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ABSTRACT

Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins. They are believed to underlie the exper-
imentally observed lateral heterogeneity of eukaryotic plasma membranes and implicated in many cellular processes, such as signaling and
trafficking. Ternary model membranes consisting of saturated lipids, unsaturated lipids, and cholesterol are common proxies because they
exhibit phase coexistence between a liquid-ordered (I,) and liquid-disordered (l3) phase and an associated critical point. However, plasma
membranes are also asymmetric in terms of lipid type, lipid abundance, leaflet tension, and corresponding cholesterol distribution, suggesting
that rafts cannot be examined separately from questions about elasticity, curvature torques, and internal mechanical stresses. Unfortunately,
it is challenging to capture this wide range of physical phenomenology in a single model that can access sufficiently long length- and time
scales. Here we extend the highly coarse-grained Cooke model for lipids, which has been extensively characterized on the curvature-elastic
front, to also represent raft-like l,/l mixing thermodynamics. In particular, we capture the shape and tie lines of a coexistence region that
narrows upon cholesterol addition, terminates at a critical point, and has coexisting phases that reflect key differences in membrane order
and lipid packing. We furthermore examine elasticity and lipid diffusion for both phase separated and pure systems and how they change
upon the addition of cholesterol. We anticipate that this model will enable significant insight into l,/l4 phase separation and the associ-
ated question of lipid rafts for membranes that have compositionally distinct leaflets that are likely under differential stress—like the plasma
membrane.
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I. INTRODUCTION

Membranes form the boundaries of all living cells. Besides
structural integrity, they provide a host of additional functions, chief
among them the controlled exchange of material and information
between a cell and its environment. Combining these tasks requires
an interface that is both thermodynamically and mechanically stable
while also being deformable on many length scales with biochemi-
cally available energies. Self-assembled lipid bilayers have filled this
role from the earliest point of the phylogenetic tree we have any
information on.'

One might think that a minimalist lipid bilayer made from a
single lipid species would suffice for this role, but this is not what
biology has chosen to do. Even ignoring all the embedded proteins
or attached filaments and carbohydrates, a membrane’s lipidome is
extraordinarily complex. For reasons still not well understood, a cell
can easily contain more than a thousand different lipid types,” which
are distributed unevenly between organelles or the two leaflets of
any membrane and maybe even be laterally inhomogeneous within

a single leaflet. In the late 1980s, first (and remarkably indirect)
hints of small submicroscopic domains, which came to be known
as “lipid rafts,” sparked a lot of interest in lipid mixtures and their
thermodynamics,” ” and while many physical and functional aspects
attributed to rafts continue to be vigorously debated,” "’ the main
idea that lipids are often very non-ideally mixed seems to be widely
accepted these days.

Of course, mixtures of hundreds of lipids cannot be studied
systematically, and so idealized model systems that capture key
aspects of the underlying biophysical situations are needed. Of those,
an extremely rewarding type turned out to be ternary mixtures
of a high melting lipid [such as dipalmitoylphosphatidylcholine
(DPPC) or sphingomyelin], a low melting lipid [such as
dioleoylphosphatidylcholine (DOPC)], and cholesterol. These
mixtures are intriguing because, in a wide region of compositional
phase space, they exhibit phase coexistence of two different fluid
phases—a liquid ordered (“l,”) and a liquid disordered (“I4”)
one.'"'° In particular, upon increasing the cholesterol content,
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this coexistence region narrows and ultimately terminates in a
critical point (of 2d-Ising universality class), giving rise to all the
fascinating non-ideal mixing thermodynamics that comes with
(near-) criticality.'”'® It was subsequently shown that the same
Ising-like criticality occurs naturally in certain biomembranes,'”
that it can be shifted by a wide variety of membrane-partitioning
small molecules (such as anesthetics),”’ and that cells may adjust
their lipidome to set the difference between this critical point and
their growth temperature to some given value.”’ Taken together,
these results show that cells deeply care about the non-ideal mixing
thermodynamics of their lipidomes, but that simple ternary I,/l4
systems could be an excellent model system to learn why that might
be so.

In an independent line of inquiry, it was discovered in the
early 1970s that the two leaflets of the plasma membrane differ
in lipid composition,”” ** an observation that modern research has
backed up and greatly refined.”” Combined with the nontrivial
mixing thermodynamics already mentioned, the question of which
leaflet cholesterol would preferentially occupy, how phase separated
domains (or transient fluctuations) in two opposing leaflets would
interact, and how any of this would depend on the state of membrane
curvature, we recognize a formidable physical problem at hand that
intricately couples mechanics, thermodynamics, and geometry.

Computational models aiming to address this situation need
to simultaneously represent an unusually wide spectrum of physi-
cal phenomena, but they must also be efficient so that membrane
patches larger than near-critical correlation lengths (say, dozens of
nanometers or many thousands of lipids) can be treated. A number
of lattice based models have successfully captured non-ideal mixing
behavior,” *” but they typically do not contain elasticity. Con-
versely, continuum models designed to capture curvature elasticity
in some discretized way " "’ tend to not also include the composi-
tional degree of freedom, even though some notable exceptions that
couple to lipid composition” ™ or embedded proteins’ " exist.
In addition, particle based models that properly deal with the sub-
tleties of I, /l4 phases, even if coarse grained (such as Martini“’“l),
struggle to access the scales and equilibration times needed for such
questions.

As always, no model is perfect, and so usefulness is a matter of
balancing needs with constraints in view of the essential set of ques-
tions one wishes to tackle. Here, our aim is to expand a well-studied
and highly coarse-grained particle-based (i.e., off-lattice) implicit-
solvent lipid model so that it can capture the essential aspects of the
Io/la phase coexistence of lipid membranes. To this end, we tune
lipid properties and lipid-lipid interactions in the so-called Cooke
model,’”"” specifically its recent extension that can suppress flip-flop
and hence stabilize asymmetric membranes."’

