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Optical neural engine for solving scientific
partial differential equations

Yingheng Tang 1,4 , Ruiyang Chen 2,4, Minhan Lou 2, Jichao Fan2,
Cunxi Yu 3, Andrew Nonaka1, Zhi Yao 1 & Weilu Gao 2

Solving partial differential equations (PDEs) is the cornerstone of scientific
research anddevelopment. Data-drivenmachine learning (ML) approaches are
emerging to accelerate time-consuming and computation-intensive numerical
simulations of PDEs. Although optical systems offer high-throughput and
energy-efficient ML hardware, their demonstration for solving PDEs is limited.
Here, we present an optical neural engine (ONE) architecture combining dif-
fractive optical neural networks for Fourier space processing and optical
crossbar structures for real space processing to solve time-dependent and
time-independent PDEs in diverse disciplines, including Darcy flow equation,
the magnetostatic Poisson’s equation in demagnetization, the Navier-Stokes
equation in incompressible fluid, Maxwell’s equations in nanophotonic meta-
surfaces, and coupled PDEs in a multiphysics system. We numerically and
experimentally demonstrate the capability of the ONE architecture, which not
only leverages the advantages of high-performance dual-space processing for
outperforming traditional PDE solvers andbeing comparablewith state-of-the-
artMLmodels but also canbe implementedusing optical computing hardware
with unique features of low-energy and highly parallel constant-time proces-
sing irrespective of model scales and real-time reconfigurability for tackling
multiple tasks with the same architecture. The demonstrated architecture
offers a versatile and powerful platform for large-scale scientific and engi-
neering computations.

Partial differential equations (PDEs) derived from physical laws have
been a powerful and faithful computational tool to accelerate the
exploration and validation of scientific hypotheses instead of per-
forming expensive and time-consuming real-world experiments1.
Hence, numerically solving PDEs is essential for scientific research and
development in nearly every scientific domain. For example, the
interaction of electromagnetic waves with materials and engineered
structures in broad applications such as communication, imaging,
sensing, and quantum technologies is governed by Maxwell’s
equations2; automotive and flight aerodynamics for designing and
manufacturing road vehicles and airplanes is determined by Navier-

Stokes equations3; the Earth system including temperature, atmo-
sphere, and ice sheets for understanding climate change and making
policies is also described with a series of PDEs4. However, current
numerical simulationmethods to solve PDEs, such as finite difference/
volume methods to solve Maxwell’s and Navier-Stokes equations, are
costly in computing time and resources.

Machine learning (ML) offers a new perspective on solving PDEs
through data-driven approaches to enable fast and accurate simula-
tions of many multiphysics and multiscale processes5–7. However, the
ML model deployment on electronic computing hardware requires
substantial computing resources and consumes substantial energy. In
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the foreseeable future, the fundamental quantummechanics limit will
lead to a bottleneck of further reducing the energy consumption and
simultaneously increasing the integration density of electronic circuits
to catch up with the increasing scale of ML models in demand for
solving complex problems8,9, thus urgently calling for new high-
throughput and energy-efficient ML hardware accelerators. Recently,
optical architectures, including photonic integrated circuits for
matrix-vector multiplication (MVM)10,11, for neuro-inspired spiking
neural networks12,13, and for photonic reservoir computing14,15, and
free-space optical systems for MVM16–18 and diffractive optical neural
networks (DONNs)19–22, are emerging as high-performance ML hard-
ware accelerators by leveraging different particles – photons – to
break down electronic bottleneck thanks to high parallelism and low
static energy consumption of photons23. However, the deployment of
optical computing systems is in small scales for basic PDEswith limited
performance24,25.

Here, we present a fully reconfigurable and scalable optical neural
engine (ONE) architecture that combines DONN systems for proces-
sing data in Fourier space and optical crossbar (XBAR) structures for
processing data in real space to solve two-dimensional (2D) spatio-
temporal profiles in time-independent and time-dependent PDEs. The
ONE architecture not only leverages the advantages of high-
performance dual-space processing26, but also can be implemented
using optical computing hardware with unique features of low-energy
and highly parallel constant-time processing irrespective of model
scales, and real-time reconfigurability for tackling multiple tasks with
the same architecture. We numerically and experimentally demon-
strate the capability of theONE architecture in solving a broad range of
PDEs in diverse disciplines, including the Darcy flow equation in fluid
dynamics, the magnetostatic Poisson’s equation in micromagnetics,
the Navier-Stokes equation in aerodynamics, Maxwell’s equations in
nanophotonics, and coupled electric current and heat transfer equa-
tions in a multiphysics electrical heating problem. The ONE archi-
tecture not only outperforms traditional PDE solvers because of its
data-driven nature, but also shows comparable and better perfor-
mance with other ML models while with substantial hardware advan-
tages because of its implementation in the optical domain. The
demonstrated ONE architecture is versatile and can be tailored with
different combinations of DONN and XBAR structures for solving
various PDEs, offering a transformative universal solution for large-
scale scientific and engineering computations.

Results
ONE architecture
Figure 1a illustrates the ONE architecture, which takes the spatio-
temporal data of an input physical quantity U, described as a function
u(x, y, t) in terms of positions x and y and time t, to predict the spa-
tiotemporal data of an output physical quantity G described using a
function g(x, y, t). The input and output quantities U and G can be
connected through either a single-physics PDE or coupled multi-
physics PDEs. There are three branches inside the ONE architecture,
including (i) Fourier spaceprocessingbranch, (ii) real spaceprocessing
branch, and (iii) physics parameter processing branch. The combina-
tion of both real and Fourier space processing has been proven fast,
powerful, and efficient in solving PDEs26, and the incorporation of
additional physics parameter processing enables the fusion of multi-
modal data for complex tasks27. More importantly, most operations in
these branches can be deployed on optical computing hardware in
both real andFourier spaces, enabling solving PDEs inhigh-throughput
and energy-efficient manners. The details of each branch are descri-
bed below.

