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We examine students’ challenges in determining the number of distinct many-particle stationary states for a
system of non-interacting identical particles, focusing on how these insights guided the design, validation, and
evaluation of a Quantum Interactive Learning Tutorial (QuILT) to aid students’ understanding. Specifically, we
focus on systems with a fixed number of available single-particle states and particles, where the total energy is
not fixed. The QuILT is designed to provide scaffolding support to help students learn these complex concepts
more effectively. This study was conducted in advanced quantum mechanics courses, where written questions
were administered to students in class following traditional instruction on the relevant concepts. Additionally,
individual interviews were conducted with students to gain deeper insights. Our findings reveal that both upper-
level undergraduate and graduate students face similar challenges in understanding these concepts. Additionally,
difficulty with basic concepts in combinatorics that are necessary to answer the questions correctly were also
found. The QuILT offers scaffolding support to help undergraduate and graduate students systematically reason
through these concepts.

I. INTRODUCTION AND FRAMEWORK

Quantum mechanics (QM) is challenging to learn, even for advanced students, in part because its formalism is counterin-
tuitive and contrasts sharply with classical mechanics [1–4]. Previous studies indicate that many upper-level undergraduate
and graduate students face difficulties when learning QM [3, 4] and research-based methods and learning tools can enhance
students’ understanding of quantum concepts [5–9]. Researchers have focused on developing conceptual surveys to assess stu-
dents’ understanding of various quantum concepts [10–16] while others have investigated other aspects of learning QM [17, 18].
Furthermore, to build expertise in quantum mechanics, students need a good understanding of various representations commonly
used in the field [19–28]. Furthermore, the quantum information revolution underscores the importance of workforce develop-
ment in this field. Preparing students with a deep understanding of quantum concepts is essential to meet the demands of this
rapidly evolving area so that they can help make e.g., fault tolerant quantum computers [29–37].

Previous investigations have aimed at helping students visualize quantum concepts, recognizing that visual representations
can play a crucial role in building a more intuitive and accessible understanding of quantum mechanics [38–43] as well as
learn QM via games [44]. Other studies have explored instructor views [45, 46]. These investigations shed light on how
educator perspectives influence instructional methods and evaluation in quantum mechanics education. Some researchers have
concentrated on identifying student difficulties that persist after traditional lecture-based instruction, particularly challenges
related to quantum measurement [47–52], probability distributions for measuring physical observables, expectation values and
their time dependence as well as student understanding of relative phase in the quantum states [23, 53–58], addition of angular
momentum [59, 60], as well as quantum experiments [41, 61–69]. These studies highlight areas where students struggle to learn
foundational quantum mechanics concepts after conventional teaching methods. Other research studies have examined cognitive
issues particularly in relation to the unique challenges posed by the novel paradigm of quantum mechanics [70–78]. These
studies aim to understand students’ cognitive processes and their ability to invoke and apply QM concepts in light of the novel
paradigm, emphasizing the need for research-based instructional strategies in this field. Some researchers have investigated
student difficulties with additional quantum concepts, e.g., bound and scattering states [79–81]. Other researchers have explored
student difficulties pertaining to several advanced quantum concepts [82–89]. Many researchers in previous studies have also
created research-based instructional materials and teaching strategies to improve student comprehension of quantum concepts.
These resources are designed to facilitate deeper learning in quantum mechanics.

Despite some studies on improving student understanding of identical particles [86, 87], except for a conference proceedings
[90], there are no other papers that specifically investigate student difficulties with issues related to the number of distinct many-
particle states in systems of identical particles with a fixed number of available single-particle states, nor has there been research
on how to improve student learning of these concepts. This paper expands upon the difficulties in Ref. [90] and then discusses a
QuILT that was developed and validated to improve student understanding of systems with these constraints.

For the topic we focus on, students must be proficient in combinatorics as well as identical particles. However, it has been
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found in a number of different contexts in introductory and advanced physics that students struggle to apply mathematics cor-
rectly in the context of physics [91–101] even if they can solve similar mathematics problems without the physics context. If the
students’ level of expertise is not commensurate with the complexity of the problem at hand and they have not been provided
appropriate scaffolding support, they may not be able to solve the problem correctly [102].

As described in some of the prior papers on QuILTs [55], this research is guided by the framework of Zone of Proximal
Development (ZPD) attributed to Vygotsky [103]. The ZPD is defined as the difference between what a learner can achieve
on their own without support and what they can achieve under the guidance of an expert or in collaboration with peers. This
framework emphasizes that for meaningful learning to occur, the activities students should engage in to learn must be within
their ZPD, which itself is dynamic and grows as learners progress in their level of expertise. Thus, effective instruction must be
commensurate with students’ prior knowledge and build on their knowledge at a given time. Engaging with carefully designed
instructional tasks such as the guided inquiry-based teaching learning sequences in the QuILT in collaboration with peers or
with guidance from instructors, can stretch student ZPD and help them develop expertise in quantum mechanics. For instruction
to incorporate students’ initial knowledge appropriately, one must investigate student difficulties with relevant concepts and use
this research as a guide in developing and validating the learning tools such as the QuILT discussed here. To ensure that the
learning activities students engage with while working on the QuILT were in their ZPD, our investigation identified common
student difficulties and used them as resources in the design of the QuILT.

Supplemental materials for this paper provide a short background of pertinent concepts, summarize difficulties discussed in
Ref.[90] before we expand upon them in the main text below. Supplemental materials also include the standard aspects of the
development, validation and implementation of the QuILT as well as the structure of the QuILT that have been described earlier,
e.g., see [86, 87]. Below, the main text focuses on the learning objectives of the QuILT and how it focuses on improving student
learning. Then, we describe the in-class assessment of the QuILT and summarize the findings.

Although the background on relevant issues is discussed in Ref.[90] and included in supplementary materials of this paper,
it is important to recognize that in order to determine the number of distinct many-particle states in a given situation, one must
make appropriate connections between the relevant physics and math conceptual and procedural knowledge. For example, for
correctly determining the number of distinct many particle states in a given situation, one must recognize relevant properties of
fermions, bosons and distinguishable particles, and also be able to reason about and use the combinatorics correctly consistent
with the given situation. For example, in a given situation, students should be able to first recognize the consequences of the
particles being distinguishable vs. indistinguishable. Then, in the case of indistinguishable particles, they must recognize the
consequences of the many-particle wavefunction being completely symmetric for the bosonic case and being completely anti-
symmetric for the fermionic case. For example, for the fermionic case, if one only recalls the Pauli exclusion principle as
memorized knowledge (but did not realize that the many-particle wavefunction must be completely anti-symmetric consistent
with the exclusion principle) and not the fact that the identical fermions are indistinguishable, there is lack of all relevant physics
conceptual knowledge and one will not be able to do the correct combinatorics even if they knew how to do the combinatorics
correctly in a given situation. In particular, indistinguishability entails how many unique many-particle states there are in a given
situation while the difference between the bosonic (many-particle states being completely symmetric) and fermionic (many-
particle states being completely antisymmetric) cases entails how you are allowed to place different particles in the available
single-particle states (e.g., in the fermionic case, there is only zero or one particle in each single-particle state often referred
to as the Pauli exclusion principle whereas there is no restriction on the number of particles that can be placed in any given
single-particle state for the bosonic case). Thus, for the fermionic case, if there are four states and four particles, taking into
account only Pauli exclusion principle as a memorized knowledge (without considering indistinguishability which is central)
would incorrectly imply that there are 4 × 3 × 2 × 1 = 24 distinct many-particles states. However, there is only one distinct
four-particle state for indistinguishable fermions in this situation with each fermion in a different single-particle state because
indinstinguishably ensures that all permutations of the particles are the same (if the particles were distinguishable, there would
be 24 permutations but for fermionic system, we must divide by the number of permutations due to indistinguishability, so there
is only one possibility). We also note that even if one has the conceptual knowledge, they may not have the relevant procedural
knowledge to be able to correctly apply the conceptual knowledge in various situations.

