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An array of motor proteins consumes chemical energy in setting up the architectures of
chromosomes. Here, we explore how the structure of ideal polymer chains is influenced
by two classes of motors. The first class which we call “swimming motors” acts to propel
the chromatin fiber through three-dimensional space. They represent a caricature of
motors such as RNA polymerases. Previously, they have often been described by adding
a persistent flow onto Brownian diffusion of the chain. The second class of motors,
which we call “grappling motors” caricatures the loop extrusion processes in which
segments of chromatin fibers some distance apart are brought together. We analyze
these models using a self-consistent variational phonon approximation to a many-body
Master equation incorporating motor activities. We show that whether the swimming
motors lead to contraction or expansion depends on the susceptibility of the motors,
that is, how their activity depends on the forces they must exert. Grappling motors
in contrast to swimming motors lead to long-ranged correlations that resemble those
first suggested for fractal globules and that are consistent with the effective interactions
inferred by energy landscape analyses of Hi-C data on the interphase chromosome.
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Chromatin is intricately folded and regulated by a muldtude of proteins (1-6).
Both during mitosis and in interphase, the chromosome fluctuates and appears to
be only partially structured (7-12). Hi-C experiments give us information about the
chromosome’s structural correlations by determining the contact probabilities between
genomic loci pairs (7). The information from these experiments can be harvested using
effective energy landscapes that assume the chromosome fiber interacts with itself via a
potential energy at an effective temperature to give a Boltzmann distribution (13-19).
This approach, while powerful, is agnostic concerning the detailed mechanism of
structure formation. We recognize however that the cell nucleus is an active environment
(16). Adenosine triphosphate (ATP)-driven molecular machines create specific structures
and Brownian chain motion disorders them (20). Many chromatin-associated proteins
are motors (21-23), such as RNA polymerases and the structural maintenance of
chromosomes (SMC) complexes, all of which consume chemical energy (24) to perform
nonequilibrium reactions and/or exert mechanical forces (25-28). Owing to these
nonequilibrium mechanisms and the fact that the nucleus has history dependence in
the cell cycle, there is no a priori guarantee that an effective equilibrium model rigorously
applies. Nevertheless, it has been shown elsewhere, in models of the cytoskeleton, that
motor activity can lead to statistics described by a quasi-equilibrium energy landscape
when the active forces are not too large in comparison to the Brownian motion (29-32).
A variety of models of chromosome structure formation are less agnostic and have already
been proposed that use nonequilibrium motors (33-40). These models generally assume
motors do not respond to forces.

Here, we will explore two classes of models, much richer than have so far been analyzed
that do include such force response. We will explore an approximate statistical mechanical
treatment of models of a motorized homogeneous chromosome. One class of motors we
call “swimming motors.” Swimming motors simply transit the polymer chain in three-
dimensional space, but in contrast to earlier treatments of motorized chromosomes, may
respond to the mechanical forces of the chains. We picture these swimming motors
as providing crude caricatures of the effects of polymerases and other factors moving
along the chains. We presently ignore the topological effects of such motors, such as
supercoiling. We show such motors can act to expand or contract the chain depending
on their susceptibility, but would leave it Rouse-like if they were the only actors. The
second class of motors we call “grappling motors.” These models caricature the loop
extrusion process (41-45). We will show that in contrast to swimming motors, grappling
motors induce effective long-ranged interactions between chain segments that give an
effective energy landscape consistent with the ideal chromosome model that emerges
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from the Hi-C data (13-18). To obtain these results, we show
that an approximate variational treatment of the Master equation
for motorized chain dynamics yields a self-consistent equation for
these long-ranged interactions and using this treatment show that
grappling motors can give rise to many generic but also detailed
features observed in contact frequency maps, including the
apparent fractal behavior of the long-ranged contact distribution.

Model and Theoretical Background

We will study a very simple case, an active homogeneous
chromosome described as a Rouse homopolymer chain, which
is acted upon by stochastic motorization. We can think of the
motion as being described by an overdamped Langevin equation
i; = pD(—=V,;U) + n; + v, but with the crucial addition of
jumps due to the motors. Here, r; is the position of the 7-th bead,
and the potential is harmonic, U({r}) = U(r1,12,...,1,) =
K YN (r;—ri_1)%/2 with K the spring constant. The random
variable # encodes the ordinary thermal Brownian random forces
that vanish on average. Their distribution is taken to be Gaussian,

where (112 (¢) l; (7)) = 2Dé;,1,6,j,6(¢—¢") with D the diffusion
coefficient and f the inverse temperature. The motorized jump
term v} = ) 1,6(¢—1,) is a time series of shot-noise-like kicks.
The nature of these discrete kicks depends on the way a motor
responds to applied forces and on how the motor displaces chain
elements. The stochastic nature of the motors is best captured by
a Master equation for the dynamics of the probability distribution
function ¥ of the chain having positions in three-dimensional
space {r;}, 3;¥;({r}) = (Lrp + Lnr)¥:({r}). The first part of
the time development comes from LppW,({r}) = = >, V;-J;,
which is the conventional Fokker—Planck operator describing the
passive Brownian dynamics in a field of conservative forces, where
J:({r}; ) = BD(—=V,;U)¥,({r}) — DV;¥,({r}) is the probability
current. The other nonequilibrium term describes the motorized
displacements of the chain by the motors which are regarded as
making discrete jumps. We write for this contribution to the
Master equation