In the first Fourier space processing branch, the core arithmetic
operations are based on Fourier and inverse Fourier transform to
process input spatiotemporal data in the Fourier space. Their optical
hardware implementations are mainly based on reconfigurable

DONNs, which contain cascaded reconfigurable diffractive layers.
Reconfigurable DONNs can be implemented in both integrated pho-
tonic chips28,29 and free space19–21; see Fig. 1b. There are two funda-
mental operations in DONNs – optical diffraction and spatial light
modulation. For the optical diffraction operation, an optical field right
after the l-th diffractive layer, fl, diffracts to the front of (l + 1)-th layer,
whose optical field, fin,l+1, is a convolution of fl and the diffraction
impulse function h(x, y). Specifically, the complex-valued field at point
(x, y) on the input plane of (l + 1)-th layer can be written as the con-
volution of all fields at the output plane of l-th layer as

f in, l + 1ðx, y, zÞ=
Z Z

f lðx0, y0, 0Þhðx � x0, y� y0Þdx0dy0, ð1Þ

where z is the distance between two diffractive layers and h(x, y) is the
impulse response function of free space. By the convolution theorem,
this 2D convolution canbe efficiently calculated in Fourier space based
on Fourier and inverse Fourier transform. Specifically, the 2D Fourier
transform F xy of f and h, F and H, are connected through

F xyðf in, l + 1ðx, y, zÞÞ=F xyðf lðx, y, 0ÞÞF xyðhðx, yÞÞ, ð2Þ

F in, l + 1ðα,β, zÞ= Flðα,β, 0ÞHðα,βÞ, ð3Þ

where α, β are spatial domain indices. After diffraction, the 2D inverse
Fourier transform F�1

xy of Fin,l+1(α, β, z), fin,l+1(x, y, z), is then spatially
modulated. Each diffraction pixel at location (x, y) has a complex-
valued electric field transmission coefficient t(x, y, S)eϕ(x, y, S), where
t(x, y, S) (ϕ(x, y, S)) is the amplitude (phase) response as a function of
external stimuli S, such as voltages. The spatial light modulation
operation is expressed as a pixel-wise multiplication

f l + 1ðx, y, zÞ=F�1
xy ðF in, l + 1ðα,β, zÞÞtðx, y, SÞeϕðx, y, SÞ = f in, l + 1ðx, y, zÞtðx, y, SÞeϕðx, y, SÞ,

ð4Þ

where fl+1(x, y, z) is the near-field output field right after the (l + 1)-th
layer. More details can be found in Methods.

Before and between DONN kernels, there is a linear transforma-
tion operation based on fully connected layers to scale up the number
of channels and a channel mixing operation based on matrix
multiplications26. The core arithmetic operations are based on MVM.
Their optical hardware implementations are mainly based on reconfi-
gurable optical XBAR structures, which encode element values of
vector v and matrix M into light intensity through electro-optic mod-
ulators, perform multiplications through cascaded modulators, and
add signals at the output detector array. The signals are routed to
followmathematical calculations in MVM so that the reading from the
detector array represents the output vector o =M × v. Reconfigurable
XBAR structures can also be implemented in both integrated photonic
chips10,11 and free space16–18; see Fig. 1c. More details on the operation
mechanism can be found in Methods and Supplementary Fig. 1.

The second real spaceprocessingbranchcontains fully connected
layers, whose operations are also based on MVM and implemented
with optical XBAR structures. The output from the Fourier space
branch, F(u), and theoutput from the real space branch,R(u) are added
and further processed with a nonlinear operation. Note that the non-
linear operation is the only operation performed in electronic hard-
ware in the ONE architecture. In practice, fast digital and analog
circuits are available to match the speed of optical hardware30,31 and
can be arranged in an array to process each data element in parallel
without limiting system throughput. Further, the energy consumption
and throughput of nonlinear operations become asymptotically neg-
ligible compared to linear operations when the problem scale is large
enough (see detailed discussions at the end). Moreover, nonlinear
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processing has been recently achieved even with linear optical
systems32, which could replace electronic hardware nonlinear opera-
tions in the future. Moreover, this combination of real space, Fourier
space, and nonlinear processing is scaled up, repeated four times, and
cascaded in series. The third branch is to perform a linear transfor-
mation on other relevant physics parameters d(t), which are time
sequences instead of spatiotemporal data, based on fully connected
layers. The obtained dataT(d) ismultiplied andmerged onto twoother
branches to have the final output g(x, y, t). Hence, except for nonlinear
operations, all other operations can be done with DONN and optical
XBAR systems. These two systems can be seamlessly assembled into a
single integrated photonic chip or a single free-space optical system
for all-optical operations without converting between optical and
electronic hardware, fully leveraging the advantages of high through-
put and high parallelism inoptical computing systems.Moredetails on
the ONE architecture model are in Methods.

Darcy flow and magnetostatic Poisson’s equations
The first PDE we solved with the ONE architecture is the Darcy flow
equation in fluid dynamics physics. This PDE describes a fluid flow

through a porous medium as shown in Fig. 2a. Specifically, the equa-
tion is

�∇ � ðkðx, yÞ∇uðx, yÞÞ= f ðx, yÞ, ð5Þ

where k(x, y) is the permeability field of the medium, u(x, y) is the
pressure field of the flow, and f(x, y) is the force function. The ONE
architecture was trained to learn the mapping from the 2D function
k(x, y) to function u(x, y). More details about the equation dataset
generation and training are inMethods. Figure 2b displays the training
loss curves for inputs with different resolutions. The training loss is
generally low for all resolutions and slightly increases at the highest
421 resolution. Figure 2c shows the comparison of the training loss of
our ONE architecture with other PDE solving models, including fully
convolution networks (FCN)33, principal component analysis-based
neural network (PCANN)34, reduced biased method (RBM)35, graph
neural operator (GNO)36, low-rank kernel decomposition neural
operator (LNO)27, multipole graph neural operator (MGNO)37, and
Fourier neural operator (FNO)26. The performance of the ONE
architecture is comparable with state-of-the-art neural operators

Fig. 1 | Optical neural engine (ONE) architecture and hardware implementa-
tions. a Illustration of processing branches and flows in the ONE architecture to
predict output spatiotemporal output physical quantities from corresponding

input and solve partial differential equations involving single or multiple physics.
Illustrations of integrated and free-space implementations of reconfigurable (b)
diffractive optical neural network and (c) optical crossbar structures.
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including GNO, LNO,MGNO, and FNO, and is better than FCN. Further,
from the hardware perspective, the ONE architecture is constructed
based on high-throughput optical computing hardware platforms so
that all operations can be performed in parallel and in a single-shot
manner. In addition, the ONE architecture can be practically
implemented on a large scale. For example, free-space reconfigurable
DONNs20,21,38 andopticalMVM17 are typically implementedusing spatial
light modulators (SLMs) with a scale >1000× 1000. Hence, the
execution cost of solving PDEs with different scales and resolutions is
invariant, meaningO(1), if the scale of the optical hardware in the ONE

architecture is large enough. Figure 2d displays the input permeability
field k(x, y), the expected ground truth of output pressure field u(x, y),
the predicted output pressure field, the absolute error between the
ground truth and prediction, and the relative error defined as the ratio
of the absolute error over the ground truth, at the lowest 85 and the
highest 421 resolutions, respectively. This visualization further
validates the ONE architecture in solving PDEs. More data on other
resolutions are shown in Supplementary Fig. 2.