One should also realize that the following are all equivalent ways to express a basis state for a system of three non-
interacting identical particles in three single-particle states because the single-particle wavefunctions in the product can be
written in any order to construct the three-particle basis state using standard notation (see Supplementary materials for details):
ψn1(x1)ψn2(x2)ψn3(x3), ψn1(x1)ψn3(x3)ψn2(x2), ψn2(x2)ψn1(x1)ψn3(x3), ψn2(x2)ψn3(x3)ψn1(x1), ψn3(x3)ψn1(x1)ψn2(x2),
and ψn3(x3)ψn2(x2)ψn1(x1). In other words, these are not six different basis states and if one were to count it as such, they
will count the number of distinct many particle states incorrectly even if they had all other relevant conceptual and procedural
knowledge.

Determining the number of distinct many-particle states for a system in which the number of single-particle states is fixed is
an important concept for students to help prepare them, e.g., for quantum mechanics leading to quantum statistical mechanics.
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II. METHODOLOGY FOR INVESTIGATING STUDENT DIFFICULTIES

The participants in this study were undergraduate and graduate students enrolled in the second semester of a two-semester
upper-level undergraduate or first-year core graduate quantum mechanics course. A majority of the students in the undergraduate
course are juniors and seniors (typically greater than 75% are seniors). We note that the investigation presented here is part of
a larger study focusing on improving student understanding of identical particles pertaining to concepts typically covered in
advanced quantum mechanics courses so the methodology is the same [86, 87]. The data from these earlier administration of the
questions in previous years were useful for gradually refining the questions into the final validated versions of the pre/posttest.
Additional insight was gained concerning difficulties with identical particles and the extent to which a particular version of the
QuILT helped improve student understanding via responses of 14 paid student volunteers (after they had traditional instruction in
relevant concepts) during a total of 81 hours of individual think-aloud interviews [104]. Here we focus specifically on difficulties
pertaining to the number of distinct many-particle states for a system of identical fermions, bosons or distinguishable particles
for a fixed number of single-particle states and how the research was used as a guide to develop and validate the corresponding
QuILT (along with the pre/posttest). This subset of the interview was typically one hour long with each student.

To probe difficulties for a given system with the given constraints, two questions were posed to the students, one in the
pretest and one in the posttest. As noted, other QuILTs on identical particles focused on other aspects (e.g., counting number
of distinct states with fixed energy of the system, impact of incorporating degeneracy in the single-particle states on counting in
various situations and incorporation of spin degree of freedom in addition to the spatial degree of freedom) have other associated
pre/posttest questions and here we will focus only on the two questions relevant for the specific topic under discussion. Question
Q1 [90] (see Supplementary materials) was posed during the individual interviews as well as on the pretest for the QuILT after
traditional instruction in relevant topics. Q2 was posed on the posttest following traditional instruction on identical particles as
well as after students engaged with the QuILT. In the last in-class administration of the pre/posttest discussed here, Q1 and Q2
were posed to 30 graduate students and 25 undergraduate students.

Q2. For a system of two non-interacting identical particles, there are five distinct single-particle states ψn1
(x), ψn2

(x), ψn3
(x),

ψn4
(x), and ψn5

(x) available to each particle. How many different two-particle states can you construct if the particles
are

(a) Fermions? (Ignore spin).

(b) Bosons? (Ignore spin).

(c) Distinguishable particles? (Ignore spin).

In Q2(a), there are
(
5
2

)
= 5!

2!(5−2)! = 10 distinct two-particle states. In Q2(b), for a system of identical bosons, a single-particle

state can have more than one boson. There are
(
6
2

)
= 6!

2!(6−2)! = 15 distinct two-particle states for a system of two identical
bosons in Q2(b). In Q2(c), for the contrasting case of identical particles that can be treated as distinguishable, there are 52 = 25
distinct two-particle states for a system of two identical particles that can be treated as distinguishable.

The pretest question Q1 [90] in Supplementary materials is completely analogous to posttest question Q2 but involves 3
particles and 4 states.

III. STUDENT DIFFICULTIES

The goal of investigating student difficulties was to use them as a guide in the development and validation of the QuILT to help
students develop a functional understanding of relevant concepts and procedures. Both written responses and individual one-on-
one interviews were useful for diagnosing student difficulties. However, interviews with 14 students throughout the development
of different versions of the QuILT in which students worked through the pretest, QuILT and posttest while thinking-aloud were
particularly helpful for additional clarification. Student difficulties were often due to either not having all relevant knowledge
of the concepts in physics and math or having relevant knowledge but not knowing how to apply it correctly in the given
situation. We divide student difficulties related to the number of distinct many-particle states for a system of non-interacting
identical particles in the given situations into four categories. These categories include (1) difficulties with relevant conceptual
knowledge, (2) difficulty with procedural knowledge, (3) difficulty with mathematical sense-making in the context of physics,
and (4) reliance on memorized formulas. We note that this categorization is only one of the many ways to do it and there are
many other ways to categorize student difficulties. Also, some of the difficulties discussed here can be placed in more than one of
these four categories, but we have often placed them into only one category (unless the researchers concluded that there is a point
to be made in more than one category with the same example) to illustrate these broader classifications. Some of the difficulties
discussed in Ref. [90] are in supplementary materials while others are discussed below. Also, in a given broad category, any text
in boldface separates different difficulties.
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A. Difficulty with relevant conceptual knowledge

We find that students often had conceptual difficulties with indistinguishability and symmetrization requirement pertaining to
identical particles. Conceptual difficulties described in Ref. [90] are summarized in the supplementary materials.

B. Difficulties with procedural knowledge

Some students appeared to have the correct conceptual understanding but struggled to connect their conceptual knowledge
with the procedural knowledge for determining the number of distinct many-particle states correctly and in systematic reasoning
about it. Interview gave a closer look at how some students had difficulty determining the number of distinct many-particle
states even for a system with a small number of particles and available single-particle states while others only had difficulty
generalizing to a system with a large number of particles and available single-particle states. Below are some of the difficulties
students had in interviews and written responses in formulating a systematic approach for determining the number of distinct
many-particle states in the given situation while others are in Suplementary materials [90].

Attempting to explicitly list all of the possible many-particle states but omitting at least one possible combination:
Both in interviews and written responses, students often attempted to list all states, e.g., by considering many-particle states
constructed from placing particles in various single-particle states or writing many-particle wavefunctions from single-particle
wavefunctions or both. Nearly all the interviewed students after traditional instruction began by attempting to list all of the
possible many-particle states for a system of indistinguishable bosons in Q1(b). Most of the students continued to list as many
of the distinct many-particle states as they could. However, some of them omitted at least one of the possible many-particle
states partly because they were not systematic. For example, in Q1(b), some students began by listing several states in one
type of arrangement (e.g., all the bosons in the same single-particle state) and then moved on to listing states in another type of
arrangement (e.g., all the bosons in different single-particle states) without listing all the many-particle states in each arrangement
before moving on to the next arrangement. They would often continue to list states in various arrangements and then stop when
they could not identify any new many-particle states that they had not already listed. Some students missed at least one of
the three-particle states in Q1(b) in which two of the bosons are in one single-particle state and one boson is in a different
single-particle state.

Difficulty counting the different arrangements correctly for a system of distinguishable particles: Sometimes students
were using correct combinatorics for the case involving a system of distinguishable particles but they missed one important
aspect of the combinatorics. For example, one difficulty with Q1 for the system with distinguishable particles was that some
students who correctly determined that there were a total of 4 × 3 × 2 = 24 distinct many-particle states for the case in which
each distinguishable particle is in different single-particle state and 4 many-particle states in which the distinguishable particles
were all in the same single-particle states, but they had difficulty with the many-particle states in which two distinguishable
particles were in one single-particle state and another distinguishable particle was in another single-particle state. For example,
some students stated that two distinguishable particles can be placed in the same single-particle state in 4 ways and then the
third distinguishable particle can be placed in any of the other three single-particle states so the total possibilities in this case
are 4 × 3 = 12. Thus, they incorrectly came up with the total number of many particle states as 24 + 4 + 12. However, they
overlooked that when two distinguishable particles are in one single-particle state and the third in another, the two particles out
of three can be chosen in 3 ways so the total possibilities in that case are not 12 but 12 × 3 = 36 and then the total number of
many-particle states is 24 + 4 + 36 = 43.

