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Abstract

Research-based multiple-choice questions implemented in class with peer instruction have been
shown to be an effective tool for improving students’ engagement and learning outcomes.
Moreover, multiple- choice questions that are carefully sequenced to build on each other can be
particularly helpful for students to develop a systematic understanding of concepts pertaining to a
theme. Here, we discuss the development, validation, and implementation of a multiple-choice
question sequence (MQS) on the topic of quantum measurement in the context of wave functions
in the infinite-dimensional Hilbert space. This MQS was developed using students’ common
difficulties with quantum measurements as a guide and was implemented in a junior-/senior-level
quantum mechanics course at a large research university in the U.S. We compare student
performance on assessment tasks focusing on quantum measurement before and after the
implementation of the MQS and discuss how different difficulties were reduced and how to further
improve students’ conceptual understanding of quantum measurement in infinite-dimensional
Hilbert space.

I. Introduction

Prior studies have shown that learning quantum mechanics is challenging for students at all
levels, including advanced undergraduate and graduate students. Some studies have revealed that
students often struggle with the abstract nature of quantum concepts and the visualization of
nonintuitive phenomena [1-4]. Additionally, certain topics such as quantum measurements, time
evolution, and the probabilistic framework of quantum mechanics are particularly challenging for
students [5—8]. Furthermore, it has been found that students often overgeneralize concepts and
have difficulties with the complex mathematical formalism of quantum mechanics, including
solving partial differential equations and understanding the mathematical representation of wave
functions in potential wells [5,9—11]. Many prior studies have focused on developing pedagogical
strategies and curricular reforms aimed at fostering a deeper and more intuitive understanding of
quantum mechanics [7,8,11-25].

The Physics Education Research group at the University of Pittsburgh has been involved in
investigating student difficulties in learning quantum mechanics and using them as a guide to
develop and validate curricula and pedagogies to reduce these difficulties. Our group’s research
spans a range of topics, for example, we investigated student understanding of quantum notation
and mathematical formalism [26-32], quantum operators and observables [33-36], quantum
information and interference [37—41], and perturbation theory [42—45]. Among the different topics
undergraduates learn in quantum mechanics, quantum measurement is one of the key concepts.



The outcome of a quantum measurement is in general probabilistic and reflects the probabilistic
nature of quantum mechanics. Quantum measurement is also fundamental to quantum computation
since measurement is necessary to extract the outcome at the end of the computation. In prior
studies, quantum measurement has been found to be one of the particularly difficult topics for
students [7,36,46—50].

One reason why learning quantum measurement is challenging is the fact that concepts related
to quantum measurement are very different from those in classical mechanics, with which students
are likely to be familiar [32]. In classical mechanics, physical observables such as position and
energy have well-defined values even before the measurement. However, in a generic quantum
state, physical observables such as position and energy are usually not well defined, and there are
many possible outcomes that can be measured for an observable [51]. Also, for a quantum system,
each observable corresponds to a Hermitian operator, which has a complete set of orthonormal
eigenstates and a corresponding set of real eigenvalues. Any quantum state of this system can be
expanded as a linear superposition of the complete set of eigenstates of the operator corresponding
to any observable. When an observable is measured, the quantum state instantaneously collapses
into an eigenstate of the operator corresponding to the measured observable and we obtain a
corresponding eigenvalue as the measurement outcome. The probability of yielding or collapsing
into each eigen- state is given by the absolute square of the projection of the quantum state before
the measurement along the eigenstate. The eigenvalue spectrum of an operator can be discrete or
continuous or a combination of both. For example, for a one-dimensional infinite square well
potential energy, the energy operator H (Hamiltonian) has a discrete eigenvalue spectrum, while
the position operator X has a continuous eigenvalue spectrum. For a generic quantum state, the
measurement of energy will collapse the state into one of the energy eigenstates with a well-
defined energy, and a measurement of position will collapse the system into an extremely peaked
wave function (a position eigenstate) with a well-defined position.

Another reason learning quantum measurement is challenging is that for a given quantum
system, the probability of measuring possible values of an observable may change with time
depending upon the quantum state and the observable measured [8,50,52,53]. The time
development of quantum states is governed by the time-dependent Schrodinger equation (TDSE)
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evolution operator. This equation shows that a quantum state at time t is given by acting with the
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eigenstate, it can be expanded as a linear superposition of energy eigenstates, and the time
dependence of this quantum state is given by multiplying each expansion term by a time-dependent
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As noted, measuring an observable will collapse the state into an eigenstate of the Hermitian
operator corresponding to the observable measured. After measuring an observable, the time
development of the collapsed quantum state is governed by the TDSE. If the measured observable
is energy, the measurement of the observable will collapse the system into an energy eigenstate.
Energy eigenstates evolve in time via an overall phase factor, so the probability or probability
density of measuring any observable in an energy eigenstate will be time independent. Therefore,



energy eigenstates are also called stationary states. On the other hand, if the measured observable
corresponds to an operator that does not commute with H, e.g., position, the collapsed state after
the measurement will not be a stationary state. For example, a measurement of position will
collapse the system into a position eigenstate, which can be expanded as a linear superposition of
energy eigenstates. The time development of the position eigenstate can be obtained by
multiplying each expansion term by a corresponding time-dependent phase factor. Since these
phase factors are typically different for each term in the expansion, the state will evolve in time in
a nontrivial manner, and the probability or probability density of measuring most observables after
the position measurement will be time dependent. The only exception is the probability of
measuring energy or observables whose corresponding operators commute with H, since they are
constants of motion. This is because the probability of measuring each energy only depends on the
modulus of the expansion coefficients when the quantum state is expanded in the energy basis,
which are independent of time.

Our prior studies have shown that students have many common difficulties with quantum
measurement after lecture-based instruction [46,47,49,54]. For example, some students have
difficulties in distinguishing between eigenstates of operators corresponding to different
observables [46,47]. Research shows that some students incorrectly think that the eigenstates of
any Hermitian operator are stationary states, and some students do not relate the concept of a
stationary state with the special nature of the time evolution of that state [46,47]. In addition, some
students incorrectly think that an operator acting on a state corresponds to a measurement of the
corresponding observable [46,47]. The prior studies also show that many students have difficulties
in identifying the probability of measuring different energies in a given state, especially when the
quantum state is not explicitly given as a linear superposition of energy eigenstates, and they also
have difficulties in identifying the probability density of measuring position given a wave function
[46,47]. Some other common difficulties relate to the time development of a quantum state after a
measurement [46,47]. For example, prior research shows that some students incorrectly think that
a system will stay in a position eigenstate after measuring position, and some others think that a
system will evolve back to the initial state (before the measurement) a long time after a
measurement of an observable.

In describing and investigating these challenges, we often use the term “student difficulty” to
refer to the use of a specific idea or pattern of reasoning that differs from those we consider correct
and appropriate [55]. Similar to what Heron described [55], in our studies, we aim to uncover
what ideas students have after traditional lecture-based instruction that may hinder their ability to
develop a good conceptual understanding, as well as what ideas can be built upon to promote
student learning through research-based curricula and pedagogies [55]. By posing a variety of
conceptual questions across different contexts, we identify both correct and incorrect patterns of
reasoning. These insights help curriculum developers and instructors refine instructional
approaches to better address students’ conceptual challenges and enhance the effectiveness of
physics instruction [55].

One such instructional approach that has proven effective in addressing student difficulties is
the use of multiple-choice questions combined with peer instruction [56]. This method was first
popularized by Eric Mazur in the physics community [56]. In Mazur’s approach, an instructor
poses a multiple-choice question, and students first think by themselves and answer the question
anonymously using an electronic response system (clickers) [56]. Then, the students discuss their
thoughts with their peers, during which they can compare their answers with each other and explain
their reasoning. After the discussion, the instructor may ask for volunteers to share their discussion



or give students feedback based on students’ performance. In this process, students can have
immediate feedback from their peers and instructor, and the instructor can obtain an understanding
of students’ common difficulties and the percentage of students who understand the concepts. This
method using multiple-choice questions with peer instruction has been shown to be effective and
relatively easy to incorporate in classes without the need to greatly restructure them [57]. In
quantum mechanics, Pollock et al. [25] have developed a set of multiple-choice concept questions
that can be embedded within lectures throughout a course, alongside other instructional materials
such as homework and tutorials. Our group has also been involved in similar efforts [58].

Ding et al. built on this idea further and developed and validated multiple-choice question
sequences (MQS) for introductory physics, which students can respond to in class as a sequence
via clickers [59]. A key feature of these MQSs is the careful sequencing of questions, designed to
build upon one another, helping learners connect new information with their existing knowledge
and progressively deepen their understanding. In our prior studies [52,60—66], we developed and
validated MQS for various topics in quantum mechanics, including the Stern-Gerlach experiment
[61], time-development of two-state quantum systems [52], and quantum measurement of two-
state quantum systems [66], etc. The in-class effectiveness of each validated MQS has been
assessed through pre- and post-tests.

While several materials have been developed to enhance student understanding of quantum
measurement [25,47,50] and there is some discussion of a preliminary version of a MQS in Ref.
[47], no study has specifically addressed the effectiveness of a carefully sequenced set of multiple-
choice questions focused on improving student understanding of quantum measurement in systems
involving an infinite-dimensional Hilbert space. In this paper, we describe the development,
validation, and in-class evaluation of a multiple-choice question sequence for helping students
develop a functional understanding of quantum measurement in the context of wave functions in
the infinite-dimensional Hilbert space. The theoretical foundation and methodology for this
investigation described below are similar to our prior studies [52,60—66].

II. Theoretical Foundation

The theoretical foundations of our study on improving student understanding of quantum
measurement through a research-based multiple-choice question sequence (MQS) are informed by
two key frameworks: Preparation for future learning (PFL) and collaborative learning. Below, we
introduce these frameworks and explain how they guided the development, validation, and
implementation of the MQS.

A. Preparation for Future Learning

The preparation for future learning (PFL) framework [67,68], developed by Schwartz et al.,
emphasizes the importance of balancing efficiency and innovation in educational instruction.
Efficiency focuses on the rapid acquisition of knowledge, typically through direct instruction,
which is common in traditional educational settings. However, while this approach may lead to
quick knowledge gains, an overemphasis on efficiency may lead to “routine experts” who struggle
to apply their knowledge in novel contexts [67]. On the other hand, innovation encourages
exploration and prepares students to apply their knowledge in new situations. Yet, an overemphasis
on innovation without sufficient support may lead to “frustrated novices,” who are unable to make
meaningful progress due to a lack of foundational knowledge or guidance [67]. PFL advocates for



an instructional approach that integrates both efficiency and innovation, fostering the development
of “adaptive experts” who can use resources effectively and innovatively and transfer their
knowledge across different situations [67].

A key concept within the PFL framework is the notion of “a time for telling.” [67] This idea
posits that direct instruction, or “telling,” is most effective when it occurs at a specific moment in
the learning process—after students have had the opportunity to struggle with innovative material
on their own. For instance, Nokes-Malach and Mestre [69] found that students who first struggled
with invention tasks outperformed those who only had direct instruction when both groups were
later provided with the same resources to explain the concepts. The authors suggest that this initial
struggle prepared students for future learning and helped them recognize gaps in their
understanding, making them more receptive to subsequent instruction, thereby enhancing their
overall learning [69]. In addition, in the context of PFL, “a time for telling” plays a crucial role in
balancing innovation with efficiency [67]. While students initially explore and struggle with new
concepts (innovation), the strategic use of direct instruction (efficiency) helps solidify their
learning and enables them to apply their knowledge in future situations better.

In our study, the PFL framework guides the development, validation, and implementation of
the MQS. During the development and validation phase, apart from simpler warm-up questions
that are included to get students oriented about relevant concepts, we included questions that most
students productively struggle with in individual one-on-one interview situations regardless of
whether they ultimately answered the questions correctly. We also included both concrete and
abstract questions. While the abstract questions are more innovative, the concrete questions foster
efficiency by providing opportunities for students to apply what they have learned in more specific
contexts. In the in-class implementation phase, the integration of MQS with lectures as well as the
use of collaborative learning and whole-class discussions offer opportunities to balance innovation
and efficiency. For example, students initially think about each question and discuss them with
peers. This phase fosters productive struggle and innovation by encouraging students to apply their
knowledge in novel contexts and creates a “time for telling.” The efficiency phase corresponds to
instructors providing targeted instruction and facilitating whole-class discussions to solidify
understanding based on student responses to the MQS.

B. Collaborative learning

The development and implementation of the MQS are also informed by the collaborative
learning framework, which emphasizes the importance of social interaction and peer collaboration
in the learning process. Schwartz et al. [67,68] highlight that balancing efficiency and innovation
in instruction often requires opportunities for students to experiment with ideas and interact with
both artifacts and peers, which aligns with the collaborative learning framework.

Collaborative learning, rooted in the social constructivist theory and particularly influenced by
Vygotsky’s concept of the zone of proximal development (ZPD) [70], emphasizes the importance
of interaction, communication, and social context in the learning process. It suggests that learners
can achieve higher levels of understanding and skill when they collaborate with peers or instructors
who can provide the necessary support to bridge the gap between what learners can do
independently and what they can achieve with assistance [70]. Additionally, the effectiveness of
collaborative learning can be further understood through the lens of distributed cognition. Hutchins
[71,72] described distributed cognition as the process of sharing cognitive tasks among students,
enabling them to build upon each other’s logic, overcome the limitations of individual working



memory, and enhance overall learning outcomes. The value of collaborative learning in physics
education is well documented [56,73], especially when structures are in place to ensure individual
accountability and positive interdependence, such as through grading incentives. For example,
research has shown that students working in pairs on conceptual physics questions often
outperform those working individually [74,75]. Peer collaboration has also been shown to aid
knowledge retention, with studies indicating that pairs of students, even if both initially answered
a physics question incorrectly, can arrive at the correct solution approximately 30% of the time
through co-construction, and this process appears to aid in better performance on later individual
assessments [74,75,76]. Embedded within this collaborative learning framework is the method of
peer instruction, popularized by Mazur [56,57], which leverages conceptual multiple-choice
questions to stimulate peer discussions. This approach has been associated with improved
understanding, performance, and knowledge retention, highlighting the efficacy of collaborative
learning in complex domains such as physics.