The second PDE we solved is the magnetostatic Poisson’s equa-
tion of demagnetization in micromagnetics physics. This PDE

Fig. 2 | Simulation results of solving Darcy flow and magnetostatic Poisson’s
equations. a Illustration of the Darcy flow equation describing a fluid flow through
a porousmedium. The optical neural engine (ONE) architecture learns themapping
between the permeability and pressure fields. b Training loss curves for input data
with the input data resolutions of 85, 106, 141, 211, and 421. c Comparison of the
training loss of fully convolution networks (FCN), principal component analysis-
based neural network (PCANN), reduced biased method (RBM), graph neural
operator (GNO), low-rank kernel decomposition neural operator (LNO), multipole
graph neural operator (MGNO), Fourier neural operator (FNO), and ONEmodels at
various resolutions.d Inputpermeability field, the expected ground truth of output

pressure field, the predicted output pressure field, the absolute error between the
expected and predicted outputs, and the relative error between the expected and
predicted outputs, at 85 and 421 resolutions. e Illustration of the magnetostatic
Poisson’s equation calculating the demagnetizing field generated by the magneti-
zation field. The ONE architecture learns the mapping between these two fields.
f Validation loss curve for theONE architecture solving themagnetostatic Poisson’s
equation and (g) corresponding input magnetization field, the expected ground
truth of output demagnetizing field, the predicted output demagnetizing field, the
absolute and normalized errors between the expected and predicted outputs.
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calculates the demagnetizing field H generated by the magnetization
fieldM as shown in Fig. 2e. Specifically, the equation is obtained from
Maxwell’s equation as

= �H= � = �M: ð6Þ

By defining an effective magnetic charge density ρmag = − ∇ ⋅ M and a
magnetic scalar potential ψ assuming there is no free current, we can
express the demagnetizing field H = − ∇ψ and rewrite the previous
equation as a Poisson’s equation

∇2ψ= � ρmag: ð7Þ

Similar to solving the Darcy flow equation, the ONE architecture
was trained to learn the mapping from components of M to H vector
fields. More details about the equation dataset generation and training
are in Methods. Figure 2f shows the validation loss curve and Fig. 2g
shows the input one component ofM field, the expected ground truth
of output Hx component of H field, the predicted output Hx compo-
nent, the absolute error between the expected and predicted outputs,
and normalized error between the expected and predicted outputs

with respect to the maximum field strength in the ground truth. Both
confirm a good performance of the ONE architecture in solving the
magnetostatic Poisson’s equation. More data on Hy and Hz compo-
nents are shown in Supplementary Fig. 3.

Navier-Stokes and Maxwell’s equations
In addition to steady-state Darcy flow and magnetostatic Poisson’s
equations without time evolution, we employed the ONE architecture
to solve time-dependent PDEs, including theNavier-Stokes equation in
fluid dynamics andMaxwell equations in electromagnetics and optics.
In particular, the real-time reconfigurability ofDONNandoptical XBAR
structures makes the ONE architecture suitable for such a purpose.
Specifically, we solved a 2D Navier-Stokes equation for a viscous,
incompressible fluid in vorticity form on the unit torus as shown in
Fig. 3a. This PDE calculates the time evolution of vorticity described as

∂twðx, y, tÞ+ uðx, y, tÞ � ∇wðx, y, tÞ= νΔwðx, y, tÞ+ f ðx, yÞ, ð8Þ

where u is the velocity field, w = ∇ × u is the vorticity, ν is the viscosity
coefficient, f is the forcing function. The ONE architecture was trained
to learn themapping fromw in a time range from0 to t0 tow in a time

Fig. 3 | Simulation results of solving time-dependent Navier-Stokes and Max-
well’s equations. Illustrations of (a) Navier-Stokes equation for solving the time
evolution of the vorticity field in a viscous, incompressible fluid in vorticity formon
the unit torus and (b) Maxwell’s equations for solving the time evolution of the
electric field in a dielectric metasurface. Validation loss curves for (c) solving the

Navier-Stokes equation and (d) Maxwell’s equations with 10, 20, and 30 additional
time steps using the optical neural engine architecture. The expected ground truth
field, the predicted field, and the absolute and relative errors between these two
fields for (e) the Navier-Stokes equation and (f) Maxwell’s equations, respectively.
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range from t0 to t1 (t1 > t0). More details about the equation dataset
generation and training are in Methods. Further, we also solved Max-
well’s equations in a dielectric metasurface consisting of multiple
cylindrical pillars in a unit cell of a periodic pattern as shown in
Fig. 3b39. The general Maxwell’s equations can calculate the time evo-
lution of an electric field through the following equations

∇ �D=ρ, ð9Þ

∇ � B=0, ð10Þ

∇×E= � ∂B
∂t

, ð11Þ

∇×H= J+
∂D
∂t

, ð12Þ

where D is the electric displacement field, ρ is the free electric charge
density, B is the magnetic flux density, E is the electric field, H is the
magnetic field, and J is the free current density. The ONE architecture
was trained to learn themapping from E in a time range from0 to t0 to
E in a time range from t0 to t1 (t1 > t0). More details about the dataset
generation and training are in Methods. Figure 3c displays the valida-
tion loss curve for solving the Navier-Stokes equation with t0 = 10 and
t1 = 20. Figure 3d displays the validation loss curves for solving

Maxwell’s equations with t0 = 10 and t1 = 20, 30, 40, respectively.
Moreover, Figure 3e, f show the expected ground truth of w field and
theEx component of theEfield at t1, the correspondingpredictedfields
at t1, and the absolute and relative errors between ground truth and
prediction for the Navier-Stokes equation and Maxwell’s equations,
respectively. Note that the sharp lines in the relative error plot of
Fig. 3e is due to the division of small ground truth values. All confirm a
good performance in solving time-dependent PDEs using the ONE
architecture.