Some students who claimed that the single-particle wavefunctions of different particles in the basis states in the product
space do not “commute” had difficulty generating a many-particle wavefunction with the appropriate number of terms and
in determining the normalization constant. For example, students with this type of difficulty often claimed that the many-
particle wavefunction for a system of three identical bosons in which all the bosons are in the same single-particle state is
1√
3
[ψn1

(x1)ψn1
(x2)ψn1

(x3)+ψn1
(x2)ψn1

(x3)ψn1
(x1)+ψn1

(x3)ψn1
(x1)ψn1

(x2)] or
1√
6
[ψn1

(x1)ψn1
(x2)ψn1

(x3) +ψn1
(x1)ψn1

(x3)ψn1
(x2)+ψn1

(x2)ψn1
(x1)ψn1

(x3)+ψn1
(x2)ψn1

(x3)ψn1
(x1)

+ψn1
(x3)ψn1

(x1)ψn1
(x2)+ψn1

(x3)ψn1
(x2)ψn1

(x1)]. They had difficulty realizing that all terms in both expressions are
equivalent and can be simplified to a single term ψn1

(x1)ψn1
(x2)ψn1

(x3). Additionally, in the interview situation, when
students with this type of response were asked for the normalization constant, they often had difficulty in correctly deter-
mining the normalization constant. For example, the expression 1√

3
[ψn1

(x1)ψn1
(x2)ψn1

(x3) + ψn1
(x2)ψn1

(x3)ψn1
(x1) +

ψn1
(x3)ψn1

(x1)ψn1
(x2)] reduces to

√
3ψn1

(x1)ψn1
(x2)ψn1

(x3), which is not the properly normalized many-particle wave-
function for a system of three identical bosons in the single-particle state ψn1

.
Difficulty with the bin and divider method for determining the number of distinct many-particle states for a system of

identical bosons: Students often had difficulty determining the number of distinct many-particle states for a system of indis-
tinguishable bosons using the “bin and divider” method (see Supplementary materials). For example, some students who used
the bin and divider method had difficulty realizing that one should be using the number of dividers (number of available single-
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particle states minus 1) as opposed to the number of bins (number of available single-particle states) to determine the number of
distinct states for a system of identical bosons. One interviewed student incorrectly claimed that “we can either count the number
of ways to arrange the bosons or the states” among the total number of indistinguishable objects. This student and others with

this type of difficulty incorrectly claimed that the number of distinct many-particle states was
(N +M

N
)
=
(N +M

M
)
=
(N +M)!

N !M !
.

C. Difficulty with mathematical sense-making in the context of determining the number of distinct many-particle states

Some students had difficulty integrating physics and mathematics concepts correctly in order to determine the number of
distinct many-particle states for a system of identical particles. Below, we discuss some difficulties students had in determining
the number of distinct many-particle states due to difficulty in applying an underlying mathematical concept correctly in different
quantum mechanical context.

Incorrectly adding the number of available single-particle states for each identical particle: Some students stated that
each indistinguishable particle can be placed in any of the available single-particle states and that the total number of distinct
many-particle states is the sum of the number of available single-particle states for each boson.

For a system of identical fermions in Q1(a), one interviewed student incorrectly claimed that there are 4 + 3 + 2 = 9 distinct
many-particle states for a system of three fermions and four available single-particle states. At least some students with this type
of response correctly applied their memorized knowledge of Pauli exclusion principle and determined the number of distinct
many-particle states such that no two fermions are in the same single-particle state, but incorrectly added the number of ways to
arrange the fermions in each single-particle state rather than multiplying. This is an interesting way of incorrectly applying the
Pauli exclusion principle or justifying the procedure for determining the number of distinct many-particle states.

For a system of identical bosons in Q1(b), one interviewed student stated that “there are four available (single-particle) states
for the first boson to go in and there are four available (single-particle) states for the second, since bosons can occupy the
same (single-particle) state. The same for the third. So there are four (available single-particle states) for the first (boson), four
(available single-particle states) for the second (boson), and four (available single-particle states) for the third (boson).” The
student then jotted down 4 + 4+ 4 = 12 and claimed there were 12 distinct three-particle states for Q1 for a system of identical
bosons.

Difficulty counting the different arrangements correctly for a system of indistinguishable bosons: In Q1, for a system of
three identical bosons and four available single-particle states, many students attempted to determine the number of ways: (1) all
three particles could be arranged in the same single particle state, (2) two bosons could be in the same state and the other boson
is in a different state, (3) all three bosons could be in different single-particle states to determine the total number of distinct
many particle states. For example, one common incorrect response in Q1 was

(
4
1

)
+
(
4
2

)
+
(
4
3

)
= 4+ 6+ 4 = 14. One interviewed

student with this type of response stated that “when all the bosons are in the same state, there are four states and we need to
choose which one has the bosons. There are

(
4
1

)
ways to arrange all the bosons in one state. If two of the bosons are in the

same state and one is in another, then we need to choose which two states have the bosons. That makes
(
4
2

)
ways to arrange

the bosons. And then, if all three bosons are in different states, then we need to choose which three states have the bosons.
There are

(
4
3

)
ways to do that.” The student then jotted down that the total number of distinct many-particle states in Q1(b) was(

4
1

)
+
(
4
2

)
+
(
4
3

)
= 4 + 6 + 4 = 14.

D. Reliance on memorized formulas

Some students calculated the number of distinct many-particle states in Q1 using a memorized formula rather than formulating
a systematic reasoning for a given system. This was more clear in the interviews in which students simply stated that they
remembered something from what they had been taught instead of reasoning about it when asked to do so. In some cases,
students recalled one or more expressions which were correct for a particular type of system but applied these expressions to the
wrong system of identical particles.

Mixing up the fermionic and bosonic cases: Some students answered Q1(a) in a manner which would have been correct for
a system of identical bosons and Q1(b) in a manner which would have been correct for a system of identical fermions. These
students often wrote the formula for the number of many-particle states from memory.

Incorrectly multiplying (as opposed to dividing) by the number of indistinguishable combinations: Some students
attempted to determine the number of distinct many-particle states for a system of indistinguishable particles by determining
the number of arrangements of identical particles in the single-particle states and then adjusting this number based upon the
number of indistinguishable permutations. However, in Q1(a) and Q1(b), some students incorrectly multiplied the number of
distinct many-particle states by the number of permutations of the indistinguishable particles (as opposed to dividing it). One
interviewed student who was unsure about whether to multiply or divide by the number of permutations of the indistinguishable
particles decided to multiply stating that is what he remembers from the course. Even when prodded explicitly, he did not
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explicitly reason about whether indistinguishability should give rise to more or less many-particle states compared to the case
when particles are distinguishable.

Similarly, for a system of identical fermions in Q1(a), another interviewed student incorrectly determined that there are 4! · 3!
distinct many-particle states for the system of three indistinguishable fermions in four single-particle states. When asked, this
student stated how he obtained 4! by noting that “we can put the first fermion in any of the four states. The second fermion can
go in any of the three states that the first fermion didn’t go in. And the third fermion can be in either of the two remaining states.”
The student then went on to try to account for the indistinguishability of the three fermions. “Then we need to multiply by the
number of arrangements that are the same for these three identical fermions. There are 3! ways to arrange these three fermions
so we need to multiply by this factor.” The student then jotted down his answer as 4! · 3!. This student used rote memory to
multiply rather than divide and claimed that there are more distinct states when taking into account the indistinguishability of the
fermions. Even when questioned about it, he did not correct his response and realize that there are fewer distinct many-particle
states for the system of indistinguishable fermions than there are for a system of three distinguishable particles all in different
single-particle states, e.g., there are

(
4
3

)
= 4!

3!1! = 4 distinct ways to arrange the three indistinguishable fermions among the four
single-particle states.

Similar differences were observed in Q1(b) as well both in written responses and interviews. For example, an interviewed
student in Q1(b) stated that there are 43 × 3! distinct many-particle states for a system of three indistinguishable bosons in four
single-particle states. The student incorrectly multiplied 43 for the distinguishable particle case by 3! and even when asked to
explain why one should multiply did not want to reason about it and claimed that this is what he remembers.

Incorrectly determining the number of distinct many-particle states for a different case in which the number of par-
ticles in the system was not fixed: Some students answered Q1 as though the number of particles in the system was not fixed
when the number of identical particles for a given system is specified in the problem. During Interviews, some students with
this type of response attempted to recall an example they had seen in class in which the number of particles in the system was
not fixed and instead they were asked to determine the number of distinct many-particle states for the system with different
conditions specified by the problem. Below, we give two such examples.