Among the key phenomena we wish to capture are fluid—fluid
phase coexistence with a suitable order and lipid area difference,
the characteristic dependence on cholesterol, a critical point, hav-
ing phospholipids stick to their leaflets but permit cholesterol to flip,
while maintaining the proper bending and stretching elastic behav-
ior that had been previously well established. However, our objective
is not to precisely replicate any particular experimentally studied
ternary mixture. Although it is possible to design various kinds of
lipids by adjusting a host of lipid properties, our goal is to exam-
ine the generic aspects of the physics of mixing an ordered lipid, a
disordered lipid, and a third sterol-like component in as simple a
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way as possible. We deliberately overlook notable differences among
these systems, such as the presence of a significant coexistence region
between saturated lipids and cholesterol, resulting in a three-phase
triangle in the ternary phase diagram.

The benefit of this minimalist level of description is the ability
to explore larger systems for longer times. To illustrate this, con-
sider that the coarse grained (and hence sped-up) time unit for the
popular Martini model is about 64 ps, if mapped by matching lipid
diffusion.” In contrast, for the Cooke model we will be working
with, that time unit is 1.9 ns.®* Consequently, the Cooke model
traverses phase space ~30 times faster than Martini, even before
considering the further decrease in computational effort due to the
significantly lower number of beads in a lipid and the fact that the
Cooke model does not explicitly represent solvent particles. Overall,
this makes our model around 100 times faster than Martini, allow-
ing us to explore longer timescales and larger system sizes—at the
expense of a lower resolution.

Our paper is organized as follows: after introducing biophys-
ical observables of interest and how to measure them, we discuss
the step-by-step expansion of the model—from single-lipid proper-
ties to binary mixtures and then to ternary ones. Following this, we
discuss the resulting phase diagram and examine a number of rele-
vant observables for the resulting mixtures, especially as a function
of cholesterol mole fraction.

Il. METHODS
A. Simulation model

The Cooke model””® is an implicit solvent coarse-grained
framework for simulating lipid bilayers, typically via molecular
dynamics. In its latest iteration, lipids are represented as linear
sequences of four distinct beads (Fig. 1).*

Cooke lipids possess various adjustable characteristics, includ-
ing individual bead dimensions, lipid tail stiffness, and spontaneous
curvature. The Lorentz-Berthelot mixing rules are used to deter-
mine effective repulsive pair distances o;; from the bead diameters
oii and 0j; of beads of type i and j, respectively,

1
gij = E(O’,’f+0’jj). (1)

3
J

/1]

9
J
J
J

FIG. 1. A typical four-bead Cooke lipid pair. Selected red and green arrows indicate
examples of repulsive and attractive interactions, respectively.
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All lengths are measured in the coarse-grained length unit ¢, which
is close to a (phospho-)lipid bead size and which maps to ~0.75 nm
in SI units.”" Cooke lipids are straightened by a harmonic spring
with rest length 40 between the two pairs of beads that are separated
by a single third bead,

1
Vbend(r) = Ekbend(r - 40)2. (2)

To the lowest order in angular deflection, this is equivalent to an
angular bending potential with spring constant Kbena0”. The con-
stant kpend is set to 10e/ o (e is the coarse-grained unit of energy)
for regular Cooke lipids, but here we will adjust it as a straightfor-
ward method for tuning tail flexibility and hence the emergent lipid
order.

We performed all simulations at a temperature kgTs = 1.4€,
from which we can infer the coarse-grained (CG) unit of
energy e. Interaction strengths, especially the attraction between
lipid tails of the same or of different types, are tuned using the
model parameter w. This parameter sets the range of attraction,
and the larger it is, the more strongly lipids cohere. Tuning w. and
the simulation temperature T hand-in-hand is the key to obtain-
ing a fluid bilayer in this model.””"" After carefully examining the
we vs Ts phase diagram, the values w. = 1.60 and kg Ts = 1.4€ were
chosen because the bilayer remains fluid for a broad region sur-
rounding this state point. To distinguish between lipids of different
types, we adjust the interaction strength w,;; between the second and
third beads of lipid types i and j, whereas the fourth (or final tail)
bead always has w. = 1.60 with respect to all other tail beads. The
subscripts i,j € {s,u,c}, where “s,” “u,” and “c” stand for saturated
lipids, unsaturated lipids, and cholesterol, respectively.

The Cooke model has been successfully applied to a vari-
ety of questions in membrane biophysics, such as protein trig-
gered vesiculation,””*” composition-curvature coupling,” peptide
induced pore formation,” lipid nanoparticle design,”’ and several
other examples. More closely related to the present topic, we have
recently used this model to examine binary mixtures of cholesterol
and generic phospholipids in a regime far from phase separation,’’
with the underlying question being: what physical factors determine
the distribution of a flippable species between leaflets? The present
paper aims to extend the scope of this work by enabling us to bring
lo /14 coexistence into the picture, which requires us to examine the
more complex phase behavior of ternary mixtures. The main tun-
ing parameters at our disposal are lipid rigidity kuenq (as a means
to influence its tail order) and mutual interaction strengths w;;
(which affect solubility preferences). We also slightly reduce the size
of Cooke-lipids that mimic cholesterol to account for the smaller
membrane footprint of this species. We provide further details on
these modifications in Secs. I1I A and I1I B.

B. Runtime details

All simulations were performed with the ESPResSo package,””
using a time step 0t = 0.0057, where 7 = gy/m/e is the CG unit of
time. The system was thermalized by a standard Langevin ther-
mostat’® with a friction constant y = 1m/7. Tensionless membranes
were realized through constant pressure simulations on the basis of
a Kolb/Diinweg barostat’* with a piston mass Q = 0.01m/c* and a
friction constant of y,, = 0.0002m/c*z. All trajectories used in our
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study were between 80 0007 and 100 0007 long, with the first 20 0007
being discarded to allow the initial state to thermalize.

C. Measurement of various observables

We will use a range of observables to characterize specific
aspects of the lipid membrane, its constituent phases, and individ-
ual lipid species. To distinguish ordered from disordered phases, we
resort to area per lipid, the hexatic order parameter, and the P, order
parameter. To probe mechanics, we will measure the area expansion
modulus K4, both for pure and for mixed systems. In addition, to
probe the dynamic differences between coexisting phases, we mea-
sure lipid diffusion constants. In this section, we offer some details
on how these observables are computed. Given that all measure-
ments ultimately derive from simulation trajectories, which harbor
inevitable time correlations, we use a standard blocking analysis’
combined with a fit to an analytical prediction for the blocking
plateau’® for estimating the uncertainties. When a different error
estimation method is applied, it has been described separately under
the relevant subsection.