Collaborative learning framework guides the development, validation and implementation of
the MQS sequence in our study. First, the MQS questions were designed and validated to provoke
productive discussion among students. Most alternative options or distractors in the MQS
incorporate common student difficulties that we identified in prior studies. Although many of these
knowledge pieces that students activate are inaccurate [76], they serve as valuable conceptual
resources that students bring to the learning process. By including these as distractors, the MQS
sequence invites students to discuss and debate different perspectives, encouraging them to
critically evaluate their own and others' ideas and refine their thinking through discussion and
reflection with their peers. Following single question or sequence of questions that addresses a set
of related knowledge points, we include checkpoints and whole-class discussion slides for
instructors. These checkpoints are designed to foster peer interaction by giving students the
opportunity to organize their knowledge, synthesize interconnected concepts, and collaboratively
solidify their understanding. This design reflects the collaborative learning framework’s emphasis
on structured opportunities for reflection and consensus-building through peer interaction.
Additionally, most of the questions focus on the conceptual understanding of quantum
measurement rather than rote memorization or procedural tasks, which provokes more in-depth
discussion of fundamental principles.

The implementation of MQS is also guided by a collaborative learning framework. Students
are first encouraged to think about the questions and tackle them with peers, allowing them to co-
construct knowledge through discussion. In this process, distributed cognition plays a key role, as
students share cognitive tasks, build upon each other’s reasoning, and collectively overcome the
limitations of individual working memory. This collaborative effort can help students approach
complex problems more effectively by pooling their intellectual resources and refining their ideas
through peer interaction. In addition, the whole-class discussion, after receiving proper instruction
based on student responses, further can reinforce their learning gains by synthesizing individual
and collective insights.



III. Methodology

A. Development of the Multiple-Choice Question Sequence

The development of the quantum measurement multiple-choice question sequence (MQS) was
inspired by the learning objectives and inquiry-based guided learning sequences of the Quantum
Interactive Learning Tutorial (QulLT) focusing on quantum measurement [47]. A QulLT consists
of learning sequences that are developed and validated based on cognitive task analysis from both
the expert and student perspectives and extensive research on students’ common difficulties in
learning quantum mechanics. The QulILT uses a guided inquiry-based approach to keep students
engaged and build a good knowledge structure. The QuILT should ideally be used in class in small
groups but can also be used as a self-paced learning tool, allowing students ample time to engage
with the material at their own pace. In our prior studies, we developed, validated, and implemented
quantum interactive learning tutorials (QulLTs) to help students learn various quantum mechanics
topics including quantum measurement [47], and the implementation of these materials showed
encouraging results [19,21,35,36,47,78,79].

The learning objectives of the QulLT focusing on quantum measurement include [47]: 1.
Differentiating between a Hermitian operator acting on a state and measurement of an observable.
2. Identifying the possible outcome values and outcome states of quantum measurements and
calculating the probability of measuring different values. 3. Describing the time evolution of the
quantum system after measuring different observables. 4. Identifying possible outcomes of
consecutive quantum measurements. The inquiry-based guided learning sequences in the QuILT
typically involved a combination of brief instruction, multiple-choice questions followed by
simulations, open-ended questions, and student conversation prompts [47]. The development of
multiple-choice questions and then the MQS was inspired by the learning objectives and inquiry-
based guided learning sequences of QuILT but involved substantial redesign to tailor the sequence
for in-class peer instruction within the time constraints of a typical lecture period.

First, we condensed the extensive content of the QuILT while ensuring that all key concepts
were adequately covered. For instance, the QuILT often addressed individual or closely related
knowledge points with multiple questions, so in developing the multiple-choice questions which
were later sequenced and turned into MQS, we consolidated these questions into fewer, more
comprehensive questions. One approach was to incorporate related knowledge points that were
separately addressed in multiple QuILT questions into the options of a single multiple-choice
question in the MQS. For example, instead of distinct questions for the measurement outcomes of
position and energy as in the QuILT, MQS 2.1 presents several statements about possible outcomes
of measuring position or energy, asking students to identify all correct statements. These
statements include some common incorrect student responses during the implementation of the
QulLT. This approach encouraged students to compare and contrast the differences between
measuring position and energy while learning collaboratively through discussions, challenging
each other’s ideas, and refining their understanding.

Second, since the QulILT includes various formats such as open-ended questions and student
conversation prompts, we needed to develop multiple-choice questions that could effectively cover
these contents. For example, in the QulLT, students were asked to predict the state after time
evolution or the outcomes of consecutive measurements, and they were given space to respond to
these open-ended questions and then used simulations to check their predictions. In the MQS, we



incorporated students’ common predictions as options in multiple-choice questions, offering an
opportunity for them to critically evaluate their own and others’ ideas. Following this, the built-in
checkpoint and discussion sections in the MQS guide instructors in using the simulation tool to
lead the activity and facilitate a whole-class discussion, helping to address and resolve any
inconsistencies in students’ understanding.

Third, the multiple-choice questions in the MQS were carefully sequenced to build on one
another. For example, section II of the MQS begins with questions in concrete contexts before
progressing to the same concepts in more general and abstract contexts. Similarly, in section III,
the time evolution of a system after measuring position or energy is first introduced through
mathematical expressions and then reinforced with diagrams to solidify students’ understanding.
Additionally, different concepts may be applied in similar contexts across consecutive questions.
For instance, in section IV, students are first asked to identify measurement outcomes without
considering time durations in consecutive measurements, followed by questions that include time
durations. This careful sequencing enables students to compare and contrast the premises of
consecutive questions, deepening their understanding and fostering a more cohesive knowledge
structure.

Finally, in the MQS, we added checkpoints and discussion sections following individual
questions or sequences of questions that focus on related knowledge. These can be used by
instructors to review and emphasize the key concepts covered in the previous questions and to lead
general class discussions on broader themes. These checkpoints are designed to give students the
opportunity to organize their knowledge frameworks, synthesize interconnected concepts, and
collaboratively solidify their understanding.

B. Development of the pre- and post-test

In addition to the MQS, we developed the corresponding pre- and post-test to assess students’
understanding before and after engaging with the MQS. The design of these tests was closely
aligned with the learning objectives of the MQS. Compared to the pre- and post-test for the QuILT,
the pre- and post-test for MQS have several distinct features. First, the MQS pre- and post-tests
include a broader range of consecutive measurement scenarios, such as measuring position
followed by position again or energy, and measuring energy followed by energy again or position.
For each scenario, we incorporated questions that assess understanding both with and without a
time lapse between the measurements, expanding on the QuILT pre- and post-tests, which covered
only a subset of these cases. Second, the MQS pre- and post-tests feature a multiple-choice
question focused on students’ understanding of fundamental concepts related to eigenvalues and
eigenstates of energy or position operators. This addition directly corresponds to the learning
objectives targeted in the first section of the MQS and was not included in the QuILT pre- and
post-tests. Third, the pre- and post-tests for MQS replaced some multiple-choice questions in the
QuILT about possible measurement outcomes with open-ended questions. This change was made
to elicit richer and more detailed responses from students, providing deeper insights into their
understanding. We note that we made two versions of the test, version A and version B. The only
difference between these two versions is the given initial state. In version A, the given initial state
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for version B. In the first year of our study, version A was used as pretest and version B was used
as post-test, and in the second year of our study, version B was used as pretest and version A was



used as post-test. More details about the use of the test will be discussed later in the in-class
implementation section.

C. Validation of the MQS and pre and posttests

The validation of the MQS and the corresponding pretest and post-test was an iterative process
involving multiple stages of refinement by PER researchers as well as refinements based on expert
and student interviews. This approach ensured that the MQS was pedagogically sound, aligned
with the learning objectives, and suitable for use within the time constraints of a typical lecture
period.

Using the methods discussed in the development section, we initially developed a preliminary
version of the quantum measurement multiple-choice questions which consisted of approximately
25 questions that were later sequenced by researchers into MQS. We then engaged in in-depth
discussions with four faculty members, all of whom have rich experience teaching quantum
courses, to review the materials and provide feedback. These expert interviews offered valuable
insights, ensuring that each question in the MQS and the pre- and post-tests was not only aligned
with the learning objectives but also focused on key concepts essential for understanding quantum
measurement. Additionally, the experts provided feedback on the clarity of the question wording
and the logical flow of the sequence, ensuring that the questions were clear, unambiguous, and
sequenced in a way that allowed students to progress smoothly from one concept to the next. Given
the time constraints of in-class instruction, the experts also identified which concepts could be
combined or condensed without sacrificing educational value, allowing for more efficient
coverage of the material. We note that throughout the refinement process, undergraduate students
in the quantum mechanics course were also involved in testing the questions and the feedback
collected from them also informed the iterative revisions of the MQS and pre- and post-tests.

After several rounds of expert feedback and revision, we developed a version of the quantum
measurement MQS consisting of 16 questions. Then, we conducted individual interviews with 10
students, totaling approximately 20 h using this version. During these sessions, students completed
the pretest, followed by the MQS, and then the posttest. We employed a think-aloud protocol, in
which students verbalized their thoughts while answering each question. This approach enabled
us to observe how students navigated through the MQS and the challenges they encountered. We
did not disturb them when they thought aloud to not disrupt their thought processes. After each
MQS, we first asked students for clarification of the points they may not have made, and then we
led discussions with them on each choice in the MQS question as appropriate and their perceptions
of how each question relates to others. These discussions provided further insights into how the
sequence of questions impacted students’ processing of information, allowing us to refine the
structure of MQS for a better flow. The interviews also offered valuable data on the difficulty level
of each question, guiding us in making adjustments to ensure an appropriate balance of difficulty.
We note that some questions are designed as warm-up questions and serve as an initial step in the
sequence to get students’ thoughts organized. While these questions may have relatively low
difficulty, they are still valuable. Other questions are specifically intended to promote productive
struggle and deepen student understanding. For these questions, if most students arrived at the
correct answer with correct reasoning (correctness at around 70% or above), we added some
challenging options to create more opportunities for productive struggle. Conversely, for questions
that proved very challenging for most students in the interviews (correctness at round 30% or
below), we incorporated additional scaffolding within the questions or in preceding questions to



better support student understanding. However, as the sample size of the interviewed students is
small, we did not have strict criteria for easy and difficult questions (particularly for in-class
implementation) but we wanted most questions in the sequence to be such that students would
have productive discussions with each other in class. During the think-aloud sessions for the pre-
and post-tests, we also paid attention to whether students interpreted the questions as intended and
whether their reasoning aligned with their approach during the MQS, and whether the pre- and
post-tests sufficiently covered all learning objectives discussed earlier. Based on the feedback from
both the expert and student interviews, we iteratively adjusted the MQS and the pre- and post-
tests, refining the materials over several iterations to ensure their clarity and effectiveness in
facilitating student learning. These student interviews revealed common difficulties in
understanding quantum measurements, consistent with our previous studies [46,47]. The
interviews also showed that after working through the whole MQS, students’ difficulties with
many concepts related to quantum measurement were reduced. The interviewed students also
reported that they found the scaffolding provided by the sequenced questions and discussion slides
helpful.

D. Structure of the Quantum Measurement MQS and the pre- and post-test

The quantum measurement MQS in its final iteration includes four sections (see Appendix A),
with each section focusing on a broad learning objective discussed earlier. The first section of the
MQS includes two questions (MQS 1.1 and 1.2). The learning objective of this section is to help
students differentiate between an operator acting on a state and the measurement of an observable.
The second section of the MQS includes three questions (MQS 2.1-2.3), which help students learn
about the postulates related to quantum measurement, e.g., a measurement of an observable
collapses the system into an eigenstate of the operator corresponding to that observable and returns
the eigenvalue corresponding to the eigenstate. In particular, the learning objectives include being
able to identify the possible outcomes of the measurement of an observable and calculate the
probability (for observables corresponding to operators with discrete eigenvalue spectra) or
probability density (for observables corresponding to operators with continuous eigenvalue
spectra) of measuring outcomes for a given quantum state. MQS 2.2 helps students recognize that
an operator acting on a state is not equivalent to a measurement of the corresponding observable
in that state, which has been shown to be a common difficulty in our prior studies [46,47]. The
third section of the MQS includes six questions (MQS 3.1-3.6), which aim to help students learn
the time development of the quantum state after a measurement of an observable. In particular,
MQS 3.1 and 3.2 help students to learn about the time development of a generic state and a
stationary state (energy eigenstate) and the fact that one can always expand a generic state as a
linear superposition of energy eigenstates. In MQS 3.3-3.5, we use both mathematical and pictorial
representations to help students learn about how a quantum system evolves in time after the
measurement of energy or position, respectively. MQS 3.6 helps students learn about whether the
probability (for operators with discrete eigenvalue spectra) or probability density (for operators
with continuous eigenvalue spectra) for measuring an observable depends on time. This question
also prepares students for the next section of the MQS, pertaining to consecutive measurement. In
the last section (MQS 4.1-4.5), MQS 4.1 and 4.2 help students identify the possible outcomes and
the corresponding probability densities of measuring position immediately after or a long time
after a measurement of energy. MQS 4.3 and 4.4 help students identify the possible outcomes and
the corresponding probability densities of measuring position immediately after or a long time



after a measurement of position. MQS 4.5 helps students identify the possible outcomes and the
corresponding probabilities of measuring energy immediately after or a long time after a
measurement of position.