For a system of identical fermions in Q1(a), one interviewed student correctly stated that “each single-particle state can have
either zero or one fermion, so there are two possibilities for the first single-particle state, two for the second, and two for the
third and fourth. There are 2 × 2 × 2 × 2 = 24 = 16 distinct many-particle states.” This student and others with this type of
response answered a completely different question from the one posed (and calculated all the possible many-particle states for
fermions in these four single-particle states ranging from zero to four fermions) and failed to recognize that the system in Q1
had three indistinguishable fermions. When asked by the interviewer to clarify his answer, the student noted that this is what he
remembers from what he learned.

For a system of identical particles that can be treated as distinguishable in Q1(c), one interviewed student incorrectly claimed
that “there are three particles that can be put in the first state, three particles that can be put in the second state, three in the third,
and three in the fourth.” The student then wrote 34 = 81 as the total number of distinct three-particle states. When asked to
clarify his response, the student noted that this is what he remembers about the case of distinguishable particles. This student
failed to realize that his method for counting the total number of distinct states was not consistent for a system with only three
particles in Q1. He did not consider that if there are three identical particles that can be treated as distinguishable in the first
single-particle state, then there are none remaining to be placed in the other single-particle states. He also did not realize that
for a system in which there are three particles in each of the four single-particle states, the system would have 12 particles not
3. This student and others with this type of reasoning failed to do a consistency check for the fact that they were determining
the number of distinct many-particle states for a system restricted to only the specified number of particles and that specified
number of particles was not 12 but 3.

Using the formula NM instead of MN without considering whether it makes sense for the given situation: Some
students did not explicitly reason about the number of distinct many-particle states for a system of identical particles that can
be treated as distinguishable for a system with N particles and M available single-particle states and wrote NM for their final
answer instead of NM . For example, for a system of identical particles that can be treated as distinguishable in Q1, some of the
interviewed students who answered that there are 34 = 81 distinct many-particle states, noted that this is what they remember
when asked to reason about it. In particular, while some of the students with this type of response were recalling a different
case in which the total number of particles was not fixed as discussed in the preceding difficulty, others did not even try to
reason about why their answer should be 34 = 81 instead of 43 even when explicitly asked during interview. When asked how
they arrived at the answer, they could have checked the reasonability of the formulas MN or NM for a system with a small
number of particles and available single-particle states. For example, they could have considered a system of one particle and
two available single-particle states in which the particle can be in either of the two single-particle states and there are two distinct
many-particle states and thus, MN = 21 = 2 gives the correct answer but using the formula NM = 12 = 1, one incorrectly
obtains only one distinct many-particle state for the system. However, even prodding did not get students to give any reasoning
except state that this is what they remember.

We note that even though the last few difficulties in this section have focused on using the formula
(
M
N

)
, they are somewhat

different, e.g., the student may be reasoning correctly in at least one case but using this formula incorrectly.
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IV. METHODOLOGY FOR DEVELOPMENT OF THE QUILT

A. Development and Validation of the QuILT

Based upon our learning objectives (see the next section) and research on student difficulties with fundamental concepts
for systems of identical particles discussed earlier, we developed and validated a QuILT (along with the corresponding pre-
/posttests) that strives to help students learn relevant concepts. The development and structure of the QuILT was inspired by
Vygotsky’s zone of proximal development (ZPD) [103]. The QuILT strives to help students learn relevant concepts by providing
appropriate scaffolding. The types of problems that many students were unable to solve successfully at the onset of the QuILT
after traditional lecture-based instruction are scaffolded using guided inquiry-based teaching-learning sequences that build on
each other. The amount of support provided to students via the QuILT is gradually decreased to help them develop self-reliance.
The QuILT strives to scaffold student learning using a guided inquiry-based approach. It incorporates hypothetical student
conversations and sets of inquiry-based sequences designed to help them focus on inconsistencies in their initial reasoning and
provide scaffolding to help them resolve the inconsistencies. Please see Supplementary materials for additional issues [86, 87].

B. Learning Objective

After working through the QuILT, students should be able to do the following:

• Determine whether a system of identical fermions is possible based upon the given information about a hypothetical
situation and justify their reasoning, e.g., using the Pauli exclusion principle.

• Use a systematic approach when counting the number of many-particle states for a system of identical fermions, bosons,
or a system of distinguishable particles and support this approach in words or using diagrams displaying the particles and
energy levels.

• Compare the number of different many-particle states for systems of identical fermions or bosons to a system in which the
particles can be treated as distinguishable.

• Write all of the possible many-particle wavefunctions for a given system and compare to the calculated number of many-
particle states for the same system.

• Calculate the number of different three particle states for a system of N non-interacting identical particles and M distinct
single particle states available to each particle, if the particles were fermions, bosons or distinguishable (for M > N ).

C. IMPROVING STUDENT UNDERSTANDING VIA THE QUILT

In the guided inquiry-based teaching-learning sequences in the QuILT, students actively engage with examples focusing on
concepts in a given situation consistent with the learning objectives. These guided teaching-learning sequences use common
student difficulties found in our investigation as resources, e.g., how to determine the number of distinct many-particle states in a
given situation. In particular, the QuILT scaffolds student learning and helps them develop a systematic approach for determining
the number of many-particle states for a system of identical particles and connect the number of distinct many-particle states to
the possible number of many-particle stationary state wavefunctions. In the QuILT, students consider the systems of identical
particles in the following order: (1) indistinguishable fermions, (2) indistinguishable bosons, and (3) identical particles that
can be treated as distinguishable. To help students learn to deduce complicated cases starting from simple ones, for each
system, students begin by determining the number of distinct many-particle states for a system of two identical particles. They
then consider a system of three identical particles and determine the number of distinct many-particle states. Finally, students
are presented with systems in which the number of particles becomes very large and they are provided guidance and support in
learning to determine the number of distinct many-particle states. Since not recognizing indistinguishability and its consequences
was a common difficulty, for the systems of indistinguishable fermions and indistinguishable bosons, students also work with
diagrammatic representations for the system that strive to help students recognize why care must be taken to ensure that one is
determining these particles as indistinguishable particles. These diagrammatic representations are intended to help them develop
a systematic reasoning for determining the number of distinct many-particle states for a system with a large number of particles
and available single-particle states. Below are several examples from the QuILT that strives to provide scaffolding support
intended to help students with these concepts and address some of the common difficulties discussed earlier.

Helping students determine the number of distinct many-particle states for a system of fermions: As we noted in the
preceding section, students often had difficulties with determining the number of distinct many-particle states for a system of
fermions. Therefore, the QuILT strives to take into account these difficulties via the guided inquiry-based learning sequences.
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In particular, it focuses on helping students learn to identify that a system of identical fermions is made up of indistinguishable
particles and one must be careful to only count distinct many-particle stationary states (since students often had difficulties with
this). The QuILT also strives to help students learn that in addition to the indistinguishability requirement, the many-particle
states for a system of indistinguishable fermions are consistent with the Pauli exclusion principle since this was also a difficulty.
One consequence of the Pauli exclusion principle is that a system cannot have more fermions than the number of available
single-particle states.

The following is an example of a hypothetical student conversation from the QuILT that focuses on providing an opportunity
for reflection of some common difficulties in which students must consider each statement and explain why they agree or
disagree with each. This conversation is part of a guided inquiry-based learning sequence that strives to help students determine
the number of distinct two-particle states for a system of two indistinguishable fermions and three distinct single-particle states
while not overcounting states by treating the particles as distinguishable.
Student 1: For a system of two fermions and three distinct single-particle states ψn1 , ψn2 , and ψn3 , there are three available
single-particle states for the first fermion. That leaves two single-particle states for the second fermion since the second fermion
cannot occupy the same single-particle state as the first fermion. The number of two-particle states is 3× 2 = 6.
Student 2: I disagree with Student 1. Since the fermions are indistinguishable, we cannot distinguish which fermion is in which
single-particle state. For example, we can only tell that one fermion is in single-particle state ψn2

and another fermion in
single-particle state ψn3

. But, there is no way to tell which fermion is in which single-particle state. This indistinguishability is
reflected in the antisymmetrized wavefunction.
Student 3: I agree with Student 2. Figure 1 shows the diagrammatic representation for the 3 distinct two-particle states:

FIG. 1. Diagramatic representation for two fermions in three single-particle states.