1. Area per lipid

The area per lipid is calculated by dividing a membrane’s
relaxed surface area by the number of lipids per leaflet, which we
always chose to be either 512 or 1024. This requires holding a mem-
brane at zero tension, which we achieve via a semi-anisotropic NPT
barostat.”

2. P, order parameter

The P, order parameter quantifies how persistent lipids align
with the bilayer normal. Given a lipid’s deflection 9 from the
bilayer normal (here: the head-tail director relative to the z-axis),
we calculate P, = (P2(cos9;)), where P(x) is the second Legen-
dre polynomial, and where we average over both time and lipids.
P, is bound between —% and 1, with a value close to 1 indicating
a high degree of alignment with the bilayer normal, whereas P, = 0
implies a completely isotropic distribution. (Negative P, values arise
for preferential alignments away from the axis.)

3. Hexatic order parameter

The hexatic order parameter measures the degree of hexago-
nal packing in two-dimensional molecular structures, such as lipid
bilayers. To compute it, the extent to which the neighbors of any
particle display a local 6-fold rotational symmetry is analyzed. More
specifically, for each lipid k, one calculates

W _ 13
l//6 = ﬁz exp (619}](), (3)
kj:l

where the sum extends over all Ny neighbors of lipid k and where
Ojk is the angle which the line from lipid k to one of its neighbor-
ing lipids j makes with respect to some arbitrarily chosen reference
direction (say, the x axis). The magnitude of this complex number
quantifies how well lipid packing creates a local 6-fold orientational
symmetry. A value close to 1 indicates a high degree of hexagonal
packing, while a value closer to 0 signifies complete disorder. We
subsequently thermally average this magnitude, and if we care about
the overall hexatic order of the membrane (or a subphase of it), we
then also average over lipids.
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4. Area expansion modulus

The area expansion modulus, denoted as K4, quantifies the
resistance of a lipid bilayer to changes in its surface area under
isotropic biaxial strain. Specifically, it is defined as the constant of
proportionality between area stress X4 and area strain,

A-Ag

24 =K , 4
a=Ka— 4)

where A represents the membrane surface area under stress and Ao
denotes the relaxed surface area. Given the linear nature of the rela-
tionship, it is possible to determine K4 by either applying controlled
stress and measuring the resulting strain or, conversely, by imposing
area strain and measuring the resulting stress. We have chosen the
latter method because (1) it is easier to impose strain and (2) we can
identify departures from linearity without risking instabilities. For
added reliability, the bilayer rest area Ay for each configuration was
determined through constant (zero) tension simulations.

We applied strains ranging from 1% to 5% for each com-
position and measured the resulting stress. The simulations ran
for 1000007, with equilibrium being reached once the cholesterol
flip-flop showed no net drift, typically after ~200007. The lateral
stress profile was measured using the Irving-Kirkwood formalism,””
extensively detailed by Hardy™® for implementation in molecular
dynamics simulations. We used blocking’” to estimate the error bars
on the total membrane tension. A linear fit, as described earlier, was
performed on the stress—strain data, and the associated error bars for
K4 were derived from this linear fit.

5. Diffusion constant

The lipid diffusion constant D is a widely used observable
for characterizing a membrane’s in-plane dynamics. We specifically
want to determine its value in the liquid-ordered (l,) and liquid-
disordered (Ig) phases, aiming to unveil their dynamic differences
and whether they qualitatively follow experimentally known trends.

The diffusion constant is commonly measured from the slope
of the mean squared displacement (MSD) as a function of time lags.
Unfortunately, estimating the associated uncertainty is much less
straightforward since subsequent MSDs along a lipid’s trajectory are
highly correlated, and so the naive fitting error of the slope vastly
underestimates the actual uncertainty in D.

In response to this challenge, alternative strategies have been
proposed.” " These include optimizing the number of MSD val-
ues for fitting or explicitly incorporating these correlations into the
fitting process. A notably more efficient procedure is to model the
relationship between MSD and time lags using a stochastic linear
model, which yields the diffusion constant (and its uncertainty) as
one of the parameters in such an analysis.

Here, we employ one such method proposed by Bullerjahn
et al." to extract diffusion constants from molecular dynamics tra-
jectories. It parameterizes the mean squared displacement of a finite
time series of positions {Xo, X1, ..., Xn-1, XN}, after a time lag iAt
using the following linear model:

Msp, -y, Gt K] X’

- =a’+is, (5)
= N-i+1

where At denotes the length of the time interval between two consec-
utive observations and i = 1,2, ..., M < N. Here, s? is the diffusional

ARTICLE pubs.aip.org/aip/jcp

spread and a” is a static-noise parameter that accounts for any non-
diffusional spread in the particle position, such as cage diffusion and
correlated collisions.

The estimators for a and s, along with their uncertainties, are
found using the Generalized Least Squares (GLS) method given by

(LIZGLS,SZGLS) = arg min Xz(az,sz), (6a)
%8220
2,2 2 l -1/ 2 2
X (a°,5") = Z Res; T (aGLs,sGLs) Res;, (6b)

ij=1

where Res; = MSD; — a® — is? is the residual at step i and T is the
covariance matrix of the MSD; values. It should be noted that the
covariance matrix is evaluated at the optimal estimates (QZGLS,SZGLS)

while a* and s> are varied. Then, by enforcing self-consistency, ags
and s s (which are previously unknown) are found. The GLS tech-
nique uses the covariance matrix (calculated numerically from the
discrete data points) to “undo” the time correlation among various
MSD; values. This yields the best linear unbiased estimator for a*
and s%, subsequently giving us an estimate of the diffusion constant.
In addition to this, lower bounds for the variances of the GLS esti-
mators can be inferred from the inverse of the Fisher information
matrix associated with the likelihood function,

