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Abstract

As reliance on Machine Learning (ML) systems in real-world
decision-making processes grows, ensuring these systems are
free of bias against sensitive demographic groups is of in-
creasing importance. Existing techniques for automatically
debiasing ML models generally require access to either the
models’ internal architectures, the models’ training datasets,
or both. In this paper we outline the reasons why such require-
ments are disadvantageous, and present an alternative novel
debiasing system that is both data- and model-agnostic. We
implement this system as a Reinforcement Learning Agent
and through extensive experiments show that we can debias
a variety of target ML model architectures over three bench-
mark datasets. Our results show performance comparable to
data- and/or model-gnostic state-of-the-art debiasers.

Introduction

Machine-Learning (ML) systems are being increasingly
used in real-world decision-making processes, such as em-
ployment offers, credit evaluations, or predictions of crim-
inal recidivism. Researchers have often found that these
decision-making algorithms exhibit bias towards sensitive
demographic groups, and have raised arguments in favour
of reducing this bias since Machine Learning was far less
prevalent than it is today (Bolukbasi et al. 2016; Calmon
et al. 2017; Berk et al. 2021).

Achieving fairness in machine learning models has at-
tracted increasing attention in the past decade, with many
debiasing technologies being developed. We provide exam-
ples below, along with a taxonomy of these systems that re-
veals two drawbacks, namely, that existing debiasing tech-
niques require either access to the underlying architecture of
the model being debiased or to its training data. In real-world
applications, however, models and data can be distributed,
unwieldy, proprietary, or subject to privacy concerns. We
therefore ask the following research questions:

* RQIl: Can we create a debiasing system that is
data/model-agnostic?

* RQ2: Can such a debiasing system achieve group fairness
comparable to state-of-the-art techniques?
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To address these research questions, we propose a novel
debiasing technique that is model and data agnostic; that is,
our proposed system operates without access to the target
model’s underlying architecture (i.e., for a black-box target)
or regard for the data on which said target was trained.

We implement this system as a Reinforcement Learning
Agent'. To assess the generalizability of our system, we
provide empirical results over three benchmark datasets and
comparisons with state-of-the-art debiasing algorithms. Our
results show that our debiasing technique can achieve bias
reduction close to the results of the state-of-the-art data-
and model-gnostic algorithms, while remaining data- and
model-agnostic.

Background
Existing Debiasing Techniques

Barocas et al. (Barocas, Hardt, and Narayanan 2019) de-
scribe three types of existing debiasing techniques, based on
where they appear in the Machine Learning pipeline:

* Preprocessing-based techniques operate on the model’s
input data. Such a system might learn a transformation
for said data (Calmon et al. 2017), or might weight
(Mehrabi et al. 2021; Kamiran and Calders 2012) or
prune (Li et al. 2022; Lum and Johndrow 2016; Kami-
ran and Calders 2012) features most responsible for bias.
Representation Learning, wherein the data’s representa-
tion is chosen to minimize bias, is also fruitful (Locatello
et al. 2019; Zemel et al. 2013; Madras et al. 2018).

* In-training techniques act during the model’s train-
ing process. Such a system modifies the model’s cost-
sensitivity (Agarwal et al. 2018; Liao and Naghizadeh
2023) or adds an adversarial model to recover sensi-
tive attributes from predictions (Yang et al. 2023; Zhang,
Lemoine, and Mitchell 2018). Fairness-aware hyperpa-
rameter optimization (F.Cruz et al. 2021) and AutoML
(Nguyen, Biswas, and Rajan 2023) can also reduce bias.
If the target model uses latent-space representations or
embeddings, debiasers can modify these (Zhang et al.
2023; Zeng et al. 2022; Bolukbasi et al. 2016).

* Post-processing techniques are applied after training, and
come in two types. The former type attaches a model
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to the target’s output, which modifies the model’s pre-
dictions to reduce bias (Alabdulmohsin and Lucic 2022;
Kamiran, Karim, and Zhang 2012; Wei, Ramamurthy,
and Calmon 2021). The latter type modifies the param-
eters of the target model itself (Woodworth et al. 2017,
Fish, Kun, and Lelkes 2016).