✉✉
ψn1

ψn2

ψn3 ✉
✉ ψn1

ψn2

ψn3

✉✉ ψn1

ψn2

ψn3

Student 1 is not correct while Students 2 and 3 are correct in the preceding conversation. This conversation is designed to help
students reflect upon the fact that the fermions are indistinguishable. After considering this hypothetical conversation, as part
of the guided inquiry-based sequence, students are asked to write all the possible stationary state wavefunctions for a system of
two fermions and three available single-particles states ψn1 , ψn2 , and ψn3 for the case when the two fermions are in the same
single-particle state and when the two fermions are in different single-particle states. The students are then asked to reflect upon
the number of distinct many-particle states and the number of possible many-particle stationary state wavefunctions. Further
scaffolding is provided that strives to help students realize that the number of distinct many-particle states is the same as the
number of possible many-particle stationary state wavefunctions for a given system.

The following statement is an excerpt from a hypothetical conversation between students that strives to help them reflect
upon how to determine the number of distinct many-particle states and connect this reasoning to a mathematical expression for
counting the states (this was a common difficulty). Students are asked to explain why they agree or disagree with each student
such as the following:

Student 2: There are three distinct single-particle states available to the fermions and we must choose any two for the
fermions to occupy. The number of distinct two-particle states for a system of two indistinguishable fermions and three distinct
single-particle states is

(
3
2

)
= 3!

2!(3−2)! = 3.
Student 2 is correct. After students consider these types of examples of determining the number of distinct two-particle states

for a system of two fermions, they then work through guided inquiry-based sequences for a system of three identical fermions.
Then, they consider systems for a large number of fermions and a large number of available single-particle states. Students are
provided further scaffolding support that strives to help them generalize the results from the systems of two and three fermions
and become proficient in determining the number of distinct many-particle states for a system with a large number of fermions
(something that was challenging for many students as discussed in the preceding section).

Helping students determine the number of distinct many-particle states for a system of bosons: To address the difficulty
in distinguishing between bosons and distinguishable particles, the QuILT strives to help students learn that a system of identical
bosons must be treated as a system of indistinguishable particles and develop a systematic approach for determining the number
of distinct many-particle states in a given situation.

The following hypothetical conversation is part of a guided inquiry-based learning sequence that aims to help students with
the fact that a system of identical bosons cannot be treated as a system of distinguishable particles and provides a diagrammatic
representation to help them reflect upon the distinct many-particle states. In this conversation, students consider a system of two
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indistinguishable bosons and three distinct single-particle states and are asked to explain why they agree or disagree with each:

Student 1: For a system of two bosons and three distinct single-particle states ψn1
, ψn2

, and ψn3
, there are three available

states for the first boson and three available states for the second boson. The number of two-particle states is 3× 3 = 9.
Student 2: I disagree with Student 1. You are overcounting since you are not taking into account the fact that bosons are
indistinguishable. If the bosons are in the same single-particle state, there are three possibilities as shown in Figure 2.

But, if the bosons are in different single-particle states, there are three possibilities since bosons are indistinguishable and

FIG. 2. Diagramatic representation for two bosons in the same single-particle state.

✉ ✉
ψn1

ψn2

ψn3

✉ ✉ ψn1

ψn2

ψn3

✉ ✉ ψn1

ψn2

ψn3

swapping the two bosons in the two single-particle states in each of the following situations does not produce a new two-particle
state as depicted in Figure 3.
There are 6 distinct two-particle states for a system of two bosons and three distinct single-particle states.

FIG. 3. Diagramatic representation for two bosons in which the bosons are in different single-particle states.

✉✉
ψn1

ψn2

ψn3 ✉
✉ ψn1

ψn2

ψn3

✉✉ ψn1

ψn2

ψn3

Student 1 is incorrect and Student 2 is correct in the preceding conversation. If one treats the identical bosons as distinguish-
able, as Student 1 has, then one is overcounting the case in which the two identical bosons are in different single-particle states.
Student 2’s statement regarding the particles being indistinguishable under the exchange of the particles strives to draw students’
attention to the fact that these two bosons cannot be distinguished. After considering this hypothetical conversation, as part of
the guided inquiry-based sequence, students are asked to write all of the possible stationary state wavefunctions for a system of
two bosons and three available single-particles states ψn1

, ψn2
, and ψn3

. The students are then asked to reflect upon the number
of distinct many-particle states and the number of possible many-particle stationary state wavefunctions. Further scaffolding
is provided that strives to help students realize that one must obtain the same number of distinct many-particle states from the
combinatorics as the number of possible many-particle stationary state wavefunctions for a given system.

The next hypothetical conversation in the guided inquiry-based learning sequence strives to help students learn a method for
determining the number of distinct ways two indistinguishable bosons can be arranged in the three distinct single-particle states
by introducing the bin and divider method (a method that was challenging for students as discussed in the preceding section).

Student 1: For a system of two bosons, there can be more than one boson in a given single-particle state. We can treat the
single-particle states as bins to be filled with bosons and dividers to separate the different single-particle states or bins. For
example, if the system had two bosons in the first single-particle state then the first bin would have two bosons. For a system with
three single-particle states available, we would need two dividers between the three single-particle states. In the case of three
single-particle states and two bosons, we must find the number of possible arrangements of the two bosons and two dividers.
Student 2: I agree with Student 1. Furthermore, since the two dividers cannot be distinguished from one another and the bosons
cannot be distinguished from one another, we can permute the indistinguishable dividers with the indistinguishable bosons to
find all the possible ways to permute two bosons in the three single-particle states as shown in Figure 4:

Student 3: The number of distinct many-particle states comes from the number of ways the two bosons and two dividers can
be permuted. We have a total of four objects (two bosons and two dividers) and we can find the number of ways to permute
the two bosons or equivalently the number of ways to permute the two dividers among the four objects. The number of distinct
two-particle states is

(
4
2

)
= 4!

2!(4−2)! = 6.

All three students in the preceding conversation are correct. Student 1 is describing the bin and divider method and Student 2 is
providing a diagrammatical representation of different arrangements of the two bosons in the bins representing the single-particle
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FIG. 4. Diagramatic representation of the bin and divider method for a system of identical bosons.
Two Bosons in the First State

✉ ✉
Two Bosons in the Second State

✉ ✉
Two Bosons in the Third State

✉ ✉
One Boson in the First State and One Boson in the Second State

✉ ✉
One Boson in the First State and One Boson in the Third State

✉ ✉
One Boson in the Second State and One Boson in the Third State

✉ ✉

states. Student 3 provides a mathematical expression for the total number of distinct two-particle states.
After students consider examples that strive to help them learn how to determine the distinct two-particle states for a system

of two bosons, they then work through several guided inquiry-based sequences for a system of three identical bosons. Then,
they consider systems for a large number of bosons and a large number of available single-particle states. Students are provided
scaffolding support that strives to help them generalize the results from the systems of two and three bosons to be able to deter-
mine the number of distinct many-particle states for a system with a large number of bosons. The following is a hypothetical
student conversation aimed at helping students develop a systematic approach for determining the number of distinct ways N
indistinguishable bosons can be arranged in the M distinct single-particle states.

Student 1: Using the bin and divider method, there are N +M − 1 total objects that should be permuted, out of which N
bosons are indistinguishable from each other and the M − 1 dividers are indistinguishable from each other. We must calculate
the number of distinct arrangements.
Student 2: When we choose the number of ways to place the M − 1 indistinguishable dividers between the N bosons, we get(N +M − 1

M − 1
)
=

(N +M − 1)!

(M − 1)![(N +M − 1)− (M − 1))]!
=

(N +M − 1)!

(M − 1)!N !
. If instead we choose the number of ways to place

the N bosons between M − 1 dividers, we get
(N +M − 1

N
)
=

(N +M − 1)!

N ![(N +M − 1)−N)]!
=

(N +M − 1)!

N !(M − 1)!
. Either way it is

the same!
Both students in the previous conversation are correct and are drawing attention to the fact that one must focus on the number

of bosons and the number of dividers (as opposed to the number of available single-particle states).
The QuILT also asks students to reflect upon and compare the number of distinct many-particle states for a system of indis-

tinguishable fermions, indistinguishable bosons, and identical particles that could be treated as distinguishable since this was
a common difficulty. In particular, they are asked to rank the number of distinct many-particle states for each system with the
same number of particles and the same number of single-particle states. The goal is to have students understand that for the
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TABLE I. Average pretest and posttest scores for Q1 and Q2 for the given system on the pretest and posttest for undergraduates (number of
students N = 25) and graduate students (N = 30).

