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CPTu-Based Spatial Variability Assessment of
Thickened and Conventional Mine Tailings

Jorge Macedo, M.ASCE"; Luis Vergaray?; Chenying Liu®; James Sharp*;
Kimberly Finke Morrison®; and Brett Byler®

Abstract: The Global Industry Standard on Tailings Management (GISTM) promotes performance-based approaches in geotechnical
assessments. Hence, characterizing the spatial variability of deposited tailings is expected to be a key input for some tailings storage facilities
(TSFs); however, it has seldom been investigated. In this study, we assess the spatial variability of thickened and conventional tailings, which
have been deposited into the same TSF, providing a unique opportunity to investigate two tailings technologies. A dense array of 15 cone
penetration tests (CPTus) with an average offset of 1.5 m has been conducted to collect data. In addition to evaluating the spatial variability,
the collected information is also used to assess the potential of machine learning (ML) for detrending when deriving random fields. Using a
new proposed stationarity score, we find that an ML-based detrending outperforms traditional procedures for most scenarios. In terms of
correlation lengths, we find similar ranges for thickened and conventional tailings (vertical: ¢,,, = 0.2-0.6 m, horizontal 6,,;, = 1.5-4.5 m)
and similar distributions, likely influenced by the depositional processes. In contrast, the variance in the conventional tailings is higher, which
we attribute to its segregating nature. Finally, by inspecting previous studies on natural soils, we find that the variability of mine tailings
(6,n/ 6,y = 2-21) resembles that observed in alluvial deposits, which we attribute to the parallels in the depositional processes. DOI:

10.1061/JGGEFK.GTENG-11969. © 2024 American Society of Civil Engineers.
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Introduction

Mine tailings are deposited within tailings storage facilities (TSFs)
to prevent their release into the environment. Historically, different
deposition methods associated with different technologies have
been used. Depending on the adopted technology, mine tailings can
often be classified as conventional, thickened, paste, and filtered
(Vick 1990). Conventional tailings are associated with relatively
low solids content (25%—40%), thickened tailings are produced in
a thickener plant and have solids content in the range from 40% to
65%, paste tailings have even larger solids content (65%—80%),
and filtered tailings are often associated with solids contents larger
than 80% (Cacciuttolo and Marinovic 2022). Additional details on
these technologies can be found in Morrison (2022). The conventional
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deposition is associated with spigot systems that are used to dis-
charge tailings into a TSF; hence, the mine tailings are deposited
as a slurry. This technology often allows for lower costs and higher
production rates than other technologies, making it common, espe-
cially for mines with high production rates (Watson et al. 2010).
Thickened tailings are produced in thickening plants and pumped
into the TSF by displacement pumps; this technology was first used
in 1973 (Robinsky 1979) and has been typically limited to low to
moderate production rate operations. Due to the contrasting solid
contents, conventional and high-density thickened tailings are
expected to have different properties. For instance, conventional
tailings form large ponds and are expected to develop more segre-
gation (Watson et al. 2010). Moreover, due to the processes
involved in the deposition of conventional and thickened tailings
within a TSF, the spatial variability of geotechnical properties is
expected to be a relevant factor; however, it is not commonly
addressed. In this context, this study is focused on investigating
the spatial variability of conventional and high-density thickened
tailings, hereinafter referred to simply as thickened tailings, using
cone penetration testing (CPTu), taking advantage of data collected
from a TSF where the two types of tailings are deposited.
Previous efforts on characterizing the spatial variability of soil
deposits have been mainly focused on natural soils, often using the
random field theory (RFT) (e.g., Jaksa et al. 1999, 2005; Breysse
et al. 2005; Stuedlein et al. 2012; Fenton and Griffiths 2005;
Griffiths et al. 2006; Hu and Ching 2015; Bong and Stuedlein 2017,
Stuedlein and Bong 2017; Cai et al. 2017; Ching et al. 2018; Cary
2021). In terms of man-made waste materials, we are only aware of
the Baginiska et al. (2016) study, which characterized the spatial
variability of a mine waste dump in a coal mine using CPTu. How-
ever, they focused only on the vertical variability due to the large
spacing between the CPTus. Regarding mine tailings, to the
best of the author’s knowledge, there have been no previous efforts
to characterize the extent of their spatial variability at a local scale
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considering vertical and horizontal directions, which is one of
the key contributions of our study. Advancing the spatial variability
characterization of mine tailings is a step forward to enable better
treatment of uncertainties in performance-based assessments,
a framework recommended in the Global Industry Standard on
Tailings Management (International Council on Mining and
Metals 2020). In addition, gaining insights into the spatial vari-
ability of mine tailings provides valuable information to improve
the planning of site investigation programs for TSFs. The spatial
variability assessments of this study rely on data collected on
conventional and thickened tailings using a dense array of CPTus.
In addition to the traditional use of polynomial functions in the
detrending process to assess the extent of spatial variability, we
discuss the potential of taking advantage of modern machine
learning-based procedures for trend removal, which is another
contribution from our study. In contrast to traditional polynomial
functions with limited flexibility due to their fixed forms, ma-
chine learning-based methods have greater flexibility in capturing
trends in CPTu data.