Drawbacks of Existing Techniques

The above three classes of debiasing techniques each entail
certain drawbacks.

Pre-process approaches require forethought; as they must
be applied before the model is trained, fairness must be a
consideration from the beginning of the modeling process.
As a corollary, if the model is later found to be biased, to
recover fairness using pre-process techniques would require
a complete retraining of the model. Additionally, the model
cannot be so debiased without access to the training data,
which may be restricted due to security, ownership, privacy,
Or resource-management concerns.

In-process techniques likewise require the consideration
of the training party, and the modifications to the training
process, unless well-defined, well-publicized, and general-
izable, are likely to be practically inapplicable, unfamiliar
to the trainer, and/or expensive. Debiasing a trained model
with in-process techniques also entails retraining.

Post-process techniques place the least burden on the
training party, and are therefore suitable for post-factum ap-
plication to models found to exhibit bias. However, they too
have drawbacks: techniques that modify the model’s archi-
tecture require a white-box target, which may not be pos-
sible if the model is proprietary, secret, or otherwise inac-
cessible. Post-processing the model’s output incurs a com-
plexity cost, as the post-processor is an additional step in the
model’s inference process. Such output transformations, be-
ing unaware of data and model, are also susceptible to poor
performance (Woodworth et al. 2017).

Desiderata for a New System

The shortcomings discussed above reveal a hitherto-unfilled
niche in machine debiasing, which we can circumscribe with
the following desiderata:

1. Data-Agnosticism: To avoid the need to access data that
may be private, secret, proprietary, etc., the debiasing
system should not require access to the target model’s
training data. Ideally, no provision should need to be
made for what the target’s featurespace actually corre-
sponds to.

2. Model-Agnosticism: To avoid the need to perform expen-
sive, complex, or impossible modifications to the target
model, the system should not be able to read from or
write to the target model’s structure, weights, architec-
ture, etc. By extension this implies that the system need
not be concerned with said structure, weights, architec-
ture, etc.

3. Applicable After Training: To avoid the need for a
fairness-aware training party, the system should be us-
able on targets that have already been trained.
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4. No complexity increase: We do not wish to increase
model size or execution time, or to add unwieldy com-
ponents; we may also wish to debias models that are
lightweight. We therefore want a system that adds no
components to the target model.

5. Single-pass post-train debiasing: We do not wish to bur-
den the end user of the model with the responsibility of
keeping it unbiased. The debiasing system must therefore
be a task that, once accomplished, produces a debiased
model, and not an ongoing process.

Measuring Fairness

Group fairness in ML is defined by the relationship between
predictions and sensitive demographic attributes. Debiasing
a model automatically, therefore, entails minimizing some
metric derived from the relationship between the model’s in-
put, the sensitive attributes therein, and the model’s output.
Fairness research employs a great variety of these (Tang,
Zhang, and Zhang 2023). As our work is primarily con-
cerned with prototyping a novel system we will not be delv-
ing into the active debate surrounding the relative merits of
the panoply of available metrics.

The metric we chose is Equalized Odds (Hardt, Price, and
Srebro 2016), which is satisfied if the predictor’s output is
independent of the sensitive attribute(s), but still conditional
on the ground truth:

VCLEA, yaZ?GY3 Pf/‘AY(Zﬂa’ay) :P}A/‘Y(Zﬂy) (1)

Where A is the sensitive attribute, Y is the ground truth
label, and Y is the model’s predicted label.

Since we are training a machine learning model to opti-
mize for bias reduction, it is necessary to convert the Equal-
ized Odds metric into a scalar loss, the Equalized Odds Vio-
lation (EOV). In the binary classification case, we compute
this by taking the difference between the True Positive Rate
(TPR) and False Positive Rate (FPR) of the sensitive and
nonsensitive groups, and selecting the maximum (i.e. worst)
violation:

max |P(Y =1|A=a,Y =y) - P(Y =1]A=0b,Y =)
Yy
=max(|TPR, — TPR;|, |FPR,—FPR;|)
2)
The Equalized Odds Violation will be in the range
[0.0,1.0], where the closer a model scores to zero, the less

biased (i.e., fairer) we consider it to be.