The final version of the pretest and post-test (see Appendix B) contains four questions. We
note that Appendix B only shows the version A of the test. The only difference between these two
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while the initial state is ¥(x,0) = %‘{’1 x) + %‘{’2 (x) for version B. The first question is a multiple-

choice question, while the remaining questions are open-ended, requiring both an answer and
corresponding reasoning. Question 2 is divided into two sub-questions (2a, 2b), and Questions 3
and 4 each include five sub-questions (3a—3e, 4a—4e). Question 1.1 evaluates whether students
understand that the action of the Hamiltonian operator acting on a generic state does not correspond
to the measurement of energy and leads to the collapse of the state. Similarly, question 1.2
evaluates student understanding of the position operator acting on a generic state. Questions 2a
and 2b assess students’ understanding of the possible outcomes and the corresponding probability
or probability density of measuring energy or position in a given quantum state. Questions 3 and
4 evaluate students’ understanding of the time evolution of a quantum system after measuring
energy or position and the possible outcomes and corresponding probability or probability
densities of measuring energy or position in a consecutive sequence.

E. Participants and course context

The participants in this study were students enrolled in a junior- or senior-level quantum
mechanics course at a large research university in the United States, for which calculus 1-3 and
linear algebra are prerequisites. The study was conducted over two consecutive academic years,
with the same instructor teaching the course in both years. In the first year, 23 students participated
in the pretest, and 25 students completed the MQS and post-test. In the second year, 18 students
participated in both the pre- and post-test. To compare students’ performance in the pre- and post-
test, we focused on those who completed both the pre- and post-test (N =41). All participants were
physics majors. The instructor used Griffiths’ Introduction to Quantum Mechanics [51] as the
primary textbook but followed a “spins-first” approach. The course began with the chapter on
formalism (chapter 3), followed by spin-1/2 in chapter 4, before returning to chapters 1 and 2 on
wave functions in infinite-dimensional Hilbert space. This approach allowed the course to cover
material related to two-state systems early, before introducing “infinite square well” and “simple
harmonic oscillator” involving infinite-dimensional Hilbert space. The course meets for three 50-
min class periods each week. Students were assigned weekly homework, and the course included
two midterm exams and a final exam. The instructor has significant experience teaching quantum
mechanics at the undergraduate level. Additionally, the instructor is highly supportive of physics
education research and has previously utilized research-based learning tools in their teaching.

F. In-Class Implementation
Before the in-class implementation of the MQS, students had traditional lecture-based
instruction covering all concepts related to quantum measurement targeted in the pretest. Around
5.5 class periods over several weeks, prior to the pretest, were dedicated to the topic of quantum
measurement, distributed throughout the semester. Specifically, when introducing the formalism



of quantum mechanics in chapter 3, about 2 class periods were dedicated to lectures on the
postulates of quantum measurement without reference to a specific quantum system such as an
infinite square well or simple harmonic oscillator consistent with the treatment in the Griffiths’
textbook. When introducing chapter 4, around 1.5 class period focused on quantum measurement
in the context of spinl/2 systems. Similarly, around two class periods were dedicated to quantum
measurement in the context of a one-dimensional infinite square well and harmonic oscillator
during the introduction of chapter 2. Corresponding homework assignments were given spread
over different weeks as these topics were covered in the lectures from different chapters. Thus,
before taking the pretest, students had been exposed to the topic of quantum measurement multiple
times throughout the semester in various contexts including when the instructor covered quantum
measurement in chapters 3, 4, and 2. The pretest was administered during the subsequent class
period following the lecture, taking about 25 min. The MQS was then implemented over the next
two consecutive class periods, each lasting 50 minutes. After completing the MQS, the post-test
was administered during the subsequent class period, again taking about 25 min.

During the MQS sessions, students were first asked to think about each MQS question and
discuss their thoughts with their peers before voting using electronic response systems (clickers)
[56]. The time given to students for thinking and answering each question is around 1-2 min. If
most students answered correctly (e.g., a warm-up question), the instructor would briefly review
the question, emphasize key concepts, address any confusion, and then move on to the next
question. For questions that are more challenging, it took longer for students to discuss and
respond. If a significant number of students answered incorrectly, the instructor provided
additional scaffolding, encouraged further discussion, and sometimes had students revote. After a
single question or sequence of questions that addresses a set of related knowledge points, the
instructor would lead a whole-class discussion to explore the relationships between the concepts
covered in the previous questions and to check students’ understanding. On average, around 4-5
min was devoted to class discussion for each question. Therefore, the time ratio devoted to MQS
and peer instruction to general class discussions is around 2/5.

The only other content assigned during this period was a traditional textbook homework from
chapter 2, assigned in the same week. While this study did not include a control group that
completed only the homework for comparison, our previous research has shown that student post-
test performance significantly improves when research-based tools like the MQS are used in
instruction, compared to control groups of students who receive only traditional instruction and
homework [47]. Also, in this study, students had done some homework problems on quantum
measurement from chapters 3 and 4 before the pretest. That said, this study is nonetheless quasi-
experimental in design, given the various factors such as homework, over which we did not have
complete control.

As noted earlier, there are two versions of the test to evaluate student learning gains. In the
first year of our study, version A was used as the pretest and version B as the post-test, while in
the second year, version B was used as the pretest and version A as the post-test. Students’
responses to the pretest and post-test were graded by two researchers. Each sub-question was
scored out of 1 or 2 points, with partial credit given for correct answers that lacked proper
justification or provided incorrect reasoning when justification was requested. The inter-rater
reliability was greater than 95%.

IV. Results and Discussion



Table 2 compares students’ performances on the pretest (after traditional lecture-based
instruction) and on the posttest (after students had engaged with the quantum measurement MQS)
across 2 years of implementation of the MQS. The normalized gain was calculated as g = (post%
— pre%)/(100% — pre%) [80,81]. The effect size was calculated as Cohen’s d = (ppost —
Upre) Opooteds Where e and piy,,s Tepresent students’ average correctness in the pre-test and
post-test, respectively, and 0y,441¢q 18 the pooled standard deviation, which is the weighted average
of standard deviations of pre- and post-test [80]. Both measures offer valuable insights into student
performance but have different strengths and limitations. Normalized gain is effective at capturing
relative improvement in student performance, making it useful for assessing how much progress
has been made relative to what was possible. However, it is sensitive at the extremes; small
improvements near the maximum score and large gains from lower baselines can yield similar
normalized gains, despite representing different educational outcomes [82]. On the other hand,
Cohen’s d represents the standardized difference between two means, providing a more stable
measure of the magnitude of change, independent of initial performance levels [82].

In this study, we report both normalized gain and Cohen’s d together to provide complementary
perspectives of student learning outcomes, and we classified the degree of student improvement
from the pretest to the post-test based on Cohen’s d: improvements with Cohen’s d = 0.70 were
categorized as “major improvement,” while improvements with Cohen’s d <0.70 were categorized
as “some improvement.” As shown in Table 1, most questions show improvements across both
years of implementation. In particular, students in both years exhibited major improvements in
questions 4a, 4b, and 4d. In addition, year 1 students showed major improvements in questions 2b
and 4c, while year 2 students showed major improvements in questions 3¢ and 4e.

We note that students in year 2 began with higher pretest scores on some questions compared
to those in year 1. As mentioned earlier, the only difference between the pretests administered in
the 2 years was the coefficients in the given initial state, which is unlikely to result in a significant
difference in perceived difficulty for students. Thus, this difference in initial performance may
indicate that instructor’s traditional instruction may have improved after the first year of MQS
implementation, as they became more familiar with the common difficulties students face in
understanding quantum measurement so they may have paid more attention to these difficulties
during the lecture. However, in the following analysis in Table 2, we combined the data from both
years to balance out potential biases and to increase the sample size, thereby enhancing the
statistical power of our analysis.



Table 1. Comparison of mean pre-test and post-test scores for each question, along with corresponding normalized
gains and effect sizes, for students who engaged with the quantum measurement MQS (In Year 1, N=23 for both pre-
and post-tests; in Year 2, N=18 for both pre- and post-tests).

Year 1 Year 2 Normalized gain Cohen’s d
Question Pre Post Pre Post Year 1 Year 2 Year 1 Year 2
(version A) | (version B) | (version B) | (version A)

1 81% 84% 81% 89% 0.15 0.43 0.12 0.32
2a 93% 98% 89% 100% 0.67 1.00 0.24 0.57
2b 43% 85% 69% 89% 0.73 0.64 1.18 0.58
3a 86% 93% 94% 94% 0.50 0.00 0.25 0.00
3b 91% 91% 94% 94% 0.00 0.00 0.00 0.00
3c 63% 72% 63% 93% 0.24 0.81 0.19 0.83
3d 57% 70% 61% 81% 0.30 0.50 0.33 0.54
3e 48% 67% 58% 78% 0.38 0.47 0.42 0.42
4a 13% 65% 39% 89% 0.60 0.82 1.24 1.18
4b 65% 91% 64% 94% 0.75 0.85 0.73 0.81
4c 48% 93% 86% 100% 0.88 1.00 1.20 0.59
4d 0% 41% 14% 75% 0.41 0.65 1.19 1.38
4e 33% 59% 31% 61% 0.39 0.44 0.63 0.77

Table 2. Comparison of mean pre-test (weighted average of versions A and B) and post-test scores (weighted average
of versions B and A) for each question, along with corresponding normalized gains and effect sizes, for students who
engaged with the quantum measurement MQS using combined data from two years of implementation (N=41 for both
the pre-test and post-test).

Question Pre-test mean Post-test mean Normalized gain Cohen’s d

1 81% 86% 0.28 0.21
2a 91% 99% 0.86 0.40
2b 55% 87% 0.70 0.90
3a 89% 93% 0.38 0.16
3b 93% 93% 0.00 0.00
3c 63% 81% 0.49 0.43
3d 58% 74% 0.38 0.42
3e 52% 72% 0.41 0.42
4a 24% 76% 0.68 1.18
4b 65% 93% 0.79 0.78
4c 65% 96% 0.90 0.91
4d 6% 54% 0.51 1.24
4e 32% 60% 0.41 0.70

Table 2 shows the mean pre-test and mean post-test scores on each question with the combined
two years of data. As shown in the table, students’ average correctness for questions 1, 2a, 3a, and
3b in the pretest was higher than 80%, which indicates that after a traditional lecture-based



introduction, students had a relatively good understanding of single energy measurement and
consecutive energy measurements. This result is reasonable, considering there were approximately
5-6 class periods of lecture instruction on quantum measurement topics, along with homework
assignments on quantum measurement from chapters 3 and 4, prior to the pretest. However, the
average correctness for other questions was low in the pretest. In particular, students’ average
correctness on questions 4a, 4d, and 4e was below 40% in the pre-test. Question 4a tests students’
understanding of the wave function immediately after a position measurement, which is a delta
function, and questions 4d and 4e assess students’ understanding of the possible outcomes of an
energy measurement immediately after or a long time after the measurement of position in 4a.
Students’ average correctness for the rest of the questions (2b, 3¢, 3d, 3e, 4b, and 4c¢) was around
60% on the pretest, which indicates that students also had difficulties in understanding the concepts
assessed by these questions. In particular, question 2b assesses students’ understanding of the
possible outcomes and the corresponding probability densities of measuring position in a given
quantum state. Questions 3¢, 3d, and 3e assess students’ understanding of the possible outcomes
of energy or position measurements after a measurement of energy. Questions 4b and 4c assess
students’ understanding of the possible outcomes of a position measurement made immediately
after or a long time after a measurement of position.

By comparing students’ average correctness on different questions, we observed that students
were less likely to answer correctly on questions involving position measurement (such as 4b)
compared to those involving energy measurement (such as 3b). Students also struggled more with
questions that required identifying the possible outcomes of consecutive measurements (such as
3¢) than with those involving a single measurement (such as 2a and 3a). Additionally, students’
average correctness on questions involving consecutive measurements with a time interval
between them (such as 3¢) was lower than on those involving measurements made in immediate
succession (such as 3b). Moreover, questions about measuring energy after a position
measurement (such as 4d and 4e) appeared to be more challenging for students compared to
questions about measuring position after an energy measurement (such as 3d and 3e). Below, we
provide a detailed analysis of the specific areas where students struggled and compare their
performance on the pretest and post-test.

Table 2 shows an overall improvement in students’ performance from the pretest to post-test.
In particular, questions 2b, 4b, and 4c show major improvements. We note that the average
correctness was around 60% for questions 2b, 4b, and 4c¢ on the pretest, and it improved to around
90% on the post-test. Question 2b asks about the probability density for measuring position in state

Y(x,0) = \/% Y (x) + \/% ¥, (x) for one-dimensional infinite square well (0<x<a). One common

difficulty we found from student-written responses is that some students could not distinguish
between the eigenstates of energy and position operators [46,47]. Some students wrote that the
probability density of measuring position in the state W(x,0) is “|¥;(x)|? or |¥,(x)|?>”. One
possible reason for this difficulty could be that since wave functions are often discussed in the
context of energy eigenstates or written as a linear superposition of energy eigenstates, students
may assume that each term in the linear superposition corresponds to a possible measurement
outcome regardless of the observable measured. Some students wrote the possible outcomes of a
position measurement as “x,,”. Another possible explanation is that students may have assumed
that the energy was measured first (as in question 2a) before the position measurement.
Questions 4b and 4c assess students’ understanding of the possible outcomes of a position
measurement made immediately after or a long time after the first measurement of position. We



note that on the pretest, some students wrote that the second measurement of the position will
always yield the same result as the first position measurement regardless of whether there is a time
interval between the two measurements because “the first measurement collapsed the state” or “the
position measurement is time independent.” These types of answers reflect students’ difficulties
in distinguishing between stationary states and eigenstates of other operators [46,47], e.g., position,
that do not commute with the Hamiltonian. Some other students noted that position eigenstates
evolve with time, but they thought that the time development of position eigenstates is such that
the probability density of measuring position is not affected. For example, one student who stated
that the probability of measuring position is time independent explained, “the time [phase] factor
will be all that changed.” This reasoning also indicates that students may have difficulty in
distinguishing between the time development of energy eigenstates and those of other operators
such as position [46,47]. As shown in Table 2, after the implementation of the MQS, students had
significant improvement in their performance related to single position measurement and
consecutive position measurements (evidenced by performance on questions 2b, 4b, and 4c).