Lyg¥P,(r) = /deri-[(,/_),‘{‘t(r/) —‘Pt(r)/Hidr;K,_),/.
(1]

Here, Ky_,, is the transition probability between different
chromosome configurations caused by a single motor stepping
event. The motor kicking rate k W(AU) encodes the way in
which the underlying biochemical mechanisms of the motors
respond to the external forces needed to make the displacement.
We write W(AU) = O(AU)e %PAU 1 @(—AU ) 94PAU
(29-32, 46, 47), k the basal kicking rate, ® the Heaviside
function, and AU the free energy difference between the starting
configuration and the displaced chain due to the motorization.
We call the parameter 9 the susceptibility of the motor.
This quantity indicates the mechanical coupling between the
motorized conformational remodeling and the local mechanical
forces acting on the motor. Information about the susceptibility
of biological motors has been obtained for many systems using
force extension measurements (48, 49). Depending on the motor
mechanism, one may have different values of the susceptibility
for uphill kicks (9,) and for downhill kicks (8,). When § = 0,
the motor does not respond to forces. We call it then a fully
adamant motor. When 9 # 0, the motor responds to applied
forces. Motors with both signs of § are known. We here mainly
focus on motors with nonnegative 9. Motors with negative 9
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so-called load-resisting motors also exist (50, 51). For simplicity
in this paper, we take 9, = 9; = 9 but our results are easily
generalized.

Type of Motors. In the study of active matter, motors are often
taken to displace their cargo directly in three-dimensional space.
Strictly speaking, true swimming at the molecular level makes
only small steps (52). We call such motors that displace ele-
ments individually “swimming motors.” In a renormalized sense
(51, 53), one imagines such a motor could roughly describe the
local restructuring of chromatin by active nuclear enzymes such as
RNA polymerase II, helicase, or topoisomerase (~5nm to 15nm
in the kicking distance) (20, 54). In contrast to swimming (which
acts on individual segments), extrusion requires two subunits
to move with respect to each other. We call such two particle
motions “grappling” motions. SMC complexes such as bacterial
SMC, cohesin, and condensin (~50 nm in grappling distance)
to first order can be thought of as “grappling motors” (55, 56).
Swimming motors. A swimming motor makes a power stroke
which induces a discrete conformational change that ultimately
moves the polymer bead by a distance / in a direction n, i.e.,
1 = /n(r); see Fig.1. The integral kernel Ky _,, for a swimming
motor can be written as

LnpY,(r) = Kzfdn

(e PLUCotin )= UL g f=r—1..) (2]
— U Comtb )= Ulor )l (g )Y,

The motor kicking rate may be sequence-dependent or
configuration-dependent (52). Here, we will assume that the
kicking direction n fluctuates on a timescale 7 < k1 of
the motor particle tumbling, which corresponds to an isotropic
kicking process. For instance, polymerases, etc, swim along the
chain but local motions of the chain should ultimately lead to
isotropy. In our coarse-grained model, the persistence length is
small, so isotropy is a good first approximation.

Grappling motors. Our caricature of a grappling motor is based
on the “swing and clamp” model proposed for the loop extrusion
process (42). Quite similar motions, different in detail, have also
been referred to as the “reel and seal” model (44) and “heed
and feed” model (45). At the Master equation level, these are
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-~
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\
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. Transcription factors (TFs)
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Fig. 1. Chromosome dynamics involves several motorized processes. Many
motors act locally to allow the chain to swim. The SMC complex actively
extrudes loops by interacting with DNA segments through ATP consumption.
It involves a grappling process in which segments some distance away from
each other can be brought together.
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essentially equivalent. In these models, part of a DNA loop is
first clamped near the ATPase head of the motor, while the hinge
domain at the other end extends to grasp some surrounding
DNA segment if it is available. Subsequently, the coil bends,
“swinging” the hinge with the new DNA segment close to the
head, where it becomes sealed onto the head and merges with
the DNA loop. The long coiled-coil of the SMC complex is
not merely an inert linker between the head and the hinge
domains of SMC, but a critical participant in loop extrusion
in this view (57-62). The twisting and writhing of the coiled-
coil, coupled with the movement of the SMC head domain,
would allow such motors to remodel the topological structure
of DNA. Krepel et al. suggested such a mechanism through a
simulation study based on an energy landscape optimized force
field (AWSEM) along with coevolutionary information. Their
model suggested the chains could braid and thus explained some
otherwise puzzling crosslinking data on the cohesin molecule
in vivo (63). Our present model does not explicitly deal with
these topological effects, which could directly propagate along
the chromosome fibers.