Noise-Injection Debiasing

The aforementioned desiderata provide the mode by which
our system must debias its targets. Since we cannot control
the target’s parameters directly, and must deploy our sys-
tem only after the target has been trained, we are limited to
providing the target with data and observing its output. We
modify the target’s structure by providing it with new train-
ing data that has been synthesized for the purpose.



This interaction mode has already been explored to some
degree; existing work has used data adversarially generated
to maximize the target’s exposure of bias as a means of mea-
surement (Xiao et al. 2023), and as a means of debiasing the
specific domain of face-attribute classification (Zeng et al.
2022). We aim to go further, to produce the data required to
debias any target on-the-fly.

The simplest form such a system might take would be
feedback-free where the biased target data drawn from a ran-
dom distribution is fed into the target model without moni-
toring its output and impact of the data on its fairness. We
tested such a system by drawing synthetic training data from
a parameterized Gaussian distribution and feeding it into the
target, without responding to the target’s output at all. Our
results are included below. Such a system, however, is not
capable of learning, and does not make use of all the infor-
mation available; we thus expect it not to perform as well as
one that was capable of learning.

A learning system would observe the target model’s out-
put and predict its reaction to different synthetic data, and
thus tailor the perturbed data to maximize bias reduction.
We describe this novel system next.

Debiasing with an RL Agent

To generate synthetic training data that will effectively de-
bias any target, we require a learning system. Such a system
is inherently an ML model whose training process includes
the training process of another ML model (the target). As
a result, we encountered practical difficulties when attempt-
ing to implement a direct approach (in which the synthe-
sizer generates data, the data is fed to the target, and the
bias reduction thereby obtained is backpropagated through
both models) in the TensorFlow and PyTorch ML libraries.
We therefore require an alternative ML paradigm that per-
mits ’air-gapping’ between the training processes of the tar-
get and the debiaser.

One possible such paradigm is Reinforcement Learning
(RL), in which an agent (the model) makes observations
about an environment, then generates actions, which are
given to the environment, producing rewards. The agent at-
tempts to maximize these rewards by adjusting its actions,
and thus learns through a trial-and-error process (Kaelbling,
Littman, and Moore 1996). RL is useful to our work for
a simple reason: it does not concern itself with the nature
of the environment, only with its input and output; we can
therefore ‘hide’ our target model’s training process inside
the environment. Our debiaser model becomes an Agent, the
synthetic training data it produces become analogous to ac-
tions, and the measurement of the target’s bias after training
on that data is the reward. The observations are measures of
the target’s current bias and the difference in bias from its
previous state incurred by the agent’s previous action.

RL models come in many varieties; the type we chose
as ensuring a sufficient airgap between target and debiaser
was an Actor-Critic architecture (Sutton et al. 1999). In this
setup, the Agent is divided into two ML models. The first,
the Actor, models an action policy: a mapping from obser-
vations to actions, which provides the mechanism for the
Agent’s decision-making. The second, the Critic, models the
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QO-function: a mapping from observation/action pairs to the
expected reward for taking said action given said observa-
tion.

In order to generate synthetic data items (that is, tensors
of floats) from a bias measure, we need an agent capable
of operating in a continuous observation and action space.
We draw our groundwork and practical architecture from the
work of Lillicrap et al. (Lillicrap et al. 2019), who extend
Deterministic Policy Gradient learning (Silver et al. 2014)
into the continuous action space. Their work contains three
refinements common in RL Agents, which we added to our
own code, as both stabilize the Agent’s training process:

1. The Replay Buffer: The Actor and Critic are trained
on observation/action/reward/next observation tuples, so
instead of generating these individually, passing them
through the models individually, and running the model’s
optimizers, the tuples are placed in a FIFO queue of fixed
size. At each training step, a sample of several tuples is
drawn from the queue at random, and the Actor and Critic
are trained thereupon. The buffer also provides a larger
air-gap between the Target and Agent training processes.