This study is organized as follows: After a brief introduction,
details of the characterized site and conducted CPTus are provided.
Then, we discuss the methods considered to assess the spatial vari-
ability of mine tailings, including the role of machine learning on
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Fig. 1. Representative particle size distributions of conventional and
thickened tailings.
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data detrending. The results considering the different approaches
are then presented, including vertical and horizontal correlation
lengths and other statistical assessments. We then discuss the re-
sults obtained for the conventional and thickened tailings in the
context of previous studies for natural soils and the potential role
of deposition processes. Finally, the paper closes with conclusions
and recommendations for future work.

Site Characterization

The investigated tailings started to be deposited back in the 1990s
using conventional deposition until 2010, when the deposition
method was changed to high-density thickened tailings, providing
a unique opportunity to investigate both conventional and thick-
ened tailings in the same TSE. The solids contents for the con-
ventional and high-density thickened tailings are about 50% and
62%—70% (the variation is due to seasonal change from winter
to summer), respectively. Fig. 1 illustrates the range of particle
size distributions of both tailings. The field characterization was
planned to collect data on both the conventional and thickened
tailings and included 15 CPTu conducted with a compression-type
piezocone with a diameter of d =4.37 cm (i.e., cone area a =
15 cm?). Conventional strain-gauged load cells record the tip (g,)
and friction resistance (f,), whereas a strain-gauged transducer
records dynamic and static pore pressure in the u, position. In ad-
dition, vertical and horizontal geophone sensors are included in the
body of the cone to assess shear and compression wave velocities.
The CPTu array was oriented parallel to the discharge points in the
dam, as illustrated by Fig. 2(a). The CPTus were conducted at a
standard penetration rate of 2 cm/s and were spaced at a distance
of 1.5 m, as shown in Fig. 2(b). The separation was selected fol-
lowing the recommendations of Cary et al. (2022) to minimize any
potential disturbance between nearby CPTus. The central CPTu
[X = 0.0 m in Fig. 2(b)] was pushed to a depth of 24 m, and com-
plemented with pore pressure dissipation tests every meter. The
dissipation tests confirmed a phreatic surface approximately 6.1 m
below the surface. The remaining CPTus were pushed to a depth
of 16 m.

Figs. 3(a—c) show g¢,, f,, and u, profiles, soil layering, and the
phreatic surface inferred from the CPTu tests. The inferred soil pro-
file can be divided into three layers. The layer from the surface to
2 mis a pad access built to access the site, which is not considered
in the interpretations. The second layer, extending from 2.0 to about
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Fig. 2. (a) CPTu array location relative to the discharge area; and (b) CPTu array zoom-in and labels.
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8.5 m, corresponds to the thickened tailings showing relatively
uniform ¢,, f, and a linear trend in u,. The conventional tailings
underlay the thickened tailings and extend to the bottom of the
profile, showing a more erratic variation of ¢,, f,, and u, values.
The separation of the conventional and thickened tailings at about
8.5 m is consistent with the tailing’s deposition history. The thick-
ened tailings present relatively low ¢, (i.e., 1 to 5 MPa) and f;
(i.e., 5 to 40 kPa). The conventional tailings exhibit g, values be-
tween 1 and 8 MPa and f values between 5 and 70 kPa. The u,
values are negligible above 4 m, positive in most CPTus for depths
between 6.1 and 8.5 m within the thickened tailings, and tend to be
hydrostatic in the conventional tailings. The observed vertical pat-
terns for the different CPTus suggest some degree of homogeneity
in the horizontal direction for a given depth (Fig. 3). However, these
qualitative interpretations may be subject to judgment, and quan-
tifying the variability based on statistical procedures should be pre-
ferred, as demonstrated in later sections.

Fig. 4(a) uses the central CPTu to illustrate the typical variation
of the soil behavior type (/..), proposed by Robertson (2016), which

is estimated as I, = \/[(3.47 — log 0,,)> + (log F, + 1.22)?],
where 0, = [‘It - Uv/Pa](Pa/o—é)n’ F,= [ 3'/(‘1[ - o—v)] x 100%,
o,, o), and P, are the total in situ stress, effective vertical stress,
and the atmospheric pressure, respectively, and n = 0.381/,. +
0.05(c,/P,) —0.15. Based on the expected suction levels from
representative soil water characteristic curves for the examined tail-
ings up to 50 kPa with a contribution to the effective stresses up to
25 kPa (considering Y, the effective stress parameter, as 0.5), the
effect of matric suction on /. was estimated not to be significant;
hence, /. in Fig. 4(a) is estimated without considering suction
above the phreatic surface.