As shown in Table 2, while questions 4a, 4d, and 4e also show major improvements based on
our criteria, the average correctness percentages for questions 4a, 4d, and 4e were very low on the
pretest and there is still room for improvement in the post-test. Question 4a asks students to identify

the wave function after a measurement of position in state ¥ (x,0) = \/% P (x)+ \E ¥, (x) with

outcome x,, and questions 4d and 4e ask students to identify the possible outcomes of an energy
measurement made immediately after or a long time after the position measurement in 4a. As we
can see in Table II, the correctness for question 4a was only 24% in the pretest. The most common

student response was that the wave function right after the position measurement is \/% ¥ (x) +

\/% ¥,(x,), which is obtained by simply replacing the variable x in the initial state W(x, 0) with

position x,. However, this expression is actually the probability amplitude at x = x, before the
position measurement. This result shows that some students had difficulties in recognizing that a
position measurement will instantaneously collapse the wave function to a delta function in
position [46]. Another common incorrect answer to question 4a was “¥; (x,) or ¥, (x,)”, which
also shows that some students had difficulties in distinguishing between energy eigenstates and
position eigenstates as discussed earlier [46,47]. After the implementation of the MQS, around
two-thirds of the students who answered 4a incorrectly in the pretest were able to recognize that a
delta function is the outcome for the state right after a position measurement in the post-test, while
some students still answered “¥(x,)” or “¥;(x,) or ¥, (x,)”.

Question 4d asks students to identify the probability of measuring E; immediately after the
position measurement in 4a. This question requires students to expand the delta function as a linear
superposition of energy eigenstates and then express the probability of measuring E; using the
expansion coefficient for the ground state. We note that on the pretest, no students provided the

correct response. Many students wrote that the probability of measuring E; is %, obtained by

simply squaring the coefficient of ¥; (x) in the initial state W(x, 0). This response suggests that
these students failed to recognize that after a position measurement, the wave function collapses
to a position eigenstate. Since the initial wave function was not a position eigenstate, measuring
position would change the wave function to a new function, which is a different superposition of
energy eigenstates. In other words, these students appeared to ignore the collapse of the wave



function during the position measurement, leading them to incorrectly use the initial state’s energy
expansion coefficients to calculate the probability of measuring E;. Table 2 shows that on the post-
test, many students were able to express the probability of measuring E; by projecting the delta
function along state ¥; (x). For example, on the post-test, some students wrote statements such as
“the system is in a superposition of an infinite number of energy eigenstates and the probability of
measuring E; is [{¥; (x)|8(x — x,))|?”. Even though keeping the wavefunction with x in Dirac
notation is not accurate, this example shows students’ improvement at the conceptual level about
probability of measuring energy after the implementation of the MQS.

Question 4e asks about the time dependence of the probability of measuring E1 after a position
measurement. This question is challenging for students because the system itself is not in a
stationary state and will evolve in time in a nontrivial manner, but the probability of measuring
each eigenenergy is time independent since the Hamiltonian is a constant of motion. Students need
to recognize that any state can be expanded as a linear superposition of energy eigenstates, and
each expansion coefficient evolves in time via a different phase factor, but the phase factor will
cancel out when calculating the probability of measuring a specific energy (by taking the absolute
square). A common difficulty that students had was that they thought that since the state is not a
stationary state, the probability for measurement of a particular value of energy should also change

with time [46,47]. Moreover, some students stated that the probability of measuring E; will be%
with explanation such as this, “after a long time, the wavefunction will evolve back to ¥ (x,0) =

\/% ¥ (x)+ \/% ¥, (x)”. On the post-test, the correctness of 4¢ increased indicating that students’

understanding of energy measurements after a position measurement improved after the
implementation of the quantum measurement MQS.

In addition, Table 2 shows some improvement in students’ performances on questions 3c, 3d,
and 3e. The correctness of these questions on the pretest was around 50%—-60% and improved to
around 70%-80% on the posttest. These three questions ask about the possible outcomes of
measuring energy or position immediately after or a long time after a measurement of energy.
Question 3¢ asks about the possible outcomes of measuring energy a long time after an energy
measurement that yields E;. One common difficulty with this question was that some students
thought that the system would evolve to a linear superposition of energy eigenstates after the first
measurement of energy. For example, one student stated that the second energy measurement
would yield a different value from the first one because “the wave function will no longer be
collapsed, so you could measure E; or E, [for the second measurement]”. Question 3d asks about
the probability density of measuring position at x = x, immediately after an energy measurement
that yields E;. Even though many students correctly identified that after the energy measurement,
the state will collapse to ¥; (x), some of them still had difficulties in identifying the probability
density for the position measurement [46,47]. For example, one student stated, “the probability
density is 100% at x = x,, because the system has collapsed to ¥, (x)”. This response again shows
students’ difficulty in distinguishing between eigenstates of different operators corresponding to
observables (e.g., Hamiltonian and position).

In addition, we note that some students had difficulties in writing the probability density for a
given wave function, which was reflected in students’ responses to both questions 2d and 3d. For
example, some students stated something similar to this student’s explanation, “the probability
density of measuring position is 0 because position is a single point,” and some put a position
operator in front of the wave function, e.g., “|&¥, (x)|?”, or multiplied the wavefunction by x, e.g.,
“lx®, (x)|?” to represent the probability density. Some students had difficulties in distinguishing



between probability density and probability and used an integral such as foxolllll (x)|%dx to

represent probability density. Question 3e asks whether the probability density of measuring
position changes with time after an energy measurement. Students who incorrectly stated that the
probability density will change with time usually had two types of reasoning: the state itself will
evolve with time after the energy measurement or since the position operator does not commute
with the energy operator (Hamiltonian), the measurement of position is time dependent even in an
energy eigenstate. In the post-test, many students correctly stated that for a stationary state, the
probability or probability density of measuring any observable will be time independent.

Even though most students answered questions 1, 2a, 3a, and 3b correctly on the pretest as
shown in Table II, we find some common difficulties among students who did not answer these
questions correctly. For example, in our interviews, students who chose H¥(x) = E, i, (X) as a
correct statement in question 1 explained that acting with an operator on a state will collapse this
state to an eigenstate of the operator corresponding to the observable, which is consistent with the
findings of prior studies [46,47]. We also found that some students were confused about the
normalization of quantum states after energy measurement. For example, question 3a asks about

the normalized state after a measurement of energy in state ¥(x,0) = \E‘Pl (x) + \/E‘PZ (x) that

yields E;, and some students incorrectly stated \/% ¥, (x). A summary of the student difficulties

found in written pre-test and post-test is presented in Table 3.

Table 3. Summary of the learning objectives and related conceptual difficulties addressed by the MQS. Below,
specific examples of difficulties with quantum measurement along with the MQS questions that address them
are listed. In the comments section, we include the relevant pre-/post-test question numbers and whether post-
test showed ‘some’ improvement or ‘major’ improvement compared to the pre-test. Improvements with
Cohen’s d > 0.70 were categorized as “Major improvement,” while improvements with Cohen’s d < 0.70 were
categorized as “Some improvement”.

Learning objectives MQS | Difficulties Test questions and
comments

Differentiating between 1.1, | Responses consistent with incorrect reasoning that an operator | 1
operator acting on a state and 1.2, acting on a state corresponds to a measurement of the | Some improvement
measurement of an observable. | 2.2 corresponding observable.
Identifying the possible 2.1, | Position measurement 2b
outcome values and outcome 2.2, « Stating that a position measurement in a given state will Major improvement
states of measurements. 3.3, yield discrete possible outcomes, e.g., “x,”.

34 * Not recognizing that the wavefunction will collapse to a 4a

delta function after a position measurement:
+ Stating that the wavefunction after a position

measurement that yields x; is \/% ¥, (x0) + \/% ¥, (%)

» Stating that the wavefunction after a position measurement
that yields x, is ¥; (xg) or ¥, (xg).

Major improvement




2.1,

Energy measurement

2a

2.2, * Not writing the correct normalized state after an energy | Some improvement
3.3, measurement, e.g., stating that the normalized state after a
35 . 2 5 3a
measurement of energy in state \/; Y (x) + \]; Y, (x) that Some improvement
yields E; is\/g ¥V, (x).
« Difficulties in distinguishing between measurement
outcomes and probability amplitude of measuring them,
e.g., stating that the possible values obtained from an
energy measurement in state \/% Y (x) + \/% W, (x) are
\/% and \/%
Calculating the probability or 2.3, | Position measurement 2b
probability density of 3.6, |« Stating that the probability density for measuring position in | Major improvement
measuring energy and position. | 4.1
& CHCIy ancp 4o | state \Ewl () + \/gtpz () is “|®, (0|2 or |, (x)[2”. 3
4.4 . Stating that the probability density of measuring Some improvement
position in state \/%‘Pl (x) + \/gll’z (x)ise.g., 2/7 or
5/7.
» Using an incorrect integral to represent probability density,
e.g., “f % (x)dx” or “ [ x| ¥ (x0) [2dx”.
* Acting with the position operator on the wavefunction, e.g.,
“|&¥; (x)|?” or multiplying the wavefunction by x, e.g.,
“|x¥; (x)|?” to represent probability density.
« Stating that the probability density is 0 because position is a
single point.
2.3, Energy measurement 4d
3.1, | * Notrecognizing the need to expand a generic wavefunction as | Major improvement
3.6, a linear superposition of energy eigenstates to identify the
4.5 probability of measuring different energies. 4e
+ Difficulties in calculating the expansion coefficients for Major improvement
each energy eigenstate when a generic wavefunction is not
explicitly written as a linear superposition of energy
eigenstates.
Describing the time evolution 3.1, Stationary state 3c
of the quantum system after 3.2, * Not recognizing that energy eigenstates evolve in time viaa | Some improvement
measuring different 3.3, trivial overall time-dependent phase factor.
observables. 3.5 * Stating that a quantum system will evolve back to its 3e
original state (before the measurement) a long time after a Some improvement
measurement of energy.
3.1, Non-stationary state 4c
3.3, » Stating that a position eigenstate does not evolve in time Major improvement
3.4, (system is stuck in a position eigenstate because it is an
3.6 eigenstate). 4e

Major improvement




» Stating that a quantum system will evolve back to its
original state (before the measurement) a long time after a
measurement of position.

* Not recognizing that the probability density for position
measurement in a non-stationary state changes with time.

Identifying possible outcomes 3.3, Measurement after measuring energy 3c
and probability after 3.5, |+ Notrecognizing that the probability/probability density of Some improvement
consecutive measurements. 4.2 measuring any observable (with no explicit time-
dependence) is time independent in an energy eigenstate 3e
(stationary state). Some improvement
3.3, | Measurement after measuring position 4b
3.4, |+ Notrecognizing that consecutive position measurements Major improvement
3.6, made in immediate succession will yield the same outcomes.
4.3, |« Stating that a position eigenstate evolves in time via a trivial | 4c
4.4, overall time-dependent phase factor so that the probability Major improvement
4.5 density for position measurement will be time-independent

if the system was in a position eigenstate at time ¢ =0

* Not recognizing that the probability of measuring a
particular value of energy is time independent regardless of
state since energy is a constant of motion.

+ Stating that the probability of measuring ground state energy

4d
Major improvement

4e
Major improvement

after a position measurement is 100% because the state has
collapsed.

a. Summary and general discussion

In this study, we discussed the development, validation, and in-class implementation of a
multiple-choice question sequence (MQS) designed to enhance students’ understanding of
quantum measurements for quantum systems in an infinite-dimensional Hilbert space. The MQS
was developed based on the learning objectives and inquiry-based sequences from the interactive
tutorial (QulLT) that we previously developed for the same topic [46,47]. It condenses the
extensive content of the QuILT into a format that can be effectively administered within the
constraints of limited class time. Additionally, the multiple-choice options include common
incorrect student responses as distractors, providing opportunities for peer instruction and
productive struggle. Furthermore, the questions in the MQS were carefully sequenced to build
upon each other, helping students organize, extend, and refine their knowledge structure while
developing a deeper understanding of various aspects of quantum measurement. The 16 multiple-
choice questions in the MQS are divided into four sections, each focusing on one broad learning
objective.

The quantum measurement MQS was implemented in a junior-/senior-level quantum
mechanics course at a large research university in the U.S. The implementation involved students
answering the questions anonymously using an electronic response system (clickers) [83],
followed by peer instruction and feedback from the instructor. We used a pre-/post-test to assess
students’ understanding before and after the implementation of the MQS. We found that even after




traditional lectures, students continued to struggle with several concepts related to quantum
measurement, such as distinguishing between applying an operator to a state and measuring an
observable in a state, differentiating between energy eigenstates and eigenstates of other operators,
and understanding the time evolution of a quantum system after a measurement. These findings
are consistent with prior studies on student understanding of quantum measurement [46,50,84].

Our results show that the average correctness across questions improved after the MQS. The
most significant improvements were observed in students’ performance on questions related to
single position measurement, consecutive position measurements, and energy measurements
following a position measurement. There were also improvements in questions related to
measurements of energy or position taken immediately after or a long time after an energy
measurement. While prior studies [46,50] have demonstrated that research-based tutorials can
enhance students’ understanding of quantum measurement, these tutorials often involve open-
ended questions and typically require a substantial time investment, such as during class, recitation
sessions, or as homework assignments. This study contributes to the literature by showing that a
carefully sequenced multiple-choice question set can effectively enhance student understanding of
quantum measurements in systems involving infinite-dimensional Hilbert spaces.

We note that our results eliminate the possibility that students were learning through the test
itself for several reasons. First, the later questions on the post-test, such as 4d and 4e (which involve
measuring energy after a position measurement), were more challenging for students than the
earlier questions, like 3d and 3e (which involve measuring position after an energy measurement).
This suggests that students were not simply applying knowledge gained from earlier questions to
later ones. Moreover, even though both question sets 3 and 4 focus on consecutive measurements,
they differ significantly. In question 3, the measurement sequence begins with energy
measurement, while in question 4, it begins with position measurement. The subsequent time
development of the system after energy measurement and position measurement is very different,
making it unlikely that students could learn how to approach question 4 based on their experience
with question 3 alone.