Based on the above description, the loop extrusion effect is
generated by anticorrelated grappling on pairs of nodes (7, ;)
on the chain, where one side corresponds to the anchor point
that is bound to the head, while the other side represents the
segment eventually grasped by the hinge. A clamped kick is thus
represented by a pair of displacements along the line of centers
(1 1) = (x5, —F;j), where / is the kick size which should
be roughly the size of the SMC motor and t;; is a unit vector
pointing from node i to node j; see Fig.1. The effective rates
K, kicking distance /, and diffusion constant D are typically
different in magnitude for the swimming motors and grappling
motors—/ being much larger for cohesins, etc, than polymerases.
By omitting other particles’ positions except those involved in
the kicks in the expression of free energy and configuration, the
dynamical evolution of the many-particle configuration due to
these motor-driven processes can be expressed by a sum of two-
particle stochastic displacement operators,

Lye¥,(x)
1 / / / /
S ]
i

x 31 =+ y)e V@V () — (i)

X 86— ¥, + 18l — f, — e VDUl ().
(3]
Here, « is a basal composite grappling rate, while the rate of
potential grappling events also will depend on the instantaneous
chromosome conformation and the motor susceptibility. The
grappling probability C(;;) describes the tendency of having a
loop grappling event involving the 7-th and j-th beads, which is
a function 7;; = [r; — rj].

Péclet Number Expansion. Wang and Wolynes showed that
when the kicking lengths are small, one can expand the
probability distribution function in powers of / up to the
quadratic order to obtain a system that is described still by a
many-body diffusion equation but with modified forces and
modified diffusion constants (31, 32, 64). They applied this
expansion to study the self-organization and aging behaviors
of the active cytoskeleton and the dynamic remodeling of
actomyosin networks.
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Expansion for swimming motors. For swimming motors, the
nonequilibrium kicking operator to quadratic order in / has a
quasi-equilibrium form (57 Appendix)

[2

K 2 K
Eni() = = S0P VU~ e

(4]

We see the effect of the motor is to obtain an effective diffusion
constant for the Brownian motion and an effective temperature
renormalizing the effect of the actual forces,

Defe Kl Peft K2
=1 il 8 - — _
D’ 51

D 24D P

Here, d is the general dimension. We call the quantity x/2/D
the Péclet number, in analogy to problems involving diffusion
along with convection hydrodynamics. The Péclet number
measures the effects of flows relative to thermal diffusions.
Swimming motors generally enhance diffusion and lead to an
effective temperature which may be bigger or smaller than the
ordinary temperature depending on the motor susceptibility.
Expansion for grappling motors. For grappling motors, an effec-
tive kicking diffusional operator can also be obtained by similar
mathematical manipulations now for the pair displacement
operator (32, 47, 50). The effective dynamical equation again
to quadratic order reads (SI Appendix)

1
Lye®,(r) =) T > ki ViViCy¥ + pOkI
i JFEiL

x| D ki 1 (ViCPVBU + C9VV,U)
J#i

—ZZ[ KPRk ViViCy ¥

i jFEi
+BIcLiyt; : (ViCyPV,pU + CPV,Y; U)] )
(6]

where C;; = C(7;;). We see now that in contrast to swimming
motors, the effective diffusion constant and the effective temper-
ature depend on chain configuration
| A | N
Deff,ii = DI + EKZ chjl‘l]l',], Dcff),‘j = —EK[ C,]rl]r,],
JFi

[71

and

k[
Begii =P |1+ <19 - 5) > Cyfity | Bemy = 2981
J#i
(8]
Here, I is the identity matrix in three-dimensional space. One
also finds an additional potential coming from the grappling
processes (SI Appendix),
2 Klz
Inr+ —
5D nrj + 5D 4
where ¢g(r) = — [drC'(r)/r. For grappling motors, both

D and B become conﬁguratlon -dependent tensors, that
depend on the distribution of extrusion probability. Again,

Umod(rij) ~ U(rl]) + C(V,]) (7’,']'), (9]
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whether self-diffusion is enhanced, and how the local effective
temperature is modified depends on the motor susceptibility, as
for the swimming motor. We see however that the grappling
motion specifically induces mutual diffusion and changes the
effective temperatures relevant to the direct interactions between
segments. These effects resemble the hydrodynamic interactions
studied in polymer physics when we move to the Zimm model
(65). Because the effective temperatures are also configuration-
dependent, structural correlations become modified in contrast
to what happens with hydrodynamic interactions. In Eq. 9, the
potential is also modified by two additional pairwise terms. The
first term of this modification is induced by the grappling effect,
providing an effective short-ranged attraction (32). The second
term comes from the gradient of the grappling probability.
Usually, two particles that are closer together have a higher
tendency to be involved in a grappling event, so this term provides
an additional attraction in general (64).