Multiphysics PDEs
Moreover, we employed the ONE architecture to solve coupled PDEs
involving two physics. Specifically, we solved an electrical heating
problem to obtain a temperature profile at an intermediate time step
tn, T(x, y, tn), in an electrical circuit when a time-dependent voltage
signal was applied to the circuit pads, involving coupled electric cur-
rent physics and heat transfer physics; see Fig. 4a. Specifically, for the
electrical current physics, the corresponding PDE is

Q=dσ∇tV ðx, y, tÞ, ð13Þ

V ðx0, y0, tÞ= rectðtÞ, ð14Þ

whereQ is the heat rate per unit area from an electromagnetic heating
source, σ is the conductivity of the heating layer, d is the thickness of

Fig. 4 | Simulation results of solvingmultiphysicspartialdifferential equations.
a Illustration of solving coupled PDEs in an electrical heating problem involving
electric current physics and heat transfer physics. b Validation loss curve. c A few

representative 2D voltage profiles in the circuit at different times t1, t2, t3, t4. d The
expected ground truth temperature profile, the predicted profile, and the absolute
and relative errors between these two profiles.
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the heating layer, V(x, y, t) is the voltage profile in the circuit that is
subjected to a voltage boundary condition defined in the pads
V(x0, y0, t), and V(x0, y0, t) is a pulse rectangular function rect(t) with
pulse height and width. For heat transfer physics, the corresponding
PDE is

ρC
∂T
∂t

+ ρCu � ∇T � ∇ � ðk∇TÞ=Q, ð15Þ

where ρ is the mass density, C is the specific heat capacity, T is the
absolute temperature, u is the velocity of the heated flow, and k is the
thermal conductivity. These two PDEs are connected through the
quantity Q. The ONE architecture was trained to learn the mapping
from V(x, y, t) in a time range spanning all time steps in input pulses to
T(x, y, tn) at an intermediate pulse time step tn. In contrast to previous
examples, thepulse information, includingpulse height andwidth,was
processed through the physics parameter processing branch in the
ONE architecture (Fig. 1a) and multiplied with the output from cas-
caded real space processing and Fourier space processing branches to
yield the final output. More details about the dataset generation and
training are in Methods. Figure 4b displays the validation loss curve
and Fig. 4c shows a few representative input 2DdataV(x, y, t) at various
timesteps. Figure4d shows the expected ground truth ofT(x, y, tn), the
corresponding predicted temperature profile, and the absolute and
relative errors between the ground truth and prediction. All confirm a
good performance in solving multiphysics PDEs using the ONE
architecture.

Experimental demonstration
Finally, to demonstrate the experimental feasibility of the ONE archi-
tecture, we constructed a free-space reconfigurable DONN setup and
evaluated theperformanceof solving theDarcyflowandNavier-Stokes
equations. Figure 5a displays a photo and schematic of the reconfi-
gurable DONN setup, which contains a laser source, a reconfigurable
input encoder, two reconfigurable diffractive layers, and a camera. The
reconfigurable encoder and diffractive layers were built using SLMs,
which can modulate the amplitude and phase of transmitted light
when applying voltages. Multiple light polarization components,
including polarizers and half-wave plates, were also employed to
manipulate polarization states to achieve large phase modulation
ranges. More details on the experimental setup are in Methods.

As shown in Supplementary Fig. 4, the experimentally measured
amplitude and phase modulation responses of all three SLMs are not
only discrete with respect to gray levels but also coupled and depen-
dent. To leverage the gradient-based ML training algorithm, we uti-
lized the Gumbel-softmax reparameterization technique to
approximate a discrete distribution to a continuous distribution21.
More details are described in Methods. Moreover, the values of input
2D data span both negative and positive values and were encoded as
the gray level of the SLM in the reconfigurable input encoder (SLM0 in
Fig. 5a). We performed the encoding through linear mapping from the
minimum and maximum values of input data to a gray-level range in
the SLM. More details are described in Methods. In addition, we pre-
cisely aligned all SLMs with respect to each other within a range of a
few pixels on the order of hundreds of μm; see Supplementary Fig. 5.
Although the long optical path in the system makes the alignment
sensitive to external variations, the system’s full reconfigurability can
enable fast adaptive pixel-by-pixel re-alignment.

The first and second rows of Fig. 5b, c show output 2D data in one
DONN kernel of the Fourier space processing branch in the ONE
architecture (Fig. 1a) obtained from model calculations and experi-
mental measurements in solving the Darcy flow and Navier-Stokes
equations, demonstrating good agreement and experimentally vali-
dating the feasibility of the ONE architecture. There are some speckles
in the background ofmeasured images, whichprobably originate from

high-order diffraction interference, leading to numerical errors in the
ONE architecture for performing regression tasks. This discrepancy
between models and experiments can be mitigated through post-
processing. Specifically, we trained a lightweight convolutional neural
network (CNN) that takes experimental images as input and model
results as output; see Methods for more details on the CNNmodel. As
shown in the third row of Fig. 5b, c, the trained CNN can nearly per-
fectly post-process experimental results to matchmodel results. More
data is shown in Supplementary Figs. 6 and 7. In addition, we trained a
baseline architecture by replacing DONN kernels in the architecture
shown in Fig. 1a with lightweight post-processing CNN models for
solving Darcy flow equations under different resolutions and the
Navier-Stokes equation (Supplementary Fig. 8). The losses for the CNN
baseline architecture are high in both datasets with poor performance
when compared to the results obtained from the ONE architecture
with DONN kernels, highlighting the necessity and significance of
DONN systems and the limited capability of CNN models.

Instead of post-processing, model-experiment discrepancies can
be mitigated through the improvement of system hardware and novel
training approaches in future implementations. From the hardware
perspective, for example, incorporating moving diffusers in optical
systems to remove speckles40 and employing high signal-to-noise ratio
cameras can reduce discrepancies. Moreover, from the training per-
spective, general time-independent model-experiment discrepancies,
such as those due to fabrication non-uniformity, can be mitigated
using a physics-aware training approach by incorporating loss func-
tions based on experimental results for gradient calculations and
hardware reconfiguration, as demonstrated in prior works20,38,41. Fur-
ther, fine-tuning using this approach can be performed periodically to
dynamically adjust reconfigurable hardware in theONE architecture to
mitigate time-dependent model-experiment discrepancies from time-
dependent system variations, such as the gradual degradation of
optical alignment and temperature variations. Hence, the hardware
reconfigurability in the ONE architecture is crucial to enabling
approaches that canmitigate various practical deployment challenges
and improve system robustness.