Fig. 4(b) shows I, histograms to aid in visualizing the /. varia-
tion in the two tailings types. The thickened tailings exhibit /. val-
ues from /. = 1.8 to 2.6, suggesting they behave as sandy silt
and silty sand mixtures based on Robertson (2016). Consistent with
their more segregating nature, the conventional tailings exhibit
higher /.. values [up to 3.1, as noted in Figs. 4(a and c)]. According
to Robertson (2016), the conventional tailings are expected to be-
have mainly in the range of sands to silty sands and silty clays.
Fig. 4(c) shows the CPTus plotted in the Robertson (2016) classi-
fication chart. Using Robertson’s (2016) terminology, the thickened
tailings show a sand-like and transitional contractive behavior for
the bulk of the data. The conventional tailings exhibit a broader
range of behaviors, with a significant fraction in the zone of transi-
tional materials. In addition, the conventional tailings exhibit a
more balanced partition between the contractive/dilative regions
than the thickened tailings; however, they are predominantly con-
tractive. The more contractive nature of the thickened tailings is
likely associated with their lower depositional energy compared to
the conventional tailings. The conventional and thickened tailings
are deposited using subaerial deposition; however, the amount
of water in the conventional tailings is higher, likely creating a
higher deposition energy. As highlighted by Reid and Jefferies
(2018), depositional energy is a key factor in dictating the contrac-
tive nature of deposited mine tailings. The observations just dis-
cussed in the context of different depositional environments are
consistent with Reid and Jefferies’s (2017) study for conventional
tailings and Reid and Jefferies’s (2018) study for thickened tailings.
Another factor that might have contributed to the more contractive
nature of the thickened tailings is their more recent deposition
(thickened tailings are still being deposited), as consolidation
may not have been completed due to large drainage paths promoted
by their non-segregating nature; however, this likely applies only to
the first few meters.
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Spatial Variability Assessment

Random Field Theory and Spatial Soil Variability

The inherent spatial variability of soils can be modeled with the
RFT theory, which has been used in several previous studies mainly
focused on natural soils (e.g., Vanmarcke 1977; DeGroot and
Baecher 1993; Lacasse and Nadim 1996; Phoon and Kulhawy
1999; Fenton and Griffiths 2005; Jaksa et al. 2005; Griffiths
et al. 2006; Breysse et al. 2005; Hu and Ching 2015; Stuedlein
and Bong 2017; Cary 2021). In the following, we provide a brief
overview of the RFT framework and its use in assessing spatial soil
variability. Interested readers can refer to Jaksa et al. (1997), Stued-
lein (2008), and Bong and Stuedlein (2017) for additional details.
Under the RFT framework, a measurement of some spatially vary-
ing soil property of interest g(z) at a given depth z can be expressed
as the sum of a deterministic trend [#(z)] and a fluctuating compo-
nent [w(z)] as expressed by Eq. (1) and schematically presented in
Fig. 5. The spatially varying parameter of interest is then charac-
terized by the correlation length (), and the coefficient of variation
(COV) of w(z). 6 is a measure of the distance within which a par-
ticular measurement is correlated, and COV is the standard
deviation (o) of w(z) normalized by the mean of #(z)

9(z) = 1(z) + w(z) (1)

6 can be calculated by different geostatistical procedures
(e.g., Jaksa 1995; Vanmarcke 1977; DeGroot and Baecher 1993).
In particular, the use of autocorrelation models to fit the autocor-
relation in the observed data is common in geotechnical appli-
cations. In this procedure, the sample autocorrelation function
p(T_,-) — i.e., based on the observed data, which defines the spatial
correlation for a given lag distance (7;) on the measurement of
interest, is evaluated according to Eq. (2)

T WX Wi
(7)) = % (2)

=1 Wi

As suggested by Box and Jenkins (1970), different lag distances
7; can be considered by varying the sampling space (Az) for j =
1,2,3...n,4/4, where n, is the sample size. Once p(7;) is assessed,
6 can be estimated by fitting different autocorrelation models
(ACMs) to ,O(Tj). The ACMs considered in this study (Table 1)
are the single exponential (SNX), cosine exponential (CSX),
second-order Markov (SMK), and squared exponential (SQX)
models. These ACMs have been used in geotechnical applications
(e.g., Phoon et al. 2003; Uzielli et al. 2005).

In using the RFT framework, it is highly beneficial to have
stationarity in w, i.e., the covariance structure only depends on the
distance between observations (7). Thus, a key step in assessing
spatial soil variability is detrending the data [i.e., the removal of
#(z)], ideally leading to a stationary w(z) random field. The selec-
tion of the functional form #(z) is key to detrending, as discussed
in more detail in the next section. Once the detrending is con-
ducted, there are several methods for assessing stationarity condi-
tions [e.g., Spearman’s rank coefficient—(Spearman 1904); Kendall’s
tau test—(Kendall 1938); Bartlett’s test—(Bartlett 1937); Phoon et al.
2003)]. In particular, the Kendall and Bartlett tests have been used
in recent studies for natural soils (e.g., Bong and Stuedlein 2017,
Cary 2021). Uzielli et al. (2005) and Stuedlein (2011) compared the
Kendall and Bartlett tests, concluding that the Bartlett test is more
stringent and discriminative in assessing stationarity. In this con-
text, in this study, we use the Bartlett test as the basis to define a
stationarity score, as discussed in subsequent sections.
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Fig. 5. Sketch of spatially varying soil property g(z), the trend #(z), the
fluctuating component w(z), and the correlation length (6). (Adapted
from Phoon et al. 2003.)