ﬁ(az,sz) o< exp(—xz(az,sz)/Z). (7)
For d-dimensional motion, the associated self-diffusion constant D

and its uncertainty 6D can now be calculated from the estimated
diffusional spread s&; g and its variance var(sg;g) as follows:

2
- zsgzst’ (82)
\/var(séis)
oD = YTV (8b)

The details of constructing this estimator from MD trajectories
along with the underlying mathematical concepts and calculations
are discussed in Bullerjahn et al.%

D. Hidden Markov model

A hidden Markov model (HMM) is a statistical tool used to
analyze sequential data believed to arise from an underlying Markov
process. The HMM assumes that the observed data, often repre-
sented as a sequence of symbols, are functions of the Markov states.
The states themselves are unobservable (“hidden”), but they have a
probabilistic relationship with the observed data. The HMM com-
prises two main parts: the state transition probabilities, which define
how likely it is to move from one hidden state to another, and the
emission probabilities, which specify the likelihood of generating
each observed symbol from each hidden state.

Inspired by previous work in the field,”*" we used an HMM
that was trained on data from a well-separated ternary mixture to
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assess the degree of phase separation and understand the composi-
tion of the two phases in membranes of varying compositions. As
training features for the model, we used the specific area of each
lipid, distance between a lipid and its nearest neighbor, and the most
frequently occurring lipid type in each lipid’s immediate vicinity.
The resulting model categorized the lipids into two classes, repre-
senting the liquid-ordered and liquid-disordered phases. In Fig. 2,
we illustrate the outcome of such an analysis by contrasting lipid
composition and phase composition in two extreme regimes—the
near-critical/high cholesterol case and a well phase-separated/low
cholesterol scenario.

This HMM analysis serves as a robust and dependable method
for quantifying phase coexistence within a membrane. Well within
the I,/l4 coexistence region, the HMM finds clearly circumscribed
phases that are extensive, stable, and persistent (see Fig. 2, bottom
row). In contrast, near the critical point, the identified phases are
small, scattered, and transient (see Fig. 2, top row). Of course, an
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HMM analysis does not obviate complications due to finite size
effects, and the closer one gets to a critical point, the larger the
system one needs to examine.

Beyond identifying phase coexistence, this approach also per-
mits us to quantify the composition of the two identified phases.
From this we can construct a comprehensive phase diagram, out-
lining in particular the binodals and the tie lines of the coexistence
region.

11Il. RESULTS AND DISCUSSION
A. Single component systems

We begin by examining the individual constituents that will
ultimately lead to Io /I3 coexistence. All parameters are initially set to
their standard values from Ref. 64; in particular, we have w, = 1.60.
The first step is to represent tail saturation in a lipid model that
only has three tail beads to begin with. Considering that saturation

L
eS80
HRvEE

0 10 20

SR

25 30 35

0 5 10 15 20 25 30 35

FIG. 2. lllustration of ternary mixtures (left) and their Hidden Markov Model classification (right). Saturated lipids are shown in blue, unsaturated lipids in red, and cholesterol
in green. The two phases picked out by our HMM are shown in yellow and black, which here corresponds to the /, and Iy phases, respectively. The top row indicates a ternary
system close to the critical point (s:u:c = 25:25:50), while the bottom row shows a system containing less cholesterol, which puts it deeper in the phase coexistence region

(siu:c = 45:45:10).
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will ultimately translate into lipid order, we capture this aspect via
the spring constant kpeng from Eq. (2), which suppresses lipid shape
fluctuations by stretching the four beads into a straight alignment.
To examine the magnitude of this effect and its impact on phase
behavior, we conducted simulations of one-component membranes
consisting of lipids for which we tuned kyenq within the range of
le/o” to 40e/a”.

Figure 3 shows the extent to which increasing kyeng increases
lipid hexagonal packing order [as measured by y,, see Eq. (3)]
and decreases the area per lipid. Our data show a phase
transition, indicating the emergence of an ordered gel phase
for values of kpena somewhat larger than 20e/ o>, Experimen-
tally, the area per lipid has been shown to be significantly
smaller in gel phases than in fluid phases, for instance by
about 20% in dimyristoylphosphatidylcholine (DMPC)*** and
dilauroylphosphatidylethanolamine (DLPE)*” and by almost 30%
in dihexadecylphosphatidylcholine (DHPC).* Differences of this
magnitude are readily accessible in our model.

Finally, we also wish to represent cholesterol as one of the
lipid species. While its chemical structure differs substantially from a
phospholipid, our coarse-grained model does not have enough reso-
lution to capture this. Instead, we will model an “effective” choles-
terol molecule as one that has again the same tail-tail attraction
(Weee = 1.60), as well as a tail bending constant kpenq = ke = 106/0’2.

141z

1.3

1.2

a [0?]

*
*y
.
1.1 *x

* Ak &
A A% &
1.0 Ak -

0 5 10 15 20 25 30 35 40
Kbend [e/0?]

0.75 **-'“.. . \

0.70 L4

0.65
e 0.60
0.55 1
0.50 1 ...00'.

0.45

0.401°®
0 5 10 15 20 25 30 35 40
Kpena [€/0°]

FIG. 3. Lipid specific area (upper panel) and hexatic order v, (lower panel) of
Cooke lipids as a function of tail stiffness kueng. Observe the strongly first order
phase transition in the vicinity of Kpeng = 205/02, which separates fluid phases
(left) from gel phases (right).
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This is equal to the standard value used in Ref. 64 and lies between
the saturated and unsaturated cases. Furthermore, we reduce the size
of all cholesterol beads by 20%, thus giving CG cholesterol a 36%
smaller area per lipid compared to phospholipids, in accordance
with cholesterol and phospholipid area simulations performed by
Leeb and Maibaum.® Finally, since the flip-flop rate of sterols vastly
exceeds that of ordinary lipids, we allow our CG cholesterol to
flip-flop freely between the leaflets without any energy penalization
(which happens at a rate of about 107°7"), unlike the saturated and
unsaturated lipids, whose flipping we suppress using the “flip-fix”
method discussed in Ref. 64.