We also evaluated the performance of the ONE architecture for
solving the Darcy flow equation under different noise levels of optical
XBAR structures. Note that we did not experimentally construct an
XBAR system for the ONE architecture. Instead, we added random
Gaussian noise with zeromean and varying standard deviation (Std) to
the values obtained frommatrixmultiplications inmodels to represent
experimental hardware noise, such as shot noise in photodetectors as
shown in our prior experimental demonstration of a free-space XBAR
system42. The corresponding MVM results and histograms of different
noise standard deviation values are shown in Supplementary Fig. 9,
and more details can be found in Methods. We trained the ONE
architecture with noisy XBAR structures, named noise-aware training.
As shown in Fig. 5d and the reddashed line in Fig. 5e, the validation loss
increases with the increasing noise standard deviation value. The
current hardware implementation of optical XBAR structures with
advanced components and calibration algorithms16–18, including the
structure we demonstrated before42, can achieve quite a small noise
level similar or below the noise level corresponding to 0.5 Std. Hence,
the noise influence in optical XBAR structures on the performance of
the ONE architecture is not substantial. Further, we trained the ONE
architecturewith the idealXBAR structurewithout noise, namednoise-
unaware training, and performed inference under various XBAR noise
Std values. As shown in the blue dashed line of Fig. 5e, the validation
losses obtained using the noise-unaware training method are much
more prominent than those obtained using the noise-aware training
method. In addition, we analyzed the propagation of calculation errors
by evaluating mean squared errors between 2D data with and without
XBARnoises at the end of eachprocessing unit in theONE architecture
(Supplementary Fig. 10a). As shown in Supplementary Fig. 10b, the
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Fig. 5 | Experimental demonstration. a Photo and schematic of a reconfigurable
diffractive optical neural network (DONN) experimental setup consisting of a
reconfigurable input encoder, two reconfigurable diffractive layers, and a camera.
Polarization components were used to configure spatial lightmodulators (SLMs) in
the phase modulation mode. Output 2D data in one DONN kernel of the Fourier
space processing branch in the optical neural engine architecture obtained from

model calculations, experimental measurements (Exp.), and post-processing for
solving (b) Darcy flow and (c) Navier-Stokes equations, respectively. d Validation
loss curves at different noise levels, represented using 0.1, 0.5, 1.0, 2.0, and 4.0
standarddeviation (Std) values, inoptical crossbar structures using the noise-aware
training method. e The losses at the final epoch as a function of noise level using
noise-aware and noise-unaware training methods.
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noise-induced calculation errors aremore substantial with larger noise
Std values, and accumulate and increase with increasing propagation
depth. In particular, errors substantially increase after the fourth
processing unit under all Std values, accounting for rapidly increasing
validation losses using the noise-unaware training method and high-
lighting the importance of utilizing noise-aware training for deep ONE
architecture.

We further highlight the advantages of the ONE architecture
implemented using reconfigurable DONN and XBAR structures in
comparison with electronic hardware. The ONE architecture belongs
todata-driven approaches, such asFNO, featuringorders ofmagnitude
acceleration compared to typical PDE solvers. Although data-driven
approaches require additional training steps, the training is a one-time
effort. In contrast, inference is performed over time and accounts for
>90% of computing and energy resources43. Hence, the benefit of
employing data-driven approaches for inference to speed up the
process of solving PDEs is overwhelming. Further, for inference, opti-
cal system implementations are advantageous over electronic systems
in terms of energy consumption and throughput, because optical
systems have nearly zero energy consumption (e.g., our liquid-crystal-
based SLMs) with frozen weights during inference and the inference
computation can be done in a highly parallel single-shot manner.
Specifically, we performed quantitative scaling analyses of energy
consumption and throughput of the optically implemented ONE
architecture and electronically implemented FNO. The FNOmodel has
shown the best prediction and speed performance over other models,
as shown in Fig. 2c and ref. 26.

Weassume the2Ddatahas a sizeofN×N. For linear operations, the
energy-intensive ones in the ONE architecture and FNO include Fourier
and inverse Fourier transform and matrix multiplications. Both involve
complex-valued multiply-accumulate (MAC) operations. Hence, if
Fourier and inverse Fourier transform are processed through fast
Fourier transform in the FNO, the MAC energy consumption is pro-
portional ðN2 logNÞEMAC, where EMAC is the energy consumption for
each MAC operation. Further, the energy consumption for processing
matrix multiplications is proportional to N3EMAC. Hence, the total
energy consumption of the electronically implemented FNO archi-
tecture for linear operations is proportional to ðN2 logN +N3ÞEMAC or
OðN2 logN +N3Þ. In stark contrast, the energy consumption of these
two linear operations in the optically implemented ONE architecture
can be nearly negligible and independent of N or O(1), highlighting the
advantages of optical systems to reduce energy consumption in both
Fourier-space and real-space processing. Further, in the optical imple-
mentation, the energy consumption of the light source scales with the
system size to account for detector signal-to-noise ratios. Specifically, if
we assume thedetector array has the sameN×N size as the 2Ddata, Edet

represents the minimum energy needed for each pixel on the detector
array,Tmod denotes theworst-case transmission inmodulators, and ηfan
is the efficiency of the fan-out optics, the light source energy con-
sumption is proportional to N2ηfanTmodEdet or O(N

2). Practically, when
the system scales up, the needed light source power can be achieved by
combining multiple low-power sources if a single high-power source is
not accessible. For nonlinear operations, the energy consumptionof the
ONE architecture and FNO is proportional to N2Ee,nl and N2Eo,nl, where
Ee,nl (Eo,nl) is the energy consumption for processing each element in the
electronic (optical) implementation. Hence, considering energy con-
sumptions of linear and nonlinear operations and light sources, the
optically implemented ONE architecture has a scaling advantage over
the electronically implemented FNO.