Table 1. Autocorrelation models and corresponding correlation length

Autocorrelation Correlation
model Functional form length
SNX p() = M7l 5=2/k
CSX p(1) = e~ cos kr §=1/k
SMK p(1) = (1 + k|7|)e §=4/k
SQX p(r) = e k0? 6= /7/k

Source: Adapted from Uzielli et al. (2005).

Machine Learning-Based Methods for Data Detrending
and Vertical Correlation Length Estimation

The current practice commonly considers polynomial functions in
the detrending of CPTu data. For instance, a lst order polynomial
function is typically used to remove trends, and then statistical
tests are performed to check the stationarity of the residuals. If the
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residuals fail the stationarity check, one must increase the order of
the polynomial function and repeat the calculation until the resid-
uals are stationary. Often, polynomials up to degree three have been
used (Cary 2021). A limitation of using polynomial-based trend
functions is their restricted flexibility. A polynomial function can
only represent trends that belong to the polynomial family and may
not be efficient in capturing trends in CPTu measurements, poten-
tially producing nonstationarity. In this context, modern machine
learning-based methods can be advantageous as they offer more
flexibility (e.g., nonparametric-based procedures) than polynomials
with fixed functional forms. In addition, the potential use of vari-
ous ML algorithms can also enable better treatment of epistemic
uncertainties in the estimation of random field parameters, e.g., by
providing alternative correlation lengths. In this study, we have
selected three nonparametric ML methods, namely, random forest
(Breiman 2001), gradient boosting decision tree (GBDT) (Friedman
2001), and the k-nearest neighbor (KNN) (Peterson 2009) for con-
ducting the CPTu data detrending and assessing the potential of
machine learning on informing the assessment of spatial variability.
In the following, we briefly describe these methods and illustrate
how they have been used in this study. Interested readers are re-
ferred to Bishop (2006), Breiman (2001), Friedman (2001), and
Peterson (2009) for more details on these methods. The parameters
that control the behavior of an ML method are often referred to as
hyperparameters and need to be tuned during the training process.
In the case of random forest, the considered hyperparameters are
the tree depth (how deep the tree can grow), the minimum samples
(required to split a tree node), the minimum samples required to
form a leaf (often referred to as the subspace), and the number
of trees. In the case of GBDT, the considered hyperparameters
are the tree depth (how deep the tree can grow), learning rate
(the optimization speed of parameters in the model), row subsample
ratio (the subsampling ratio of the data to train the tree), number of
trees, and the minimum child weight (minimum number of data to
form a leaf or subspace). Finally, in the KNN method, k, defining
the number of the nearest neighbors, is considered to be the hyper-
parameter. Standard machine learning literature provides detailed
information on these hyperparameters; interested readers can refer
to Bishop (2006). The hyperparameters were optimized during the
training process using a grid search strategy (Bishop 2006); the con-
sidered values for training are listed in the Supplemental Materials.
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Fig. 6. Schematic illustration of the (a) random forest; (b) gradient boosting decision tree (dark blue line: constant trend, light blue line: trend based on
the residuals of the constant trend, red line: trend based on further updated residuals, green line: final trend function that combines previous fittings);
and (c) k-nearest neighbor (green curve: trend function, horizontal red lines: interval considered for a prediction at 3 m) models used to remove the

trends in a CPTu profile.

Random forest is an ensemble learning method that combines
the prediction of multiple estimators known as decision trees
(Breiman 2001). Random forest uses a modified bootstrap aggre-
gating algorithm to generate multiple tree learners. For each tree
learner, a fraction of the CPTu measurement is randomly sampled
with replacement (bootstrapping) for training. Then, the prediction
results are averaged over all tree learners (aggregating). For one-
dimensional data (e.g., g; or f,), the main hyperparameter that
controls the complexity of the trend function derived from random
forest is the maximum tree depth, which controls how deep each
tree can grow. Trees with larger depths will lead to more flexible
trend functions but also have more potential to overfit the data
(Breiman 2001), i.e., the derived model could perform well for the
training data but not for other datasets. Fig. 6(a) shows a schematic
illustration of building one tree in the random forest algorithm us-
ing CPTu 14 and ¢,. The ¢, data is first automatically split by the
algorithm into four subregions with splitting boundaries at 0.8, 2.2,
and 3.0 m. These regions are subspaces created by the algorithm
and do not imply any stratification. Then, the average value of ¢, in
each subregion is used for prediction. This process is repeated
multiple times—each repetition represents a tree—and the predic-
tions across all the trees are averaged to generate the final predic-
tion, which is represented by the piecewise linear trend.