B. Binary mixtures

We now have a (fairly simple) lipidome available from which
we can pick components for subsequent mixing. Recall that our
main target is ternary systems that exhibit I, /lg coexistence. These
consist of a high-melting lipid (saturated, “s”), a low-melting lipid

« » « »

(unsaturated, “u”), and cholesterol (“c”). Our first task is hence to
pick lipids representing “s,” “u,” and “c” and then examine how they
mix—starting with the binary cases.

Let us begin with the “u”-“s” pair. A common choice in experi-
ments for these is DOPC for the unsaturated lipid and DPPC for the
saturated one. At either room or body temperature, DOPC is safely
in the fluid phase, while DPPC is in the gel phase. In view of Fig. 3, we
should hence pick the bending constants kpeng for both lipids to the
left and right of the transition that happens around kpenq ~ 20€/0”.
Since gel membranes equilibrate poorly and, upon further cooling,
may develop additional phases with intricate order parameters, we
do not wish to move too deeply into the gel region, and so we chose
ks = 25¢/0” for the chain bending constant of the model saturated
lipid. To then permit the corresponding disordered fluid-phase lipid
to have an area per lipid that is between 20% and 30% larger than the
gel area, we chose ky = 5¢/ o?%. Smaller values of kyenq would create
an even larger area contrast, but this was not needed. Furthermore,
membranes begin to look too disordered when kyeng drops below
about 5¢/0® which, especially for such highly coarse-grained mod-
els, might risk bilayer integrity. All lipid stiffnesses are summarized
on the left hand side of Fig. 4.

To fully specify the mixture, we also need to set an inter-
action constant wce between tail beads. Our initial hope that at
the standard value of 1.60 the difference in lipid rigidity alone

u S C

5 u,j|t16 | 14 |1.68

. S |14 | 16 |1.75

10 C |168[1.75]| 1.6

H_/ . Y /
kpend w, matrix

FIG. 4. Parameters used to create ternary mixtures. The left column gives kpeng
for the three lipid types u, s, and c in units of ¢/o?. The right matrix gives the
interaction parameters wy for pairs of lipids in units of ; for instance, weys = 1.40.
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would suffice to drive phase separation was not borne out. Highly
coarse-grained lipids simply do not possess enough conforma-
tional tail entropy and, therefore, demixing requires an additional
enthalpic assist. This is performed by reducing the tail-tail inter-
action parameter wcs, compared to its value for like-lipid interac-
tions (Weuu = Wess = 1.60). We found that demixing sets in near
Wesu # 1.450, but is initially too weak to create a wide enough coex-
istence region. A subsequent decrease widens the binodal, and we
chose wee = 1.40.

When mixing CG lipids and CG cholesterol, even at the same
tail-tail interaction constant w. = 1.6, we observed a pronounced
tendency for cholesterol to form aggregates. This is a direct con-
sequence of its reduced size since the effect does not occur for CG
cholesterols having the same size as normal lipid molecules. Since
we wish cholesterol to fully mix with unsaturated lipids, we com-
pensated by picking a tail-tail mixing parameter that was slightly
larger than the standard one, wcuc = 1.680. For the correspond-
ing interaction with the saturated lipid, we used a larger mixing
bias, wesc = 1.750, to account for the fact that cholesterol prefers
saturated over unsaturated phases.

Since picking Kpendsat = ks = 25.9/02 places the saturated lipids
into the gel phase, while a mixture of “s” and (sufficiently much) “c”
will result in an I, phase, we expect a coexistence region across the
sc-mixing axis. This is indeed what the simulations indicate, but it
appears that the onset of coexistence occurs at such a small choles-
terol fraction that we cannot reliably resolve it. (Identifying these
structurally fairly close phases with an HMM also turned out to be
very challenging.) As this is not a point in our phase diagram that
we currently wish to characterize very precisely, we have forgone
attempts to pin down the details of this coexistence. We emphasize,
though, that this does not occur in binary mixtures of cholesterol
with the unsaturated lipids, which always mix into a homogeneous
fluid phase—as indeed they should.

All we parameters are summarized in the interaction matrix on
the right hand side of Fig. 4.

As an illustration of the resulting binary mixing physics, Fig. 5
shows the P, order parameter as a function of cholesterol concen-
tration in binary “uc”- and “sc”-mixtures. The effects are strikingly
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FIG. 5. P, order parameters of the phospholipids, when mixed with cholesterol, vs
cholesterol mole fraction ¢. The error bars are of the order 10~° and, therefore,
invisible on this scale.
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different: very little cholesterol is needed to melt the gel phase of pure
“s”-lipids, leading to a strong reduction of P,. After a short coexis-
tence region, the system enters a one-phase liquid ordered region
in which P, stays mostly constant. In contrast, pure “u”-lipids are
already in a fluid phase and have a lower value of P,. The addi-
tion of cholesterol then orders the initially disordered phase, but it
takes fairly large amounts of cholesterol to induce relatively modest
ordering.

C. Ternary mixtures

We conducted a rough mapping of the phase diagram, shown
in Fig. 6, with a special emphasis on the extent of the miscibility
gap. Our ternary mixtures exhibited a clear separation into two dis-
tinct phases: one characterized by a higher degree of order, denser
packing, and a larger abundance of “s”-type lipids; the other being
more disordered, less tightly packed, and richer in “u”-type lipids.
To identify these phases and determine their lipid composition, we
employed the HMM analysis described in Sec. IT D.

As we traverse the cholesterol axis through the two-phase
region, a consistent trend emerges: with increasing cholesterol mole
fraction, the tie lines become shorter, but their slope increases. This
indicates that as the compositional difference between the ordered
and disordered phases in terms of phospholipid mole fraction
decreases, their difference in terms of cholesterol content increases
(until, of course, toward the critical point, they all become identi-
cal). The overall weak tilt of the tie lines (especially at low cholesterol
content), i.e., the relatively small enhancement of cholesterol in the
ordered phase, is in line with experimental observations.' '

Another notable feature of the coexisting phases is that they
exhibit anti-registration between the leaflets. To examine this phe-
nomenon further, we divided the membrane into grid cells, as
illustrated in Fig. 7, and checked the degree of anti-registration using
the relative asymmetries of saturated and unsaturated lipids, p, and
p,» defined (in each cell) as

St —s— Uy — U—

u = . 9
p Uy + U_ ©)

=
P s

Here, s, or uy stand for the number of saturated or unsaturated
lipids within each grid cell in the + or — leaflet. These ratios take the
value 1 if all lipids of that respective type are in the upper leaflet and
—1 if they are all in the lower leaflet; they are zero at equidistribution.