Effective Rouse Mode Analysis. If we ignore the excluded volume
and average over the nonlinearity of the induced interactions,
we can still use an effective Rouse model for the renormalized
dynamics that come from the motors to quadratic order in /.
It is easiest to see this in a continuous version of the model.
Assuming a long polymer chain, composed of a large number of
beads, the dynamics can be simplified to a continuous version
ti(t) = (s, 1) as dx(s, #) = (BD)K3?x(s, 1) + n(s 1) (66, 67).
Here, s represents a continuous chain sequence index along
the polymer. The continuous model facilitates our analytical
calculation of large loops, where the Rouse mode decomposition

can be written as r(s,#) — T,(t) = ffﬁz dse™ (s, t) and

n(st) — 1q,(6) = ffﬁz dse="%q(s, ) with L the polymer
length. The Rouse modes can be represented by the matrix R(?)

with ﬁq(t) = 1,(z). Then, one can capture the steady-state
conformation of the polymer by calculating the second Rouse
moments (38)

Y = lim (R(z) - RT(2))/L. [10]
t—> 00

For algebraic simplicity, we will also apply periodic boundary
conditions to the entire chain effectively closing it into a circle.
This avoids consideration of the end effects. By transforming Eq.
10 into real sequence space, we get the mean squared separation
(r2,(¢)) with ry(¢) = r(s2) — r(s, ), which describes the
patterns in the polymer conformation. We assume the chain
contour length is much longer than the genomic distance we
focus on and therefore ignore specific end effects.

Swimming Motors Cause Uniform Local Chain
Renormalization

When only swimming motors acting on each chain segment
are involved, for the Rouse chain, as shown in SI Appendix,
the separation between sequence locations s and s’ subjected to
swimming motors in the steady state is simply renormalized

1\ «/?
2 2
=b|As|[1 - (9 —=)— |, 11
(r) | 5||: ( 2) dD} [11]
where 7y = |ry| is the interparticle separation, As = |s — | is

the genomic distance and 6 = /3/pK is the Kuhn length of
polymer chain. More susceptible motors (8 > 1/2), cause the
polymer chain’s local constraints to appear stronger, resulting in
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a contraction. As the motors become adamant (8 < 1/2), the
constraints appear weaker and the chain expands as expected for
an increased effective temperature. For 8 = 1/2, the motors
obey detailed balance so the original equilibrium would not be
disturbed. We also have obtained these results by using the self-
consistent phonon theory (68-71) accounting for nonlinearities
(81 Appendix). This self-consistent approach was previously used
for cytoskeletal models (29, 30, 46), and has been extended to
network systems (72). More generally, for the case where the
response to forces is asymmetric between uphill and downhill
moves, the chain tends to contract when 89, + 9, > 1 and
expand when 9, + 9, < 1.

The results for adamant swimming motors (that polymer
segments locally expand compared to the passive counterpart)
are consistent with previous studies of models with perfectly
persistent active processes (34—36, 38—40). Such a motorized
structure change seems consistent with the morphology of eu-
chromatin and heterochromatin (73, 74). Euchromatin typically
requires ATP consumption to maintain its expanded state, as
has been experimentally observed by displacement correlation
spectroscopy (20). The motor’s active noise-generating persistent
motion leads to a higher effective temperature. A completely
adamant motor (§ = 0) in the Master equation description
can be directly mapped to the active Brownian particle model
and the active Ornstein—Uhlenbeck model (75) (S Appendix).
On the other hand, it has sometimes been reported that activity
can sometimes also lead to a denser packing of the chromatin
fibers, akin to squeezing or compacting the chain (39, 76). We
see that susceptible motors might be able to capture such local
contraction phenomena while other rigid adamant motor models
lead to chain expansion.