GBDT is another ensemble learning method. The major differ-
ence with respect to random forest is the training procedure. GBDT
combines multiple weak tree learners into a single strong learner in
an iterative manner. A weak tree learner in GBDT refers to a simple
decision tree model with limited predictive capability when consid-
ered alone. The GBDT model starts with a weak tree learner, and
at each iteration, a new tree learner is added using the residual
between the previous learner and the observed response variable.
The algorithm terminates when reaching a prescribed maximum
number of iterations or when there is no improvement relative to
a previous iteration, which in GBDT is implemented through a loss
function (Chen and Guestrin 2016). Finally, the predictions from all
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tree learners are summed up. Similar to random forest, the maxi-
mum tree depth is key in controlling the complexity of the gener-
ated trend function. The GBDT use on the CPTu data is illustrated
in Fig. 6(b) using the same CPTu discussed for random forest.
Initially, a simple constant line (i.e., the mean value of ¢,) is con-
sidered. Based on the residuals between ¢, and the constant line,
another tree is fitted to the residuals. Then, the new residuals are
calculated as the difference between the light blue line and the pre-
vious residuals, and another tree is fitted to the new residuals. Fi-
nally, all the trees (represented by the previous fittings) are
combined to produce the final trend function.

The KNN algorithm builds a prediction model based on the
distances between the predictor and its nearest neighboring data
points. Specifically, a predicted value is based on the average value
of its k-nearest neighbors. The value of k serves as a hyperparameter
and controls the complexity of the model. For instance, for k = 1,
the generated trend function is complex and attempts to include
every CPTu measurement. In contrast, when k is equal to the total
number of data points, the generated trend function passes through
the mean value of the CPTu measurements. Any & value in between
will produce continuous trend functions with different complexities
controlled by k. Fig. 6(c) schematically illustrates the use of the
KNN method. The trend function is generated by averaging the
q, values for the 20 nearest neighboring points at a given depth.
For example, the prediction at 3 m is computed by averaging
the ¢, values in a window from 2.5 to 3.5 m [i.e., as illustrated
in Fig. 6(c)]. In this study, we start with a large k value, gradually
decreasing it to generate more complex functions until its perfor-
mance is optimized.

Quantifying the Performance of Trend Removal
(Stationarity Score)

In this section, we propose a stationarity score for assessing the
performance of different models that describe spatial variability
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based on CPTu data. In estimating random field parameters, two
factors are of particular relevance: the stationarity of the random
field and the fitting of autocorrelation models. The fitting of the
autocorrelation models is usually represented by the coefficient of
determination (R?) and considered adequate when R? is higher
than 0.9 (Phoon et al. 2003). The fitting is conducted for the regions
where the empirical autocorrelation function [Eq. (2)] shows values
higher than the Bartlett’s limit (Phoon et al. 2003) defined as
rg = 1.96/(n,)">, where n, is the number of observations. The
stationarity of a random field is evaluated using the modified Bar-
tlett’s test. In the test, the Bartlett’s statistic is calculated at each
depth using the data after detrending, and the maximum value is
compared with a Bartlett’s critical value (B.;) defined in Phoon
et al. (2003). If the maximum value of the Bartlett’s statistic is be-
low the critical value, then the random field is considered station-
ary. However, the Bartlett’s test does not quantify the extent of
stationarity (or nonstationarity). Thus, we propose a combined sta-
tionarity score (S) to quantify the extent of stationarity and the
goodness of fit of autocorrelation models, defined in Eq. (3) as:

f; Bcrit - BsmtdZ >
Bcrit Xz
fz H(Bstat > Bcril) (Bstat - Bcrit)dZ
max By ) X 2

ﬂ? maX(Bstat) < Bcrit

X (1 _/8)7 maX(Bstat) ZBcrit

(3)

5 1
14+ exp—15(R?2—0.5)

(4)

where H (B, > B.;) = Heaviside function with a value of 1 only
if By;u; > B,,;; and 0 otherwise. B, = calculated Bartlett’s statistic
at each depth; B is the critical value for Bartlett’s statistics; and
z = depth at which Bartlett’s statistic is calculated. 3 = weighting
parameter [Eq. (4)], which is a sigmoid function of R?> with
bounded values from 0 to 1. When R? is large, /3 approaches 1, and
when R? is small, (3 approaches 0. Hence, S is a normalized scalar
quantity (bounded from —1 to 1), where negative values indicate
nonstationary and positive values indicate stationary. S combines
the contributions from both R?> and Bartlett’s statistic and can be
used as a single metric to evaluate the performance of different
trend functions. More negative S values represent more nonstatio-
narity, while more positive values represent more stationarity. S is
evaluated using detrended models. In the case of ML-based models,
the detrending is conducted by fitting them to a variable of interest,
optimizing the ML model hyperparameters using a grid search
strategy (Bishop 2006). Then, the residuals between CPTu meas-
urement and the trend functions are used to further calculate S for a
given ML model and an autocorrelation model.