In domain-forming simulations that contain equal amounts of
saturated and unsaturated lipids, we observed a pronounced nega-
tive correlation between p  and p_, with a Pearson coefficient smaller
than —0.8, often approaching —1. Regions in one leaflet that are
rich in saturated lipids face regions in the other leaflet that are rich
in unsaturated lipids. This shows that our l,/l3 domains are
anti-registered.

Trans-bilayer domain coupling has been previously studied in
experiments and simulations. While both registration and antireg-
istration have been observed, the registration appears to be the
more common scenario—prominently visible in early I/l obser-
vations made in giant unilamellar vesicles (GUV).” Enoki et al.
have confirmed these findings but discovered that in asymmet-
ric GUVs, antiregistration is also possible.”’ Garg et al. observed
domain registration in supported bilayers produced by the
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FIG. 6. Ternary phase diagram illustrating the coexistence of liquid-ordered and liquid-disordered phases in lipid bilayers via coarse-grained simulations using our model. The
possible /o /Iy coexistence region is shaded in blue, with the star marking the approximate location of the critical point. The presence of a small liquid-gel coexistence region
(roughly coinciding with the area shaded in orange) is conceivable since the lower right corner is a pure gel phase. However, our highly coarse-grained model does not have

the resolution to map this region in detail.

Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) techniques, but
only if the membranes are separated sufficiently far from the sub-
strate by a flexible polymer cushion.”” Wagner et al. have proposed
a simple model for phase registration that only involves a single
order parameter, which only leads to registration, provided the cou-
pling is strong enough.”” The more refined theory by Williamson
and Olmsted permits both registered and antiregistered phases.”
Sharma et al. examine this in a simplified simulation model and
show that inter-leaflet coupling energies can favor either of the two
outcomes.”” Weiner and Feigenson show in CG simulations using
the Martini force field that upon increasing the cholesterol frac-
tion to 35 mol. %, registration can give way to antiregistration,
but also a sizable fraction of cholesterol molecules residing in the
bilayer midplane.” Thallmair et al. also observe a strong effect of
intercalated cholesterol but instead find it to support registration.’”
All in all, membrane inter-leaflet coupling remains a surprisingly
subtle phenomenon, likely because the outcome depends on many
factors, such as contributions to lipid(-domain) interactions due to
enthalpy (e.g., van der Waals and charge), entropy (lipid fluctuations
or whole leaflet undulations), tail interdigitation, hydrophobic mis-
match, domain curvature and -tension, and other effects. Of note,
registration generally changes the membrane thickness across the
interface and hence comes with an additional energy penalty due to
hydrophobic mismatch; this is not true for anti-registration. Since
for a small enough system such line tension effects can overwhelm

the phase contact contribution, which scales with contact area, finite
size effects may favor anti-registration.

Our model does account for some of the more subtle domain
wall effects, and our simulations might still be too small to eval-
uate the equilibrium phase. We also wish to emphasize that our
number-4 tail beads, which contribute most strongly to inter-leaflet
contact, always interact with the same interaction range w. = 1.60,
irrespective of lipid type. This evidently removes a strong driv-
ing force toward domain registration, but the alternative of hav-
ing the bead-4 interactions also reflect lipid type would strike us
as trivially over-representing the enthalpic contribution to a far
more subtle overall free energy balance happening at the leaflet
interface.

At this point, we do not yet aim for a systematic investiga-
tion of the interleaflet domain physics. Our primary focus in this
first paper is not a comprehensive mapping of the entire phase
space or determining the precise location of the critical point, but
rather incorporating the fascinating general physics of ternary I, /l4
phase separation into a highly coarse-grained model that has been
well-characterized in terms of its many elastic properties. This puts
us in a position to study a large set of questions where these two
pieces of physics interact, such as curvature induced sorting and
domain formation, domain registration, its modification once mem-
branes become asymmetric, and the effect of differential stress on all
of this.
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while the bottom image is a heatmap of p, values. Note that regions with a positive
p, (red) in the top panel correspond to regions with a negative p (yellow) in the
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D. Diffusion

We have analyzed the diffusion process in two regimes of the
phase diagram—close to the critical point and well into the phase-
coexistence region—with the aim of acquiring a deeper understand-
ing of the dynamic characteristics exhibited by the phases. Our
investigation, which employed the analytical techniques outlined by
Bullerjahn et al.,*” shows that lipids undergo normal diffusion, with
a mean squared displacement (MSD) that is linear in time but a
phase-dependent diffusion constant.

As anticipated, lipids in the Iy phase have a larger diffusion
constant than those in the [, phase. Specifically, in the case of a mem-
brane containing only 10% cholesterol, which segregates into two
compositionally very distinct phases, the diffusion constant for lipids
in the disordered phase is ~26% greater than that in the ordered
phase. Experimental observations indicate substantially larger fac-
tors in the range of 3-20 for this speed-up, contingent upon different
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FIG. 8. Diffusion constants of lipids in the two pure I, and Iy phases that cor-
respond to the coexisting phases of a phase-separating u:s:c = 0.45:0.45:0.1
mixture. The bars depict D-values for unsaturated lipids (in purple), saturated
lipids (in orange), and cholesterol (in blue) in Iy and /, phases, with red and green
dashed lines representing the average diffusion constants across all lipids in each
phase. Averaged over the phases, we find Dy, = (75.6 £5.6) x 10740%/7
and Daygy, = (95.3 £ 5.9) x 107*0? /7. The values and error bars were obtained
using the measurement process outlined in Sec. || C 5.

sps Py 98-100 PR
compositions and temperature conditions.” """ It is important to

recall, though, that dynamic properties are not the primary target
when developing most CG models (including the present one), and
absolute numbers tend to be far off. Here we see that the relative dif-
ference is also not well captured, even though it is reassuring that the
trend is correct.

