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1 Introduction
Spatio-temporal mobility data collected by location-based services [71] and other means, such as
Call Data Records (CDR), WiFi hotspots, smart watches, cars, and so on, are very useful from a
socio-economical perspective, as they are at the heart of many useful applications (e.g., navigation,
geo-located search, geo-located games) and answer numerous societal research questions [86].
For example, CDR has been successfully used to provide real-time tra!c anomaly as well as event
detection [157, 163], and a variety of mobility datasets have been used in shaping policies for
urban communities [46] or epidemic management in the public health domain [128, 129]. From
an individual-level perspective, users can bene"t from personalized recommendations when they
are encouraged to share their location data with third parties [34].

While there is no doubt about the usefulness of location-based applications, privacy concerns re-
garding the collection and sharing of individuals’ mobility traces or aggregated #ow of movements
have prevented the data from being utilized to their full potential [16, 89, 152]. A mobility privacy
study conducted by De Montjoye et al. [30] illustrates that four spatio-temporal points are enough
to identify 95% of the individuals, which exacerbates user re-identi"cation risk and could be the
origin of many unexpected privacy leakages. Indeed, various studies have shown that numerous
threats arise if location data fall into the hands of inappropriate parties. These threats include
re-identi"cation [111], the inference of sensitive information about users [89, 167] (e.g., their home
and work locations, religious beliefs, political interests, or sexual orientation). In some extreme
cases, sharing geo-located data may even endanger users’ physical integrity (e.g., the identi"cation
of protesters in dictatorial regimes or during wars)1 or their belongings (e.g., robbery).2

One way to consider addressing privacy challenges is to break from centralized data collection
and maintain the location data on user devices. In this decentralized paradigm, a variety of solu-
tions are plausible. A possible approach is to create accurate-enough synthetic location data to
train spatial-temporal models and then "ne-tune them on users’ devices to perform best for the
individuals’ location data [66]. Although this is a promising approach, the research has shown that
mobility trajectory generation is an extremely di!cult task that may not portray data heterogene-
ity accurately [88, 107]. Moreover, trajectories from di$erent locations, periods, or user groups may
have distinct characteristics that the pre-trained model does not handle e$ectively. Although this
is an ongoing "eld of research, to date there exists little evidence as to whether models can transfer
mobility knowledge across cities [66], as with a signi"cant distribution shift between the data used
for pre-training and the data for the target task, transfer learning may not generalize well.

In parallel, an alternative approach that is increasingly considered a promising approach is
Federated Learning (FL) [117]. FL relies on clients (be it users’ smartphones or edge devices)
to train a machine learning model on their local training data and share the model weights with
a central server (called the FL server) that aggregates the received clients’ contributions. As such,
FL can inherently alleviate some privacy concerns [150] while enabling clients to collaboratively
train and utilize a global model without ever sharing their private data. This characteristic renders
FL more compliant with recent privacy regulations (e.g., GDPR [160] and CCPA [63]) and an
increasing user awareness [158]. Additionally, it facilitates the emergence of new use cases (e.g.,
digital healthcare [92, 144]). Indeed, several real-world applications leveraging FL have already
emerged including drug discovery [133] and fraud detection [4].

Compared with other applications of FL, spatial-temporal data and models possess certain char-
acteristics and properties that introduce challenges. For instance, in domains involving ST data,
the observations made at nearby times and locations cannot hold the independent property due

1https://www.independent.co.uk/news/ukraine-ap-russia-gps-kyiv-b2093310.html
2https://pleaserobme.com
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Fig. 1. Number of FL surveys and the underlying applications tackled. Note the absence of surveys on FL-ST
works, which contrasts with the ever-growing number of FL-ST methodological papers (e.g., 26 papers in
2023).

to the auto-correlation (e.g., changes in tra!c activity occur smoothly over time and space). As a
result, classical FL algorithms that assume independence among observations are not suited for ST
applications [11]. Furthermore, ST data are not identically distributed, that is, it does not meet the
assumption that every instance belongs to the same population and is thus identically distributed.
These two properties are referred to as independent and identically distributed (iid). Finally, ST
data are often both spatially and/or temporally sparse and often created at high frequencies,
especially in real-time applications, resulting in a high velocity and volume of data generation.

Related Surveys. Since FL emerged half a decade ago, many survey papers
[31, 48, 95, 125, 140, 166] have reviewed relevant literature from various perspectives. In 2023
alone, 91 surveys on federated learning were published [109, 145, 166] with the majority being on
applications-speci"c topics, predominantly focused on healthcare [57, 138, 142, 165], "nance [130],
blockchain [72, 126, 135, 202], and the Internet of Things (IoT) [6, 28, 131, 159]. Figure 1 presents
the growing number of application-speci"c FL surveys,3 which is paralleled by an emergence of
papers on FL-ST topics. In motivating the need for this survey, we discuss the perspectives that
IoT-related and generic FL surveys have covered and highlight their shortcomings when applied
to ST models. More speci"cally, FL Surveys on smart cities including those of IoT applications
are closest to our work. Zheng et al. [201] reviewed applications of FL in smart cities. They
provided a broad overview of various applications of smart cities including IoT, transportation,
communication, medical care, and "nance. They created a glossary of the papers in these domains
without discussing the diversity of existing approaches or drawing comparisons between these
works. Their work mainly focused on security and privacy challenges and outlined algorithmic
e!ciency as a future direction but did not consider the heterogeneity and sparsity often associated
with the location data. The closest survey to ours is the work of Pandya et al. [131], which has a
subsection discussing the FL transportation applications in smart cities. However, only one of the
research works discussed in their survey is revisited in our work, as their focus predominantly
revolves around a di$erent type of use cases (e.g., number plate recognition and railway).

Other FL surveys that are not application speci"c and review methodological approaches
of FL regarding heterogeneity, model convergence, and personalization fall short in drawing a

3Our methodology in harvesting data about all survey papers on FL is outlined in the Appendix.
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comparison between these di$erent techniques when applied to ST data. Although some of the
challenges such as non-iid are well covered in those surveys, the other characteristics of the ST
data are not covered. Finally, we note that despite its unique properties and the increasing number
of spatial-temporal research papers emerging in FL, no survey paper has attempted to categorize,
review, and compare this emergence of FL-ST methodological approaches (Figure 1).

Our Contribution. The contributions of this survey are as follows:
— In this survey, we study 38 existing spatial-temporal works that have been tailored for the

FL paradigm. As we review these recent advancements, we provide brief yet detailed de-
scriptions of each approach, supplemented by a meta-analysis comparing their e!cacy in
addressing the encountered challenges.

— As part of this survey we create an open source repository4 where we host the existent FL-ST
algorithms that are available as well as sample datasets. We also include available mobility
data handling (pre-processing, analysis, and visualization) software. We hope that this open
source repository enables the research community to contribute their work and enable a
greater number of baselines.

— We discuss open challenges and a roadmap that we envision for the research community to
explore in the coming years. Some of the research questions that emerge from our survey
are as follows: How can FL e!ectively achieve better personalization through the integration
of semantic information? (See Section 5.1.) What novel techniques and solutions can be devel-
oped to detect and mitigate Byzantine behaviors in FL-ST? (See Section 5.2.) How can current
ST mobility frameworks be optimized to enhance communication e"ciency? (See Section 5.3.)
How does fairness of models behave in FL-ST and more importantly, how can it (i.e., fairness)
be de#ned in this context? (See Section 5.4.) How can the ST mobility research community
establish and promote standardized practices? (See Section 5.5.) How can realistic cross-silo
spatial-temporal datasets be built to address ownership challenges and support benchmarking?
(See Section 5.6.) and "nally, What gaps must be addressed to facilitate a seamless transition
toward real-world FL-ST applications? (See Section 5.7.)

Organization of this survey. The remainder of this article is structured as follows. First, we
present a background on FL in Section 2. Then, we present a set of spatial-temporal applications
under study in Section 3 and detail the used FL approaches for these applications in Section 4.
Finally, we discuss open research challenges in Section 5 and conclude the article in Section 6.

2 Federated Learning: Preliminaries
Federated Learning is a paradigm to perform distributed machine learning at the edge [19, 78,
87, 116]. In FL, a global (joint) model is trained in a decentralized fashion without the need to
collect and process user data centrally. The central service provider, often called the aggregator,
distributes a shared machine learning (ML) model to multiple users for training on local data
and then aggregates the resulting models into a single, more powerful model, using an aggregation
method (e.g., Federated Averaging [116]). Figure 2 illustrates an example of FL architecture.

More formally, let θ be the global model that an FL instance aims to learn and F (θ ) be the cost
function that evaluates θ . Let N = {1, 2, . . . ,n} be the set of users, with each user i possessing
a local dataset Di . Note that we use “users” and “participants” interchangeably throughout the
article.

The aggregator initiates by randomly sampling S = {1, 2, . . . ,m} with S ⊂ N being a subset
of users chosen to participate to a speci"c round t . The aggregator transmits the global model

4https://github.com/YacineBelal/Survey-of-Federated-Learning-Models-for-Spatial-Temporal-Mobility-Applications
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Fig. 2. Federated Learning general workflow. On the le!, a cross-device se"ing where each client is a device
(e.g., smartphone) and on the right is cross-silo se"ing where each client represents an organization. The
main di#erence between the two is the the magnitude and availability, both in terms of clients and local
data.

θ t to S. Each selected participant i trains θ t on Di to obtain an updated model, denoted θ t+1
i .

Then, i send the model updates ∇F (θt ,Di ) (or θ t+1
i ) back to the aggregator. Communication over-

head can be reduced by applying a random mask to the model weights [87]. The central server
then aggregates the received updates [141] to create the new global model, θ t+1. This round-based
mechanism is repeated until some convergence criteria of θ is reached. Equation (1) presents a
Federated Averaging-based aggregation step,

θ t+1 = θ t − η∑m
i=1 |Di |

m∑
i=1

|Di | · ∇F (θt ,Di ), (1)

where η denotes the global learning rate and |.| denotes the set cardinality operation.
This described algorithm represents the general FL work#ow. However, it is essential to note

that there exist several #avors of FL. Based on the order of magnitude of the number of participants
and the assumptions regarding their computational capabilities, two FL settings are distinguished
in this article: cross-device FL (CD FL) and cross-silo FL (CS FL) [69].

CD FL typically refers to scenarios where the number of users is in the order of millions of
individuals, each possessing limited and heterogeneous computational resources (e.g., personal
laptops, cell phones). In contrast, cross-silo FL operates at a (much) smaller scale of the number of
users, representing each a large entity (e.g., hospitals, cellular operators, and data centers), with
substantial computational capabilities. Figure 2 presents an overview of both schemes of FL.

2.1 Challenges
There are various challenges in FL that the research community has been studying for the past
few years (see Reference [79] for full reference). Two of these challenges impacting FL models are
generally regarding data heterogeneity and model personalization.

