced
to students. In terms of the Bloch Cube, the eigenstates
of the rotation operator are the two states that lie on
the axis about which (unitary) rotation takes place. In
the approach described here, unitary evolution takes in-
tellectual precedence over the Hamiltonians that gener-
ate them. From a pedagogical perspective, it is fairly
standard to introduce momentum conservation for a free
particle and then later on “derive” it by showing that
the momentum operator is the generator of translation
in space. Similar pedagogical choices are made in intro-
ductory physics, where the forces involved in completely
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inelastic collsions are “integrated out”, yielding a mo-
mentum conservation law that does not depend on the
details of the collision. This approach to quantum me-
chanics is not a substitute for traditional approaches to
teaching quantum mechanics–it is instead an introduc-
tion that can empower students to understand core quan-
tum concepts years before they learn them in a standard
physics sequence.

IX. CONCLUSION

Here we introduced an approach to teaching quantum
mechanics to students who have some exposure to vec-
tors and only limited experience with physics. Dirac bra-
ket notation is introduced through a close analogy with
unit vectors, requiring one extension that can be used to
create dot-vec operators. The Bloch cube simplifies the
number of quantum states, and eliminates the need for
calculus. A number of exercises, more than are described
here, can be paired with Bloch cubes, and calculations
can be verified and made intuitive through manipula-
tion of the Bloch cube. The knowledge and intuition
derived from this approach can support students in more
advanced introductory quantum courses, and can help
democratize quantum science and engineering by broad-
ening its appeal at an earlier stage of intellectual devel-
opment.

Following are example comments from first-year college
students on instructor evaluation:

• “I loved how we learned about different things using
the cube. The class didn’t just give me information,
it also taught me how to think about things differ-
ently and accept the weirdness of quantum ideas.”

• “Excellent introduction to quantum physics at an
introductory level.”

• “The cubes are good.”

• “Material presented was not intimidating.”

• “I loved how [instructor] helped us learn using
cubes and I loved the topic and I found it deeply
interesting.”
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