Question Type of Particle Graduate Undergraduate
Pre (%) Post (%) Pre (%) Post (%)

Q1
Fermions 48 - 56 -
Bosons 28 - 27 -

Distinguishable 28 - 39 -

Q2
Fermions - 100 - 100
Bosons - 92 - 96

Distinguishable - 93 - 86

TABLE II. The percentages of undergraduate students who answered questions Q1(a) and Q1(b) correctly for the given system on the midterm
examination four weeks after completing the Quantum Interactive Learning Tutorial (number of students N = 12).

Question Type of Particle Answered Correctly (%)
Q1(a) Fermions 75
Q1(b) Bosons 75

same number of particles and available single-particle states, a system of distinguishable particles has the largest number of
distinct many-particle states and that the indistinguishability of the identical fermions and bosons results in fewer distinct states
(unless the system of identical bosons has only one available single-particle state, in which case this system will have the same
number of distinct many-particle states as a system of distinguishable particles). A system of identical fermions must satisfy the
Pauli exclusion principle which reduces the number of possible many-particle states compared to identical bosons. The QuILT
also strives to help students learn that the number of distinct many-particles states for a given number of particles and available
single-particle states increase by particle type in the order: indistinguishable fermions, indistinguishable bosons, and identical
particles that can be treated as distinguishable and be able to reason why that is the case.

V. IN-CLASS EVALUATION OF THE QUILT

Details of in class implementation are similar to Ref. [86, 87] and described in supplementary materials. Table I shows the
performance of undergraduate and graduate students on the pretest and posttest. The results are encouraging and suggest that
the QuILT is effective in helping students be able to count the number of distinct many-particle states for systems of identical
fermions or bosons, as well as the contrasting case in which the identical particles could be treated as distinguishable. Q2 was
given on the posttest and was intended to be a similar question to Q1 on the pretest. There are a different number of identical
particles and available single-particle states in the two questions. Overall, the students did very well on the posttest with more
than 80% of the graduate students and 75% of the undergraduates answering all three parts of Q2 correctly for the given system
of identical particles.

As a measure of retention, the students in the undergraduate course in one of the years were given questions Q1(a) and Q1(b)
on their midterm examination four weeks after completing the posttest. Table II summarizes the percentages of students who
determined the number of distinct many-particle states in Q1(a) and Q1(b) correctly on the midterm examination. These findings
are encouraging.

VI. SUMMARY

We investigated students’ difficulties with a system of identical particles in a context in which there is a fixed number of
available single-particle states. We used the research as a guide to develop a research-validated QuILT commensurate with
the learning objectives. The QuILT provides scaffolding support to help students learn to reason and determine the number
of distinct many-particle states for a system of identical particles in which the total number of particles and available single-
particles states is fixed. We find that students who are still developing expertise have difficulty in integrating the physics with
combinatorics. This involves how to count objects with different properties (e.g., in cases in which particles are distinguishable
vs. indistinguishable and the overall wavefunction is symmetric or antisymmetric) and accounting for appropriate restrictions
on the ways in which these objects can be arranged. The math-physics connection makes these issues even more challenging,
e.g., students must learn the consequences of the indistinguishability of bosons and fermions as well as the consequences of
symmetrization or anti-symmetrization requirement of the wave function in these cases on how the counting process would differ
for these and how these two cases would be different from the corresponding case of distinguishable particles. In particular, the
fact that students must understand the implication of all of the physics constraints in the fermion and boson situations on the
appropriate way to do the combinatorics makes the task significantly challenging. Since it can be challenging for students to do
appropriate physics and math connections to solve these complex problems, it is important that they are provided appropriate
scaffolding support to learn. For example, scaffolding support is provided via reflections on hypothetical student conversations
that focus on the common difficulties and provide students opportunities to compare and contrast cases. In the QuILT, problems
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focusing on each learning objective, start with small number of particles and available single-particle states so that students can
check the correctness of their predictions using trial and error method and then figure out heuristics to generalize different cases
with scaffolding support provided. The checkpoints are provided to help students go back and reconcile any differences between
their predictions and hints provided. The findings indicate that the QuILT effectively enhances students’ understanding of these
concepts.
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[25] M. Michelini, A. Stefanel, and K. Tóth, Implementing Dirac approach to quantum mechanics in a Hungarian secondary school, Educa-

tion Sciences 12, 606 (2022).
[26] P. Hu, Y. Li, and C. Singh, Challenges in addressing student difficulties with measurement uncertainty of two-state quantum systems

using a multiple-choice question sequence in online and in-person classes, European Journal of Physics 44, 015702 (2022).
[27] G. Corsiglia, B. P. Schermerhorn, H. Sadaghiani, A. Villaseñor, S. Pollock, and G. Passante, Exploring student ideas on change of basis

in quantum mechanics, Phys. Rev. Phys. Educ. Res. 18, 010144 (2022).

https://doi.org/https://doi.org/10.1119/1.1365404
https://doi.org/https://doi.org/10.1063/9780735425477_008
https://doi.org/10.1103/PhysRevSTPER.11.010110
https://doi.org/10.1103/PhysRevSTPER.11.010110
https://doi.org/https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.15.020128
https://doi.org/10.1103/PhysRevPhysEducRes.20.010122
https://doi.org/10.1103/PhysRevPhysEducRes.16.010143
https://doi.org/10.1119/perc.2013.inv.010
https://doi.org/10.1119/perc.2015.pr.048
https://doi.org/10.3390/educsci12090606
https://doi.org/10.3390/educsci12090606
https://doi.org/10.1103/PhysRevPhysEducRes.18.010144


13

[28] P. Hu, Y. Li, and C. Singh, Challenges in addressing student difficulties with basics and change of basis for two-state quantum systems
using a multiple-choice question sequence in online and in-person classes, European Journal of Physics 44, 065703 (2023).

[29] C. Singh, Helping students learn quantum mechanics for quantum computing, AIP Conf. Proc. 883, 42 (2007).
[30] S. Aaronson, Quantum computing since Democritus (Cambridge University Press, 2013).
[31] M. G. Raymer and C. Monroe, The US national quantum initiative, Quantum Science and Technology 4, 020504 (2019).
[32] M. F. Fox, B. M. Zwickl, and H. Lewandowski, Preparing for the quantum revolution: What is the role of higher education?, Physical

Review Physics Education Research 16, 020131 (2020).
[33] C. Singh, A. Asfaw, and J. Levy, Preparing students to be leaders of the quantum information revolution, Physics Today (2021).
[34] A. Asfaw, A. Blais, K. R. Brown, J. Candelaria, C. Cantwell, L. D. Carr, J. Combes, D. M. Debroy, J. M. Donohue, S. E. Economou,

E. Edwards, M. F. J. Fox, S. M. Girvin, A. Ho, H. M. Hurst, Z. Jacob, B. R. Johnson, E. Johnston-Halperin, R. Joynt, E. Kapit, J. Klein-
Seetharaman, M. Laforest, H. J. Lewandowski, T. W. Lynn, C. R. H. McRae, C. Merzbacher, S. Michalakis, P. Narang, W. D. Oliver,
J. Palsberg, D. P. Pappas, M. G. Raymer, D. J. Reilly, M. Saffman, T. A. Searles, J. H. Shapiro, and C. Singh, Building a quantum
engineering undergraduate program, IEEE Transactions on Education 65, 220 (2022).

[35] C. Singh, A. Levy, and J. Levy, Preparing precollege students for the second quantum revolution with core concepts in quantum infor-
mation science, The Physics Teacher 60, 639 (2022).

[36] J. C. Meyer, G. Passante, S. J. Pollock, and B. R. Wilcox, Today’s interdisciplinary quantum information classroom: Themes from a
survey of quantum information science instructors, Physical Review Physics Education Research 18, 010150 (2022).

[37] F. Greinert, R. Müller, P. Bitzenbauer, M. S. Ubben, and K.-A. Weber, Future quantum workforce: Competences, requirements, and
forecasts, Physical Review Physics Education Research 19, 010137 (2023).