— Data heterogeneity refers to the scenario where clients’ data are not-iid, which could
lead to domain shift problems making learning a generalizable representation a di!cult
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task. Consider two users i and j, with data following probability distributions Pi and Pj ,
respectively. These probabilities are typically rewritten as Pi (Y |X )Pi (X ) and Pj (Y |X )Pj (X ),
respectively, where X and Y are the features’ (e.g., visited Point of Interest Feature
Components (POIs)) and labels’ (e.g., next POI) probability distributions. Considering this
notation, data can be non-iid in several ways: The marginal distribution of features can
vary between clients (i.e., Pi (X ) ! Pj (X )), such is the case for clients who have signi"cantly
di$erent preferences in a POI recommendation use case. This is known as a covariate shift.
Alternatively, the marginal distribution of labels can be di$erent, also known as the prior
distribution shift (i.e., Pi (Y ) ! Pj (Y )). This is especially the case for clients tied to di$erent
geo-regions. Finally, there can also be a concept shift, that is, the conditional distributions
P(X |Y ) and P(Y |X ) can highly vary across clients and context (e.g., weather and time). As
we will discuss in the next sections, the human trajectory is extremely unique [30] and
strongly in#uenced by di$erent meta-parameters. This leads to the coexistence of di$erent
types of non-iid property and calls for an increased need for personalization.

— Model Personalization, however, refers to the process of assigning di$erent model parame-
ters (weights) to di$erent clients. The objective behind this is twofold: (i) improve the global
model’s individual performance and (ii) mitigate the impact of non-iid property. To this
end, various methodologies have emerged. One approach involves incorporating context
features into the model during training, known as personalization through featurization.
Another technique, meta-learning, focuses on adapting the global model to the local
learning task. In its simplest form, it boils down to "ne-tuning the global model or a subset
of it. Understanding what level of generalization can be learned globally and what layers of
the models need to be personalized locally is an active area of research.

There are several other FL challenges that we consider throughout this article: "rst, concerns
over data and model parameter privacy, which are addressed through methods such as Di!eren-
tial Privacy (DP) [118], Trusted Execution Environments (TEEs) [124] and encryption-based
methods [68, 110, 153]; second, Byzantine Resilience [58], de"ned as the capability to train an
accurate statistical model despite arbitrary behaviors, presents another signi"cant challenge; and,
"nally, Communication E!ciency stands as a crucial aspect to consider.

In addition to these challenges, there are speci"c considerations within the realm of ST mobility
applications. These include the following: (1) the constraints on client resources, (2) the online
learning setting (speci"cally, whether clients train while simultaneously collecting/creating data),
and (3) the comparison of solutions with at least one federated competitor, aside from stand-alone
FL. This comprehensive evaluation framework has allowed us to conduct a meta-comparison, ana-
lyzing the strengths and limitations of the main works within each approach (refer to Tables 4, 6, 8,
and 9). Moreover, it has facilitated the identi"cation of potential research directions (see Section 5).

2.2 Frameworks
As FL establishes itself as the standard machine learning paradigm, numerous frameworks have
emerged to o$er scalable and #exible solutions for privacy-preserving machine learning in dis-
tributed settings. Selecting an appropriate FL framework for designing new algorithms is a non-
trivial task. Therefore, in this section, we de"ne speci"c criteria to facilitate the selection process
of an FL framework. The following criteria will be considered:

— Supported Frameworks: Most FL frameworks can be extended to integrate with various
machine learning frameworks. However, this process is often complex. Hence, we will out-
line the machine learning frameworks inherently supported by each FL framework, and we
will qualify by "native" each framework that provides its own optimization library.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 3, Article 18. Publication date: July 2024.
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Table 1. Available Functionalities and Bench-marking across Di#erent FL Frameworks

Name Supported Frameworks Privacy tools Scenario Benchmarking

Tensor#ow Federated (TFF) Tensor#ow DP
SMPC Simulation Computer Vision

NLP

Pysift & Pygrid Tensor#ow
Pytorch

DP
SMPC

Simulation
Real Computer Vision

FATE
Tensor#ow

Pytorch
Sickit-learn

HE Simulation
Real Computer Vision

Flower Framework-agnostic DP Simulation Computer Vision

PaddleFL Native
DP

SMPC
Secret Sharing

Simulation
Real

Computer Vision
NLP

Recommendation

FederatedScope Tensor#ow
Pytorch

DP
SMPC

Simulation
Real

Computer Vision
NLP

Recommendation
Graph Learning

LEAF Tensor#ow ! Simulation Computer Vision
NLP

FedML Framework-agnostic SMPC Simulation
Real

Computer Vision
NLP

FedScale Tensor#ow
Pytorch

DP
SMPC

Simulation
Real

Computer Vision
NLP

Recommendation
Mobility Prediction

RL

FS-Real Tensor#ow
Pytorch !

Simulation
Real Speech Recognition

MindSpore Federated MindSpore SMPC
LDP

Simulation
Real

Computer Vision
NLP

Recommendation
Note that FedScale is the only framework that comes with an o$-the-shelf mobility dataset benchmark.

— Privacy tools: As privacy stands as a central motivation for FL, it is imperative to recognize
that stand-alone FL lacks privacy [79, 140]. Within this context, we previously mentioned
a formal model, DP, as well as hardware-based solutions like TEEs. Additionally, a range
of privacy-enhancing technologies are based on cryptographic tools such as Secure Multi-
Party Computation (SMPC) [110, 153], Homomorphic Encryption (HE) [68, 184], and
Secret Sharing [151]. Evaluating which of these tools an FL framework supports is crucial
due to the complexity of integrating them post hoc.

— Scenario: This criterion assesses if the framework was primarily designed for real-world
deployments, addressing physical environments, networking challenges, and scalability, or
if its focus was solely on simulations.

— Benchmarking: To enhance the e!ciency of the research work#ow, the majority of Feder-
ated Learning frameworks come equipped with prede"ned machine learning tasks, including
models, datasets, and benchmarks. These tasks will be highlighted for each framework. It is
important to note that while frameworks come with suggested tasks, they are not restricted
solely to those tasks.

Table 1 presents a summary of the speci"ed evaluation criteria for the main FL frameworks.
Notably, most frameworks are extensively benchmarked for tasks in computer vision and Natural
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Language Processing (NLP), with relatively limited consideration for spatial mobility applica-
tions. FedScale [90] distinguishes itself by o!ering starting pack mobility datasets, including a task
for taxi trajectory prediction utilizing the TaxiPorto dataset [120]. Additionally, it incorporates the
Waymo Motion Dataset, comprising object trajectories and corresponding 3D maps for 103,354
scenes, utilized in autonomous driving scenarios.

A noteworthy feature is observed in FederatedScope [169], which introduces benchmarks for graph
learning, potentially applicable to Graph Neural Network (GNN)-based approaches for #ow pre-
diction tasks.

Regarding machine learning framework support, it is notable that only two of the existing
solutions o$er a framework-agnostic approach to Federated Learning—namely Flower [17] and
FedML [65].

Considering privacy enhancements, most frameworks integrate DP and SMPC functionalities.
However, LEAF [23] does not provide support for privacy-enhancing technologies. However,
FATE [104] stands out by o$ering unique Homomorphic Encryption support.

In terms of compatibility with physical networking infrastructures, device heterogeneity, and
client scalability—referred to as real-world scenarios FedScale [90], FS-Real [50], and Mindspore
Federated [192]—emerge as the only frameworks capable of accommodating such requirements.
Notably, FS-Real builds upon FedScale, enhancing its scalability to accommodate up to 100k
devices and improving compatibility with heterogeneous hardware and software con"gurations
across devices. However, the integration of FedScale’s privacy tools into FS-Real remains unclear.
In contrast, Mindspore Federated achieves comparable scalability by leveraging Elastic Load on
the cloud, while incorporating both client-level DP (i.e., LDP) and SMPC techniques. However, it
does require the usage of Mindspore’s machine learning framework.

For an in-depth comparative analysis across the described FL frameworks, refer to Reference
[102]. Additionally, extensive comparisons of peer-to-peer FL frameworks have been conducted
in Reference [14].

3 Applications
Mobility Prediction. Mobility prediction can be de"ned as algorithms and techniques to es-

timate the future locations of users. Predicting the next location of users can help with a range
of applications, including networking (e.g., handover management), pandemic management (e.g.,
contact tracing), and so on. This type of prediction is performed on individual users’ traces where
the historical trend of the user’s visited locations can help in predicting the likelihood of their next
location.

Transportation. With the rising availability of transportation data collected from various sen-
sors like road cameras, GPS probes, and IoT devices, there is an enormous opportunity for city
planners to leverage these types of data to facilitate various tasks such as tra!c #ow prediction.
Di$erent from trajectory data that records a sequence of locations and time in each trip, crowd
#ow data only have the start and end locations of a trip, and how many people #ow in and out of
a particular region can be counted. Indeed, tra!c #ow prediction using spatial-temporal data has
been one of the main focuses of the research community (see comprehensive survey [75]). In the
context of transportation, this problem is often considered as forecasting, which is to predict tra!c
speed or tra!c #ow of regions or road segments based on historical aggregated mobility data.

Community Detection. Community detection is an important aspect of urban planning, as it
allows researchers and planners to identify patterns and trends in human movement. By identi-
fying groups of individuals or locations that are highly connected, researchers and planners can
gain insight into how people move through a city, which can inform the design of transportation

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 3, Article 18. Publication date: July 2024.
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systems and urban spaces. Additionally, community detection can help identify areas of a city that
are at risk of overcrowding or under-utilization, allowing for proactive measures to be taken to
address these issues. The underlying enabler of identifying urban communities [46, 53] is spatial
temporal data that presents the amount of time spent in di$erent parts of the city. Researchers
have shown that human mobility exhibits a strong degree of non-linearity [29], and models that
rely on non-linear clustering algorithms, such as the one proposed by Ferreira et al. [45], to detect
urban communities have been shown to outperform traditional approaches such as Principal Com-
ponent Analysis and Model-Based Clustering and DB-SCAN techniques on a variety of centralized
geospatial traces.

Location-based Social Networks. Location-based social networks (LBSNs) such as
Foursquare and Flickr are social networks that use GPS features to locate the users and let the
users broadcast their locations and other content from their mobile devices. LBSNs do not merely
mean that the locations are added to the user-generated content in social networks so that people
can share their location information but also reshape the social structure among individual users
that are connected by both their locations in the physical world and their location-tagged social
media content in the virtual world. LBSNs contain a large number of user check-in data that con-
sists of the instant locations of each user. Such social networks could also be thought of as the
underlying application of location-based recommendation systems.

4 Approaches
In this section, we summarize FL-ST approaches in four main categories of (i) trajectory predictive
approaches that focus on the next-point prediction of user’s trajectories, (ii) tra!c #ow prediction
approaches, (iii) Top-K Loctation-based recommendation approaches, and (iv) other approaches.
For each approach, we present the evaluation metrics, the datasets used, and the various FL
strategies. Table 2 provides an overview of the most important works.