Secondary Actor and Critic: To mitigate the volatility of
the estimated future state, the future-reward prediction
is performed by a second Actor and Critic, who are not
trained, but whose weights are soft-copied (their weights
and the weights of the main Actor and Critic are mixed in
some hyperparametric proportion) at each training step.

3. Stochastic Exploration: The Actor-Critic Agent alone is
entirely deterministic; what variation it experiences in its
exploration is due entirely to its starting weights. This
is not desirable — the Agent should be capable of explo-
ration — so we implement exploration thus: once the Ac-
tor has chosen an action from an observation, we add a
Gaussian noise sample to each feature of the synthetic
datum. The result is stored as the action, as if the Actor
had created it. The Gaussian distribution was used be-
cause it is simple and versatile; future work might inves-
tigate alternative noise distributions (Lillicrap et al. use
an Ornstein-Uhlenbeck process). The distribution has a
mean of zero and a hyperparametrized standard devia-
tion.

Algorithm 1 shows the debiasing process; Figure 1 shows
the debiaser’s datapath. Note that the datapath includes the
target dataset as part of the EOV-measuring mechanism; the
system as a whole is not fully data-agnostic, though the debi-
aser agent is, As we will discuss below, true data-agnosticity
can be achieved if the target system exposes its own bias
measure.

Experimental Method

Target Model Architecture

To substantiate the claim that the system is model-agnostic,
we trained four different ML models to act as biased targets:
one Logistic Regression classifier and three Multilayer Per-
ceptrons. The perceptrons were given varying architectures:
the ‘normal’ configuration had one hidden layer of 50 neu-
rons, the ‘wide’ configuration had one hidden layer of 100



Algorithm 1: RL Debiasing Procedure (adapted from Lilli-
crap et al. (Lillicrap et al. 2019))

procedure DEBIAS(T, E, S, N, p, 0,7, T)
Create critic networks Q(b, Ab, a|f?) and Q’, and ac-
tor networks (b, Ab|0*) and 1’
Randomly initialize weights % and 6*.
Copy to secondary networks 62" « 09,01 o~
Initialize a ring buffer R of length p.
for episode = 1 to E do
Reset target model 7' to its initial state.
Clear ring buffer R.
Measure initial bias b; of T; Ab; < 0
for step i=1to S do
Action a; M(bl,Ablwu) +N(0,0’>.
Train target model 7" on a;.
Measure bias b} of T'; Ab} < (b — b;).
Store (b;, Ab;, a;, b}, Abl) in buffer R.
Sample a batch of N items
(b, Aby, ap, bl,, Ab.) from buffer R.
Set y = b, + Q' (b, AbL, 1 (1. AB,))
forne N
Update critic by minimizing the loss
L= % Zn(yn - Q(bn; Abnaan))2
Update the actor policy using the sampled
policy gradient:

1
VOV'J ~ N ; an(bna Abna a|9Q)|a:u(bn,Abn)

Voupt(br, Aby|60°)]6,. Ab,

Copy weights to the secondary networks:
09" — 709 + (1 — 7)6%
0" " + (1 — 7)o"

end for
end for
end procedure

neurons, and the ‘deep’ configuration had two hidden lay-
ers of 50 neurons apiece. Each model had a Sigmoid output
layer to perform binary classification, and each used a Py-
Torch library Adam optimizer with a learning rate of 10~°.
Each model was given between 10 and 30 epochs (depend-
ing on accuracy convergence) of pre-training on the target
dataset before being fed into the debiasing system. This pre-
trained state is given as the initial state in the results section,
with accuracy comparable to the baselines listed on the UC
Irvine Machine Learning Repository (Kelly, Longjohn, and
Nottingham 1994).