To further confirm our analytical prediction, we compare
the numerical results of simulations of chains with such motors
(Bottom triangle) and the analytical results from Eq. 11 (Upper

,/rjzs, in Fig. 2. The
numerical data were obtained by performing a hybrid Brownian
dynamics simulation for finite-length polymer chains with

additional stochastic steps (Materials and Methods). We show
the results both for the perfectly adamant motor (8 = 0, Lef?

triangle) for the mean-squared separation

Passive Rouse chain

expand contract

L
Adamant, 9=0 I~~~ W

200

Susceptible, 9=1

150

W 100

S S

Fig. 2. The mean-squared separation /(r525/> of motorized polymer chain for
both the adamant swimming motor (9 = 0, Left panel) and the susceptible
swimming motor (8 = 1, Right panel). The results obtained from Brownian
dynamics simulations are presented in the Bottom triangle section of each
panel, whereas the Upper triangle region shows the results from Eq. 11. Pa-
rameters x/2/dD = 1 and b2 = 2 for both panels. The adamant motor causes
chain expansion, while the susceptible motors lead to chain contraction.
Additionally, our simulation results demonstrate that the reorganization of
motorized homopolymer chains is uniform.
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panel) and the highly susceptible motor (§ = 1, Right panel)
for the case k/2/dD = 1 and &* = 2. The simulation results
also demonstrate that the reorganization of homopolymer chains
caused by swimming motors remains uniform in the absence
of the grappling and the chain still has free-chain-like statistics.
The simulation results for the effective Kuhn length are slightly
higher than the theoretical predictions. This is an effect of the
finite length of the polymer chains which are not cyclic in the
simulations. The chain ends become more flexible due to not
being dragged as much by the remainder of the chain, reducing
the overall apparent rigidity of the chains.

Grappling Motors

The Self-Consistent Phonon Approximation. Since the grappling
rate depends on the proximity of the chain segments that are
moved, the Rouse model can only be an approximation. The
chain is not strictly speaking harmonic. We must then make
a mean field ansatz to determine the extrusion probabilities
and the chromosome conformation statistics in a self-consistent
manner. We assume the new Rouse modes have renormalized
fluctuations but remain still approximately harmonic. We thus

choose a trial Hamiltonian W(R) = exp(—L~! >y AZ/YG) in

the Fourier transformed coordinates with YqG qu to calculate

the steady-state distribution by solving the Master equation with a
variational approximation (77-80). This is very analogous to the
self-consistent phonon approximation used for the cytoskeleton
(29, 30, 46) but now we are treating the comparison system as
a Debye model rather than an Einstein crystal. The argument

found in SI Appendix yields:

21 m
YO~ p? | = — X2 fd
9 |:2 qu d

(C(ras)) sin®

‘I_Af —FP 6P| Asl /4 ( _ _) ’f_lz
x( > )e 9 )75 [12]
y ([ dAs(C(ra0)) + [ dA:(C(rA:))e_iqA’)]

7 ’

where 7o, = ry. In Eq. 12, the second term will lead to
a local renormalization of the effective short-range attraction,
independent of susceptibilicy 9. The third term arises from the
structure dependence of the correlation-induced grappling and
is dependent on susceptibility 9. This long-range effect shows
the configurational statistics is no longer simply free-chain-like.
In the self-consistent mean-field assumption, the 7y dependence
of C(ry) leads to an averaged grappling probability C(s,s), so
that the effective interactions, diffusion, and temperature all, on
average, can then be expressed as scalar functions of genomic

distance. C (s 5') is a probability density, which quantifies the
probability of a grappling event occurring between two sites s and
s’. For a uniform chain with sequence translational symmetry,
one has C(s5) = €(As) and the (local) total grappling
probability C7 = [ dAs€(As). The (local) total extrusion
probability quantifies the (total) probability of a grappling
event occurring between site s and other sites. We see in this
approximation that when a pair of gene loci come into contact,
the gain/loss of effective free energy from grappling only depends
on the genomic distance between the segments when there is
sequence translational invariance. Since grappling effects depend
on genomic distance, there is a change in the structure of even a
uniform chromosome.
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Since grappling only occurs when two loci are within the
range [0, 2/), the averaged grappling probability between pairs of
segments is proportional to the probability of the sites being
within the grappling range Prob[rﬁ/ < 2[]. Since the chain
remains Gaussian one finds C(5,5') = 2T Prob[ry < 2[] ~
27,/6/7(21)3(r%)73/2, where the second equality is obtained
because Wlthln the self consistent Rouse mode approximation the
probability distribution remains Gaussian. Here, 7 is the average
occupancy of cohesin, which is determined by the cohesin’s
affinity for the chains, its concentration, and its activity (81-83).

Grappling-Induced Local Renormalization. The contraction
caused by the effective short-ranged grappling induced attraction
turns out to be described by there being a smaller effective Kuhn

length b (77-80, 84, 85) (SI Appendix),

yG:bz[i_’f_ﬂﬁ_@_l)’f_ﬂM}

q 2 dD a2 4D 2
q q i q [13]
> [1 1\ «/? (Ct +6,)
~op |- (95 ) s |
q 2) dD q

where € is the sequence Fourier transformation of the averaged
extrusion probability €(As) and Gy ~ /7€ (0)(3 — 2y, —
2log2 — 2logsy)/8b. y. is the Euler constant and sy is the
minimum distance in sequence at which grappling can occur.
The effective Kuhn length renormalization from this term
bg/b=(1-— ’:Z,—l;Co)l/2 = 1 — 0(/?) is independent of motor
susceptibility 9.