4.1 Trajectory Predictive Approaches
Given a user’s trajectory, these approaches aim at predicting the user’s next position. In a cen-
tralized setting where the training data containing all users’ trajectories are available, Recurrent
Neural Networks (RNN)-based approaches including Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) can be broadly applied in dealing with trajectories and predictive
tasks [39, 51, 99, 101]. As these types of data (i.e., trajectory) are highly privacy sensitive, one
of the challenges that the research community has been focusing on is creating models that can
be tuned for privacy and utility, namely, Privacy–Utility Tradeo$. Models such as in References
[34, 139, 182] leverage the centralized training data to enhance the privacy level of the traces by
reducing user’s re-identi"cation risk and at the same time optimizing the utility of the predictions
(i.e., higher accuracy of next point predictions).

The challenges of trajectory predictive approaches in FL are di$erent. First, distributed/
decentralized learning creates a heterogeneity problem, as di$erent statistical distributions be-
tween clients can lead to a phenomenon called client drift, where clients’ model updates/gradients
have opposing directions, making their aggregate senseless [172]. As stated in the Introduction,
this challenge can, in principle, be mitigated to some extent [174]. However, the unique proper-
ties of people’s mobility [30] as well as the di$erent factors that dictate the local distributions of
mobility data [83, 100, 194] (e.g., preferences, temporal, spatial, and urban characteristics) render
generic techniques ine$ective. Second, and as a result of the "rst challenge, creating a global model
for predicting the next location of users that works equally well for all the users becomes an ex-
tremely challenging task. That is, one must decide to what extent should clients adopt the global
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Table 2. CD Denotes Cross-Device Approaches and CS for Cross-silo

Model Year Approach Dataset Federated Strategy
Trajectory Predictive Approaches

Fan et al. [37] 2019 Transfer-learning Private Mobile Phone Traces CD
PMF [40] 2020 Foursquare [173], DenseGPS

[39], Twitter [185]
CD, Attack-resilient

STSAN [94] 2020 ST Attention Layer Foursquare[173], Twitter
[186]

CD

Yelp [106] Adaptive Model Fusion
Ezequiel et al. [36] 2022 GRU-Spatial and

Flashback
Foursquare [173], Gowalla
[26]

CD

STLPF [164] 2022 AutoEncoder with Foursquare[173] CD
Global/Local attention

Flow Predictive Approaches
FedGRU [103] 2020 GRU PeMS [24] CS, FedAvg
FedTSE [180] 2022 Reinforcement

Learning
England Freeway
Dataset[33]

CS, FedAvg

FedSTN [179] 2022 GNN Taxi-NYC [1], Taxi-BJ [73] CS, Vertical FL
CNFGNN [121] 2021 GNN PeMS-BAY [98], METR-LA

[73]
CS

CTFL [187] 2022 GNN PeMSD4, PeMSD7 Clustered FL, CS
MVFF [35] 2022 GRU+GNN Yelp [106], NY-Bike [2] Vertical FL, CS

Community Detection Approaches
F-DEC [114] 2021 Deep Embedded

Clustering
GeoLife [200] CD, FedAvg

Other
EDEN [84] 2021 Privacy Optimization CD

PREFER [60] 2021 Location Rec Sys CD
PEPPER [13] 2022 Location Rec Sys CD, Gossip Learning

MTSSFL [188] 2021 Transport Mode Inference CD
Fed-DA [183] 2021 Network Tra!c CS

Fed-NTP [148] 2022 Network Tra!c CS

model and when to opt-in for a purely personalized model. In this section, we review the exist-
ing works in this domain and review how they account for the mentioned challenges and more
generic ones (see Table 4 for the meta-analysis). Finally, we compare their performances in Table 3
against centralized predictive approaches, namely ST-RNN [101], MCARNN [99], DeepMove [39],
and VANext [51].

4.1.1 Federated Trajectory Predictive Approaches. Table 4 o$ers a concise overview of the
challenges addressed by the existing literature in trajectory predictive approaches. In this
application domain, the non-iid nature stemming from a substantial number of users, each with
unique characteristics, as well as privacy considerations, takes precedence over other challenges.
Notably, while the former challenge appears to have been adequately addressed by the majority
of the reviewed works, the latter has only been speci"cally tackled in Reference [40]. In addition,
it is noteworthy that most works have not taken into account federated competitors, preventing
a comprehensive evaluation of their impact. This concern is pivotal not only for the current task
but for all spatio-temporal mobility FL, as discussed in Section 5.5. Similar apprehensions extend
to the robustness against Byzantine behaviors. However, this criterion holds less signi"cance
in the context of CD FL compared to the CS FL setting. In the following, we delve into a more
comprehensive discussion of these works.
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Table 3. Baselines for Next Location Prediction Models

Foursquare NY Foursquare Tokyo
Acc@1 APR Acc@1 APR

Centralized Baselines
ST-RNN [101] 0.2633 0.9431 0.2567 0.9536
MCARNN [99] 0.3167 0.9595 0.2770 0.9532
DeepMOVE [39] 0.3010 0.9221 0.2668 0.9257
VaNext [51] 0.3627 0.9792 0.3436 0.9735

Federated Approaches
STSAN [96] 0.4297 0.9902 0.3906 0.9847
STLPF [164] 0.4067 0.9893 0.3887 0.9856
PMF [40] 0.2407 0.6182 0.2310 0.5842
Ezequiel [36] 0.1133 NA NA NA

Table 4. Summary of the Challenges Tackled by the Reviewed Trajectory Predictive Works

Privacy Byzantine
Resilience Non-iidness Resource

constraints
Overhead

assessment
Federated

competitors
Online

Learning
Fan et al. [37] ! ! ! ! ! ! !

STSAN [94] ! ! ! ! ! ! !
PMF [40] ! ! ! ! ! ! !

Ezequiel et al. [36] ! ! ! ! ! ! !
STLPF [164] ! ! ! ! ! ! !

Observe that current works do not consider byzantine resilience.

Fan et al. [37]. The authors of Reference [37] proposed a federated attention-based person-
alized human mobility prediction. They apply a few-shot learning human mobility predictor that
makes personalized predictions based on a few records for each user using an attention-based
model. Furthermore, they take advantage of pre-training strategies where the predictor is trained
on another smaller mobility dataset to accelerate the FL training on devices. However, even with
the pre-training and attention-based strategy, the model requires over 1,000 rounds of data com-
munication rounds and is not su!ciently robust for the irregular nature of the human movement.

STSAN [94]. In 2020 Li et al. proposed a cross-silo personalized next point prediction model
named Spatial-Temporal Self-Attention Network (STSAN), which integrates Adaptive
Model Fusion Federated Learning (AMF) for o$ering a mixture of a local and global model.
The spatial attention layer allows for capturing the user’s preference for geographic location,
and temporal attention captures the user’s temporal activity preference. To overcome the non-iid
challenge, the AMF function enables the algorithm to learn speci"c personalization at each
aggregation step on the FL server. The approach is evaluated on the Foursquare, Twitter, and Yelp
datasets. Table 2 reports its performance on the Foursquare dataset against centralized prediction
approaches and shows the superior performance of 99% Average Percentile Rank (APR) and
6% increase in Acc1 compared to VANext [51].

PMF [40]. Feng et al. proposed PMF, a privacy-preserving mobility prediction framework that
uses FL to train general mobility models in a privacy-aware manner. In PMF, every participating
device trains locally a representation of the global (centralized) model by using only the locally
available dataset at each device. The framework also accounts for attack cases in the mobility
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prediction task and uses a group optimization algorithm on mobile devices to tackle these attacks.
In the group optimization procedure, the whole model is divided into the risky group trained
with protected data and the secure group trained with normal data. Furthermore, an e!cient
aggregation strategy based on robust convergence and an e$ective polling schema for fair client
selection in the centralized server. The results of this model on DenseGPS and Twitter dataset
show similar top-1 performance to DeepMove [39], but on Foursquare Tokyo it performs poorer
than centralized baselines and other FL approaches.

STLPF [164]. Wang et al. proposed a spatial-temporal location prediction framework
(STLPF) where the next point prediction algorithm is trained based on a self-attention layer
that enables information to be learned between long sequences in both local and global models.
Furthermore, as part of the framework, the authors propose an approach that enables clients to
cooperatively train their models in the absence of a global model. Their evaluation shows marginal
improvement in the accuracy of next point prediction (APR) on the Foursquare dataset when
compared to the centralized approaches, and their approach performs similarly to STSAN [94]
(see Table 3).

Ezequiel et al. [36]. The authors of Reference [36] developed two implementations of GRU-
Spatial and Flashback on FL for predicting the next location in human mobility. To the best of
our knowledge, they are currently the only work that has worked on baselining these di$erent
approaches in an FL framework, namely Flower [17], and measuring the computational complexity
of the model. They evaluate their model on Foursquare NY and Gowalla datasets.

Building upon our exploration of trajectory predictions, it is noteworthy to acknowledge a dis-
tinct but closely related research direction—mobility mode prediction. In this realm, the focus shifts
toward understanding and dissecting individuals’ personal transportation modes, a facet that holds
paramount importance in the e!cient management of public transportation systems, particularly
in bustling metropolis cities marked by substantial populations and heavy tra!c volumes [112].
Decoding users’ tra!c modes and aggregating tra!c patterns on a broader scale can profoundly
in#uence decision-making processes. For instance, it provides valuable insights for adaptively allo-
cating public transportation resources and strategically assigning more support during peak times
or on congested streets to alleviate tra!c burdens.

Within this avenue, the work presented in Reference [176] takes center stage. They propose a
federated VGG-like model expressly designed for predicting users’ transportation modes, utilizing
the GeoLife dataset. This distinctive approach contributes to the evolving landscape of mobility
mode prediction, o$ering insights that extend beyond trajectory predictions and bear signi"cance
in re"ning resource allocation strategies and bolstering the overall management of public trans-
portation systems. Mensah et al. [123] extends this setting by considering three di$erent architec-
tures (GRU, LSTM, and 1D Convolutional NN (CNN)) trained simultaneously, obtaining three
global models after convergence. These global models’ outputs are combined through an ensem-
ble learning technique (i.e., stacking) with a Multilayer Perceptron (MLP) playing the role of
the meta-learner. The objective of this MLP is to "nd the most con"dent label. (i.e., majority vote).
The approach is tested against a federated version of each of the three architectures, showing clear
improvement.

4.1.2 Metrics. Trajectory prediction models are commonly benchmarked on a handful of avail-
able datasets using the Acc@K metric that is computed as an average of how many times the
correct location was within the top-K predicted places (sorted by the model’s output weights). For
example, for an Acc@5 metric, the target (or actual output) is compared against a vector of the
top-5 most probable locations output by the model. If the target is an element of the top-5 vector,
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the prediction is correct (or true positive). In practice, papers commonly report an Average Per-
centile Rank (APR).