Datasets

To demonstrate data-agnosticism, we trained our target
models on three standard fairness-research demographic
tabular datasets, in order to have state-of-the-art benchmarks
for comparison:

e The Adult dataset (Becker and Kohavi 1996), a set of
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Figure 1: System Datapath Outline. Bubbles attached to each
network denote a forward pass. Q and p are the Critic and
Actor networks, respectively, and Q' and p’ are the soft-
copied secondary networks used in discounted future-state
prediction.

cleaned US census data from 1996, where the task is to
predict whether a given individual has an income above
a certain threshold. The sensitive attribute used here was
sex, to align with the benchmarks used.

e The German Credit dataset (Hofmann 1994), demo-
graphic data from German loan applicants. The task here
classifies individuals into ‘good’ or ‘bad’ credit risks.
The sensitive attribute used was sex, to align with the
benchmarks.

* The COMPAS dataset (Angwin et al. 2013), a set of
demographic data from Florida defendants. The task
here is to predict whether a given defendant will reof-
fend in two years’ time. For the sensitive attribute we
used race (which we binarized as African-American vs.
Non-African-American), as the sex attribute was highly
skewed.

Hyperparameter Optimization

To find performant values for the hyperparameters (Given
in the parameter list of Algorithm 1), we trained a normal
MLP target on a subset of the Adult dataset and employed a
heuristic-guided Monte Carlo search process. This yielded a
step count .S of 100000, a sample size IV of 1024, a memory
size p of 4096, an exploration standard deviation o of 8, a
lookahead factor ~ of 0.99, and a softcopy factor 7 of 0.001.
Actor and Critic MLPs were constructed from a 400-neuron
hidden layer followed by a 300-neuron hidden layer, with
Pytorch library Adam optimizers. The learning rate of the
Actor was set at 10~7, while the Critic’s was set at 1076.

We do not believe these hyperparameters are optimal, as
the possibility space is large and the interaction between hy-
perparameters is not well understood. However, as we will
demonstrate even with the aforementioned hyperparameters
we achieve a high fairness and accuracy (low trade-off) on
the benchmarked datasets.

Experimental Procedure

For each pairing of dataset and target architecture, we ran
three learning trials. In each trial, the debiasing system was
given 4 episodes (hyperparameter E in Algorithm 1) to de-
bias its target. Within the episode, the target’s bias was mea-
sured using a training subset of the relevant dataset. Before
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Figure 2: Results for the Adult Task

the process and at the end of each episode, the target’s bias
was measured using a withheld testing subset. The target’s
classification accuracy was also measured.

For non-learning noise-injection trials, the same pattern
was followed. The standard deviation for the Gaussian noise
injected was set at doubling intervals between 0.1 and 8.0,
and four episodes of injection were run for each value, for
each dataset/target pair. No noise-injection trials were run
on the logistic regression target due to resource constraints.

Trials were run on two separate computers equipped with
M1-Pro 10-core CPUs with 16 and 32 GB of RAM respec-
tively; as the debiasing process is highly sequential, no ad-
vantage is gained from GPU parallelization; indeed, initial
trials run on a server with 4 NVIDIA RTX 2080 Ti GPUs
proved to be far slower than M1-Pro CPU execution on the
laptops. Each episode took on average approximately 40
minutes to execute.

Results

Figures 2-3 show the results obtained from our experiment,
giving the minimum (best) EOV achieved and the classifica-
tion accuracy of the target at that point.

These results suggest that it is indeed possible to auto-
matically debias an ML model without regard to its archi-
tecture or its data, and, what is more, to obtain performance
approaching that of state-of-the-art model- and data-gnostic
debiasers.

For the Adult task (Fig. 2), the learning agent reduces the
Equalized Odds Violation below that of the state-of-the-art
benchmarks for the perceptron targets. The logistic target’s
EOV reduction is also close to SOTA techniques. The sys-
tem loses a similar amount of target accuracy as the work
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of Su et al., but lags behind the better accuracies of Zhang
et al. and Yang et al. The pure noise-injector achieves slight
EOV improvements for the Wide and Deep MLP targets, and
a major EOV improvement for the Basic MLP target, but
does not outperform the learning system, though it achieves
higher classification accuracy.