In addition, we note that among the 41 students matched from pretest to post-test, only three
did not show improvement. Two of these students continued to struggle with understanding the
time evolution of a quantum system after measuring energy, compared to after measuring other
observables. The third student still had difficulty correctly expressing the probability density for
position measurements. These challenges are reflected in their responses to questions 3e and 3d,
which some other students also continued to find difficult. Additionally, in question 4a, some
students still struggled with the fact that the wave function collapses to a delta function after a
position measurement. For questions 4d and 4e, while some students did not answer correctly on
both the pre- and post-tests, there were noticeable shifts in their reasoning. For instance, in question
4d, which asks for the probability of measuring E; immediately after a position measurement of

an initial state \/% Y, (%) + \/%‘PZ (x), many students incorrectly answered ‘“2/7” in the pretest. In

the post-test, however, some demonstrated a shift toward correct reasoning by stating that the
probability of measuring E; would be unknown or very small because “any energy can be
measured.” These responses reflect a better understanding of the fact that a position eigenstate is
a linear superposition of many energy eigenstates. Similarly, for question 4e, which asks whether
the probability of measuring E; after a position measurement depends on time, some students
stated in the pretest that it would not depend on time because the position measurement had
collapsed the state. Although some of these students still did not arrive at the correct answer in the



post-test, incorrectly stating that the probability of measuring E; would depend on time because
“the system will evolve with time,” their reasoning indicated a shift in understanding toward
recognizing that position eigenstates evolve with time in a nontrivial manner. These examples
suggest that even when students did not reach the correct answers in the post-test, we find some
evidence at least for some students that their understanding may have moved closer to what would
make it easier to help them learn the correct concepts.

While the findings of this study are promising, there are several limitations to consider. One
limitation is that the post-test was administered shortly after the completion of the MQS sessions,
which might raise concerns about whether the improved post-test performance is due to short-term
memory effects rather than a more enduring understanding. Although this issue should be
investigated in later studies, our experience suggests that this is unlikely to be a major factor, as
students typically struggle with similar questions even when they have previously encountered the
correct answers. Also, the post-test, which was implemented in the next class period after the MQS,
had an open-ended format for the questions, which required students to explain their reasoning.
This would also make it more challenging for students to rely on memorization. Moreover, we did
observe a shift in student understanding toward correct reasoning by analyzing their responses to
the test as discussed in the result section. Although this study did not include a retention test, our
previous research with retention tests conducted at the end of the course has shown that students
retain their learning gains over a longer period after engaging with MQS sessions [65,66]. Another
limitation is the quasi-experimental design of the study. We did not include a control group that
received only traditional instruction without the MQS intervention. However, it is important to
note that the only assignment during the week of MQS implementation was traditional textbook
homework. While we cannot entirely dismiss the potential influence of the homework, our
previous research on tutorials and clicker questions in quantum mechanics consistently
demonstrates that when controlling for factors like textbook study or homework [47], groups
engaging with clicker questions still show greater learning gains. Given this, we believe the
positive outcomes observed in this study are likely attributable to the MQS intervention.

Acknowledgments

This research was carried out in accordance with the principles outlined in the University of
Pittsburgh Institutional Review Board (IRB) ethical policy. We thank the NSF for Grant No. PHY -
2309260. We thank all students whose data were analyzed and Dr. Robert P. Devaty for his
constructive feedback on the manuscript. We also thank many members of the physics education
group at Pitt for their help.



Appendix A Quantum Measurement MQS

The multiple-choice questions in the sequence and notes to the instructors are reproduced below.
The correct answers are in boldface.
Notes to Instructor

In general, an operator acting on a state can be represented in Dirac notation as Q|W), where
Q stands for a quantum operator, and |¥) stands for a quantum state.
In this Multiple-choice Question Sequence (MQS), we write Q |¥') in position representation

A N . 0 A A .0 A
as (x|Q|LP) =0 (x, —ih 5) Y(x) = Q¥(x), where Q (x, —ih 5) (shorten as Q) is the
operator Q in position representation, and W(x) is the wavefunction in position representation
corresponding to state |W¥).
In order to go from the Dirac notation to position representation, one should take the scalar
product with (x|

A o 2
Q1w) —— (x|Q|w) £ @ (v —ih ) ¥(o)

|¥) —— (x|¥) = P(x)
In this Multiple-choice Question Sequence below, none of the operators explicitly depend on
time.

MQS 1.1)
Choose the following that is correct regarding the Hamiltonian operator H acting on a generic
wavefunction ¥ (x) which is not an eigenstate of H.

A.

mOOWw

HY(x) = E¥(x)
ﬁl{’(x) = E U, (%)

HY(x) = E,
HY(x) = ¢, (x)
None of the above

Class discussion for MQS 1.1

Some students may incorrectly think that an operator acting on a state corresponds to a
measurement of the corresponding observable and that this process of measuring the
observable is given, e.g., by equations such as H¥(x) = E,,(x) for measurement of
energy.

Some students may incorrectly think that whenever an operator Q corresponding to a
physical observable Q acts on any generic state W(x), it will yield a corresponding
eigenvalue and the same state back, i.e., Q ¥(x) = A ¥(x) (e.g., H¥(x) = E¥(x))

But only when W, (x) is an eigenstate of Q, we obtain Q ¥, (x) = q¥,;(x), where q is the
corresponding eigenvalue.

A generic wave function W(x) can be expanded in terms of a complete set of eigenstates of
any Hermitian operator corresponding to an observable, e.g., if A, (x) = E,{,(x)

s Y = Zn Ch Wn (%), where C,, =(lpn|l'p>



Thus, H acting on a generic state W(x) can be represented by H¥(x) = ¥, HC, V,,(x) =
2n EnCp Wn (%)

If the instructor has covered Dirac notation, they can also discuss:
Because W(x) = (x|¥), |¥) = Xn Cy|Wn) , and H[y) = Ey[y)

MQS 1.2)
Choose the statement that is correct regarding the position operator X acting on a generic
wavefunction ¥ (x).

moAawp>

W(x) =x'

RP(x) = x'8(x—x")
2P (x) = x¥(x)
X¥P(x) = 8(x —x')
None of the above

Class discussion for MQS 1.2

This question is similar in spirit to the previous one about the Hamiltonian operator.

In the position representation, ¥ (x) = xW¥(x). This is because in position representation, X =
X. This does not mean that W(x) is an eigenstate of X.

* Ifyou have covered Dirac notation, you can also discuss:

Because ¥ (x) = (x|¥), |¥) = ffooo P(x") |x)dx', R |x") = x'|x") and (x'|® = x"(x'|

R6(x —x') = (x|X|x") = X' (x|x) = x'6(x — x') is an eigenvalue equation, in which position
operator X is acting on a position eigenstate 6(x — x') (in the position representation) with
cigenvalue x'. Here, X’ is a number, which is the eigenvalue corresponding to the position
eigenstate 6(x — x').

RW(x) = R(x|W) = [ REXNK Wy dx = [ x8(x — xIP(x) dx = x¥(x).

Please note that R¥(x) = xW(x) is not an eigenvalue equation. In position representation,
position operator X acting on any generic wave function W(x) or (x|¥) simply corresponds to
multiplication by x.

Or you can start with a generic expression of the position operator X acting on a state |¥),
which is X|¥). By multiplying it the bra (x|, we can write this expression in the position
representation (x|X|W). Since (x|X|¥) = x(x|¥) = x¥(x), position operator X acting on
any generic wave function W(x) or (x|¥) simply corresponds to multiplication by x, i.e.,
¥ (x) = x¥(x).

Checkpoints

An operator (corresponding to an observable) acting on a state does NOT correspond to the
measurement of the corresponding observable.

What is the result of X acting on a position eigenstate?

What is the result of X acting on a generic state?

What is the result of H acting on an energy eigenstate?

What is the result of H acting on a generic state?

(MQS 2.1)



Suppose at time t = 0, the initial wavefunction of a particle in a 1D infinite square well of width

a (0<x<a)is¥(x) = % (¥, (x) + ¥,(x)), where ¥; (x) and ¥, (x) are the ground state and first

excited state wavefunctions. Choose all of the following statements that are correct for

measurements on the system in this state at = 0.

1. A measurement of the energy can yield any energy E,,, where n=1,2,3...00.

2. A measurement of the energy will yield (E; + E;)/2.

3. A measurement of the position in a narrow range dx can yield many different values in this
well (0<x<a).

A. 1only B. 2 only C. 3 only

D. 2 and 3 only E. None of the above

(MQS 2.2)

Q is a generic observable (with corresponding Hermitian operator Q which has eigenstates @q(x)

and continuous eigenvalues q and eigenvalue equation Qcpq(x) = q@q(x)). Choose all of the

following statements that are correct about a measurement of the observable QO on a generic state

Y (x) (which is not an eigenstate of the operator Q).

1. The measurement of the observable Q will collapse the wavefunction into one of the
eigenstates 4 (x) of operator Q.

2. A measurement of an observable Q must return one of the eigenvalues g of the operator Q.

3. The operator Q acting on state ¥ (x) is equivalent to the measurement of the observable Q .
The measurement process is given by Q¥ (x) = q@q(x).

A) 1 only B) 1 and 2 only C) 1 and 3 only

D) 2 and 3 only E) All of the above

(MQS 2.3)

Attime t = 0, the initial wavefunction of a particle is W (x,0) = (i - % DY, (x) + ? Y, (x), where
Y, (x) and W, (x) are the ground state and first excited state wavefunctions. Choose all of the
following statements that are correct for measurements on the system in this state at ¢ = 0.

1. If energy is measured, the probability of obtaining E; is 2—15 and E, is %.

2. If position is measured, the probability density for measuring X is (—Z [P, (x0)]% +

1
2
8 2
2 |¥2 (x0)1%)

3. If a generic observable D (with corresponding Hermitian operator D which has eigenstates
|d;) and discrete eigenvalues d; and eigenvalue equation D|d;) = d;|d;), where i =1,2,3...)
is measured, the probability of obtaining d; is |[{¢d;|¥}|?, where |¥) represents the quantum
state corresponding to W (x).

4. If a generic observable Q (with corresponding Hermitian operator Q which has eigenstates
|q) and continuous eigenvalues g and eigenvalue equation Q|q) = q|q)) is measured, the
probability density for measuring q is [{q|¥)|%, where |¥) represents the quantum state
corresponding to W(x).

A. 1 only B. 2 only C. 3 and 4 only

D. 2 and 3 only E. None of the above



Class discussion for MQS 2.3
If you haven’t discussed Dirac notation with the students, please feel free to replace the choice 3
and choice 4 with:

3.

If a generic observable D (with corresponding Hermitian operator D which has eigenstates
&;(x) and discrete eigenvalues d; and eigenvalue equation Dd;(x) = d;d;(x), where i

2
o i (¥ (x)dx] .

If a generic observable Q (with corresponding Hermitian operator Q which has eigenstates
@4(x) and continuous eigenvalues q and eigenvalue equation @cpq(x) = q@q(x)) is

2
[° (0w (x)dx

=1,2,3,4...) is measured, the probability of obtaining d; is

measured, the probability density for measuring q is

Note:

In D|d;) = d;|;), operator D is an operator corresponding to observable D, and | ;) stands
for an eigenstate of D with eigenvalue d;
Do;(x) = d;d;(x) is the same eigenvalue equation written in position representation, where

DisD (x, —ih aa_x)’ and ¢;(x) is an eigenfunction of D with eigenvalue d; in the position

representation.

Class discussion for MQS 2.1-2.3
Consider a generic wavefunction W(x) corresponding to a generic state |¥).

If you measure energy, the probability of obtaining E,, is
o 2 o " 2 .

P(Em) = (Wl W) = | [ (Pnlx}xIW)dx|" = |[° Wn(OW()dx| (where [¥p,) is an
energy eigenstate satisfying H|W,,) = E|Wm))
If you measure position, the probability density for measuring x is

o0 2 [ 2
p(x0) = I{xo|W)? = |[__ (xolx)x|W)dx| = [[_ 8(xo — )W (x)dx| = [W(xo)I* (where
|xo) is a position eigenstate satisfying X|X,) = X|Xo))
If you measure the observable D whose corresponding Hermitian operator D has a discrete
eigenvalue spectrum, the probability of obtaining d; is

0 2 0, 2 .
P(d) = pilWI? = [ [ (ilxNxIP)dx|” = [ [7, di (OP()dx|  (where |y is an
eigenstate of D satifying D|d;) = d;|d;))
If you measure the observable Q whose corresponding operator Q has a continuous
eigenvalue spectrum, the probability density for measuring ¢ is

2
p(@) = Kal¥)[2 = |1 (alx)xIWydx|” = |7 @5 OW)dx|  (where |q) is an eigenstate
of Q satifying Q|q) = q|q))

Note:

1.

Emphasize to students that when considering the probability of measuring an observable in a
generic state, they should be thinking about the measurement basis, which is the basis
consisting of the eigenstates of the operator corresponding to the observable being measured.
Then projecting the generic state onto an eigenstate of the operator corresponding to the



4,

observable (in the measurement basis), the absolute square of the projection will give the
probability (discrete eigenvalues) or probability density (continuous eigenvalues) of
obtaining the corresponding eigenvalue.

The projections are given by the inner product of the generic state W(x) and the eigenstates
of the operator corresponding to the observable. For example, for energy measurement, the
projection of state W(x) onto energy eigenstate W, (x) is ffooo Y (x)¥(x)dx. If you have

discussed Dirac notation, this projection can be simply represented by (Wp,|¥).

We can calculate the probability/probability density by projecting the generic state onto the
eigenstates as discussed above. However, if we can expand the generic state in terms of a
complete set of eigenstates of the operator corresponding to the observable we measure, the
probability/probability density of measuring a particular value of the observable is the
absolute square of the corresponding expansion coefficient.