4.1.3 Datasets. The following mobility datasets are used to evaluate the trajectory predictive
approaches in the research community:

— Foursquare [173]: This comprises two sub-datasets, Tokyo and New York data. The Tokyo
dataset contains 0.5 million check-ins in Tokyo, while the New York one contains over 0.2
million, both collected over a span of about 10 months (from 12 April 2012 to 16 February
2013). Each check-in includes an anonymized user ID, timestamp, and location information,
e.g., GPS coordinates and semantic meaning (represented by "ne-grained venue categories).

— Twitter [186]: This contains around 1.1 million geo-tagged tweets from Los Angeles. These
tweets are collected from 1 August 2014 to 30 November 2014. Every geo-tagged tweet con-
sists of four parts, e.g., an anonymized user ID, location information (GPS coordinates), times-
tamp, and the message published by the user. Compared with the other two platforms, Twit-
ter data are very sparse when location service is not a frequently-used function for Twitter
users.

— Gowalla [26]: This consists of two parts: a check-in dataset and a friendship network dataset.
The check-in dataset contains over 6.4 million check-ins contributed by more than 196,000
users, collected over the period of February 2009 to October 2010. Similarly to Foursquare,
each check-in includes an anonymized user ID, latitude and longitude coordinates, a times-
tamp, and a location ID. As for the friendship network dataset, it contains information about
social relationships between users, represented by over 95,000 undirected edges.

— Brightkite [26]: This dataset is similar to Gowalla in that it includes check-in data and a
friendship network. However, this dataset is signi"cantly sparser, as check-ins were deliber-
ately shared by users, leading to a sparser dataset. Quantitatively, the dataset includes nearly
4.5 million check-ins and 58,228 users, collected between April 2008 and October 2010.

— Weeplaces [190]: This dataset has been sourced from Weeplaces, a website that provides vi-
sual representations of users’ check-in activities on LBSNs. The platform has been integrated
with other location-based social networking services, such as Facebook Places, Foursquare,
and Gowalla, through APIs. This dataset contains 7,658,368 check-ins from 15,799 users, as
well as their friends present on Weeplaces.

— GeoLife [200]: It is a GPS trajectory dataset that was collected from 182 users over a span of
"ve years (from April 2007 to August 2012). This dataset comprises 18,670 trajectories, each
represented by a sequence of timestamped points containing latitude, longitude, and altitude
information. These trajectories capture a diverse range of users’ outdoor movements, includ-
ing routine activities (e.g., going home), as well as leisure activities (e.g., shopping, hiking,
and cycling). Recently, 69 of the 182 users have labeled their trajectories with transportation
modes, such as driving, taking a bus, riding a bike, and walking. The labels for transportation
mode are stored in a separate "le for each user’s folder.

— Yelp [106]: This is a collection of businesses, reviews, and user data extracted from the Yelp
platform. This dataset is regularly updated and contains almost 7 million reviews of over
150,000 businesses located in 11 metropolitan areas across the United States and Canada. The
data include information on individual users such as their name, the number and nature of
their reviews, and their list of friends. Additionally, the dataset also includes check-ins, which
provide information about the frequency and duration of customer visits to businesses.

— Priva’Mov [15]: This comprises data collected from multifarious sensors, including WIFI,
GPS, and Cellular, and contains around 286.7 million records, where each record is a times-
tamped trajectory point containing latitude, longitude, and userID. It was collected from
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Fig. 3. Entropy experiments.

100 users over a period of 15 months and primarily focuses on urban mobility around Lyon,
France.

— DenseGPS [39]: This is a dataset that includes private data from a major mobile application
provider in China with 5,000 users with one-month dense location records. This dataset is
not available for the research community to use.

4.1.4 Data Sparsity and Heterogeneity in Trajectory Prediction Tasks. Mobility literature de"nes
the highest potential accuracy of predictability of any individual, termed as “maximum predictabil-
ity” (Πmax ) [108]. Maximum predictability is de"ned by the entropy of information of a person’s
trajectory (frequency, sequence of location visits, etc.). We adopt this measure to compute the
non-iid property of the mobility traces. We use Shannon’s Entropy H (x) to get a sense of both
the sparsity and non-iidness of several check-in datasets. In this process, we adjust the metric
proposed in Reference [146] to extend the individual entropy of users (i.e., horizontal) with an
individual entropy of point-of-interests (i.e., vertical). We argue that having these two dimensions
for the entropy is necessary to draw conclusions w.r.t to sparsity and heterogeneity. To quantify
this relationship, we "rst measure the horizontal entropy in the following manner:

Hu (x) = −
n∑

i=1
Pu (xi ) log2[Pu (xi )], (2)

where n is the number of POIs and is the size of the probability vector. Pu (xi ) is the probability of
an individual user u visiting location xi considering exclusively spatial pattern.

We compute the vertical entropy as follows:

Hl (x) = −
∑
u ∈U

Pu (l) log2[Pu (l)], (3)

where U is the set of all users and P(x) is the probability of user u visiting location l .
In Figure 3, a comparison of entropy levels is shown for di$erent check-in datasets. Meanwhile,

Table 5 provides a summary of more conventional statistics about these datasets. More speci"-
cally, Nu denotes the number of users, Nl denotes the number of POIs, Nc denotes the number
of check-ins, Ñu denotes the average number of users that visited each point of interest, and Ñl
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Table 5. Global Statistics across Check-in Datasets

Nu Nl Nc Ñu Ñl

Foursquare-Tokyo 2,293 61,858 573,703 3.43 92.44
Foursquare-NYC 1,083 38,333 227,428 2.37 84.05

Gowalla 107,092 1,280,969 6,442,892 3.11 37.18
Brightkite 50,686 772,780 4,491,080 1.39 21.16
Weeplaces 15,799 971,308 7,658,368 2.72 166.64

denotes the average number of POIs visited by each user. Figure 3 seems to indicate that Brightkite
has the least entropy, as expected. In fact, Figure 3(a) even shows that a signi"cant proportion of
Brightkite users have zero entropy, indicating that some users have only one check-in. This cor-
relates with the high sparsity levels of the dataset (refer to Table 5). This downward trend is also
evident when viewed through the lens of vertical entropy, although it may be less pronounced.
Considering these observations, we see this dataset as an appropriate option to tackle the sparsity
problem in distributed learning on mobility data. Conversely, Weeplaces exhibits two important
trends: First, there is a considerably higher level of horizontal entropy compared to what is seen
on Brightkite, without a corresponding increase in vertical entropy. This suggests that in general
users are more active and less predictable but have not explored a much wider spectrum of points-
of-interest. Second, Figure 3(a) exhibits a signi"cant number of user outliers, particularly those
with low entropy, indicating the presence of a short tail. These observations, correlated with the
results of Table 5, which shows a high Nl and a quite low Nu , indicate low heterogeneity levels
within this dataset. Oppositely, Gowalla exhibits more horizontal entropy, which indicates that
users are more active globally while also having a higher vertical entropy, indicating that users
have substantially less in common than in WeePlaces. These two observations suggest a more het-
erogeneous, yet less sparse, dataset. This makes Gowalla a perfect candidate for works tackling
heterogeneity. However, the presence of a signi"cant proportion of highly mobile outlier users
should also be noted. Finally, Foursquare datasets show good entropy levels on both axes, making
them an excellent choice for sanity tests.

4.2 Tra!ic Flow Prediction Approaches
Tra"c Flow Prediction (TFP) is a problem with multifarious applications. For instance, it allows
us to mitigate tra!c, evaluate air pollution, estimate travel time, and improve driving experience.
Approaches in predicting the tra!c patterns range from parametric approaches, which are based
on statistical metrics (e.g., Auto-Regressive Integrated Moving Average (ARIMA) [55]), to
more advanced ML models such as those based on RNNs and GNNs. For a comprehensive survey
of deep learning models for tra!c predictions in centralized settings refer to Reference [75]. Flow
prediction approaches require slightly di$erent settings in FL than trajectory prediction. Unlike
individual predictive approaches where each client is assumed to correspond to an individual with
their mobility traces, in #ow predictive approaches, the clients are often considered to be entities
or organizations that are maintaining their #ow data private to comply with privacy regulations.
Considering this, CS FL appears as a promising paradigm for ensuring that records are not shared
outside of each organization/sensor. Moreover, as the number of clients is smaller, and the datasets
sizes per client is greater, this con"guration alleviates some of the non-iidness concerns. However,
this paradigm shift also ushers in two pivotal challenges: First, as mentioned by Li et al. [97],
#ow conditions can be in#uenced by many random variables (e.g., daily schedules, weather, and
accidents), which makes it highly dynamic. As such, TFP demands real-time adaptation. Speci"-
cally, the FL process cannot a$ord to wait until a signi"cant data pool accumulates. Implementing
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Table 6. Summary of the Challenges Tackled by the Reviewed Grid-based Works

Privacy Byzantine
Resilience Non-iidness Resource

constraints
Overhead

assessment
Federated

competitors
Online

Learning
FedGRU [105] ! ! ! ! ! ! !

Akallouch et al. [5] ! ! ! ! ! ! !

FedLSTM [155] ! ! ! ! ! ! !

BFRT [119] ! ! ! ! ! ! !
FedTSE [180] ! ! ! ! ! ! !

Fed-NTP [148] ! ! ! ! ! ! !

Zeng et al. [181] ! ! ! ! ! ! !
The main takeaway is the absence of solutions tackling the resource constraints concerns.

online learning strategies becomes imperative to continuously update the model with incoming
data streams. Second, the units responsible of collecting the data (e.g., sensors) often grapple with
limited computational and spatial resources [59]. As such, considering e!ciency when designing
solutions becomes crucial to ensure their practicality and adaptability to real-world applications.
In the following, we categorize TFP works into two groups, depending on the types of models em-
ployed: grid-based approaches relying temporal models (e.g., RNNs and LSTM) and graph-based
approaches employing Graph Convolutional Networks (GCNs). We "rst compare the literature
on a high level before diving deeper into each work. We then introduce the metrics and datasets
used for this task.

4.2.1 Grid-based Approaches. In grid-based approaches, the input data into the model is a
sequence of #ow data per location over time (e.g., average speed, number of vehicles). These
approaches mainly focus on deep neural models such as RNN, GRU, and LSTM to capture past
historical tra!c information as a predictor for future instances. Table 6 provides a comprehensive
summary of the challenges addressed by the current body of literature in this category. Notably,
our assessment reveals a notable gap in addressing the resource limitations inherent in sensor
networks, encompassing constraints related to memory and computational capabilities. Moreover,
with the exception of two notable works [119, 180], the overhead imposed by the proposed
solutions remains largely unquanti"ed.