Fig. 7 illustrates the process of using S to assess the performance
of ML-based models by considering GBDT in detrending ¢, data
on the thickened tailings collected in CPT04. Maximum tree depths
from 1 to 3 are considered in addition to the hyperparameters listed
in the Supplemental Materials. In addition, the SMK model is used
to fit the autocorrelation in the data. Since GBDT uses decision
trees, it generates piecewise functions, as observed in Fig 7(a).
Notice how the increase in the tree depth generates more flex-
ible trends. Once the trend functions are generated, the residuals are
estimated (i.e., by subtracting the trends from the original data) as
illustrated in Fig 7(b) and used to fit the SMK model [Fig. 7(c)].
Figs. 7(d—e) show the estimation of Bartlett’s statistics for in-
creasing tree depths and the corresponding R? and S estimates. In
Fig. 7(d), some nonstationarity is observed for a tree depth of one;
then, as the tree depth increases, S and R? also increase suggesting a
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benefit in increasing the GBDT flexibility. Of note, as the tree depth
was increased, other hyperparameters were also optimized. Once
the tree depth is 3, the S score is close to 1, and the Bartlett’s sta-
tistics are consistently lower than the critical value. At this stage,
one can stop increasing the complexity of the trend functions and
select the trend function that leads to the highest S (i.e., the GBDT
model with a tree depth of three). In general, the process of finding
the optimal ML models used in this study considers varying the
hyperparameters and tracking the S values identifying the maximum
values that represent more stationarity. Figs. S1 and S2 provide
similar examples for random forest and KNN. The same process
can also be applied to polynomial models.

Assessment of ML-Based Procedures and
Polynomial-Based Models

In this section, we compare the performance of ML and polynomial-
based functions in generating stationary data considering both the
thickened and conventional tailings. For each CPTu measurement,
four different autocorrelation models previously discussed (Table 1)
are considered to assess the vertical correlation lengths (¢,,,) for
both the thickened and conventional tailings. We increase the order
of the polynomial functions (up to the fourth order as commonly
used in practice) and tune the flexibility of the ML-based trend
functions, as illustrated in the previous section. For each autocor-
relation model and CPTu, we select the trend functions (i.e., the
polynomial-based or ML-based model) that lead to the highest S.
First, we discuss the process using a representative CPTu, and then
present the results considering all CPTus.

Fig. 8 illustrates the process by showing the results obtained for
the ¢, profile of CPT-14 for the conventional tailings using the CSX
autocorrelation model and polynomial, KNN, random forest, and
GBDT detrending methods. The hyperparameters that produce
the highest S for each method are noted in the figure titles. In this
case, a polynomial function of order two was selected because it
gives the highest S. However, S is negative, implying nonstationar-
ity at some depths. In contrast, all ML-based methods produce sta-
tionarity (Fig. 8, right column). Hence, the CSX model would be
discarded if one only considers traditional polynomials. Using
ML-based methods, the extent of potentially useful autocorrelation
models is increased, which favors the treatment of uncertainties
(i.e., more alternative models to treat epistemic uncertainties can be
included). For instance, in this case, the use of the CSX model de-
rives 6,,, values from 0.25 to 0.28 m.

Fig. 9 shows similar results, but now considering the ¢, profile
of CPT-14 for the thickened tailings considering the SMK auto-
correlation model. In this case, all the trend functions satisfy the
stationarity requirement given by the modified Bartlett’s test.
However, the polynomial trend function (second order) just passes
the stationarity check at an S of zero, whereas the ML-based meth-
ods produce random fields that are more stationary (larger §), high-
lighting a better performance in removing trends in this case.

Figs. 10 and 11 show a summary of the performance of different
models (polynomial and ML-based) in terms of their S values for
all the CPTus and autocorrelation models previously discussed,
considering ¢, data. In presenting the results of a model family
(e.g., GBDT), only the results for the highest S are considered.
Fig. 10 shows the results for the thickened tailings. Out of the four
autocorrelation models, SMK and SQX produce more stationarity
when combined with different trend functions, as reflected by the
larger positive bars in Fig. 12. Regardless of the autocorrelation
model, the ML-based trend functions show, in general, a higher S
for most CPTus. Specifically, for the SNX and CSX models,
the polynomial functions fail stationarity checks for several CPTus
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Fig. 7. Example of results obtained using GBDT with variable tree depths considering the test CPTO04.

(i.e., negative S). In the case of the SMK model, the traditional and
ML-based trend functions have stationary random fields for most
CPTus, but the ML-based models show, on average, larger S. In the
case of the SQX model, both ML-based and polynomial trend func-
tions show similar performance. It is worth highlighting that there
are also a few combinations of CPTus and ACMs where polyno-
mial trend functions perform slightly better than ML-based meth-
ods, such as for CPT-12 using the SNX model. In comparing the
performance of different trend functions across the four ACMs,
the KNN model performs better in the case of thickened tailings,
as reflected by the more positive S in Fig. 10.