* For example, we can expand a generic state W(x) in terms of energy eigenstates, ¥(x) =
0 2
Yn CaWa (%), then P(Ep) = (Wi |W)12 = | [__ (W x)(x|¥)dx|” =

) 2 oo 2
|20 PREOWEOdx|” = 20 Cy [, W ()W ()dx|” = [Z4 Cy 8nl® = [Cin?
* If'you have done Dirac notation with students, you can also calculate the probability in
the following way:

P(Em) = |(me|lp)|2 = |Zn Cn<wmlwn)|2 = |Zn Ch 6mn|2 = |Cm|2
The probability density for measuring position X, is p(Xg) = [{xo|¥}|? = [¥(x,)|?

Checkpoints

When a measurement is made, what measured values can you obtain if the state of the system
is not an eigenstate of the operator corresponding to an observable (or when it IS an
eigenstate of the operator corresponding to the observable)?

When a measurement is made, what happens to the wave function instantaneously after the
measurement if the state is not an eigenstate of the operator corresponding to the observable
measured?

Does a Hermitian operator corresponding to an observable acting on the quantum state
correspond to a measurement of the observable? No!

How does one calculate probability (discrete eigenvalue spectrum) or probability density
(continuous eigenvalue spectrum) of measuring an observable?

MQS 3.1)
Choose all of the following statements that are correct.

1. The stationary states refer to the eigenstates of any operator corresponding to a physical
observable.

2. Any wavefunction for a system can be expressed as a linear superposition of the energy
eigenstates.

3. Ifasystem is in an eigenstate of any operator that corresponds to a physical observable, it
stays in that state unless an external perturbation is applied.

A. 1 only B. 2 only C.3 only

D.2and 3 only E. None of the above

(MQS 3.2)



Suppose at time t = 0, a particle in a 1D infinite square well has the initial wavefunction
Y(x,0) = \/%('1’1 (x) + ¥,(x)), where ¥; (x) and ¥, (x) are the ground state and first excited

state wavefunctions. Choose all of the following expressions that can correctly represent the state
Y(x,t) of the particle after time ¢

—i(Eq +Ep) t
1. P(x,t)= T 2h Y1 (x) + ll”z(x))
—iE
2. ¥Y(x,t)= \/_ (e Wl(x) +e & Wz(x))
3. Y(x,t) = —e e (llfl(x) + ¥, (x))
A. 1 only B. 2 only C. 1 and 3 only
D. 2 and 3 only E. None of the above

Class discussion for MQS 3.2
* By solving the Time-dependent Schrédinger equation ih — lP(x t) = HW¥(x,t), the time

H —iAt
dependance of a generic state is given by W(x,t) = e » ¥Y(x,0), where e = is the time-

evolution operator.
* Any wavefunction for a system can be expressed as a linear superposition of the energy

eigenstates:
Y(x,0) =Y ,C, U,(x), where J,,(x) is an energy eigenstate with eigenvalue E,,. Thus,
—iHt —iHt
Y(xt)=e k P(x0)= ) Che 7 Yy (x)

n
—iHt
Let’s look at one term in this expansion — C,e” » {1, (x). We can expand the exponential

function e%ﬁt as follow: e_i:t — 142 L - ( ift)z + % (_ihm)3 + -
Thus, e W (x) = P (6) + 228 ¢n< )+ (FE) gy ) + 2 (2 ) Pn) + -
Because ﬁll}n(x)=Enl|Jn(X),We haVe—llJn( )_ lEn ll"n( ) ( ITI) L|"n(x)

(o)’ ¥ ( ) o) = (Z225)’ o ),
Therefore, € 7 iy (1) = P (x) + ~22 s, () + 2 ( ) 0) 2 (FE2) gy ) + -

—iEnt

e h Yn(x)

—ifAt —ifAt —iEpt
Thus, ¥(x,t) = e » W(x,0) = XpChe ® Yp(x) = XnChe * Pp(x)

Therefore, the initial state W(x, 0) evolves in time such that each term in the expansion of the state
—iEnt
in terms of the energy eigenstates is multiplied by its corresponding time dependent factore » .

Note that in general, the time dependent factor is different for each term because the energy
corresponding to each term is generally different.

« As aspecial case, if P (x, 0) itself is an energy eigenstate with e1genvalue E,,
—iAt —iEnp
then W(x,0) = Y,(x) and Y(x,t) = e h lP(x 0)=enryYg,x)=¢€ = ljJn(x) In this case,
the time-evolution of the state is trivial because the state is multiplied by an overall phase
factor.




(MQS 3.3)
Suppose at time t = 0, the initial wavefunction of a particle in a 1D infinite square well is ¥ (x) =
% (¥ (x) +¥,(x)), where ¥;(x) and W,(x) are the ground state and first excited state

wavefunctions. Choose all of the following statements that are correct for measurements on the
system in this state at £ = 0.
1. If energy is measured, the wavefunction will become either ¥; (x) or ¥, (x) immediately

after the energy measurement but go back to ¥ (x) = % (W, (x) + ¥,(x)) along time after
the measurement.
2. If position is measured, the wavefunction ¥ (x) = % (¥;(x) + ¥,(x)) will become a delta

function immediately after the position measurement, but go back to ¥ (x) = % (P, (x) +
¥,(x)) a long time after the measurement.
3. If position is measured, the wavefunction ¥ (x) = % (¥ (x) + ¥,(x)) will become a delta

function immediately after the position measurement, and the wavefunction will remain the
delta function a long time after the measurement.

A. 2 only B. 3 only C. 1 and 3 only

D. 1 and 2 only E. None of the above

Class discussion for MQS 3.3

It should be emphasized to students that whenever talking about time evolution, we should expand
the wave function in terms of energy eigenstates, and then multiply each term in the expansion by
the corresponding time-dependent phase factor.

» If we measure energy at = 0 and obtain E,,, the wavefunction will instantaneously collapse
—iEnty .
to Y (x). After time t;, this wave function becomes e™ »  ,(x). Even though there is a
time dependent phase factor, e »  r,(x) is still an energy eigenstate with eigenvalue E,,.

Thus, the spatial part of the wavefunction remains s, (x) after the energy measurement.

t=0 t=t,
—iEpty
Y(x0) =) ——————= P t)=e b Yp(x)
Note:
» Multiplying a state with an overall phase factor doesn't change the state. Therefore,
—iEnty

e n ,(x) shows the time dependence of the stationary state with energy E,,.

* For example, if we measure energy at 1 = 0 and obtain E5, the wave function will collapse to
P53 (x) right after an energy measurement. The three time-lapsed pictures from a simulation
below (Figure 1) show the time evolution of the absolute value of Y3(x) in a 1D infinite
square well with boundary (0<x<a). (a) shows the absolute value of the wavefunction right
after the energy measurement. (b) and (c) show the absolute value of the wave function at ¢ =
0.3 units and ¢ = 14.3 units. As shown in the simulation, the absolute value of the
wavefunction does not change with time. Thus, the wavefunction will remain 3 (x) after the
energy measurement up to a trivial overall time-dependent phase factor.
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Figure 1. Time-lapsed images from a simulation depicting the time evolution of the absolute value
of P3(x) in a 1D infinite square well with boundary (0<x<a). (a) shows the absolute value of the
wavefunction right after the energy measurement. (b) and (c) show the absolute value of the wave
function at # = 0.3 units and ¢ = 14.3 units.

If we measure position at = 0 and obtain x,, the wavefunction will instantaneously collapse

to 6(x — xy), which can be expanded as ), C,, ¥, (x). After time t,, the wave function

—iEnty
h

becomes Y, C, e Y, (x). Thus, the wavefunction will neither remain §(x — x,) nor go
1
back to 5 (1111 (x) +¥, (x)).
t=0 t=t,

W(x,0) = 8(x—50) = ) Cuipa(®) === == == S W) = ) Coe R P ()

Note:
The expansion coefficient in this case is
Cu = [0, W (o, 00 () dx = [, 8(x = %) (W)elx = i (xo).

—iEntq —iEntq

In general, },,, C,e” P, (x) is not equal to §(x — xy) = X1y, Cp, Y (x) , because e &

are generally different for each E,,.

The three time-lapsed pictures from a simulation below (Figure 2) show the time evolution of
6 (x — x¢) in a 1D infinite square well with boundary (0<x<a). (a) shows the absolute value
of the wave function which is very localized (the actual wavefunction right after a position
measurement is closer to a delta function which will be highly localized but the simulation is
unable to show that level of a localized function so students would have to imagine a very
peaked function). (b), (c) show the absolute value of the wave function at # = 0.6 units and ¢ =
1.6 units. As shown in the simulation, the wave function does not remain localized (similarly,
a delta function 6 (x — x,) after the position measurement will not remain localized at future
times).

Since delta function § (x — x,) contains nonzero coefficients C,, for higher energy
eigenfunction ¥, (x)(n > 2), the probability of measuring these higher energies

—iEntq 2
Ch,e t

would not be zero at future times. Therefore, the system will not return to the

. 1 .. .
initial state 5 (‘Pl (x) +¥, (x)) after the position measurement, no matter how long we wait.
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Figure 2. Time-lapsed images from a simulation below show the time evolution of a very peaked
function (since the simulation is unable to show a delta function) in a 1D infinite square well with
boundary (0<x<a). (a) shows the absolute value of the wave function which is very localized. (b),
(c) show the absolute value of the wave function at # = 0.6 units and ¢ = 1.6 units.

(MQS 3.4)
Suppose at time t = 0, a particle in a 1D infinite square well has the initial wavefunction ¥ (x) =

\/%('{’1 (x) + ¥,(x)), where ¥;(x) and ¥,(x) are the ground state and first excited state

wavefunctions (see the first graph below). You measure the position of the particle and obtain x.

Choose all of the following statements that are correct.

1. The wavefunction will instantaneously collapse to a delta function at x = x (the second
graph in Fig.3 is a schematic) when the position measurement is performed.

2. The wavefunction will remain a delta function at x;, (one example is the second graph in Fig.
3) a long time after the position measurement.

3. The wavefunction must evolve from a delta function at x, (one example is the third graph in
Fig. 3) so that it has different shapes a long time after the position measurement.

A. 1only B. 1 and 2 only C. 1 and 3 only

D. 2 and 3 only E. all of the above.

%(%(xw%(x)) ‘ ‘ ‘ I/\I
' "2 Xo o Xo '

Figure 3. Figure for MQS 3.4.

(MQS 3.5)
Suppose attime t = 0, a particle in a 1D infinite square well (0 <x <a) has the initial wavefunction

Y(x) = % (P, (x) + ¥,(x)), where ¥; (x) and ¥, (x) are the ground state and first excited state

wavefunctions. You measure the energy of the particle and obtain E,. Choose all of the following
statements that are correct.



1. The wavefunction will instantaneously collapse to a stationary state when the energy
measurement yielding E, is performed (the second graph in Fig. 4).

2. The wavefunction will remain the first excited state a long time after the energy
measurement.

3. The wavefunction must return to its initial state before the measurement a long time after the
energy measurement (the third graph in Fig. 4).

A. 1 only B. 1 and 2 only C.3 only

D 1 and 3 only E. None of the above.

1 1
— (Y () + ¥, (x) — (Y (x) + ¥, (x)
" N4 DN \/

Figure 4. Figure for MQS 3.5.

(MQS 3.6)
At time t = 0, the initial wavefunction of a particle is W(x, 0) = % (W;(x) + ¥,(x)), where

Y, (x) and W, (x) are the ground and first-excited energy eigenstates. Choose all of the following
statements that are correct about a measurement performed on this system att = t;.

1. If we measure the position of the particle, the probability density for measuring the
position of the particle will depend on the time ¢;.

2. If we measure the energy of the particle, the probability of obtaining the energy E; or E,
will depend on the time t;.

3. If we measure an observable Q (with corresponding Hermitian operator Q which has
eigenstates (q(x) and continuous eigenvalues q and eigenvalue equation Q(pq(x) =
q@q(x)), the probability density for measuring ¢ will depend on the time t; (Note: Q does
NOT commute with H).

A. 1only B. 2 only C.3 only
D. 1 and 3 only E. all of the above

Class discussion for MQS 3.6

Emphasize to students that when talking about time evolution, since the Hamiltonian of the system
governs the time-evolution, we should expand the wave function in terms of energy eigenstates,
and multiply each term by the corresponding time-dependent phase factor.

Initial state After waiting for t
—iEnt
Y& 0) =X Chn(®) === ===~ - W) =XnChe m Pp(x)

* If we measure energy at ¢ = t,, the probability of obtaining E, is



P(Em) = (WP = |[7 (Wl xW(t))dx|” = | [7, Wr0W(x t)dx > =

—iEnty 2 —iEmty 2
YnChe m(X)qJn(X)dX

= |Cme h
is independent of t;.
If we measure position at 7 = t,, the probability density for measuring x, is

2
o) = (koI W) = |f_°° role)lwe)dx| = |17, 8Cro — VW0 t)dx

—iEnty

2
= chne h 6mn

= |Cy,|? , which

2

—iEp 2
W (X0, t)|* = [ZnCre * ‘~|Jn(Xo) )
If we measure Q at 7 = 4, the probability density for measuring ¢ is

0(Q) = KglW )2 = |f° <q|x><x|w<t1)>dx| = [ 03P t)dx| =

S Cae b (60 Un G|

Because Q does NOT commute with H, Q and ﬁ don t have a complete set of simultaneous

T e B [ 00 WG|

which depends on t;.

eigenstates. Therefore, the time factor in will not cancel

out. Thus, p(q) depends on t;.

Note:
1. For the position measurement, the probability density for measuring position X 1S

—iEnt

ch € h lIjn(XO)

p(Xo) = [(Xo| Pt ))? = [¥(x0, t1)|* = which depends on time.

2. If you have discussed Dirac notation with students, you can also discuss calculation of

the probability of obtaining E,, in the following way: P(E,,) = (W, |¥(t))]? =
—iEnty 2 2 2
LnChe n (Pn|¥n)

—iEmt1 . .
= |C,|?, which is
independent of t;.

= Cme h

—iEnty

= chne h 6mn

Checkpoints:
Consider a generic state ¥(x, 0) at = 0.

If energy is measured, what is the wave function instantaneously after and long time after
the energy measurement?