Long-Ranged Effect of Grappling Motors. The correlations in-
duced by grappling motors depend on the chain’s structure and
are not localized in genomic distance. Within the self-consistent
phonon approximation, one finds a generalized Rouse model that
has weak long-ranged harmonic interactions. Again for grappling
motors, we would find in addition to the usual local Rouse
Hamiltonian a more distant coupling in the equation of motion:

= BDKG{0[(1 + K(s))dsx(s, 2)]
+ / A Kir(s $)[e(d, £) —2(s 6)]} + n(s, ) [14]

8[1'(5, t)

with fKG = 3/b%. The additional interactions caused by the
grappling motors decouple into a local reorganization term
K(s) and a direct interaction term K;z(s s') with reciprocity
Kir(ss) = Krr(s,s). Under the sequence translational sym-
metry relevant to the circular chain, one finds through the varia-
tional approximation, a grappling-induced local renormalization
and a grappling-induced long-ranged interaction (SI Appendix),

g 1\ x/?
R() = (19 - 5) oCr 13l
2
RIR(s, ¢y = — (8 _ %) %(a} +32)C(s. ), [16]

K(s) for the uniform chain renormalizes the effective Kuhn
lengths, while the nonlocal Kzz(s,s') for a uniform chain
gives rise to correlations like those of the “ideal chromosome”
potential. The analysis can be extended to nonuniform situations
(81 Appendix). The effective long-ranged interactions depend on
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the mechanical properties of the motor through the suscep-
tibility. The dependence of the Kuhn length renormalization
on susceptibility aligns with what was observed for swimming
motors. The long-ranged terms however also depend on the
spatial distribution of the averaged extrusion probability, which
in turn depends on the new structural correlation. Our results
show that the effective temperature of the system with susceptible
motors is lower than the thermal temperature. This may be related
to the formation of liquid crystal structures of chromosomes
under temperature quenching, as discovered in the information
theoretic landscape studied by Zhang and Wolynes (13).

The Self-Consistent Equation for the Averaged Grappling Prob-
ability. Transforming Eq. 12 into real sequence space, one finds
the mean squared separation between chain segments for the
uniform chain becomes (87 Appendix)

1\ x/2
(r2) = bE|As| [1 — (9 - 5) ECT]

2 (o= YN 2 aesioa
+ b ~2)a xC (x)(As — x).

(17]

In addition to the local renormalization of the Kuhn length
caused by the grappling motors, we see there is a convolution
of the averaged grappling probability C(s,s') = €(As), which
describes the effects of loop extrusion on long-ranged structural
correlations.

We are thus led to a self-consistent equation for the averaged
grappling probability ¢’(As) in the steady states using the
effective Kuhn length:

3
% (As) QCr A7 (x) 2
i [|As|(l T )—&—Q‘/(; T (As x)dx:|

(18]

Here, B = 27,/6/x(21/bg)’ is a dimensionless parameter,
depending on the cohesin occupancy and the ratio of kick
size to grappling renormalized effective Kuhn length 4¢. Eq.
18 provides a closure that can be numerically solved, where
the motor susceptibility 9, motor activity k/?/dD and average
cohesin occupancy 7 appear together in a simple composite form

Q=9 1\ «7 2
N 2) 4D’
which we referred it as the nonequilibrium factor. For low cohesin
occupancy (7 — 0) or small motor activity (xl?/D — 0),Q =
0. We see grappling will not change the structure if the motors
obey detailed balance (9 = 1/2). Since (%) o (¢/T)~*/3, it
can be observed from Eq. 18 that the chromosome conformation

depends only on the Q value. The self-consistent equation is
pivotal in deciphering the loop extrusion effect.

Shapes of Contact Frequency

The Hi-C experiments, which generate contact frequency maps
P.(s,5') between all pairs of genomic positions s and s, describe
the characteristics of chromosome folding across scales (7). For
uniform chains, the physical state of the chromosomes can
be summarized by a power law scaling of the average contact
frequency P.(s,s') = P:(As) o< As™" with genomic distance As,
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where ¥ is the scaling exponent (86). For fixed cutoff contact
radius ap, P.(As) = Prob[ry () < ap] ~ \/6/7143(;}2:,)_3/2.
Previous studies have shown that by this measure chromosome
structures apparently possess fractal dimensions and are “crum-
pled” states, since the contact frequency shows a slower decay
with As than the classical Rouse chain (7, 87-95). There is also
evidence that the P,(As) curve does not always exhibit power-law
behavior but may have, in addition, characteristic “shoulders,”
reflecting the folding of the chain into larger loops (95-97).