Fig. 11 shows similar results, but now considering the con-
ventional tailings. In this case, the SQX model shows the best
performance, with different trend functions being comparable for
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this ACM. ML-based models generally provide higher S values
compared to polynomials for most combinations. Of note, polyno-
mial models produce negative S values for some cases in which at
least one ML-based model provides a positive S (e.g., SNX and
CPT-06, SMK and CPT-12), enabling the use of more autocorre-
lation models as previously discussed. It is also interesting to note
that in the case of the CSX model and CPT-06, none of the trend
functions derive in full stationarity, suggesting that this model is
unsuitable for modeling the CPTu profile’s random field. Similar
to the thickened tailings, there are also a few combinations where
polynomial models produce higher S values than ML-based models
(e.g., SQX model and CPT-15). Lastly, in this case, the different
ML-based models show a similar performance when combined
with different autocorrelation models. Figs. S3 and S4 show the
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Fig. 8. Results using polynomial and ML-based trend functions for the ¢, profile of CPT-14, considering the conventional tailings.

results considering f, for all CPTus, autocorrelation models, and
trend functions (polynomial and ML-based). In both the conven-
tional and thickened tailings, the SQX model performs better.
Moreover, the performance of KNN and random forest algorithms
is comparable and overall better than that of other trend functions,
as they can generate stationary random fields for several CPTus that
are regarded as nonstationary by other trend functions. This is the
case, in particular, for conventional tailings.
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Spatial Variability of Mine Tailings

Vertical Correlation Length

As previously described, ¢,,, was calculated for the conventional
and thickened tailings by fitting four different autocorrelation mod-
els (Table 1) to the sample autocorrelation functions, as illustrated
in Figs. 8 and 9. Fig. 12 presents the cumulative distribution
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Fig. 9. Results using polynomial and ML-based trend functions for the ¢, profile of CPT-14, considering the thickened tailings.

functions (CDFs) of 6,,, and COV,,, for ¢, [Figs. 12(a and b)] and
[ [Figs. 12(c and d)], respectively, considering different methods
(i.e., ML-based and polynomials with the highest S) and the CSX
autocorrelation model for the thickened and conventional tailings
(additional plots for other ACMs are included in Figs. S5-S7).
The CDFs calculated with different methods for a given CPTu
represent the epistemic uncertainty. Interestingly, the estimated 6,,,,,
and COV,,, values are in a relatively narrow range. In the case of
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thickened tailings, the mean 6,,, estimated from ¢, is 0.33 m, which
is smaller, but still comparable with the §,,, of 0.49 m based on f.
In the conventional tailings, the mean 6,,, estimated from ¢, is
0.35 m, quite close to the mean ¢,,, of 0.31 m considering f,.
The ¢,-based 6,,, CDFs for both tailings are also consistent. The
fs-based 6,,, CDFs for the thickened tailings are shifted to the right
with respect to the CDFs for conventional tailings, but the §,,, are
still comparable.
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The similar §,,, values can be attributed to the combination of
two aspects (1) the deposition scheme for the conventional and
thickened tailings, and (2) averaging effects in CPTu measure-
ments. In terms of the deposition process, similar phenomena are
involved in both the deposition of the conventional and thickened
tailings. These phenomena include pauses in the tailings discharge
(the deposition is conducted on layers), drying-wetting cycles,
induced consolidation when new layers are deposited, and induced
flow gradients. Moreover, even though the thickened tailings have
a less segregating nature, it is still reasonable to expect some seg-
regation under field conditions during the deposition process. In
terms of the averaging during CPTu penetration, it is well known
that ¢, is influenced by the response of the units that are at a dis-
tance of 1 to 3 cone diameters for soft soils and 20 to 30 cone diam-
eters for stiffer soils (Lunne et al. 1997; Ahmadi and Robertson
2005). Based on the Ahmadi and Robertson (2005) findings and
considering the relatively low tip resistance in the thickened and
conventional tailings, the influence penetration zones are expected
to be closer to the lower range from Lunne et al. (1997), with values
on the order of 5 cone diameters for the thickened tailings and
10 cone diameters for the conventional tailings. Similarly, f also
represents an averaged measurement. Thus, the relatively increased
heterogeneity on the conventional tailings may have also been aver-
aged out to some extent by the nature of the CPTu penetration
process.

In terms of the COV,,, CDFs, it is important to put in context
that COV,,, is a measurement of the fluctuation (i.e., o) of w(z)
with respect to its order of magnitude [i.e., #(z)]. The relatively
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larger COV,,, for ¢, in the conventional tailings is a reflection of
the more significant fluctuation of ¢,, potentially influenced by the
more segregating nature of the conventional tailings. In contrast,
the larger COV,,, for f in the thickened tailings is a reflection of
the significantly lower f; in the thickened tailings compared to the
conventional tailings (i.e., a factor of about 3), which counteracts
the o contribution.