Furthermore, the current array of works largely overlooks the critical aspect of robust-
ness—neglecting to account for potential vulnerabilities wherein sensors may transmit compro-
mised model updates due to malicious interference or system faults.

It is also imperative to highlight that, apart from the noteworthy contribution by Sepasgozar
and Pierre [148], there remains a lack of comparative analyses with federated competitors beyond
stand-alone FL—an aspect that deserves more attention in this "eld. A more comprehensive dis-
cussion of these shortcomings is expounded upon in Section 5.

FedGRU [105]. In their work, Liu et al. [105] introduced a federated learning algorithm for
highway #ow prediction, leveraging a GRU. Additionally, they extended the client sampling phase
of federated learning through a joint-announcement protocol. This protocol allows willing clients
to announce their participation, strategically aiming to reduce communication costs associated
with the FedAvg aggregation step. To address the challenges posed by non-iid data, especially
in the context of highly heterogeneous locations, the authors suggested clustering clients based
on their location information into k clusters, utilizing a constrained K-means approach [20]. This
results in a model per cluster, and ensemble learning is then applied to identify the optimal subset
of global models, enhancing prediction accuracy.
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Their methodology was rigorously tested using real-world data from the Caltrans Performance
Measurement System (PeMS) [24], comprising 39,000 individual sensors monitoring the freeway
system in real-time across major metropolitan areas of California. The results demonstrated com-
parable performance to the centralized baseline of the GRU model and various other centralized
models.

Akallouch et al. [5]. In this work, the authors address privacy concerns in the context of TFP.
They tackle this issue by introducing LDP to provide theoretically provable privacy guarantees.
Their approach involves training an LSTM model in a federated fashion, with clients transmitting
noisy gradients where the noise is sampled from a Gaussian distribution. Despite the common
expectation of a performance drop with such privacy-preserving mechanisms, their experimental
results defy this trend, revealing competitive performance comparable to centralized baselines.

FedLSTM [155]. The authors strive to introduce both privacy and resilience guarantees into the
context of TFP, operating under the distinctive assumption of computationally capable Roadside
Units (RSUs) alongside traditional FL clients, represented by individual vehicles. In this scenario,
the authors devise a protocol wherein clients engage with RSUs during each FL round, transmit-
ting their model updates. These RSUs, equipped with uniform test sets, evaluate and validate the
models through consensus mechanisms involving miners. The validated models are subsequently
published on the blockchain, with local aggregation by clients occurring at a later stage.

To enhance privacy, the authors adopt a strategy akin to Reference [5], leveraging LDP. However,
they employ a distinct mechanism involving Laplacian noise, introduced to the count of vehicles in
speci"c areas. The e!cacy of this protocol is assessed using an LSTM and compared against various
centralized baselines. Notably, the evaluation extends to scenarios with malicious users introduc-
ing poisoned models, showcasing the protocol’s resilience due to the presence of veri"ers. This
work contributes a unique perspective by considering both privacy and resilience aspects in TFP.

BFRT [119]. In this contribution, the authors also employ blockchain technology to enhance ac-
countability and veri"cation aspects within FL. Speci"cally, they utilize a permissioned blockchain,
implemented using Hyperledger Fabric [9], to establish a framework where clients can only submit
their model updates with permission from a designated group of veri"ers (referred to as peers). Ac-
ceptance is contingent upon approval by a group of orderers through a consensus algorithm. While
sharing a conceptual similarity with Reference [155], the distinguishing factor lies in the unique
assumptions of this work. Here, the peers and orderers are presumed to be under the ownership
of an institution, such as a service provider or government, with RSUs serving the role of clients
in this setup.

Notably, the authors do not explicitly outline the criteria used by the veri"ers (peers) to validate
models. Evaluation of this protocol is conducted on a Delaware Department of Transportation
(DelDOT) dataset, encompassing both GRU and LSTM architectures. A key distinction of this
work, in contrast to previous ones [5, 82, 105, 155], is its focus on real-time TFP, even within the
experimental settings, as opposed to o$ine learning scenarios. This real-time consideration adds a
practical dimension to their exploration of FL in the context of TFP.

FedTSE [180]. In FedTSE, authors proposed a framework for Travel State Estimation (TSE).
They design a LSTM model as the local training model for joint prediction of vehicular speed
and tra!c #ow. A unique characteristic of FedTSE is that it relies on the deep reinforcement
learning– (DRL) based algorithm to adjust model parameter uploading/downloading decisions
such that it improves the estimation accuracy of local models and balances the tradeo$ between
computation and communication cost. They evaluate their approach on the England Freeway
Dataset, which includes #ow and speed for the entire year of 2014. They also consider three
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di$erent aggregation strategies corresponding to a synchronous aggregation with the same
number of epochs per client, namely FedTSE-Syn; an asynchronous aggregation with di$erent
numbers of epochs, namely FedTSE-Asyn; and a weighted version of FedTSE-Asyn where clients
that have trained more are given more weight.

Fed-NTP [148]. The authors of Reference [148] proposed an LSTM model implemented in FL
to predict network tra!c based on the most in#uential features of network tra!c #ow in the
Vehicular Ad-Hoc Network. Even though this work is not aiming in predicting vehicle tra!c and
focuses on network #ow, it has some relevance with the existing models such as FedGRU [105].
Fed-NTP shows to outperform FedGRU on the same V2V dataset. Other similar works that have
focused on network tra!c prediction such as FedDA [183] exist in the literature. However, as they
solely focus on network tra!c problems and are not intended for mobility applications, we do not
review them in the survey. We encourage the reader to refer to Reference [76] for a full survey of
network tra!c prediction techniques in FL.

Zeng et al. [181]. To our knowledge, this work stands as the sole work introducing a multi-task
learning method for the TFP challenge within the FL framework. The motivation behind this ap-
proach is to craft personalized models capable of adjusting to the diverse forms of heterogeneity
previously outlined (see Section 2). The authors’ methodology begins with a hierarchical clus-
tering of clients’ (i.e., sensors) local data based on various criteria such as weather conditions,
time, and special events. This clustering ensures the presence of consistent clusters across clients.
Subsequently, an LSTM model is trained in a federated manner for each cluster to capture tempo-
ral features and address time travel prediction. This process yields a dynamic graph delineating
sub-segments connecting di$erent stations, along with their respective travel times—this graph
evolves over time. Interestingly, the authors propose a modi"cation of the A∗ algorithm to deter-
mine the optimal route utilizing this time-dependent graph. The experimental comparison with
Google Maps’ route prediction demonstrates the advantages of this approach. Nonetheless, the
article lacks explicit details on the clustering criteria employed and the mechanisms for client
consensus regarding these clusters.

4.2.2 GNN-based Approaches. State-of-the-art multi-layer GNNs e$ectively address the spatial-
temporal nature of tra!c prediction in centralized settings. However, when applied in FL scenarios,
GNN-based approaches encounter speci"c challenges. Notably, vertical FL poses a hurdle where
each silo possesses a partial, overlapping view of the graph.

Motivated by intelligent transportation systems, such as RSUs, individual units exhibit unique
tra!c patterns across a city (Figure 4). The primary challenge in using GNN models for tra!c
forecasting within FL arises from their abundance of parameters, contrasting with simpler models
like the ARIMA with signi"cantly fewer parameters (on the order of hundreds). Table 7 shows the
magnitude of parameters for baseline tra!c prediction models over the PEMSD7M dataset [175].

Moreover, the dynamic nature of these graphs over time demands adaptation through online
learning, posing another signi"cant challenge. Existing works aim to address these issues, as sum-
marized in Table 8. While most studies tackle heterogeneity challenges, considerations regard-
ing the cost of training and storing these complex models are rarely highlighted. Notably, Refer-
ence [196] stands out by addressing these concerns, delegating the bulk of learning to a centralized
server while clients handle and store manageable parameter subsets.

Furthermore, similarly to grid-based approaches, the current literature lacks exploration into
the models’ robustness against faults and attacks that could compromise the learning process.

DST-GCN [162]. The authors parallel FedGRU [105] by adopting a GRU model to predict
temporal dependencies in TFP. However, they extend this approach by integrating a GCN to
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Fig. 4. Figure from FedTSE [180] showing the interactions between Edge Computing (EC) Server and RSU
acting as a cross-silo unit. The LSTM model weights are aggregated using FedAvg and a Deep Reinforcement
Learning (DRL) Agent to maximize reward.

Table 7. Number of Parameters and Performance of Baseline Centralized Models
on PEMSD7M [175] Dataset

Model Year Number of Parameters Performance (MAPE%)
STGCN [175] 2017 330K 5.02%
MTGNN [168] 2020 433K 5.02%
DCRNN [98] 2017 610K 5.33%

Table 8. Summary of the Challenges Tackled by the Reviewed GNN-based Works

Privacy Byzantine
Resilience Non-iidness Resource

constraints
Overhead

assessment
Federated

competitors
Online

Learning
Fed-STGRU [82] ! ! ! ! ! ! !
FedAGCN [136] ! ! ! ! ! ! !

FedSTN [179] ! ! ! ! ! ! !
CTFL [187] ! ! ! ! ! ! !

GOF-TTE [196] ! ! ! ! ! ! !
Similarly to grid-based approaches, we note the absence of considerations w.r.t byzantine resilience.

capture spatial features, recognizing the GCN’s aptitude for modeling inter-spatial characteristics.
Augmenting this fusion, an attention mechanism is employed to identify and elevate critical
spatio-temporal dependencies that dynamically evolve. Notably, the study promotes a client
participation scheme based on both willingness and the evaluation of clients’ models prior to
aggregation. Their experimentation with the PeMS dataset substantiates that this client selection
strategy signi"cantly enhances performance compared to traditional FL.

The authors parallel FedGRU [105] by adopting a GRU model for tra!c #ow prediction. How-
ever, this model is only used to capture the temporal dependencies. To capture the spatial features,
they introduce a novel approach by integrating the GRU with a GCN. By design, GCNs have a
spatial character, allowing them to better model inter-spatial features. Authors also include an
attention mechanism module to detect and give more importance to the critical spatio-temporal
dependencies, which tend to change overtime. Finally, the authors propose to make the participa-
tion of clients based on each client’s will, as much as their merit (i.e., clients’ models are evaluated
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before aggregation). Authors evaluated their work on the PeMS dataset and concluded that their
clients selection policy improves the performance over standard FL.

Fed-STGRU [82]. Similarly to DST-GCN [162], this work propose a combination of a GRU and
a GCN to solve TFP. Moreover, the authors also focus on improving the clients selection process of
FL through a clustering strategy, where they opt for the Fuzzy c-means algorithm. This alternative
is highlighted as less computationally demanding compared to the constrained k-means proposed
in Reference [105].

In terms of performance, this work demonstrates superior results compared to a stand-alone
FedAvg algorithm, showcasing the e$ectiveness of their hybrid GRU-GCN model and the e!ciency
of Fuzzy c-means for client clustering in the context of tra!c #ow prediction.