« If position is measured, what is the wave function instantaneously after and long time

after the position measurement?

(MQS 4.1)

The

energy eigenvalues for a one-dimensional simple harmonic

oscillator (SHO) are E, = (n + %) hw (n=0,1,2,3,..). The initial
wavefunction of a particle in a SHO potential energy well is W(x, 0) =
\/% (W, (x) + ¥, (x)). You first measure the energy of the particle at t =

0 and obtain S hw. Then immediately following the energy measurement,



you measure the position of the particle. What is the probability of
finding the particle in the region between x, and xo + dx?

Lo (W1 (xo) [P+ (%) )dx

2. |W;(x0)|?dx

3. RY;(x)|%dx

A. 1only B. 2 only C. 3 only

D. 2 and 3 only E. None of the above

Note:

Emphasize to students that even though MQS 4.1 is about a quantum harmonic oscillator, the
expression of probability density for measuring x, is generalizable to other quantum systems with
different Hamiltonians such as the 1D infinite square well.

(MQS 4.2)

At time t = 0, the initial state of a particle in a 1D infinite square well is ¥ (x, 0) = % P (x) +
¥,(x)), where ¥; (x) and ¥, (x) are the ground and first-excited energy eigenstates. You first
measure the energy of the particle at t = 0 and obtain E;. Then you measure the position of the

particle at a later time t = t; (not immediately after the measurement of energy). What is the
probability of finding the particle in the region between x, and x, + dx?
2

—iE1tq
IL.le » Wi(xy)| dx

2

dx

—iE1tq iExtq

2. le n ¥i(xy) + e h ¥, (x0)
—iEnt 2
3.|Xnche 1‘Pn(xo) dx, where ¢, = (¥, |¥),n=1,2,3.... and(c,, # 0 for 1,2,3....)
A. 1 only B. 2 only C. 3 only

D. 1 or 2 depending on how much time has elapsed between the measurements
E. None of the above

Note:
» Ifyou haven’t discussed Dirac notation with students, please feel free to replace choice 3
with:
2 oo
dx, where ¢, = f_oo Y (x)¥Y(x)dx,n=1,2,3... and ¢, # 0 for 1, 2,

—i

Enty
chne h l}/n(xo)

3....

2
dx = |¥;(xo)|?dx, which means that if the system is

—iE1tq
e h ¥i(x)

in a stationary state, the probability density for measuring position does not change with
time.

» It is worth noting that

(MQS 4.3)
The initial state of a particle in a 1D infinite square well (0 < x < a) is ¥(x, 0) = \/% (P, (x) +

¥,(x)). You first measure the position of the particle and obtain x,. Then immediately following



the position measurement, you measure the position of the particle again. Choose all of the

following that are correct:

1. The second measurement must also yield x.

2. The second measurement could yield any of the infinitely many position eigenvalues possible
for the system (0 <x < a).

3. The wavefunction immediately after the second measurement is still the position eigenstate
corresponding to eigenvalue x,,.

A. 1 only B. 2 only C. 3 only

D. 1 and 3 only E. 2 and 3 only

(MQS 4.4)
The initial state of a particle in a 1D infinite square well (0 < x < a) is ¥(x, 0) = \/% P (x) +

¥,(x)) when you measure the position of the particle and obtain x,. Then some time ¢ later
following the position measurement, you measure the position of the particle again. Choose all of
the following that are correct:
1. The second measurement must also yield x.
2. The second measurement could yield any of the infinitely many position eigenvalues possible
for the system 0 <x <a.
3. The probability density for the second position measurement will depend on how much
time elapses between the two measurements.
A. 1 only B. 2 only C. 3 only
D. 1and 3 only E. 2 and 3 only

(MQS 4.5)
The initial state of a particle in a 1D infinite square well (0 < x < a) is ¥(x, 0) = % Y, (x) +

¥, (x)) when you measure the position of the particle and obtain x,. Then some time ¢ later

following the position measurement, you measure the energy of the particle. Choose all of the

following that are correct:

1. The energy measurement can yield any energy E,;, wheren = 1,2,3 ... c0.

2. The wavefunction will become either ¥; (x) or W, (x) immediately after the energy
measurement and the system will remain in that state at future times.

3. The probability of obtaining the energy E; will depend on how much time elapses between
the two measurements.

A. 1 only B. 2 only C. 3 only

D. 1and 3 only E. 2 and 3 only

Class discussion for MQS 4.1-4.5

Emphasize to students that when talking about time evolution, we should expand the wave function
in terms of energy eigenstates, and multiply each term by the corresponding time-dependent phase
factor.

» If we measure energy at # = 0 and obtain E,, the wavefunction will instantaneously
—iEpty
collapse to Y, (x). After time t,, the wave function becomes e » {1, (x).

t=0 t=1t



Y(x0) =y(x) ——————— Pt =e 7 Y(x)
« If we measure energy at ¢ = t4, the probability of obtaining E,, is

o ) “iEnt o 2 1, ifm=n
P(Ey) = If_ootpm(x)lp(xrtl)dxl =1le * f_mwm(x)wn(x)dx = 8mn 0 ifm%n

Thus, the second measurement of energy will still yield E},, and the result is independent
of t;. This means that the measurement of energy immediately after or a long time after
the first energy measurement will yield the same value.

* If we measure position at = t,, the probability density for measuring x, is

—iEpt 2
p(Xo) = W (X0, t)]? = |e h 1L|Jn(x0) = |W,(X0)|?, which is independent of t;. This
means that the measurement of position immediately after or a long time after the energy
measurement will have the same probability density for measuring X.
» If we measure position at 7 = 0 and obtain x, the wavefunction will instantaneously
collapse to 8(x — x), which can be expanded to )., C,, U,(X) (in which C,, = U}, (x0)).

—iEpty

After time t,, the wave function becomes )., C, e » W, (x).
t=0 t=1t
W(x,0) = 8(x = x0) = ) Cathp() — = = — = —— SWEL) = ) Cue b ()
n n

» If we measure position at ¢ = t,, the probability density for measuring X, is
—iEptq

2
p(x) = [P (Xg,t1)]? = [ZnChe & Wy(x)| , which depends on t,. This means that
the measurement of position immediately after or a long time after the first position
measurement will generally have different probability density for measuring X.

« If we measure energy at ¢ = t4, the probability of obtaining E,, is

P(Em) = | [, Uin(OW(x, t;)dx |? =

—iEpt 2
Y.Che & lﬁmn = |Cpy|? = [Py (Xo)|?, which is independent of t;. This means that

—iEntq

YnCne n [ WU, (x)dx| =

the measurement of energy immediately after or a long time after the position
measurement will have the same probability of obtaining E .
Note:
It is important for instructors to discuss with students subtleties with regard to measurements of
position. The eigenstates of the position operator are Dirac delta functions, which are not strictly
normalizable or even physical in the sense that position is not infinitely resolved in any true
measurement. A Dirac delta function can be expressed as an infinite series of energy eigenstates,
each of which has an infinitesimally small amplitude. Students should understand the unrealistic
aspects of working with delta functions, even though they have pedagogical value and are
convenient approximations for spatially localized states.



Overall Class Discussion/Summary

Measure energy at ¢ = 0:
Probability of obtaining E,, is 1 (and the probability would be the

. same if the measurement was made at ¢ = t; instead of at = 0)
If the particle is in

an energy eigenstate

W (x) at£=0 Measure position at ¢ = 0:
n

Probability density for measuring x, is |, (x,)|? (and the probability density
would be the same if the measurement was made at ¢ = t, instead of at z = 0)

Measure energy at ¢ = 0:
) Probability of obtaining E, is | fj:o P (x)W(x)dx |? (and the probability
Ff "flt t= 0, the particle would be the same if the measurement was made at ¢ = t; instead of at £ = 0).
is in a state ¥ (x)
which is not an
eigenstate of either H
or any operator that

commutes with H.

Measure position at ¢ = 0:

Probability density for measuring x, is |#(x,)|? (and the probability density
would be different if the measurement was made at ¢ = t, instead of at = 0).
The position operator does not commute with the Hamiltonian, so position is
not a constant of motion. The probability density for measuring position in a
non-energy eigenstate depends on time.



II.

I1I.

Appendix B Questions in the Pre-Test and Post-Test (Version A)

The pre- and post-test questions are reproduced below. The same information provided at the
beginning of Appendix A applies to the questions in Appendix B.

All of the questions in this test refer to an isolated system in which a particle is in a 1-D

—~ A2
infinite square well with Hamiltonian H = zp_m + V() (Vx) =0when0<x<aV(x)=
n2m2h?

P (n=1,23,..), and the energy

+oo otherwise). The energy eigenvalues are E, =

eigenstate corresponding to E, is ¥, (x) = \/%sin (%) when 0<x<a and ¥,,(x) = 0 elsewhere.

Q1. Choose all of the following statements that are correct about a generic state W(x) (which is
not a stationary state).

ﬁl}’(x) = Epin(x)

¥ (x) = x¥(x)

Y(x) can be expressed as a linear superposition of the energy eigenstates.

Q2. The state of a particle at t=0 is given by W(x,0) = \E Y (x) + \/% Y, (x).

(a) If you measure the energy of the particle at t = 0, what possible energies could you obtain
and what is the probability of each? Explain.

(b) If you measure the position of the particle at t = 0, what possible values could you obtain, and
what is the corresponding probability density? Explain.

Q3. The state of a particle at t=0 is given by W(x,0) = \E Y (x) + \/% Y, (x)

(a) If you measure energy at t = 0 and obtain a value of E;, what is the normalized state of the
system right after the measurement?

(b) Immediately after the measurement of energy in 3(a), you measure energy again. What is the
probability of obtaining E, ?

(c) A long time after the measurement of energy in 3(a), you measure energy again. Will the
probability of obtaining E; be the same or different as in 3(b)? Explain your reasoning.

(d) Immediately after the measurement of energy in 3(a), you measure position. What is the
probability density of finding the particle at x = x,? Explain.

(e) A long time after the measurement of energy in 3(a), you measure position. Will the
probability density of finding the particle at x =x, be the same or different as in 3(d)?
Explain your reasoning.

Q4. The state of a particle at t=0 is given by W(x,0) = \E Y (x) + \/% Y, (x)

(a) If you measure position and obtain a value of x,, what is the wavefunction of the system
right after the measurement?



(b) Immediately after the measurement of position in 4(a), you measure position again. Will
the wavefunction of the system right after the measurement be the same or different as in
4(a)? Explain.

(c) A long time after the measurement of position in 4(a), you measure position again. Will
the wavefunction of the system right after the measurement be the same or different as in
4(b)? Explain your reasoning.

(d) Immediately after the measurement of position in 4(a), you measure energy. What is the
probability of obtaining E; ? Explain.

(e) A long time after the measurement of position in 4(a), you measure energy. Will the
probability of obtaining E; be the same or different as in 4(d)? Explain your reasoning.



[1] P. Jolly, D. Zollman, S. Rebello, and A. Dimitrova, Visualizing potential energy diagrams, Am.
J. Phys 66, 57 (1998).

[2] A. Kohnle, M. Douglass, T. J. Edwards, A. D. Gillies, C. A. Hooley, and B. D. Sinclair,
Developing and evaluating animations for teaching quantum mechanics concepts, Eur. J. Phys.
31, 1441 (2010).

[3] C. Manogue, E. Gire, D. Mclntyre, and J. Tate, Representations for a spins-first approach to
quantum mechanics, AIP Conf. Proc. 1413, 55 (2012).

[4] M. Wawro, K. Watson, and W. Christensen, Students’ metarepresentational competence with
matrix notation and Dirac notation in quantum mechanics, Phys. Rev. Phys. Educ. Res. 16,
020112 (2020).

[5] C. Singh, Student understanding of quantum mechanics, Am. J. Phys. 69, 885 (2001).

[6] D. Domert, C. Linder, and A. Ingerman, Probability as a conceptual hurdle to understanding one-
dimensional quantum scattering and tunnelling, Eur. J. Phys. 26, 47 (2004).

[7] G. Passante, P. J. Emigh, and P. S. Shaffer, Examining student ideas about energy measurements
on quantum states across undergraduate and graduate levels, Phys. Rev. ST Phys. Educ. Res.
11, 020111 (2015).

[8] P.J. Emigh, G. Passante, and P. S. Shaffer, Student understanding of time dependence in quantum
mechanics, Phys. Rev. ST Phys. Educ. Res. 11, 020112 (2015).

[9] C. Singh, Student understanding of quantum mechanics at the beginning of graduate instruction,
Am. J. Phys. 76, 277 (2008).

[10] T. Tu, C.-F. Li, Z.-Q. Zhou, and G.-C. Guo, Students’ difficulties with partial differential
equations in quantum mechanics, Phys. Rev. Phys. Educ. Res. 16, 020163 (2020).

[11] P. Bitzenbauer, Effect of an introductory quantum physics course using experiments with
heralded photons on preuniversity students’ conceptions about quantum physics, Phys. Rev.
Phys. Educ. Res. 17, 020103 (2021).

[12] R. Miiller and H. Wiesner, Teaching quantum mechanics on an introductory level, Am. J. Phys.
70, 200 (2002).

[13] A. Kohnle, I. Bozhinova, D. Browne, M. Everitt, A. Fomins, P. Kok, G. Kulaitis, M. Prokopas,
D. Raine, and E. Swinbank, A new introductory quantum mechanics curriculum, Eur. J. Phys.
35,015001 (2013).

[14] E. Gire and E. Price, Structural features of algebraic quantum notations, Phys. Rev. ST Phys.
Educ. Res. 11, 020109 (2015).

[15] K. Krijtenburg-Lewerissa, H. J. Pol, A. Brinkman, and W. Van, Joolingen, Insights into teaching
quantum mechanics in secondary and lower undergraduate education, Phys. Rev. Phys. Educ.
Res. 13, 010109 (2017).

[16] U. S. di Uccio, A. Colantonio, S. Galano, I. Marzoli, F. Trani, and I. Testa, Design and validation
of a two-tier questionnaire on basic aspects in quantum mechanics, Phys. Rev. Phys. Educ. Res.
15,010137 (2019).