Numerical Results from the Self-Consistent Phonon Analysis.
The power-law scaling of the averaged contact frequency is
controlled by the power-law scaling of the averaged grappling
probability. Since the self-consistent equation determines the
extrusion probability, it provides a quantitative framework for
understanding the typically observed shapes of contact frequency
profiles.

In Fig. 3, we have numerically solved the self-consistent
closure Eq. 18 to find several distinct contact frequency shapes
depending on the nonequilibrium factor Q. The simulation and
model details can be found in Materials and Methods. First,
we focus on the effects of susceptible motors with Q > 0.
For systems that are close to equilibrium with Q@ — 0, the
system still exhibits a classical Rouse-like scaling relationship
As~13. As the nonequilibrium factor Q increases to 0.13, the
contact frequency profile begins to exhibit a nonuniform scaling
behavior. At small scales, the system has a slower decay with As
than the classical Rouse scaling. The scale of P(As) ~ As~!2
indicates that on these scales the polymer is in a crumpled state
with fractal dimensions (95, 98, 99). At larger As scales, the

10?
0=0
0=013
0=045
10° 0=-0.02
AS—T.Z
)
S 102
45 N
10'4 h \AS\ N
NN
S N
As—1.5\ \\
10° 10* 10° 10°

As (bp)

Fig. 3. Contact frequency plots as a function of the nonequilibrium factor
Q = (9 — 1/2)xT/%/dD. For Q — 0, the system still exhibits largely Rouse-
like scaling As=1->. When Q = 0.13, the contact frequency profile exhibits
a nonuniform scaling behavior. At small scales, the system has a slower
decaying than the classical Rouse scaling P(As) ~ As~1-2, but the Rouse chain
scaling As~1- is restored at larger scales. The crossovers between different
scaling behaviors occur in the yellow-shaded region. When Q = 0.45, the
plot displays a nonmonotonic “shoulder,” which suggests that segments of
the polymer chain at distant locations appear to be involved in stable loops.
The nonmonotonic “shoulder” in the contact frequency predicts the most
probable loop size, indicated by the red dot. The decay of contact frequency
beyond the loop size still follows the Rouse chain scaling as~"-5. Finally,
for the adamant case Q = —0.02 < 0, the segments exhibit larger contact
probabilities at small scales while still recovering the Rouse scaling at larger
scales. This phenomenon remains with further increasing |Q| (Q < 0) until the
numerical solution diverges at small scales for the chain without excluded
volume.
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Rouse chain scaling As~! is restored. The crumpled states have
a smaller contact frequency for short genomic distances than
the original Rouse chain but the contact frequency decays more
slowly with genomic separation, finally exhibiting larger contact
frequencies at larger scales than would the classical Rouse chains.
The crossover between these behaviors occurs in the range of

10% to 10° bp. We see that the loop extrusion by grappling
motors brings distant loci closer together. Finally, for very active
grappling motors, as the Q value increases further to 0.45, the
polymer chain begins to exhibit a nonmonotonic “shoulder.”
Apparently, segments of the polymer chain at distant locations
come even closer together than expected due to the formation
of fairly stable loops. The nonmonotonic “shoulder” in the
contact frequency predicts the most probable loop size, which
is approximately in the range of 10% to 10° bp (for realistic
value of Q, see SI Appendix). Others have suggested that such
a most probable size might prevent entanglements during the
cell cycle (100-102). In our present analysis, the decay of the
contact frequency outside the loop size returns to the Rouse
chain scaling As™1> as expected. For the more adamant case
Q = —0.02 < 0, the segments have higher contact probabilities
at small scales but then recover the Rouse scaling at larger
genomic separation. We find however further increasing the
magnitude of Q for Q negative leads to divergent numerical
solutions at small scales, suggesting collapse that cannot be
avoided when the excluded volume of the chain segments is
neglected.

We can analytically understand the nonuniform scaling by
expanding the self-consistent closure Eq. 18 by assuming there
is a power law but with adjusted exponents. If we have a pure

power law decay € (x) o |x| ™", one finds that f0A5 dxE (x)(As—

x) = |As]®7V fol dxx~V(1 — x) scales also with a power of

the genomic separation. From Eq. 17, we have that (7:25/) =
2 2

bLIAS| 1 — (8 — 1)55Cr] + 65(9 — 1) 5521 (V)| As)>™Y for

small As, where Z; (V) is a normalization constant (S/ Appendix).

The polymer chain is still Rouse-like at large scales, while it

becomes crumpled at small scales with (Ri,) o |As|>7V. For self-

consistency, the scaling exponent v from Eq. 18 must then satisfy

%(V — 2) = —v. This equality gives a self-consistent value of the

scaling exponent v = 1.2, which agrees with the results of the
numerical solutions. These predictions for the scaling behaviors
are close to the experimental results of the interphase human
chromosomes, where one finds y ~ 1.1 (7). We estimate that the
crossover to the nonuniform scalings happens at ~10% to 10° bp
(81 Appendix), which also agrees with the experimental crossover
seen for the human and Drosophila interphase chromosome

which occurs at ~10° bp [P.(As) ~ As~11] (7,103, 104).