The German task results (Fig. 3) exhibits similar charac-
teristics. That is the learning-agent EOV reduction on all tar-
get architectures, including logistic regression, falls in the
middle of the SOTA benchmarks. The accuracy loss is like-
wise good, with accuracy at minimum EOV only slightly
below the initial state. The noise-injection failed to achieve
performant results.

The COMPAS task results (Fig. 4) are the weakest. The
learning agent reduced the EOV to almost zero, but at the
cost of unacceptable accuracy loss. For the logistic target,
the system had little effect. The feature of note here is that
the pure-noise injection achieved similar results to the learn-
ing process for the Basic MLP target, and had significantly
better classification accuracy for the Wide MLP target.

In all cases, we observe a reduction in accuracy asso-
ciated with an improvement in EOV. These reductions are
in some cases slight, and in some cases major. They stem
from a systemic problem know as fairness-accuracy trade-
off (Berk et al. 2017; Teodorescu and Yao 2021; Menon and
Williamson 2017; Kenfack et al. 2021); that is, a classifier
that must make allowances for fairness cannot reliably be
as accurate as one that does not. Some debiasing techniques
make this tradeoff an explicit, controllable value; others de-
vise entire constrained optimization processes to eke out as
much utility as possible (Grgi¢-Hlaca et al. 2018). Our sys-
tem makes no provision for accuracy at all, rather optimiz-
ing only for minimal Equalized Odds Violation. The tar-
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Figure 3: Results for the German Credit Task

gets remain accurate because their (black-box) optimizers
are (presumably) optimizing for the target’s own accuracy.
The tradeoff may also explain why a deliberate improvement
in EOV by a learning agent results in a lower accuracy than
pure-noise in some cases; as the EOV improves, the accu-
racy must drop.

Discussion
Implications

A real-world application of our new system can expect to
gain the practical advantages previously discussed. Its be-
ing model-agnostic means we can apply our technique to
any ML model to whom we can pass new training data, and
whose bias we can measure, without needing to modify or
observe the internal structure of said model. The system’s
data-agnosticity means we need not care about the dataset
involved; we need not tailor our system to suit particular
distributions, nor obtain access to data that may be private,
secret, or proprietary. The post-training application of our
technique means we can debias existing, pre-trained mod-
els; we do not have to intervene in the training process, nor
trust the training party to have a vested interest in debiasing.
Additionally, the system need only be applied once; it adds
no complexity to the target, which ensures that the target
model’s prediction does not become slower or more expen-
sive.

Practical implementation and deployment of our work
would mean that already-existing ML models could be de-
biased after their training completes. As a result, bias reduc-
tion could be provided as a service — or enforced as a stan-
dard — without the need to distribute responsibility for fair-
ness among ML model builders. The in-process benchmarks
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against which we compare, however, still retain higher accu-
racies than our own system. Without knowing to what degree
our work may be extended we are as yet unwilling to suggest
that our system constitutes a replacement for considered in-
training bias mitigation in critical decision-making systems.

Our work also has a broader theoretical implication for the
use of RL Agents in ML. We modified a measurable prop-
erty (fairness) of a target model using only synthetic training
data. It may be that our system could modify other proper-
ties of an ML model as well; all that is needful is a means to
measure the property in question.

Theoretical Limitations

Our system as a whole falls slightly short of total data-
agnosticity. We cannot evade the need for some means of
measuring the target model’s bias; since that bias depends on
the model’s classification of data with respect to said data’s
sensitive attributes, it cannot be computed without some ac-
cess to that data. Our system used two subsets (training and
testing) of each target’s dataset to perform its bias calcu-
lations, and we cannot therefore claim that it is truly data-
agnostic.

However, the algorithmic core of the system — the
Reinforcement-Learning Agent — is data-agnostic; it re-
quires only the data’s shape and the bias measurements. If
the bias measurements were provided by the target model
through some opaque mechanism, the system would attain
true data-agnosticity. Such a mechanism would of course
also require data-access, but, if the measurement were done
target-side, would address some of the reasons we wish the
debiaser to be data-agnostic in the first place, namely, that
the dataset might be secret, sensitive, or unwieldy.