Further, the throughput analysis is similar to energy consumption
analysis. The system throughput is determined by how fast data can be
fed or read out, quantified using input/output (I/O) latency time tI/O,
and how fast data can be processed, quantified using processing time
(tpro). In electronic systems, tpro is proportional to ðN2 logN +N3ÞtMAC,
where tMAC is the time taken to calculate one MAC. In contrast, in

optical systems, tpro is independent of N because of its single-shot
processing. For tI/O, we consider the worst serial I/O for optical sys-
tems, and tI/O is proportional toN2tse, where tse is the time taken to feed
or read out one element from N × N data. In contrast, we consider the
best scenario for electronic systems, and tI/O is independent of N.
Hence, even comparing the worst case of optical systems and the best
case of electronic systems, optical systems have a scaling advantage
over electronic systems in terms of throughput because tpro is domi-
nant over tI/O with large N.

In addition to 2Ddata, theONE architecture can further expand to
process higher-dimensional data because higher-dimensional Fourier
and inverseFourier transformand tensor-tensormultiplications canbe
decomposed into a series of sub-calculations on 2D (inverse) Fourier
transform and MVM. The unique advantage of optical systems is to
perform all these 2D sub-calculations in parallel throughmultiplexing,
including frequency or wavelength multiplexing44, path multiplexing
(i.e.,multiple parallel ONE architectures)45, polarizationmultiplexing46,
etc. Assuming the number of multiplexing channels is M, the overall
latency time is not changed, the throughput ismultiplied byM, and the
energy consumption also scales with M.

In our current optical hardware implementation, we can estimate
the data processing rate (Rpro) based on the light propagation time
between components,which is ≈1 ns considering thedistancebetween
SLMs in the experimental setup shown in Fig. 5a. Assuming 8-bit data,
Rpro ≈N2 GB/s. On the other hand, the I/O rate of feeding data into the
system (Rin) is dependent on the refresh rate of liquid crystal SLMs,
which is 60 Hz and is limited by intrinsically slow liquid crystal
response and electrical driving circuits, including digital-to-analog
(DAC) converters and addressingmechanisms. Similarly, the I/O rate of
reading out data (Rout) is dependent on the frame rate of the camera,
which is 34.8 frames per second and is limited by electrical read-out
circuits, such as analog-to-digital converters (ADC). Hence,
Rin = 60 ×N2 B/s and Rout = 34.8 ×N2 B/s, which are much smaller than
Rpro. The I/O rates in current hardware cannot fully unleash the
potential of optical computing systems. There are multiple ways to
improve I/O rates. For example, to improve Rin, we can employ SLMs
based on intrinsically fast modulation mechanisms, such as a >GHz
SLM based on the electro-optic Pockels effect in organic molecules47.
Meanwhile,we can create an arrayof fastDACs (e.g., > 10GSamples/s)31

tomatch SLMspeed anddrive each SLMpixel in parallel. A similar array
of fast ADCs31 can be utilized to improveRout in the camera. Further, the
improved I/O circuits in optical systems can be seamlessly integrated
with high-speed I/O interfaces in state-of-the-art graphic processing
unit architecture to fully unleash the high-speed processing advantage
in optical systems.

Compared to other metasurface-based analog computing
systems48, our ONE architecture that combines Fourier-space and real-
space processing is distinct and unique, and the demonstrated appli-
cation of solving spatiotemporal 2D PDEs has not been realized in
metasurface systems before. Further, the large-scale reconfigurability
with individual pixel control of employed commercial diffractive SLMs
is crucial in our current optical experimental implementation of the
ONE architecture. Such reconfigurability and scalability enable the
reuse of limited hardware to achieve deep ONE architectures for
complex tasks and the adaptability of the same system for different
tasks, significantly reducing the hardware cost and offering the ver-
satility and generalizability of systems. In addition, reconfigurability
enables the mitigation of model-hardware discrepancies due to dif-
ferent reasons, which is also important for systemscale-up. However, it
is still challenging to manufacture large-scale metasurfaces with simi-
lar versatile reconfigurability in commercial SLMs. Hence, metasurface
technology has not been mature enough to be deployed in our ONE
architecture. Indeed, metasurfaces have the potential to achieve a
smaller system footprint because their subwavelength components
can reduce not only the device footprint but also the propagation
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distance between components. Several efforts have demonstrated
small-scale reconfigurability by hybridizing metasurfaces with liquid
crystals49, indium tin oxide50, and electro-optic materials47. Future
advancement ofmetasurfaces can offer a promising high-performance
implementation solution for the ONE architecture.

Discussion
We have demonstrated the ONE architecture and validated its per-
formance in solving a broad range of PDEs in diverse scientific
domains. TheONE architecture is versatile and canbe furthermodified
to reduce the interface and connection between DONN and optical
XBAR structures and facilitate the hardware implementation of the
whole system. Further, in a whole system, active learning and noise-
aware training can be incorporated to mitigate the discrepancy
between models and practical systems for accurate deployment.
Moreover, in addition to solving PDEs, the ONE architecture can be
tailored to accelerate ML models for other regression problems.

Methods
DONN diffraction model
The diffraction impulse function h(x, y) was described using the
Fresnel equation as

hðx, yÞ= eikz

iλz
e

ik
2zðx2 + y2Þ, ð16Þ

where λ is thewavelength, k = 2π/λ is the free-spacewavenumber, (x, y)
are positions within a plane perpendicular to the wave propagation
direction, z is the distance along the propagation direction, and i is the
imaginary unit. The 2D Fourier transform was directly performed on
h(x, y) for model training and evaluation. To match the experimental
setup as described below, h(x, y) was first discretized with respect to a
defined rectangular mesh grid in the convolution calculation and then
converted into the Fourier space through 2D Fourier transform21.

The operation mechanism of optical XBAR structures
Supplementary Fig. 1a shows the detailed schematic of an integrated
photonic XBAR structure. Specifically, the element values of a n × 1
input vector v are represented by the intensities of light at input
waveguides, {I1, I2, I3, . . . , In}, which can be implemented bymodulating
an equally distributed laser intensity through a n × 1 array of electro-
optic modulators (red squares in Supplementary Fig. 1a) at input
waveguides. The light on each row waveguide is then equally dis-
tributed to the column waveguides connected to that row waveguide
and modulated through an electro-optic modulator on the coupled
curved waveguide (yellow squares in Supplementary Fig. 1a). The ele-
ment values of am × nmatrixM are represented by the transmittance
of modulators on curved waveguides, {Tij}, i ∈ [1, m], j ∈ [1, n]. At the
end of each column waveguide, a photodetector collects all light
intensity passing through the column waveguide. The obtained pho-
tocurrents or photovoltages of am × 1 photodetector array represent
the summation of multiplied input vector light intensity and matrix
modulator transmittance, and the element values of output vector o,
Oj =