FedAGCN [136]. In this work, the authors propose a comprehensive solution to address the e!-
ciency of GCNs in handling spatial correlations, a critical aspect of tra!c #ow data. Previous meth-
ods, particularly those not based on graph models, rely on individual clients learning on their local
view of the system, leading to a neglect of spatial associations of the tra!c network’s topology. To
overcome this limitation, the authors introduce GraphFed, a carefully devised algorithm aimed at
enhancing communication e!ciency while preserving the ability to capture spatial correlations.
The key innovation lies in the division of the graph network into sub-graphs, with representative
clients randomly selected for each sub-graph. These representatives aggregate data from all
clients within their respective sub-graphs, facilitating the classi"cation of the model’s parameters
into global and local categories, the latter being tailored speci"cally to spatial relationships.

Importantly, the practicality of GraphFed is evident as it mitigates the need to store the entire
tra!c network at the client level, a cumbersome requirement for large tra!c networks. By
operating on disjoint regions of the tra!c network, representative clients e!ciently avoid the
necessity of sharing local parameters with the FL server, ensuring that only global parameters are
learned in a federated manner, thereby minimizing communication overhead. The authors also
adopt the ADGCN model [137], enhancing its e!ciency by re"ning the convolution operation.
This meticulous approach guarantees the adeptness of the model in addressing spatial correlations
and overcoming challenges associated with FL on a broad scale within tra!c networks.

FedSTN [179]. The FedSTN approach as formalized by Yuan et al. is a newly proposed solution
to solving the TFP problem. To accomplish this task, authors proposed a Graph-based Representa-
tion Learning for CS FL using three main modules: a Recurrent Long-term capture Network
(RLCN) module, an Attentive Mechanism Federated Network Module, and a Semantic Capture
Network (SCN) module. The RLCN module is responsible for learning long-term tra!c behav-
iors as geometric time-series data of "xed long-term interval p. The data as input into this module
comprise in#ow–out#ow values for certain grid spaces, as initially computed for the data.

The AFMN module is responsible for learning short-term spatial-temporal features in a
privacy-preserving manner. This module includes long-term contextual data such as meteorology
and federated graph attention. Last, there is the SCN module, which takes into account POI and
non-Euclidean connection relationships. Points of interest and their interactions have signi"cant
e$ects on TFP but are not incorporated into the raw time-series prediction data. Furthermore,
transportation networks also have methods of connection outside adjacent-grid connections,
such as trains, highways, and so on. These #ows also have an important e$ect on TFP that is not
incorporated elsewhere, so this module is to address this issue. The output of all these modules is
then connected via an FC layer followed by a Tanh activation function for the "nal output.

CNFGNN [121]. Meng et al. proposed a new architecture named Cross Node Federated Graph
Neural Network (CNFGNN) to predict the #ow. CNFGNN works by decomposing the problem
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Fig. 5. Figure from CNGNN [121] presents (a) the server-side graph neural network with a systematic
overview of training steps: (1) Federated learning of on-node models. (2) Temporal encoding update. (3) Split
Learning of GN. (b) Client i Auto-encoder architecture.

into two stages: First, it uses an encoder–decoder network to extract temporal features locally (See
right side of Figure 5), and a then GNN to capture spatial relations across devices, as is illustrated
in the left side of Figure 5. On each training step, the server processes a temporal encoding update,
a partial gradient update, and an on-node graph embedding update. Each iteration updates the
client side weights and then ships the model, hidden layer, and gradients back to the server.

One large issue of the proposed approach is the communication overhead in the training stage,
with split learning requiring the global model to fetch all hidden states from each node and ship
gradients of node embeddings to each node. Then, it must receive gradients of node embedding
and send gradients of hidden states in the back-propagation step. To mitigate this, they propose an
alternative training approach in which the temporal encoder–decoder and the node embeddings
are trained separately. First, the node embeddings are "xed and optimization is performed on
the encoder–decoder. Then, after a "xed interval, the global model is updated "xing the node-
level models. This drastically reduces communication overhead. The FL local models and the
GNN model with only a local objective function. They perform alternating optimization to up-
date clients’ model weights with GNN model weights "xed and then update GNN model weights
with the FL local model weights "xed, over multiple rounds.

CTFL [187]. The authors of Reference [187] proposes a Clustering-based hierarchical and
Two-step- optimized FL (CTFL) to overcome the large number of parameters that are needed
for aggregation in the GNN-based models such as STGCN [175], DCRNN [98], and MTGNN [168].
CTFL employs a divide-and-conquer strategy, clustering clients based on the closeness of their
local model parameters. It also accounts for optimization by applying a two-step strategy where the
central server uploads only one representative local model update from each cluster, thus reducing
the communication overhead associated with model update transmission in the FL.

GOF-TTE [196]. This work addresses a di$erent formulation of the TFP problem, namelyTime
Travel Estimation (TTE), where the task is to predict the travel time needed to go from a point a
to a point b considering spatial features (e.g., road network map) and temporal features (e.g., time
of the day). Reference [196] tackles this challenge within the context of taxi-driving scenarios,
with potential applications to diverse driving types. In this work, generic spatio-temporal features
are used to learn the global state of the network in a federated manner, allowing us to obtain
a global model. Subsequently, each client "ne-tunes this model in locally (i.e., Localized global
model), before incorporating a personalized model trained on the clients’ pro"le features.

The input architecture involves a dual graph representing road segments and intersections.
These elements are translated into latent representations (i.e., embeddings) before being past to
a GCN layer, allowing for the capture of spatial dependencies. Spatial and temporal representa-
tions are then subjected to a cross-product operation. Temporal aspects, such as day of the week
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and time of the day, are encoded, with an attention mechanism considering both current and past
temporal impacts. This cross product results in a global state of the road network.

In a subsequent phase, the global state is "ne-tuned using clients’ local data before being obfus-
cated with Laplacian noise through the DP mechanism. A personalized model is later introduced,
comprising a fully connected layer of client pro"le feature embeddings (e.g., frequently visited
regions, average driving distance). This personalized model is integrated with the output of the
localized global model to mitigate biases arising from the high heterogeneity of the data.

Notably, this work distinguishes itself from prior research by acknowledging the relationship
between road segments and intersections, in contrast to road-segment-based solutions for instance.
Furthermore, it introduces a novel personalization technique that accounts for the current global
state of the network, enabling real-time personalized predictions—a combination of considerations
not concurrently addressed in existing literature.

Finally, it is worth noting that other works similar to #ow prediction exists that are focused on
identifying travel modality inference (TMI). For instance, Reference [188] proposes MTSSFL,
which trains a deep neural network ensemble under a novel semisupervised FL framework. It
achieves a highly accurate score for a crowdsourced TMI without depending on the availability of
massive labeled data.

4.2.3 Metrics. The forecasting performance for tra!c #ow predictions is commonly measured
as a mean absolute error, mean square error (MSE), root MSE (RMSE), and mean absolute
percentage error (MAPE).

4.2.4 Datasets. For #ow predictive approaches, the following datasets are widely used to bench-
mark the comparison of various algorithms:

— Taxi Datasets: The following datasets contain taxi in-out #ow data collected via GPS, which
include pick-up time, drop-o$ time, and trip distance.
— TaxiBJ [191] contains data collected in Beijing from four time intervals: 1 July 2013 to

30 October 2013, 1 March 2014 to 30 June 2014, 1 March 2015 to 30 June 2015, and 1 No-
vember 2015 to 10 April 2016. The data were collected at 30-minute intervals and include
trajectories of over 34,000 taxis. It additionally contains meteorology data such as weather
conditions, temperature, and wind speed.

— TaxiNYC [1] contains data collected in New York City, which were collected between 1
April 2016 and 30 June 2016 and contain over 35 million records. A more extensive version
of this dataset, collected from 2009 to 2022, is also available.

— TaxiPorto [120] comprises a full year (from 1 July 2013 to 30 June 2014) of trajectories for
all the 442 taxis running in the city of Porto, Portugal. It also contains information on the
type of taxi call: central-based, stand-based, and demanded on a random street.

— T-Drive [199] contains GPS traces collected in Beijing, China. The dataset was collected
over a period of three years from 2008 to 2011, and it consists of over 10,000 taxi drivers’
GPS trajectories. The dataset contains a total of 1.07 billion GPS points, covering approx-
imately 150 million kilometers. That being said, the sample released by Microsoft is over
a span of one week only, containing around 15 million GPS points and covering a total
distance of trajectories that reaches 9 million kilometers.

— METR-LA [73]: This is Los Angeles tra!c data collected using 207 sensors mounted around
highways and 1,515 edges from 1 March 2012 to 30 June 2012.

— PeMS is a tra!c #ow dataset collected from California Transportation Agencies PeMS.
— PeMS-BAY [98]: This contains 325 nodes (tra!c sensors) and 2,369 edges in the Bay Area

from 1 January 2017 to 31 May 2017.
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Table 9. Summary of the Challenges Tackled by the Reviewed Top-N POI Recommendation Works

Privacy Byzantine
Resilience Non-iidness Resource

constraints
Overhead

assessment
Federated

competitors
Online

Learning
FPL [10] ≈ ! ! ! ! ! !

DFL-PC [61] ! ! ! ! ! ! !
PREFER [60] ≈ ! ! ! ! ! !

MVFF [35] ≈ ! ! ! ! ! !
PriRec [25] ! ! ! ! ! ! !

PEPPER [13] ! ! ! ! ! ! !
FedPOIRec [134] ! ! ! ! ! ! !

Byzantine resilience and online learning have not been tackled by current works.

— PeMSD7M: This is a sub-sample of PeMS published as part of Reference [175], also collected
from PeMS. It covers 228 tra!c sensors with a 5-minute sampling rate corresponding to 1
May 2012 to 30 June 2012.

— NY-Bike [2]: Spanning a period of 10 years, from June 2013 to January 2023, this dataset
includes comprehensive information about daily bike orders by people in New York City
and is regularly updated. More speci"cally, it contains information about bike trips, such as
duration, starting and ending point, and location, as well as details about bikers, including
user type, gender, and year of birth.

— Highways England network journey [32]: This dataset consists of average journey time, speed,
and tra!c #ow information for 15-minute periods since April 2015 on all motorways and
“A” roads managed by Highways England.

— DelDOT dataset [119]: This dataset represents roadway tra!c data collected by the Delaware
Department of Transportation at a 5-minute time frequency.