As illustrated in Fig. 8, our measurement of the diffusion con-
stant reveals that the constituent elements within the phases display
dynamic behavior associated with the phases themselves rather than
those specific to individual molecules. For instance, a saturated lipid
in the disordered phase still diffuses faster than an unsaturated lipid
in the ordered phase. This supports the notion of diffusion as a col-
lective process dependent on phase and environment, not a mere
lipid property. This has been confirmed in experiment.'”"'"”

Observing normal diffusion closer to the critical point is con-
ceivably surprising, given that lipids move in and out of [, and I4
phases, which themselves come and go out of existence, and which
are associated with a characteristic correlation length £. One might
have expected some cross-over behavior when the MSD is compa-
rable to &, or the time is comparable to &/D, but this is not what
we observe. In fact, the analysis presented by Bullerjahn et al.*’
includes a metric that measures any statistically significant deviation
from a linear MSD, but we get no indication of anomalous diffusion.
Admittedly, the diffusion constants in the two phases are fairly close,
even far away from the critical point, and approaching it would fur-
ther blur any potential difference. If some anomalous component
existed, it would be difficult to see in our case.

E. Effects of membrane tension

We ran simulations to examine how the area expansion mod-
ulus K4 depends on cholesterol concentration and phase state—see
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FIG. 9. Lateral stretching modulus K, as a function of cholesterol content in the
membrane. The black points correspond to the measurements that were obtained
from a mixed phase inside the coexistence region (with an equal mole fraction of
phospholipids), while the solid black line represents the best linear fit to these data.
The orange and brown points represent compositions at the ends of the tie lines
of the corresponding two-phase systems on the ordered and disordered binodals,
respectively.

Fig. 9. The solid black points show the effective modulus for mix-
tures containing equal amounts of saturated and unsaturated lipids
as a function of cholesterol concentration ¢, up to ¢ = 50%. Recall
that these compositions lie in the two-phase region (see the phase
diagram in Fig. 6). Increasing ¢ is found to make the membranes
more rigid; in fact, a simple linear fit to the data yields a remark-
ably low p-value of 0.007. This trend is plausible, considering that
adding cholesterol increases the lipid order parameter and decreases
the area per lipid (black points in Fig. 10), thereby rendering
cholesterol-rich bilayers overall better packed and hence harder to
stretch.

It would seem reasonable to expect that the elastic behavior of
these two-phase mixtures is a weighted average of the rigidities of
the pure coexisting phases—say, a more rigid [, phase balancing a
less rigid Ig phase. While this appears to be true at elevated choles-
terol content, the behavior is qualitatively different at small ¢, as the
triangle and star symbols in Fig. 9 show. While the pure ordered
phase is always more rigid than the two-phase mixture, the pure dis-
ordered phase stops softening as ¢ decreases, until it is more rigid
than the mixture (at ¢ = 20%) and ultimately even more rigid than
the ordered phase (at ¢ = 10%).

It is not impossible for two-phase systems to be softer than their
coexisting phases. Consider a van der Waals gas in its coexistence
region; its bulk modulus is zero and hence smaller than that of either
the gas or the liquid phase. This happens because, upon expanding
the system, we simply evaporate liquid at no excess free energy cost.
In the present case of coexisting l,/lg domains, it is conceivable that
pulling the system melts part of the I, phase into an [ phase, but due
to additional constraints on all concentrations the softening should
be smaller than in the much simpler van der Waals case. Moreover,
the magnitude of this effect ought to be ¢-dependent, presumably
stronger in regions where the phases differ more drastically—as we
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FIG. 10. The two plots display the area per lipid a (upper panel) and the P, order
parameter (lower panel) over the same ¢-range as Fig. 9, with each measurement
corresponding to the respective point in Fig. 9. The open symbols show the one-
phase values extracted instead from the coexisting phases of the mixed systems.

indeed find. We tried to test this by measuring the fraction of a
two-phase system in the I, phase as a function of applied strain, but
unfortunately our HMM classifier is not precise enough to support
a reliable decrease upon pulling.

That (at ¢ = 10%) the disordered phase is more rigid than the
ordered phase is even harder to comprehend, and we cannot rule out
that it is just statistics. In fact, we found that K4 values can change
significantly after relatively minor adjustments to the compositions,
and the HMM identification of the coexisting phase boundaries
might again be too noisy to translate to a dependable trend on Ka.
This difficulty is further illustrated by the individual pure phase lipid
areas and P, order parameters shown in Fig. 10: while they show
the expected trend with cholesterol concentration ¢, it would seem
impossible that the lipid area of the mixture is larger than either of
the two phases (see ¢ = 0.3 and 0.4) or that the mixture’s P, value
is smaller than that of either of the coexisting phases (see ¢ = 0.1),
given that in both cases the values for the mixture would literally be
calculated as averages over the two-phase simulation. These pecu-
liarities arise because the pure phase values shown in Fig. 10 (and
Fig. 9) are not derived from the compositions coexisting in a two-
phase simulation; instead, they come from two separate simulations
of the two one-phase systems at the end of the tie lines, whose
compositions are identified by the HMM analysis. However, the
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HMM classification runs into obvious complications arising from
lipids at the interface, and since order parameters depend sensi-
tively on the composition near the transition, it is conceivable that
the pure phase simulations do not capture the actually coexisting
bulk composition of the two-phase simulations precisely enough.
Indeed, re-calculating area and P, from the two-phase system (see
the corresponding open symbols in Fig. 10) shows neither of the two
peculiarities. This difficult-to-quantify systematic uncertainty hence
appears to overwhelm the statistical errors (which are too small to
be seen in Fig. 10) and, therefore, urges caution when interpreting
these data.

All the same, our analysis suggests that the elastic proper-
ties of mixed systems change significantly as we traverse the phase
diagram, with additional subtleties arising once we enter the coexis-
tence region. It is easy to imagine scenarios where this has important
biological consequences, especially as we recall that the two leaflets
are likely differentially stressed. Clearly, more work is needed to
explore this in more detail.