Discussion. We have so far not explicitly concerned ourselves
with “cohesin processivity.” Cohesin processivity is determined
by the residence time of the SMC head at the anchor points
(105-107), relative to the time of making displacements. In
the approximation studied here, the two quantities appear only
as a composite in Q. Experiments have shown that when the
wings-apart-like protein homolog is depleted, cohesins are unable
to dissociate from chromatin, resulting in a greatly increased
residence time 7., and prolonging the duration of loop extrusion
(108, 109). In the weakly processive case, in contrast, the loading
and detachment rates of the cohesins are both much greater
than the compaction rate of the chromosome. The cohesin
unbinds soon after a grappling displacement, indicative of short

PNAS 2024 Vol. 121 No. 28 e2407077121

residence time. All sites on the polymer chain act as anchor
points in an ergodic and equiprobable manner. This limit should
be well captured by the self-consistent approximation since the
extrusion probability can be replaced by a uniform distribution
proportional to the average cohesin occupancy 7, which is
only a function of genomic distance As, independent of the
specific binding occupancy of cohesins. The weak processivity
scenario resembles the transient-link-and-pass activity model
(110, 111). In this model, enzymes lead to transient attractive
connections between segments, and the timescale of enzyme
unbinding is much shorter than the timescale of the chromatin
dynamics. Additionally, the weak processivity assumption used
in the formulation of a Markovian Master equation is similar to
recently proposed diffusion encounter models (112, 113). These
emphasize the transient bridging of the diffusively approaching
chromatin segments by SMC proteins. These models are sup-
ported by recent biochemical data but conflict with the most
popular loop extrusion model with high processivity. The two
views have recently been contrasted (114, 115). If the grappling
motor is highly processive, the effective kicking distance / and the
grappling distance may also differ, and the present treatment may
still be approximately valid, if the grappling capture lengths and
step size are individually renormalized to account for multiple
correlated steps. The residence time and binding rate of cohesin
can vary over a wide range of parameter space values (116-118).
In the highly processive scenario, the anchor point can be thought
of as being “pinned” so that the next grappling event is more likely
to occur locally rather than being spatially independent. This
implies history dependence (16), which needs a non-Markovian
treatment. We believe processivity becomes more significant for
mitotic chromosomes, but we must leave the description of
strongly correlated segment motions for future work.

Conclusion

Energy landscape theory has provided a powerful statistical
mechanical tool for the quantitative study of complex nonequilib-
rium systems like chromosomes. The “ideal chromosome” model
introduced by Zhang and Wolynes builds the local structure
under motorization in a sequence translationally invariant po-
tential form but is agnostic as to its origin (13, 14, 16). We have
explored here how two classes of motors modify chromosome
structure, one of which simply induces local reorganization while
another class mimics grappling-induced loop extrusion. We show
grappling motors can provide a mechanism for inducing the
spatial correlation of the ideal chromosome as inferred from Hi-
C experiments. Certainly, the models proposed here are not
meant to be the final answers. Due to the excluded volume
effect, chromosomes can become entangled with possible knot-
ting, leading to widespread topological constraints. Although
topoisomerases in cells may mitigate such effects (119), excluded
volume cannot be ignored especially in the formation of mitotic
chromosomes where liquid crystal-like orientational ordering
occurs (13, 14, 120, 121). Additionally, while our model captures
some topological changes such as the formation of loops, these
are on a smaller scale than compartmentalization.

We have focused here on uniform motorizations of a homoge-
neous chain. Further investigation into heterogeneous polymer
chain models will facilitate a deeper understanding of chro-
mosomal compartmentalization phenomena (7, 122-124). We
have also looked only at the time-averaged structural properties.
Equally intriguing is the exploration of motorization’s impact
on the chromosome’s coherent motion (20, 125-127) and how
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chromosomal structures move and rearrange within the nucleus
during the cell cycle and in response to cellular signaling (128).

Materials and Methods

Simulations. We carried out hybrid Brownian-Gillespie simulations of the
polymer dynamics for the swimming motors: https://github.com/CaOaC/
chromosome. The programs canrunin parallel on Cudasoftware. We use periodic
boundary conditions without considering the self-avoiding and excluded-

volume effect. The parameters chosen are x/2/dD = 1 and b2 = 2. We
simulate for sufficiently long until the contact maps reach stable. Our database
includes sample trajectories of 200 beads that can be viewed in open visual-
ization tool (OVITO) (129). In addition, we solve the self-consistent equation
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