4.3 Top-K Location-based Recommendation Approaches
Location-based recommendation task, while resembling trajectory prediction, often entail lower
demands. This task involve identifying a top-K set of relevant POIs for a user based on their
historical POIs. In Table 9, we summarize the challenges addressed by the community for this use
case. Notably, none of the reviewed works have considered an online learning setting. It can be
argued that this task may not necessarily require online learning, since the preferences of users
might not signi"cantly change over time, unlike the trajectory prediction task, which inherently
encompasses a natural time dimension. However, we argue that exploring online learning could
still be valuable. Moreover, recent research has demonstrated that users’ preferences tend to evolve
over time. While other challenges have been reasonably explored, it is noteworthy that several
works have based their privacy solutions on not sharing all model parameters, but recent studies
on similar models have shown this approach not to be entirely private [178, 193]. This is indicated
in the table using the "≈" symbol. Finally, similarly to previous approaches/tasks, the exploration
of robustness has been lacking. This is unfortunate, given that issues like shilling attacks [70]
are signi"cant concerns for recommendation systems and represent just one type of robustness
concern not explored in this federated setting. Other types include malicious users fabricating
fake pro"les to manipulate recommendations, promote speci"c POIs, and introduce unfairness.

Given that the evaluation metrics and datasets align with those used in trajectory prediction
approaches, the rest of this section focuses solely on the main works in this domain.

FPL [10]. This work extends the Bayesian pair wise ranking [143] algorithm to the federated
setting. The authors train the sensitive user embeddings locally and provide users with the option
to share these embeddings with a certain probability, while training the less sensitive parameters in
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a federated manner. This approach can be viewed as a #exible framework for factorization models,
where clients can decide how many parameters to share while maintaining convergence of the
model. They evaluate their approach on Foursquare dataset, considering di$erent countries and
levels of sparsity and compare themselves with a federated movies recommender [7].

DFL-PC [61]. This work focuses on optimizing the aggregation process in federated learning.
The authors pre-train deep models consisting of a GCN and a GRU connected to a MLP, which
are used to estimate the system parameter space. These estimates are then optimized at the server
level through a reinforcement learning algorithm. The evaluation results show that their solution
surpasses traditional centralized deep models due to the added optimization step based on rein-
forcement learning.

In terms of system architecture, alternative solutions have been proposed for more e!cient
federated POI recommendation. The following works fall within this scope:

PREFER [60]. Guo et al. proposed a two-set recommendation model training. First, for privacy
purposes, they propose to train the user-dependent model parameters strictly locally. Subsequently,
user share and aggregate less sensitive parameters (i.e., user-independent) in a multiple-edge
server architecture, instead of remote cloud servers, with an aim to improve real-time response ca-
pability and reduce communication cost. They validate their approach both analytically and empir-
ically on two standard POI recommendation models, namely Distance2Pre [27] and PRME-G [41],
and two check-in datasets, Foursquare [173] and Gowalla [26], and show the competitiveness of
their approach with centralized and federated competitors.

MVFF [35]. Reference [35] proposes a vertical federated learning framework for mobility data
forecasting for CS FL applications where each organization holds a partial subset of data. Using
a local learning model, each organization extracts the embedded spatio-temporal correlation be-
tween its locations. To account for global learning, a global model synchronizes with the local
models to incorporate the correlation between all the organizations’ locations.

PriRec [25]. Reference [25] proposes a peer-to-peer approach to learn sensitive user embed-
dings, while less sensitive ones (e.g., feature interaction model) are learned in a federated manner.
This is achieved through the introduction of secret sharing [149] in the decentralized gradient
descent topology and considering geographical information when building this topology, that is,
users closely geo-located learn (privately) collaboratively their respective user embeddings. As for
the items’ features, they are aggregated through a using aggregation protocol (SA) [74]. Authors
evaluate their approach on standard POI datasets’ and compare it with a centralized factorization
machine, which it seems to compete with, while guaranteeing a better level of privacy.

PEPPER. Reference [13] emphasizes personalization of POI models through the aggregation
step while using a gossip communication protocol to eliminate the central FL server. In this work,
nodes gossip their models with their neighbors and aggregate them after evaluating their contri-
bution. The authors also introduce a peer-sampling protocol that acts as a clustering over time,
ensuring each node has similar users in its neighborhood. Results from their experiments show
that fully decentralized FL can be competitive with centralized solutions, while o$ering scalability
and personalization.

FedPOIRec. Reference [134] introduces a framework that leverages social relationships between
users to make more personalized models. The authors "rst train a global model using federated
learning and multi-party computation (SMPC) to protect the aggregation phase from a curious
server. A trusted third party is then tasked with "nding similar users based on encrypted embed-
dings for personalized aggregation. The encryption is done using a leveled variant of the CKKS
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fully homomorphic encryption (FHE) scheme. This works also encompasses an adaptation of
the setting in Reference [10] and CESAR [156], a sequential recommender based on a convolu-
tional neural network. The authors validate their approach through an evaluation on "ve versions
(cities) of Foursquare as well as a formal privacy analysis.

Finally, another use case that has been explored in the context of location-based recommenda-
tion systems is the driver recommendation use case, as tackled in Reference [161]. In this work, cab
companies use federated learning to strengthen RSUs with the computational capability to develop
an intelligent recommender system that recommends the appropriate driver for a subsequent trip.
To this end, they consider both the driver’s stress and past behavioral patterns.

4.4 Other Approaches
4.4.1 Clustering-based Approaches. Most existing works in clustering in FL are focused on

methods to identify and self-organize devices into communities are so to conduct model sharing
within those communities. In Reference [21], authors introduce and evaluate a hierarchical clus-
tering for vision models, where the local model is a CNN that is trained under supervised learning.
The extensive evaluation presents the improvement that hierarchical clustering can bring to fed-
erated learning under a non-iid setting where each client holds partitioned data. In Reference [85],
the authors propose the dynamic Generative Adversarial Network (GAN)-based clustering in
FL to improve the time-series forecasting for cases such as cell tower handover prediction. Their
proposed approach accounts for the adaptive clusters and non-iid data. IFCA proposed in Refer-
ence [54] starts by randomly initializing k models, one per cluster. Each client assigns itself to
a cluster at the start of each round of training by evaluating all k models on its local data and
choosing the model with the lowest loss to train form epochs. At the end of each round, the server
performs federated averaging within each cluster of clients separately.

Although this theoretical line of work is receiving a great deal of attention from the FL research
community we have seen almost no adaptation, except one, to the spatial-temporal models in FL.
F-DEC [114] proposed a deep embedded clustering for urban community detection in FL. They ex-
panded on the centralized model proposed in Reference [46] and trained an autoencoder based on
heatmap images of mobility trajectories transformed using the frequency of visits (where brighter
pixels show more frequently visited areas). They then used a KL divergence loss for clustering
similar heatmaps together. Furthermore, this work is the only early evidence that we found that
measures the computational complexity of such algorithms when it is deployed on ordinary smart-
phones.

4.4.2 Privacy and A!acks in Spatial-Temporal FL Models. FL was initially designed to protect
user privacy by sharing model parameters instead of data. However, research has shown that
sharing these parameters can still reveal sensitive information, especially in models that use em-
beddings/latent features to capture user or point-of-interest semantics. To address this issue, re-
searchers have proposed mainly three approaches: (i) "a share less" policy, (ii) injecting noise us-
ing techniques like DP, and (iii) using cryptographic primitives (e.g., FHE). Various studies have
proposed solutions using each of these approaches, but each approach has its limitations. For in-
stance, References [8, 60] proposed sharing only user-independent embeddings to be learned in a
federated manner while training user embeddings locally. Reference [40] "rst proposed a practi-
cal attack, demonstrating that user check-ins can be easily inferred by a curious FL server based
on POIs embeddings. Later, they proposed to alleviate this attack by training these embeddings
on noisy data generated using DP. They show that if the rest of the network (i.e., non-sensitive
layers) is frozen during this noisy training, and is pre-trained on real data, then the performance
remains reasonable. Nevertheless, they did not quantify the impact of their attack nor the degree

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 3, Article 18. Publication date: July 2024.



18:26 Y. Belal et al.

of protection provided by their solution. Another line of work, Reference [134], opts for the third
approach and uses SMPC to hide the individual contributions of the users from a curious FL server.
Unfortunately, this approach opens the door to malicious users, whose goal would be to corrupt
the learning, and who would be di!cult to detect due to SMPC.

A more privacy-oriented solution was proposed in Reference [25]. They aggregated less sensi-
tive embeddings using SMPC and categorized sensitive embeddings into two parts: those related to
POIs and those related to users. They used Local DP to add noise at the user level to the POI-related
embeddings before sharing them with the server. They also proposed to share the user-dependent
embeddings in a peer-to-peer fashion using secret sharing. To reduce overhead and the attack sur-
face, they considered geographic information to build the peer neighborhood. Thus, a user shares
its sensitive embeddings only with geographically close neighbors. This solution has competitive
prediction performances with non-private solutions and undeniably provides more privacy guar-
antees. However, the impact of the assumption that sensitive embeddings can be safely shared
with nearby users is still unclear.

Another type of attack that has received signi"cant attention in recent mobility research is re-
identi"cation attacks [49, 111]. The fundamental concept behind such attacks is that a malicious
service provider could exploit background knowledge to associate anonymized user traces with
their respective owners, thereby compromising users’ anonymity. To address this issue, Khalfoun
et al. proposed a federated protocol for assessing the risk of re-identi"cation on mobility data.
This protocol involves training a re-identi"cation model in a federated manner using users’ traces
and subsequently utilizing this model to select the optimal combination and hyperparameters of
location privacy protection mechanisms that can protect a user’s privacy whenever they transmit
their data to an untrusted Mobile Crowd Sensing Server. Notably, this solution appears to be the
only privacy risk assessment mechanism for mobility data that do not necessitate the presence of
a trusted curator, to the best of our knowledge. For a full survey of privacy and security techniques
in FL see Reference [125].

Based on our established taxonomy, an analysis of relevant studies, and a meta-analysis, we have
observed that some key factors in certain tasks (e.g., privacy and non-iidness in recommendations,
resource constraints and computational costs in TFP) are often not given su!cient consideration.
Instead, other criteria are erroneously deemed more signi"cant. For instance, in TFP, privacy is
typically not a primary concern, because the data collected from sensors are generally aggregated;
however, current works have considered it more often than other criteria. Moreover, there are
several still open-problems as well as a lack standardization, both in data and code.

In light of these observations, we outline a proposed roadmap in the following section. This
roadmap is designed to accelerate progress in FL-ST, with a focus on briging the gap with
real-world applications, which are currently underrepresented in the literature. We believe
that this approach will not only streamline research in this "eld but also facilitate its practical
implementation.

5 Discussion and Open Research Challenges
Based on the review of the above papers, we see the following opportunities and roadmap for the
research community to explore.