IV. SUMMARY AND OUTLOOK

The Cooke model is a highly coarse-grained implicit solvent
lipid model that has been thoroughly characterized in terms of its
elastic properties and which has recently been extended to permit
the simulation of asymmetric membranes. In this study, we have
refined its force field in two main ways. First, we introduced a vari-
able lipid tail stiffness as a way to represent the notion of saturated
and unsaturated lipids. Tuning it, we can change tail- or packing
order, as well as area per lipid, over an experimentally relevant
range and transition into a gel phase at sufficiently high order. Sec-
ond, we created a minimalist version of a cholesterol-like molecule,
which is smaller than regular lipids and flip-competent. By adjusting
pair-interactions between these species, we can investigate binary
and, more importantly, ternary mixtures, with a particular focus on
“raft-like” compositions.

At the temperature we simulate, unsaturated lipids form a dis-
ordered fluid phase, while the saturated lipids are in a gel phase.
Binary mixtures between these two (“phospho”-)lipids exhibit a
wide miscibility gap. Adding cholesterol to unsaturated lipids weakly
increases their fluid phase order, while very small amounts of choles-
terol suffice to melt the gel phase of saturated lipids into an [, phase.
Ternary systems of these lipids phase separate into an I, and an Ig
phase across a two-phase region whose width narrows as choles-
terol content increases. The two phases become identical at a critical
point somewhere between 50% and 60% cholesterol mole fraction,
after which only one phase exists. The I,/l4 tie lines separate phases
that—especially at low cholesterol content—differ strongly in phos-
pholipid make-up but contain fairly similar cholesterol fractions,
while further addition of cholesterol reduces the phospholipid dif-
ference but increases the relative cholesterol content in the I, phase.
All of this agrees qualitatively with published phase diagrams on
such ternary systems, except that we are unable to identify a pos-
sible three-phase triangle in which a gel phase coexists with an [,
and an [y phase, likely because the miscibility gap in binary mix-
tures of cholesterol and saturated lipids appears to be very narrow
(in our case) and our limited system sizes and phase identification
routines cannot discriminate the small difference between a gel and
an I, phase.

ARTICLE pubs.aip.org/aip/jcp

We examined several basic thermal equilibrium, elastic, and
dynamic properties of mixed systems to begin characterizing their
physical behavior. In these first steps, we limited the number of
variables and focused on mixtures with equal mole fractions of
saturated and unsaturated lipids. At low cholesterol content, these
phases separate into compositionally quite distinct but approxi-
mately equally sized I, and I3 domains. In symmetric membranes,
these domains anti-register across the two leaflets, which is unusual
given that experimentally registration is more commonly observed.
However, a variety of different drivers contribute to the question
of domain (anti-)registration: phase contact across the bilayer mid-
plane (which involves enthalpic and entropic contributions, as well
as the possibility of tail interdigitation—all of which scales with
domain area), hydrophobic mismatch at the domain border (which
scales with its length and might induce lipid tilt), torques at the
interface due to spontaneous curvature gradients (which also scales
with border length but can induce membrane curvature), and even
effects not contained in our model (such as a net trans-membrane
electric field created by asymmetric dipole potentials arising in
anti-registered domains). Given the different scalings with system
size and the still moderate membrane dimensions we have treated
(up to around 40 nm in CG-to-SI mapped units**), it is not yet
clear whether larger domains will also anti-register. Moreover, for
unequal amounts of saturated and unsaturated lipids, the area frac-
tions of I, and l4 domains also become unequal, which makes
anti-registration geometrically impossible but would still permit
registration.

We measured the stretching modulus of mixed membranes for
systems within the two-phase region as well as for the correspond-
ing coexisting pure phases. The two-phase mixture was softer than
either of the pure phases and, unexpectedly, the l4 phase was slightly
more rigid than the [, phase. Adding cholesterol, the rigidity linearly
increased, which we attribute to a concomitant decrease in area per
lipid and an increase in lipid orientational order.

As an example of a dynamical observable, we measured lipid
diffusion constants. While the observed differences are significantly
smaller than what is known to be true in experimental systems
(which is unsurprising for coarse-grained models), all changes fol-
low expected trends. In particular, we found that the diffusion
constant of lipids is more strongly determined by the phase they
reside in rather than by their own identity.

These findings help to tie down some of the basic physi-
cal behavior of our model and open the door to a biophysically
highly relevant and significantly more challenging situation: mem-
brane asymmetry. Eukaryotic plasma membranes have leaflets that
strongly differ in several important physical observables, most con-
spicuously their lipidomes. The cytosolic leaflet is substantially
enriched in unsaturated lipids”* *" and (at least for human red blood
cells) appears to have significantly more phospholipids than the
exoplasmic leaflet.'”” Average leaflet compositions are very close
to a mixture of saturated lipids, unsaturated lipids, and choles-
terol, in roughly comparable proportions, and hence prone to l,/l4
phase separation. However, the strong difference in leaflet satura-
tion, combined with a possible differential stress'’* associated with
both packing and preferential cholesterol partitioning,”' can move
both leaflets away from phase separation or even just critical fluc-
tuations and, therefore, away from the phenomena widely believed
to be responsible for membrane rafts.'’ If so, then the intricacies of
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how two ternary mixtures interact across their leaflets, share choles-
terol, and balance uneven stresses and curvature torques all become
collective regulators of rafts and the signaling they enable. Moreover,
the underlying dynamics of raft formation would then be coupled to
the kinetics of membrane asymmetry maintenance, breakdown, and
restoration—namely, lipid flip-flop and lateral diffusion, stress diffu-
sion, larger scale membrane trafficking, and the operation of passive
scramblases and active fl(i/o)ppases. Studying this in computational
models requires them to be able to reach the relevant length- and
time-scales, but also to capture the physics of stretching and bend-
ing elasticity, lipid spontaneous curvature and sorting, asymmetry
and selective flip-flop, differential stress, and mixtures able to exhibit
Io/14 phase coexistence and a critical point. Our goal in this paper
was to get closer to such a model.
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