Another theoretical problem concerns model-agnosticity.



O- 70 “wadsworth et al.
Deep MLP
o 65 Basic MLP Wide MLP
. b Zafar et al.

> Yang etal.
(@)
L
c
= 0.60 A
) A A
© Logistic
L>)‘ Suetal. 1. »
E 055 | < Légistic
=]
S v Noise - Base MLP
© Biaf MLP A Noise - Wide MLP

0.50 - < < Noise - Deep MLP

+ Agent (learning)
= Benchmarks
pes L? Initial State
. Widg.MLP
0.45 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

minimum EO violation

Figure 4: Results for the COMPAS Task

Our experiments were performed only on ML models that
could accept further training data after being trained; this is
not true of all ML models (for instance, Decision Trees). Our
system might be able to debias these models also, through
a baroque relaxation of the data-agnosticity requirement
wherein the target is entirely retrained at each step with the
synthetic debiasing data appended to its dataset. Such a pro-
cedure could potentially be expensive.

Practical Difficulties

One main practical problem with debiasing using our sys-
tem is the drop in target accuracy incurred by the fairness-
accuracy tradeoff (discussed above). While the tradeoff can-
not be entirely avoided, it can be finessed in several ways; for
instance, an in-process system with access to the loss func-
tion can control the relative cost weighting of accuracy and
fairness with a high degree of precision. Our system, without
such fine control, may be more subject to the depredations
of the tradeoff.

Another practical difficulty encountered was execution
time. Our system is necessarily sequential, as the target’s
reaction to any given action depends on its state which is in
turn directly modified by said action. The debiasing Agent
can therefore only furnish the target with one synthetic da-
tum at a time. ML libraries are written with parallelization
as a goal, the understanding being that large batches of data
can be drawn and passed through models simultaneously. As
our system cannot do this, we cannot take advantage of GPU
execution (indeed, bussing the data back and forth seems to
incur a significant time penalty) and must run our system en-
tirely on the CPU. The debiasing process is therefore slow,
and this is likely to be exacerbated by large, complex target
models, though we did not test any such.
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Future Work

The viability of the prototype opens many avenues for future
investigation. In addition to expanded target- and dataset-
(and data modality) compatibility testing, it would be worth-
while to determine if the Agent could be re-used: synthetic
data created to debias one model trained on a dataset might
also debias a different model trained on the same data.

The prototype would also undoubtedly benefit from more
concerted hyperparameter optimization (certain hyperpa-
rameters, such as the Agent’s memory size and Actor and
Critic internal architectures, were barely touched during the
search process). Architectural overhauls may also prove a
fruitful pursuit; as it stands, the Agent learns to generate
synthetic data directly, which is then perturbed by its noise
generator; what if the Agent were instead, say, to learn per-
feature parameters for a generative noise distribution?

Another mechanism to add might be deliberate consider-
ation for the fairness-accuracy tradeoff as discussed above.
Additionally, we made a strong assumption by creating ex-
perimental target models which optimized themselves for
accuracy only. We may wish to apply our system to mod-
els that are optimizing for other desirable properties (say,
privacy).

Potential alternative applications of our general system
might also be considered. In a Federated Learning setting,
for instance, the Agent might be inserted as an ‘impostor
client’. It would receive the aggregate model from the FL
server, measure the aggregate’s fairness using its own data
supply (with accuracy limited, of course, by whether the
client’s data is a representative sample) and then generate
an entirely synthetic client model, with ersatz weights, to
be sent back to the server to reduce the server’s bias. Such a



system might have certain drawbacks to overcome: the feed-
back loop would perhaps be infeasibly slow (which opens
another avenue for research, that of extracting information
about the server’s bias from as little feedback as possible),
and the server might flag the synthetics as outliers to be
culled (which leads into the field of data poisoning).
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