[38] P. Jolly, D. Zollman, S. Rebello, and A. Dimitrova, Visualizing potential energy diagrams, Am. J. Phys 66, 57 (1998).
[39] M. Belloni, W. Christian, and D. Brown, Open source physics curricular material for quantum mechanics, Computing in Science Engi-

neering 9, 24 (2007).
[40] C. Singh, M. Belloni, and W. Christian, Improving students’ understanding of quantum mechanics, Physics Today 59, 43 (2006).
[41] R. Sayer, A. Maries, and C. Singh, Quantum interactive learning tutorial on the double-slit experiment to improve student understanding

of quantum mechanics, Physical Review Physics Education Research 13, 010123 (2017).
[42] A. Kohnle, I. Bozhinova, D. Browne, M. Everitt, A. Fomins, P. Kok, G. Kulaitis, M. Prokopas, D. Raine, and E. Swinbank, A new

introductory quantum mechanics curriculum, European Journal of physics 35, 015001 (2013).
[43] M. Chhabra and R. Das, Quantum mechanical wavefunction: visualization at undergraduate level, European Journal of Physics 38,

015404 (2017).
[44] M. L. Chiofalo, C. Foti, M. Michelini, L. Santi, and A. Stefanel, Games for teaching/learning quantum mechanics: A pilot study with

high-school students, Education Sciences 12, 446 (2022).
[45] S. Siddiqui and C. Singh, How diverse are physics instructors’ attitudes and approaches to teaching undergraduate level quantum

mechanics?, European Journal of Physics 38, 035703 (2017).
[46] E. Marshman, R. Sayer, C. Henderson, and C. Singh, Contrasting grading approaches in introductory physics and quantum mechanics:

The case of graduate teaching assistants, Physical Review Physics Education Research 13, 010120 (2017).
[47] C. Singh, Student understanding of quantum mechanics at the beginning of graduate instruction, American Journal of Physics 76, 277

(2008).
[48] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement. I. investigation of difficulties, Physical Review

Special Topics-Physics Education Research 8, 010117 (2012).
[49] G. Zhu and C. Singh, Improving students’ understanding of quantum measurement. II. development of research-based learning tools,

Physical Review Special Topics-Physics Education Research 8, 010118 (2012).
[50] G. Passante, P. J. Emigh, and P. S. Shaffer, Examining student ideas about energy measurements on quantum states across undergraduate

and graduate levels, Physical Review Special Topics-Physics Education Research 11, 020111 (2015).
[51] P. J. Emigh, G. Passante, and P. S. Shaffer, Developing and assessing tutorials for quantum mechanics: Time dependence and measure-

ments, Physical Review Physics Education Research 14, 020128 (2018).
[52] P. Hu, Y. Li, and C. Singh, Challenges in addressing student difficulties with quantum measurement of two-state quantum systems using

a multiple-choice question sequence in online and in-person classes, Physical Review Physics Education Research 19, 020130 (2023).
[53] P. J. Emigh, G. Passante, and P. S. Shaffer, Student understanding of time dependence in quantum mechanics, Physical Review Special

Topics-Physics Education Research 11, 020112 (2015).
[54] E. Marshman and C. Singh, Investigating and improving student understanding of the expectation values of observables in quantum

mechanics, European Journal of Physics 38, 045701 (2017).
[55] E. Marshman and C. Singh, Investigating and improving student understanding of the probability distributions for measuring physical

observables in quantum mechanics, European Journal of Physics 38, 025705 (2017).
[56] T. Wan, P. J. Emigh, and P. S. Shaffer, Investigating how students relate inner products and quantum probabilities, Physical Review

Physics Education Research 15, 010117 (2019).
[57] T. Wan, P. J. Overcoming mis, and P. S. Shaffer, Probing student reasoning in relating relative phase and quantum phenomena, Phys.

Rev. Phys. Educ. Res. 15, 020139 (2019).
[58] P. Hu, Y. Li, and C. Singh, Challenges in addressing student difficulties with time-development of two-state quantum systems using a

multiple-choice question sequence in virtual and in-person classes, European Journal of Physics 43, 025704 (2022).
[59] G. Zhu and C. Singh, Improving student understanding of addition of angular momentum in quantum mechanics, Physical Review

Special Topics-Physics Education Research 9, 010101 (2013).
[60] P. Justice, E. Marshman, and C. Singh, Development and validation of a sequence of clicker questions for helping students learn addition

of angular momentum in quantum mechanics, in Proc. Phys. Educ. Res. Conference (2018).

https://doi.org/https://dx.doi.org/10.1088/1361-6404/acf5b3
https://doi.org/https://doi.org/10.1063/1.2508687
https://doi.org/10.1103/PhysRevPhysEducRes.16.020131
https://doi.org/10.1103/PhysRevPhysEducRes.16.020131
https://doi.org/10.1109/TE.2022.3144943
https://doi.org/10.1119/5.0027661
https://doi.org/10.1103/PhysRevPhysEducRes.18.010150
https://doi.org/10.1103/PhysRevPhysEducRes.19.010137
https://doi.org/10.1063/1.2349732
https://doi.org/10.1088/0143-0807/38/1/015404
https://doi.org/10.1088/0143-0807/38/1/015404
https://doi.org/10.3390/educsci12070446
https://doi.org/https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.19.020130
https://doi.org/10.1103/PhysRevPhysEducRes.15.020139
https://doi.org/10.1103/PhysRevPhysEducRes.15.020139
https://doi.org/10.1088/1361-6404/ac49f4
https://doi.org/https://doi.org/10.1119/perc.2018.pr.Justice


14

[61] G. Zhu and C. Singh, Improving students’ understanding of quantum mechanics via the stern–gerlach experiment, American Journal of
Physics 79, 499 (2011).

[62] E. Marshman and C. Singh, Developing an interactive tutorial on a quantum eraser, Proc. Phys. Educ. Res. Conf. , 175 (2015).
[63] E. Marshman and C. Singh, Interactive tutorial to improve student understanding of single photon experiments involving a mach–zehnder

interferometer, European Journal of Physics 37, 024001 (2016).
[64] E. Marshman and C. Singh, Investigating and improving student understanding of quantum mechanics in the context of single photon

interference, Physical Review Special Topics-Physics Education Research 13, 010117 (2017).
[65] P. Justice, E. Marshman, and C. Singh, Improving student understanding of quantum mechanics underlying the stern–gerlach experiment

using a research-validated multiple-choice question sequence, European Journal of Physics 40, 055702 (2019).
[66] P. Bitzenbauer, Effect of an introductory quantum physics course using experiments with heralded photons on preuniversity students’

conceptions about quantum physics, Physical Review Physics Education Research 17, 020103 (2021).
[67] E. Marshman and C. Singh, QuILTs: Validated teaching–learning sequences for helping students learn quantum mechanics, in Physics

Teacher Education: What Matters?, edited by J. Borg Marks, P. Galea, S. Gatt, and D. Sands (Springer International Publishing, Cham,
2022) pp. 15–35. https://doi.org/10.1007/978–3–031–06193–6 2.

[68] V. Borish and H. Lewandowski, Seeing quantum effects in experiments, Physical Review Physics Education Research 19, 020144
(2023).

[69] S. DeVore and C. Singh, Interactive learning tutorial on quantum key distribution, Physical Review Physics Education Research 16,
010126 (2020).