[17] M. Michelini and A. Stefanel, in The International Handbook of Physics Education Research:
Learning Physics, edited by M. F. Tasar and P. R. L. Heron (AIP Publishing LLC Online,
Melville, NY, 2023).

[18] L. Branchetti, A. Cattabriga, and O. Levrini, Interplay between mathematics and physics to catch
the nature of a scientific breakthrough: The case of the blackbody, Phys. Rev. Phys. Educ. Res.
15, 020130 (2019).

[19] G. Zhu and C. Singh, Improving student understanding of addition of angular momentum in
quantum mechanics, Phys. Rev. ST Phys. Educ. Res. 9, 010101 (2013).



[20] B. Brown, A. Mason, and C. Singh, Improving performance in quantum mechanics with explicit
incentives to correct mistakes, Phys. Rev. Phys. Educ. Res. 12, 010121 (2016).

[21] C. Singh, Interactive learning tutorials on quantum mechanics, Am. J. Phys. 76, 400 (2008).

[22] E. Marshman and C. Singh, Interactive tutorial to improve student understanding of single
photon experiments involving a Mach—Zehnder interferometer, Eur. J. Phys. 37, 024001 (2016).

[23] C. Keebaugh, E. Marshman, and C. Singh, Improving student understanding of a system of
identical particles with a fixed total energy, Am. J. Phys. 87, 583 (2019).

[24] S. DeVore and C. Singh, Interactive learning tutorial on quantum key distribution, Phys. Rev.
Phys. Educ. Res. 16, 010126 (2020).

[25] S. Pollock, G. Passante, and H. Sadaghiani, Adaptable research-based materials for teaching
quantum mechanics, Am. J. Phys. 91, 40 (2023).

[26] E. Marshman and C. Singh, Improving student understanding of Dirac notation by using
analogical reasoning in the context of a three-dimensional vector space, presented at PER Conf.
2020, virtual conference, 10.1119/ perc.2020.pr.Marshman.

[27] C. Singh and E. Marshman, Investigating student difficulties with Dirac notation, presented at
PER Conf. 2013, Portland, OR, 10.1119/perc.2013.pr.074.

[28] E. Marshman and C. Singh, Student difficulties with quantum states while translating state
vectors in Dirac notation to wave functions in position and momentum representations, presented
at PER Conf. 2015, College Park, MD, 10.1119/perc.2015.pr.048.

[29] C. Singh, Student difficulties with quantum mechanics formalism, AIP Conf. Proc. 883, 185
(2007).

[30] S.-Y. Lin and C. Singh, Categorization of quantum mechanics problems by professors and
students, Eur. J. Phys. 31, 57 (2010).

[31] C. Singh and E. Marshman, Review of student difficulties in upper-level quantum mechanics,
Phys. Rev. ST Phys. Educ. Res. 11, 020117 (2015).

[32] E. Marshman and C. Singh, Framework for understanding the patterns of student difficulties in
quantum mechanics, Phys. Rev. ST Phys. Educ. Res. 11, 020119 (2015).

[33] C. Singh, M. Belloni, and W. Christian, Improving students’ understanding of quantum
mechanics, Phys. Today 8, 59, 43 (2006).

[34] E. Marshman and C. Singh, Investigating and improving student understanding of quantum
mechanical observables and their corresponding operators in Dirac notation, Eur. J. Phys. 39,
015707 (2018).

[35] E. Marshman and C. Singh, Investigating and improving student understanding of the
expectation values of observables in quantum mechanics, Eur. J. Phys. 38, 045701 (2017).

[36] E. Marshman and C. Singh, Investigating and improving student understanding of the probability
distributions for measuring physical observables in quantum mechanics, Eur. J. Phys. 38, 025705
(2017).

[37] E. Marshman and C. Singh, Investigating and improving student understanding of quantum
mechanics in the context of single photon interference, Phys. Rev. Phys. Educ. Res. 13, 010117
(2017).

[38] R. Sayer, A. Maries, and C. Singh, Advanced students’ and faculty members’ reasoning about
the double slit experiment with single particles, presented at PER Conf. 2020, virtual conference,
10.1119/perc.2020.pr.Sayer.

[39] A. Maries, R. Sayer, and C. Singh, Can students apply the concept of “which-path” information
learned in the context of Mach—Zehnder interferometer to the double-slit experiment?, Am. J.
Phys. 88, 542 (2020).



[40] P. Hu, Y. Li, R. Mong, and C. Singh, Student understanding of the Bloch sphere, Eur. J. Phys.
45, 025705 (2024).

[41] R. Sayer, A. Maries, and C. Singh, Quantum interactive learning tutorial on the double-slit
experiment to improve student understanding of quantum mechanics, Phys. Rev. Phys. Educ.
Res. 13, 010123 (2017).

[42] C. Keebaugh, E. Marshman, and C. Singh, Investigating and addressing student difficulties with
a good basis for finding perturbative corrections in the context of degenerate perturbation theory,
Eur. J. Phys. 39, 055701 (2018).

[43] C. Keebaugh, E. Marshman, and C. Singh, Challenges in sense-making and reasoning in the
context of degenerate perturbation theory in quantum mechanics, Phys. Rev. Phys. Educ. Res.
20, 020139 (2024).

[44] C. Keebaugh, E. Marshman, and C. Singh, Improving student understanding of fine structure
corrections to the energy spectrum of the hydrogen atom, Am. J. Phys. 87, 594 (2019).

[45] C. Keebaugh, E. Marshman, and C. Singh, Improving student understanding of corrections to
the energy spectrum of the hydrogen atom for the Zeeman effect, Phys. Rev. Phys. Educ. Res.
15,010113 (2019).

[46] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement. I.
Investigation of difficulties, Phys. Rev. ST Phys. Educ. Res. 8, 010117 (2012).

[47] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement. II.
Development of researchbased learning tools, Phys. Rev. ST Phys. Educ. Res. 8,010118 (2012).

[48] G. Zhu and C. Singh, Students’ difficulties with quantum measurement, AIP Conf. Proc. 1413,
387 (2012).

[49] P. Hu, Y. Li, and C. Singh, Investigating and improving student understanding of the basics of
quantum computing, Phys. Rev. Phys. Educ. Res. 20, 020108 (2004).

[50] P. J. Emigh, G. Passante, and P. S. Shaffer, Developing and assessing tutorials for quantum
mechanics: Time dependence and measurements, Phys. Rev. Phys. Educ. Res. 14, 020128
(2018).

[51] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics (Cambridge University
Press, 2018).

[52] P. Hu, Y. Li, and C. Singh, Challenges in addressing student difficulties with time-development
of two-state quantum systems using a multiple-choice question sequence in virtual and in-person
classes, Eur. J. Phys. 43, 025704 (2022).

[53] E. Marshman and C. Singh, Validation and administration of a conceptual survey on the
formalism and postulates of quantum mechanics, Phys. Rev. Phys. Educ. Res. 15, 020128
(2019).

[54] G. Zhu and C. Singh, Surveying students’ understanding of quantum mechanics in one spatial
dimension, Am. J. Phys. 80, 252 (2012).

[55] P. R. L. Heron, Empirical investigations of learning and teaching, part I: Examining and
interpreting student thinking, in Research on Physics Education: Proceedings of the International
School of Physics “Enrico Fermi” Course CLVI (IOS Press, Amsterdam, 2004), Vol. 156, p.
341.

[56] E. Mazur, Peer Instruction: A User’s Manual (Prentice Hall, Upper Saddle River, NJ, 1997).

[57] C. H. Crouch and E. Mazur, Peer Instruction: Ten years of experience and results, Am. J. Phys.
69, 970 (2001).

[58] C. Singh and G. Zhu, Improving students’ understanding of quantum mechanics by using peer
instruction tools, AIP Conf. Proc. 1413, 77 (2012).



[59] L. Ding, N. W. Reay, A. Lee, and L. Bao, Are we asking the right questions? Validating clicker
question sequences by student interviews, Am. J. Phys. 77, 643 (2009).

[60] P. Justice, E. Marshman, and C. Singh, Development, validation and in-class evaluation of a
sequence of clicker questions on Larmor precession of spin in quantum mechanics, presented at
PER Conf. 2018, 10.1119/ perc.2019.pr.Justice.

[61] P. Justice, E. Marshman, and C. Singh, Improving student understanding of quantum mechanics
underlying the SternGerlach experiment using a research-validated multiplechoice question
sequence, Eur. J. Phys. 40, 055702 (2019).

[62] P. Justice, E. Marshman, and C. Singh, Student understanding of Fermi energy, the Fermi—Dirac
distribution and total electronic energy of a free electron gas, Eur. J. Phys. 41, 015704 (2020).

[63] R. Sayer, E. Marshman, and C. Singh, Case study evaluating Just-In-Time Teaching and Peer
Instruction using clickers in a quantum mechanics course, Phys. Rev. Phys. Educ. Res. 12,
020133 (2016).

[64] P. Hu, Y. Li, and C. Singh, Challenges in addressing student difficulties with measurement
uncertainty of two-state quantum systems using a multiple-choice question sequence in online
and in-person classes, Eur. J. Phys. 44, 015702 (2023).

[65] P. Hu, Y. Li, and C. Singh, Challenges in addressing student difficulties with basics and change
of basis for two-state quantum systems using a multiple-choice question sequence in online and
in-person classes, Eur. J. Phys. 44, 065703 (2023).

[66] P. Hu, Y. Li, and C. Singh, Challenges in addressing student difficulties with quantum
measurement of two-state quantum systems using a multiple-choice question sequence in online
and in-person classes, Phys. Rev. Phys. Educ. Res. 19, 020130 (2023).

[67] D. Schwartz, J. Bransford, and D. Sears, Efficiency and innovation in transfer, in Transfer of
Learning from a Modern Multidisciplinary Perspective, edited by J. Mestre (Information Age
Publishing, Greenwich, CT, 2005), Vol. 3, p. 1.

[68] D. L. Schwartz and J. D. Bransford, A time for telling, Cognit. Instr. 16, 475 (1998).

[69] T. J. Nokes-Malach and J. P. Mestre, Toward a model of transfer as sense-making, Educ.
Psychol. 48, 184 (2013).

[70] K. Shabani, M. Khatib, and S. Ebadi, Vygotsky’s zone of proximal development: Instructional
implications and teachers’ professional development, Eng. Lang. Teach. 3, 237 (2010).

[71] E. Hutchins, Enculturating the supersized mind, Philos. Stud. 152, 437 (2011).

[72] E. Hutchins, The cultural ecosystem of human cognition, Philos. Psychol. 27, 34 (2014).

[73] P. Heller, R. Keith, and S. Anderson, Teaching problem solving through cooperative grouping.
Part 1: Group versus individual problem solving, Am. J. Phys. 60, 627 (1992).

[74] C. Singh, Impact of peer interaction on conceptual test performance, Am. J. Phys. 73, 446 (2005).

[75] M. J. Brundage, A. Malespina, and C. Singh, Peer interaction facilitates co-construction of
knowledge in quantum mechanics, Phys. Rev. Phys. Educ. Res. 19, 020113 (2023).

[76] A Ghimire and C. Singh, How often does unguided peer interaction lead to correct response
consensus? An example from Conceptual Survey of Electricity and Magnetism, Eur. J. Phys. 45,
035703 (2024).

[77] A. A. DiSessa, A friendly introduction to “knowledge in pieces”: Modeling types of knowledge
and their roles in learning, in Invited Lectures from the 13th International Congress on
Mathematical Education, ICME-13 Monographs (Springer, Cham, 2018), p. 65.

[78] C. Keebaugh, E. Marshman, and C. Singh, Investigating and addressing student difficulties with
the corrections to the energies of the hydrogen atom for the strong and weak field Zeeman effect,
Eur. J. Phys. 39, 045701 (2018).



[79] C. Keebaugh, E. Marshman, and C. Singh, Investigating and improving student understanding
of the basics for a system of non-interacting identical particles, Am. J. Phys. 90, 110 (2022).

[80] J. Cohen, Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates,
Hillsdale, NJ, 1988).

[81] R. R. Hake, Interactive-engagement versus traditional methods: A six-thousand-student survey
of mechanics test data for introductory physics courses, Am. J. Phys. 66, 64 (1998).

[82] J. M. Nissen, R. M. Talbot, A. Nasim Thompson, and B. Van Dusen, Comparison of normalized
gain and Cohen’s d for analyzing gains on concept inventories, Phys. Rev. Phys. Educ. Res. 14,
010115 (2018).

[83] E. Mazur, Peer instruction: Getting students to think in class, AIP Conf. Proc. 399, 981 (1997).

[84] E. Gire and C. Manogue, Making sense of quantum operators, eigenstates and quantum
measurements, AIP Conf. Proc. 1413, 195 (2012).



	Improving student understanding of quantum measurement in infinite-dimensional hilbert space using a research-based multiple-choice question sequence
	I. Introduction
	II. Theoretical Foundation
	III. Methodology
	A. Development of the Multiple-Choice Question Sequence
	B. Development of the pre- and post-test
	C. Validation of the MQS and pre and posttests
	D. Structure of the Quantum Measurement MQS and the pre- and post-test
	E. Participants and course context
	F. In-Class Implementation

	IV. Results and Discussion
	Table 1.  Comparison of mean pre-test and post-test scores for each question, along with corresponding normalized gains and effect sizes, for students who engaged with the quantum measurement MQS (In Year 1, N=23 for both pre- and post-tests; in Year ...
	Table 2. Comparison of mean pre-test (weighted average of versions A and B) and post-test scores (weighted average of versions B and A) for each question, along with corresponding normalized gains and effect sizes, for students who engaged with the qu...
	Table 3. Summary of the learning objectives and related conceptual difficulties addressed by the MQS. Below, specific examples of difficulties with quantum measurement along with the MQS questions that address them are listed. In the comments section,...

	a. Summary and general discussion

	Appendix A Quantum Measurement MQS
	Appendix B Questions in the Pre-Test and Post-Test (Version A)