Pn
s = 1 TjsIs, j 2 ½1,m�. Hence, this integrated photonic XBAR

structure can implement MVM in the optical domain.
Similarly, Supplementary Fig. 1b shows the detailed schematic of a

free-space optical XBAR structure. Specifically, the element values of a
n × 1 input vector v are represented by the intensities of light,
{I1, I2, I3, . . . , In}, which is implemented through a n × 1 array of free-
space vector SLM. The output light is broadcast to a m × n array of
matrix SLM through lenses so that the light distribution from vector
SLM is identical at each columnofmatrix SLM. The element values of a
m × n matrix M are represented by the transmittance of matrix SLM,
{Tij}, i ∈ [1,m], j ∈ [1, n]. Lenses are then used to focus the output light
from each modulator on the same column of matrix SLM to a

photodetector. The readings from a m × 1 photodetector array
represent the element values of output vector o,
Oj =

Pn
s = 1 TjsIs, j 2 ½1,m�. Hence, this free-space optical XBAR struc-

ture can also implement MVM in the optical domain.

ONE architecture model
The ONE architecture model was constructed with two main modules –
the DONN module processing data in the Fourier space and the optical
XBAR module processing linear operations. The mathematical opera-
tions in DONN and optical XBAR structures have been described in the
first two Methods subsections and their accurate models have been
implemented in our prior works, closely matching experimental
results21,42. Briefly, the DONN module was modeled by combining the
Fresnel free-space diffractionwith phase-only spatial lightmodulation in
a range of [0, 2π] in the model and coupled spatial light modulation as
shown in Supplementary Fig. 4; the optical XBAR module was repre-
sented as matrix multiplication incorporating measurement noise. The
nonlinear function was tanh. The whole model was implemented under
the PyTorch 1.12 framework with graphics processing unit (GPU)-accel-
erated parallel computation and gradient backpropagation for training.
The GPU used in this work was an Nvidia RTX 6000 card.

Darcy flow equation dataset and training
A 2D Darcy flow equation on the unit box was employed. The corre-
sponding PDE is a second-order, linear, elliptic PDE as

�∇ � ðkðx, yÞ∇uðx, yÞÞ= f ðx, yÞ, x 2 ð0, 1Þ, y 2 ð0, 1Þ, ð17Þ

uðxÞ=0, x 2 ∂ð0, 1Þ, y 2 ∂ð0, 1Þ ð18Þ

with a Dirichlet boundary condition. We used the Darcy flow dataset
from the existing dataset in ref. 26 with a boundary condition
u(x, y) = 0 on domain edges. The coefficient k(x, y) was generated
based on a specific distribution with the value 12 for positive inputs
and 3 for negative inputs. The forcing term was fixed at f(x, y) = 1. The
solution u(x, y) was computed using a second-order finite difference
method on a 421 × 421 grid, and other resolutions were obtained with
downsampling. We used a 10: 1 ratio for the numbers of data in the
training set and validation set, respectively. The model was trained
with a total of 600 epochs and a batch size of 40. The learning rate was
0.1 for the trainable parameters in DONNs and 0.001 for all other
trainable parameters with the Adam optimizer.

Magnetostatic Poisson’s equation dataset and training
The demagnetizing field H originates from the magnetization within
the material itself, which can be calculated as the convolution of M
with the demagnetization tensor N as

HðrÞ=
Z

Nðr� r0ÞMðr0Þdr0: ð19Þ

This convolution was computed through Fourier space representa-
tions of fields. Specifically, to create the dataset, we utilized the Mag-
neX solver51 to simulate the time evolution of magnetization in a thin
magnetic film with dimensions of 500 × 125 × 3.125 nm. The modeling
incorporated both demagnetization and exchange interactions. Initi-
ally, we relaxed the magnetic field into a stable S-state before
subjecting the system to varying external magnetic fields in different
scenarios. We uniformly sampled 8 bias H fields in the x and y
directions, each with a magnitude of 19,872 A/m. The system evolved
for 1 ns, during which we collected paired data ofM andH fields. Each
field was represented by three channels corresponding to the field
components in x, y, and z directions. The dataset was divided into
training and testing sets with an 8: 2 ratio. The training was conducted
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over 500 epochs with a batch size of 128. The learning rate was set to
1.0 for the trainable parameters in DONNs and 0.001 for all other
trainable parameters with the Adam optimizer.

Navier-Stokes equation dataset and training
A 2D Navier-Stokes equation for a viscous, incompressible fluid in
vorticity form on the unit torus was used to generate spatiotemporal
data for training the ONE architecture. Specifically, the PDEs are

∂twðx, y, tÞ+uðx, y, tÞ � ∇wðx, y, tÞ= νΔwðx, y, tÞ+ f ðx, yÞ, x 2 ð0, 1Þ, y 2 ð0, 1Þ, t 2 ð0,T �
ð20Þ

∇ � uðx, y, tÞ=0, x 2 ð0, 1Þ, y 2 ð0, 1Þ, t 2 ð0,T � ð21Þ

wðx, y, 0Þ=w0ðx, yÞ, x 2 ð0, 1Þ, y 2 ð0, 1Þ, ð22Þ

where w0(x, y) is the initial vorticity and boundary conditions were
used. We utilized the existing dataset with the viscosity coefficient
ν = 10−3 from ref. 26 for training and inference. The samples in the
dataset were recorded with a time step of 10−4 s. We used 1000 data as
the training set and 100 data as the validation set. We trained the ONE
architecturemodelwith the first 10 vorticity fields (w(x, y, t)) to predict
the timeevolutionof thenext 10 vorticityfields. Themodelwas trained
with a total of 600 epochs and a batch size of 40. The learning rate was
0.1 for the trainable parameters in DONNs and 0.001 for all other
trainable parameters with the Adam optimizer.