[70] C. Singh, Transfer of learning in quantum mechanics, AIP Conference Proceedings 790, 23 (2005).
[71] C. Singh, Assessing and improving student understanding of quantum mechanics, AIP Conference Proceedings 818, 69 (2006).
[72] C. Singh, Student difficulties with quantum mechanics formalism, AIP Conf. Proc. 883, 185 (2007).
[73] S.-Y. Lin and C. Singh, Categorization of quantum mechanics problems by professors and students, European Journal of Physics 31, 57

(2010).
[74] C. Singh and G. Zhu, Cognitive issues in learning advanced physics: An example from quantum mechanics, AIP Conf. Proc. 1179, 63

(2009).
[75] A. Mason and C. Singh, Do advanced physics students learn from their mistakes without explicit intervention?, American Journal of

Physics 78, 760 (2010).
[76] E. Marshman and C. Singh, Framework for understanding the patterns of student difficulties in quantum mechanics, Physical Review

Special Topics-Physics Education Research 11, 020119 (2015).
[77] A. Maries, R. Sayer, and C. Singh, Effectiveness of interactive tutorials in promoting ”which-path” information reasoning in advanced

quantum mechanics, Physical Review Physics Education Research 13, 020115 (2017).
[78] A. Maries, R. Sayer, and C. Singh, Can students apply the concept of “which-path” information learned in the context of mach–zehnder

interferometer to the double-slit experiment?, American Journal of Physics 88, 542 (2020).
[79] M. C. Wittmann, R. N. Steinberg, and E. F. Redish, Investigating student understanding of quantum physics: Spontaneous models of

conductivity, American Journal of Physics 70, 218 (2002).
[80] D. Domert, C. Linder, and A. Ingerman, Probability as a conceptual hurdle to understanding one-dimensional quantum scattering and

tunnelling, European Journal of Physics 26, 47 (2004).
[81] T. Tu, C.-F. Li, J.-S. Xu, and G.-C. Guo, Students’ difficulties with solving bound and scattering state problems in quantum mechanics,

Physical Review Physics Education Research 17, 020142 (2021).
[82] C. Keebaugh, E. Marshman, and C. Singh, Investigating and addressing student difficulties with a good basis for finding perturbative

corrections in the context of degenerate perturbation theory, European Journal of Physics 39, 055701 (2018).
[83] C. Keebaugh, E. Marshman, and C. Singh, Improving student understanding of fine structure corrections to the energy spectrum of the

hydrogen atom, American Journal of Physics 87, 594 (2019).
[84] C. Keebaugh, E. Marshman, and C. Singh, Investigating and addressing student difficulties with the corrections to the energies of the

hydrogen atom for the strong and weak field zeeman effect, European Journal of Physics 39, 045701 (2018).
[85] C. Keebaugh, E. Marshman, and C. Singh, Improving student understanding of corrections to the energy spectrum of the hydrogen atom

for the zeeman effect, Physical Review Physics Education Research 15, 010113 (2019).
[86] C. Keebaugh, E. Marshman, and C. Singh, Improving student understanding of a system of identical particles with a fixed total energy,

American Journal of Physics 87, 583 (2019).
[87] C. Keebaugh, E. Marshman, and C. Singh, Investigating and improving student understanding of the basics for a system of identical

particles, American Journal of Physics 90, 110 (2022).
[88] P. Justice, E. Marshman, and C. Singh, Student understanding of Fermi energy, the Fermi–Dirac distribution and total electronic energy

of a free electron gas, European Journal of Physics 41, 015704 (2020).
[89] T. Tu, C.-F. Li, Z.-Q. Zhou, and G.-C. Guo, Students’ difficulties with partial differential equations in quantum mechanics, Physical

Review Physics Education Research 16, 020163 (2020).
[90] C. Keebaugh, E. Marshman, and C. Singh, Student difficulties with the number of distinct many-particle states for a

system of non-interacting identical particles with a fixed number of available single-particle states, PERC Proceedings
https://doi.org/10.1119/perc.2018.pr.Keebaugh (2018).

[91] A. Sirnoorkar, P. D. Bergeron, and J. T. Laverty, Sensemaking and scientific modeling: Intertwined processes analyzed in the context of
physics problem solving, Physical Review Physics Education Research 19, 010118 (2023).

[92] T. O. B. Odden and R. S. Russ, Sensemaking epistemic game: A model of student sensemaking processes in introductory physics,
Physical Review Physics Education Research 14, 020122 (2018).

[93] O. Uhden, R. Karam, M. Pietrocola, and G. Pospiech, Modelling mathematical reasoning in physics education, Science & Education
21, 485 (2012).

https://doi.org/https://doi.org/10.1119/perc.2014.pr.040
https://doi.org/https://dx.doi.org/10.1088/1361-6404/ab2135
https://doi.org/https://doi.org/10.1007/978-3-031-06193-6_2
https://doi.org/https://doi.org/10.1007/978-3-031-06193-6_2
https://doi.org/10.1103/PhysRevPhysEducRes.19.020144
https://doi.org/10.1103/PhysRevPhysEducRes.19.020144
https://doi.org/10.1103/PhysRevPhysEducRes.16.010126
https://doi.org/10.1103/PhysRevPhysEducRes.16.010126
https://doi.org/https://doi.org/10.1119/perc.2015.pr.047
https://doi.org/https://doi.org/10.1063/1.2177025
https://doi.org/https://doi.org/10.1063/1.2508723
https://doi.org/https://doi.org/10.1063/1.3266755
https://doi.org/https://doi.org/10.1063/1.3266755
https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.13.020115
https://doi.org/10.1119/10.0001357
https://doi.org/10.1119/10.0006910
https://doi.org/https://dx.doi.org/10.1088/1361-6404/ab537c
https://doi.org/https://doi.org/10.1119/perc.2018.pr.Keebaugh
https://doi.org/10.1103/PhysRevPhysEducRes.19.010118
https://doi.org/10.1103/PhysRevPhysEducRes.14.020122
https://doi.org/10.1007/s11191-011-9396-6
https://doi.org/10.1007/s11191-011-9396-6


15

[94] C. Tzanakis, Mathematics & physics: an innermost relationship. didactical implications for their teaching learning, conference pro-
ceedings, Edited by L. Radford, F. Furinghetti, T. Hausberger hal.science/hal-01349231/document (2016).

[95] L. Branchetti, A. Cattabriga, and O. Levrini, Interplay between mathematics and physics to catch the nature of a scientific breakthrough:
The case of the blackbody, Physical Review Physics Education Research 15, 020130 (2019).

[96] R. Karam, Framing the structural role of mathematics in physics lectures: A case study on electromagnetism, Physical Review Special
Topics - Physics Education Research 10, 010119 (2014).

[97] R. Karam, Introduction of the thematic issue on the interplay of physics and mathematics, Science & Education 24, 487 (2015).
[98] D. Hu and N. S. Rebello, Using conceptual blending to describe how students use mathematical integrals in physics, Physical Review

Special Topics - Physics Education Research 9, 020118 (2013).
[99] J. Tuminaro and E. F. Redish, Elements of a cognitive model of physics problem solving: Epistemic games, Physical Review Special

Topics-Physics Education Research 3, 020101 (2007).
[100] T. J. Bing and E. F. Redish, Analyzing problem solving using math in physics: Epistemological framing via warrants, Physical Review

Special Topics - Physics Education Research 5, 020108 (2009).
[101] T. J. Bing and E. F. Redish, Epistemic complexity and the journeyman-expert transition, Physical Review Special Topics - Physics

Education Research 8, 010105 (2012).
[102] J. Sweller, Cognitive load during problem solving: Effects on learning, Cognitive Science 12, 257 (1988),

https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1202 4.
[103] L. S. Vygotsky and M. Cole, Mind in Society: The Development of Higher Psychological Processes (Harvard university press, 1978).
[104] K. A. Ericsson, Protocol analysis and expert thought: Concurrent verbalizations of thinking during experts’ performance on representa-

tive tasks, The Cambridge handbook of expertise and expert performance , 223 (2006).

https://doi.org/hal.science/hal-01349231/document
https://doi.org/10.1103/PhysRevPhysEducRes.15.020130
https://doi.org/10.1103/PhysRevSTPER.10.010119
https://doi.org/10.1103/PhysRevSTPER.10.010119
https://doi.org/10.1007/s11191-015-9763-9
https://doi.org/10.1103/PhysRevSTPER.9.020118
https://doi.org/10.1103/PhysRevSTPER.9.020118
https://doi.org/10.1103/PhysRevSTPER.5.020108
https://doi.org/10.1103/PhysRevSTPER.5.020108
https://doi.org/10.1103/PhysRevSTPER.8.010105
https://doi.org/10.1103/PhysRevSTPER.8.010105
https://doi.org/https://doi.org/10.1207/s15516709cog1202_4
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1202_4

	 Improving student understanding of the number of distinct many-particle states for a system of identical particles with a fixed number of available single-particle states
	Abstract
	Introduction and framework
	Methodology for Investigating Student Difficulties
	Student Difficulties
	Difficulty with relevant conceptual knowledge
	Difficulties with procedural knowledge
	Difficulty with mathematical sense-making in the context of determining the number of distinct many-particle states
	Reliance on memorized formulas

	METHODOLOGY FOR DEVELOPMENT OF THE QUILT
	Development and Validation of the QuILT
	Learning Objective
	IMPROVING STUDENT UNDERSTANDING VIA THE QUILT

	In-class Evaluation of the QuILT
	Summary
	Acknowledgments
	References