5.1 Semantic Location Embedding and Context-awareness Modelling
One of the biggest opportunities that we see in continuing research on location and point tra-
jectory predicting is in regards to integrating more semantic and contextual information about
types of places instead of focusing primarily on coordinates. For example, this contextual infor-
mation can include information on whether a point in trajectory represents someone’s workplace,
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their frequently visited locations, or a potential point of interest in a new town. While this is not
limited to FL applications and previous works have often used open source maps to infer informa-
tion about the type of places (e.g., popularity, socio-economic level), FL can bring a new level of
anonymity and personalization to this integration. The semantic representation of the locations
can then be learned over time on users’ devices, maintaining users’ privacy while allowing for
better-personalized models.

5.2 Byzantine Resilient Spatio-temporal Mobility Federated Learning
Within the realm of ML, Byzantine Resilience commonly denotes the ability to train an accurate
statistical model amid the presence of arbitrary behaviors, commonly referred to as Byzantine
users [58]. These behaviors manifest either due to faults or malicious users, encompassing scenar-
ios like a compromised sensor in the TFP problem or a user aiming to promote speci"c items in
a Top-K POI recommendation use case. In the best-case scenario, the trained model proves unus-
able, resulting in a cost loss incurred during its training. However, in the worst-case scenario, if
the attack goes undetected (e.g., backdoors on GNN [195]), then the model might exhibit concealed
yet malicious behaviors. This predicament poses a signi"cant challenge owing to the di!culty of
interpreting model parameters.

Distinguishing between a Byzantine model update transmitted by a client or sensor and an hon-
est but out-of-distribution client often presents a non-trivial task. This complexity ampli"es in
highly heterogeneous con"gurations typical of FL-ST mobility applications. Its pertinence high-
lights this challenge as a substantial research track for Distributed ML and FL. Surprisingly, this
aspect remains relatively unexplored in the context of FL-ST mobility applications. Among the
multitude of reviewed papers, only Meese et al. [119] and Tang et al. [155] have delved into such
adversarial settings. However, neither of these works has considered the novel solutions proposed
in this "eld, such as bucketing [80] and variance reduction techniques [38]. This gap is more con-
cerning given the pronounced heterogeneity characteristic of these applications.

Consequently, there is an urgent imperative to delve into this challenge and contemplate envi-
ronments accommodating Byzantine behaviors within FL clients. This pursuit should be seen as
a fundamental step to bridge the gap between research e$orts and real-world implementations.
Speci"cally, it necessitates a comprehensive study and evaluation of existing Byzantine-resilient
distributed learning algorithms, a deep understanding of their limitations, and subsequently adapt-
ing them to suit the inherent heterogeneity and dynamic evolution within the spatio-temporal
context.

5.3 Communication E!iciency
The race to enhance the performance of ML models is driving exponential growth in their number
of parameters across various "elds. In the realm of ST mobility models, where the necessity to
capture diverse dimensions (spatial, temporal, preferential, and characteristic) is paramount, this
growth becomes even more pronounced. A striking illustration of this trend is the substantial
increase of over 4,000% observed between ARIMA, a parametric model, and recent GNNs, which
now number in the hundreds of thousands (see Table 7).

Traditionally, in classical ML, concerns centered around the costs associated with training
these models and the extensive data required for such endeavors. However, the emergence of FL
has shifted the focus toward apprehensions about the expenses related to communicating and
transmitting these increasingly expansive models. Surprisingly, a notable observation is that the
majority of existing works do not adequately consider these challenges within their frameworks.
That is, they do not consider both the cost of training as well as the cost of collecting these models
by the central server.
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Recognizing the signi"cance of this issue, particularly in light of its comprehensive exploration
in other "elds, we advocate for heightened attention from the research community. We urge future
work to delve into existing solutions like pruning [77] and quantization [91], emphasizing the need
to quantify the cost-e$ectiveness of these approaches in the context of FL-ST mobility.

5.4 Trust, Fairness, and Accountability
In addition to trust and accountability, another challenge that we see spatial temporal mobility
models will face under a federated setting is fairness. That is, to what extent are the models that are
trained on location traces equitable?, especially models that are designed for the purpose of mobility
#ow prediction and allocation of transport options. For instance, mobility demand prediction
algorithms have been shown to o$er higher service quality to neighborhoods with more white
people [22]. Indeed, as recent evidence from the broader machine learning domain has shown,
the systematic discrimination in making decisions against di$erent groups has been shifted from
people to autonomous algorithms [67, 81]. In many applications, discrimination may be de"ned
by di$erent protected attributes, such as race, gender, ethnicity, and religion, that directly prevent
favorable outcomes for a minority group in societal resource allocation, education equality,
employment opportunity, and so on [147]. Measuring fairness of mobility models is a dimension
that has been vastly overlooked in applications of spatial-temporal mobility models, with the
exception of only a few works [52, 170, 171] and with little consensuses on how fairness should
be de"ned and measured for spatial-temporal applications. One way of controlling for fairness
of mobility models under the FL setting is to create auditing systems that can infer information
about the training without having access to location data of the devices or the global model at the
FL server [113, 115]. We believe future work will focus on dynamic middle-wares that can leverage
solutions such as clustered FL to o$er interpretability of the underlying models [54, 93, 197] that
are crucial to transition exiting solutions from research to practice.

5.5 Standardization and Reproducibility
As the landscape of spatio-temporal mobility research continuously evolves, it is increasingly
crucial to establish a common ground for assessing its advancements. This involves not only
pinpointing the most e$ective proposed solutions but also identifying the persistent challenges
and shortcomings. Achieving this necessitates standardized datasets, uniform methods for data
preprocessing and splitting and, ideally, a code base or metadata ensuring the reproducibility of
each solution. Regrettably, similarly to other domains like recommendation systems [42, 43], this
practice is seldom followed.

For instance, in studies related to the TFP task, there is a prevalent use of diverse datasets,
sometimes from the same source but across disparate timeframes and di$erent space and time
discretizing methods as well as unclear distinct splitting methods. These splits often rely on
various sampling techniques. Yet, as underlined in Reference [122], the process of partitioning
data into training, testing, and potentially validation sets signi"cantly in#uences the measured
performance. Another example, speci"cally in Top-K POI recommendation, involves the uti-
lization of metrics based on parameters (e.g., varying K values for accuracy at rank K). In FL,
this challenge exacerbates due to the proliferation of parameters impacting the results (e.g., the
number of clients, sampling strategies, aggregation techniques).

Consequently, robustly comparing di$erent works, even those evaluated on identical datasets,
becomes impossible. This is likely why most reviewed works unfortunately lack substantial com-
parisons with their federated counterparts. Moreover, considering that the distinct experimental
procedures often stem from stochastic processes (client and data point sampling, stochastic
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learning), we stress the necessity for statistical tests to gauge the statistical signi"cance of
observed results.

We acknowledge that research contexts rarely align perfectly. Nevertheless, the need for stan-
dardizing datasets and preprocessing methodologies in the "eld is still undeniable. Existing sur-
veys [47, 198] have proposed solutions in a centralized context. While the direct applicability of
these solutions to federated learning may require adaptation, they provide valuable insights and
methodologies that can serve as foundational building blocks for the FL paradigm. Moreover, there
have been several software e$orts [12, 18, 56, 62, 127, 132, 177] that furnish a set of libraries for stan-
dardized spatio-temporal data analysis, preprocessing, and visualization. Using these as building
blocks might represent an essential step toward standardization and reproducibility in the "eld.

5.6 Realistic Cross-silo Spatial Temporal Datasets for Benchmarking
Existing approaches that we reviewed are mostly evaluated with ST data partitioned arti"cially.
Nevertheless, the long-term development of this "eld still requires realistic and large-scale fed-
erated datasets to be made available to support experimental evaluations under settings close to
practical applications. For instance, in the reviewed literature, there is a lack of research on how
the geographic distribution of silos can lead to a geographically distinct #ow of information. Estab-
lishing policy-based scenarios to guide how the data should be partitioned across silos to re#ect
real-world data ownership challenges is a direction that we believe the research community will
be working closely with other stakeholders in the future.

5.7 Transition to Real-world Deployment through Dedicated Frameworks
Finally, we believe that just as crowd-sensing research was successful a decade ago through frame-
works such as AWARE [44], which reduced the burden of app development for data collection,
frameworks speci"cally designed for federated mobility models will facilitate the transition from
limited research to in-wild deployments. To achieve this transition, it is crucial to (i) provide bench-
marks for mobility applications and (ii) develop mobility-centered federated learning frameworks,
as was the case for graph applications [64] and IoT applications [189]. This will allow the research
community to e$ectively evaluate and compare the performance of federated learning models on
mobility data. We foresee that the transition between the current research e$orts to real deploy-
ment will happen over stages where "rst multi-disciplinary research will focus on understanding
users’ attitudes toward using their location data for training models. After all, similar research
on crowd-sensing applications has shown that location information is a top concern of users’ in-
volvement in these applications [3]. To the best of our knowledge, currently, there are no existing
works in understanding users’ privacy concerns when their data are not shared externally but
are still used in creating predictive models. As a next step, we envision a slow transition between
fully centralized models to decentralized models. Rather than training models focused on end-
user prediction tasks, generative models that allow synthetic trace generation by learning from
user mobility traces will be used to update and de-bias centralized datasets.

6 Conclusion
In this article, we surveyed the federated learning models in the domain of mobility prediction
as well as the widely used datasets for spatial-temporal models. We described the challenges that
exist in applying common deep learning techniques in decentralized settings and discussed the
opportunities for the research community to consider for future work. Our work indicates rapid
growth and interest in this space, with promising future directions both in terms of theoretical
frameworks and models and practical applications and use cases. We hope both academics and
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practitioners "nd this survey useful for choosing the appropriate approach for their individual
scenarios.

A Appendix
A.1 Survey Review Methodology
To create the summary of the surveys and their topics, we crawled the citation (bib "le) of all the
published articles with the keywords “Federated Learning” and “Survey” or “Review” in the title
for each year. We used the publish or perish tool for this crawling and used Google Scholar as
the platform. We downloaded the abstracts of all these surveys from those papers and fed them
to a Large Language Model (GPT 3.5) for thematic categorization of the topics. We followed a
similar process for counting the number of papers per year that were published on FL-ST topics
(non-surveys).

A.2 Supplementary Tables

Table 10. RMSE Metric for Reviewed Federated Learning Models and Centralized Baselines over
Various Benchmark Datasets

NY Bike Taxi-NY Yelp Taxi BJ PeMS PEMS-BAY (5mn) METR-LA (5mn)
Centralized Approaches

ARIMA 10.07 12.43 — 22.78 — 5.59 7.66
ST-RESNET [191] 6.33 9.67 — 16.69 — — —
GRU
GRU+NN — — — — 9.97 4.12

3.81
11.78
11.47

Federated Approaches
FedSTN [179] — 9.32 — 24.22 — — —
FedGRU [105] 17.14 — 1.22 — 11.04 — —
Federated-LSTM [154] 17.24 — 1.24 — — — —
MVFF (GRU+GNN) [35] 6.79 — 0.96 — — — —
CNFGNN [121] — — — — — 3.82 11.48
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