Maxwell’s equations dataset and training
We employed commercial Ansys Lumerical finite-difference-time-
domain simulation software to generate an electric field dataset by
solvingMaxwell’s equations in dielectricmetasurfaces. Specifically, the
dielectric metasurface had a periodic pattern and we used four silicon
cylindrical rods as the unit cell and periodic boundary condition. Data
were generatedby randomly selecting the radii of four cylindrical rods.
The radius was chosen from 39.5μmto 44.5μmwith a step of 0.25μm.
The simulation time was set as 300,000 fs. We generated a total of
1200 data and used 1000 as the training set and the rest 200 as the
validation set. Themodelwas trained in an auto-regressive style for the
Ex component processing. The Ex field data between 29,502 fs to
30,977 fs was fed into the model to predict the next 1,475 fs (10 steps),
2950 fs (20 steps), and 4425 fs (30 steps) Ex field data. The model was
trained with a total of 500 epochs and a batch size of 20. The learning
rate was 0.1 for the trainable parameters in DONNs and 0.001 for all
other trainable parameters with the Adam optimizer.

Multiphysics dataset and training
We employed commercial COMSOL Multiphysics finite-element
simulation software to generate a temperature profile dataset by sol-
ving coupled electric current and heat transfer PDEs in an electrical
heating circuit52. Specifically, the circuit contained a serpentine-
shaped Nichrome resistive layer with 10μm thick and 5mm wide on
top of a glass plate. A silver contact pad with a dimension 10mm×
10mm× 10μm was attached at each end. The deposited side of the
glass plate was in contact with the surrounding air at 293.15 K and the
back side was in contact with the heated fluid at 353 K. Two coupled
physics modules, electrical current in layered shells and heat transfer
in layered shells, were used in COMSOL simulations. The input voltage
pulse height was set from 5 to 25V with a step of 1 V and the pulse
width was set from 20 to 60 s with a step of 1 s. The simulation time
rangewas from0 to 110 s.Wegenerated a total number of 861 data and
divided the data into training and testing set with the splitting ratio of
8: 2. The ONE architecture took the electric current layer data as the
input spatiotemporal data and the input voltage pulse informationwas
fed into the physics parameter data processing branch to predict

temperaturefielddata at 55 s.Themodelwas trainedwith a total of 100
epochs and a batch size of 40. The learning rate for the trainable
parameters in DONNs was 0.1 and the learning rate for all other
trainable parameters was 0.001 with the Adam optimizer.

DONN experimental setup and alignment
The photo and schematic diagram of the DONN experimental setup
are displayed in Fig. 5a. The laser diode with a center wavelength of
532nm and 4.5mW power (CPS532 from Thorlabs, Inc.) was used as a
source. The distance between SLMs and between the last SLM and
camera was set as 25.4 cm. The polarizers and half-wave plates before
and after each SLM were configured so that each SLM operated with a
strong modulation of the transmitted electric field phase (phase
mode) together with a moderate modulation of light amplitude. The
experimentally measured amplitude and phase modulation responses
of three SLMs are shown in Supplementary Fig. 4. All transmissive
SLMs are the LC 2012 model from HOLOEYE Photonics AG with a
refresh rate of 60Hz. The analog-to-digital converter has 8-bit preci-
sion for liquid crystal driving voltage, so that the gray level of SLMs is
from0 to 255. Thepixel size of SLMs is 36μm×36μm.Theoutput data
was captured on a CMOS camera with a frame rate of 34.8 frames
per second (CS165MU1 from Thorlabs, Inc.).

We aligned the DONN setup by loading standard images on
SLMs and comparing experimental results with simulation. Spe-
cifically, as shown in Supplementary Fig. 5a, standard Gaussian
images, which were centered with a peak at 255 gray level and
with a standard deviation of 6 pixels, were loaded in the input
SLM and two diffractive SLMs. Supplementary Fig. 5b displays the
simulation pattern for the perfectly aligned setup. During the
alignment process, loaded images were moved up, down, left, and
right pixel-by-pixel to match the captured images by the camera
with the simulation pattern. Supplementary Fig. 5c displays the
matched experimental diffraction pattern when the optical setup
was aligned, while Supplementary Fig. 5d shows misaligned pat-
terns when there was five-pixel misalignment in vertical and
horizontal directions, respectively.

DONN experimental training with reparameterization
The discrete look-up tables of device responses shown in Supple-
mentary Fig. 4 break the gradient backpropagation in the ML training
process in PyTorch. To solve this challenge, we utilized a differentiable
reparameterization Gumbel-softmax technique, which was first intro-
duced in ref. 53 and demonstrated in our prior work21. Specifically,
continuous noise from the Gumbel distribution was added to the
discrete distribution. The argmax function was then used to find the
optimized sample. The training problem after this Gumbel-argmax
process is mathematically equivalent to the original training problem
under one-hot representation53. Since the argmax function still breaks
the gradient chain, it was replaced with the softmax function to enable
differentiability. Hence, this Gumbel-softmax technique, which is also
available in PyTorch, offers continuous and differentiable approx-
imation to discrete distributions and the gradient can backpropagate
to reduce the loss function.

DONN experimental gray-level encoding
The global minimum and maximum values in input 2D data were
denoted as dmin and dmax. A gray level range from 130 to 255 in the
input encoder SLM was selected for a relatively large amplitude
modulation range to have enough contrast. Hence, any value d in the
input 2D datawas converted into a gray level through a linearmapping
as

int
ð255� 130Þðd � dminÞ

dmax � dmin
+ 130

� �
, ð23Þ
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where the int( ⋅ ) operation rounded the expression to the nearest
integer since the SLM gray level must be an integer.

Post-processing DONN experimental results
A simple, lightweight CNN was trained to map experimental results to
model results. This simple CNN consists of four convolutional layers
with ReLU activations. It takes a single-channel input and processes it
through layers with increasing (1 → 16 → 64) and decreasing
(64 → 16 → 1) channel dimensions, preserving spatial dimensions with
3 × 3 kernels and padding. The final layer outputs a single-channel
result.

Optical XBAR noise
The MVM results from an optical XBAR structure were uniformly
randomly generated in a range of −15 to 15, which was the value range
in the ONE architecture for solving the Darcy flow equation. The
expected number o was then added with a randomly generated noise
from a Gaussian distribution with a zero average and varying standard
deviation. The noise-dressed number ~o was used in ONE architecture
calculations. Under different noise standard deviation levels, Supple-
mentary Fig. 9a demonstrates ~o with respect to o and Supplementary
Fig. 9b displays histograms of ~o� o.

Data availability
The source data generated in this study and the datasets and saved
models for running codes are publicly available at ref. 54.

Code availability
The codes that support the plots within this paper and other findings
of this study are publicly available at https://github.com/GaoUtahLab/
ONE_PDE_public. The Zenodo version is available at ref. 55.
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