Horizontal Correlation Length

Due to the relatively large sampling interval in the horizontal di-
rection compared to the vertical, deriving on significantly fewer
points at a given depth, the horizontal correlation length (6,,;,) is
estimated following the expeditive method, which was originally
proposed by Vanmarcke (1977) and has been used in previous
studies for natural soils (e.g., Stuedlein et al. 2012; Bong and
Stuedlein 2017; Cary 2021). The expeditive method estimates

8y as \/(2/7) d, where d = average length of the segments ob-
tained at the crossings of ¢(z) and its linear trend function #(z),
where ¢(z) = metric of interest (i.e., g, or f). Following the rec-
ommendations of Stuedlein et al. (2012) and Bong and Stuedlein
(2017), in applying the expeditive method, we considered a mini-
mum of five crossings to get stable COV,,;, and 6, estimates.
Fig. 13(a) illustrates the ¢,-based 6,,, estimation in the thickened
and conventional tailings at depths of 4 and 12 m, and Fig. 13(b)
illustrates the f-based ¢,,,, estimation at the same depths. The same
procedure illustrated in these figures was applied to all depths.
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Fig. 14(a) shows the estimated 6,,, considering ¢, and f, for the 16-84 percentile for the g,-based ¢,,, is in the range of 2 to
the entire deposit, and Fig. 14(b) presents the associated horizontal 3.5 m for the thickened tailings and in the range of 1.8 to 3.0 m
coefficient of variations (COV,,;,). It can be observed that the thick- for the conventional tailings. In the case of f-based estimations,
ened and conventional tailings exhibit a similar 6,,,. For instance, the 16-84 percentile ¢, is in the range of 1.7 to 3.2 m for the
© ASCE 04024091-14 J. Geotech. Geoenviron. Eng.
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thickened tailings and 1.9 to 2.9 m for the conventional tailings.
The similar 6,,;, in both tailings can be attributed to the deposition
process and associated phenomena (e.g., pauses in the discharge,
flow gradient, drying-wetting cycles, freezing, and consolidation)
as discussed before for 6,,,. Moreover, it is reasonable to expect
segregation to have less effect in the horizontal direction compared
to the vertical, which, again, is reflected in a similar §,,. The
q,-based COV,,, values tend to be slightly larger for the conven-
tional tailings as the existing variance controls them, whereas the
fs-based COV,,;, values are larger for the thickened tailings as they
are controlled by the lower f values in the thickened tailings as
previously discussed.

Fig. 15 presents ¢,- and f,-based CDFs for §,,, and COV,,;
it can be observed that the 8,,, CDFs for ¢, and f, are consis-
tent for both the thickened and conventional tailings. In addition,
similar ¢,-based COV,,;, CDFs for the thickened and conventional
tailings are also observed, being also consistent with the f -based
COV,,, for the conventional tailings, whereas the f;-based COV,,,
CDF for the thickened tailings is shifted to the right, showing larger
values for reasons already discussed.

The generation of random fields depends on § and COV (or vari-
ance, o2); hence, having similar 6, which is the case for the thick-
ened and conventional tailings, does not necessarily imply similar
random fields. This can be illustrated by generating random fields
with the parameters evaluated for the thickened and conventional
tailings using the GSTools package (Muller and Schuler 2019).
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Fig. 16 shows one of these realizations considering the SNX au-
tocorrelation model and parameters estimated using the GBDT
model for detrending. In this case, the ¢,-based estimated param-
eters for the thickened tailings are 02 = 0.3 MPa, Oy = 0.37 m,
and 6,,, = 2.45 m, whereas the parameters for the conventional
tailings are 0> = 2.6 MPa, 6, = 0.41 m, and §,,, = 2.29 m. As
can be inferred from these parameters, the main difference is in o>.
It is interesting to note that the extent and shape of zones with sim-
ilar w(z) values are comparable for the two types of tailings due to
the similar 6. However, the random field for the thickened tailings is
significantly more stable (i.e., it presents less variability) due to the
lower 0. Thus, despite the similar ¢ for both tailings, the simulated
random field for the thickened tailings shows a more homogeneous
structure compared to the conventional tailings. Lastly, Fig. 16 also
shows the impact of different correlation lengths (i.e., 6,,,, and 6,,,),
which derives in an anisotropic random field with properties cor-
related over more considerable (and comparable) distances in the
horizontal direction for both the thickened and conventional tail-
ings as 8, is larger than 6,,,.

Discussion

It is relevant to put in context that even though the generation of
mine tailings entails complex processes to extract the valuable ore,
the tailings gradation is regulated by the processing operations,
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Fig. 17. 6,,;, versus 6,,, for the mine tailings examined in this study in
the context of different natural soils. Cary (2021): alluvial sands, Bong
and Stuedlein (2017): estuarine sand deposit, Cai et al. (2017): alluvial
plain, and Stuedlein et al. (2012): alluvial floodplain clay. 6, and
d,,, ranges from Cami et al. (2020) for different natural soils are also
included. The shaded regions represent interpreted ranges for the con-
ventional and thickened tailings examined in this study.

with the grain size and rheological properties being dependent on
the ore source. As a result, the deposited material has been prefab-
ricated to some extent, which contrasts with natural soils. Hence,
we found it instructive to examine the estimated correlation lengths
in this study for the thickened and conventional tailings in the
context of natural soils. In Fig. 17, we compiled correlation
length ranges using information reported by the recent state-of-
the-art review of the International Society of Soil Mechanics and
Geotechnical Engineering ISSMGE) TC304 committee (2021) for
natural soils. We considered the study from Cami et al. (2020), who
compiled values for different soil types, including sands, silts, and
clays, and the studies conducted by Stuedlein et al. (2012), Bong

and Stuedlein (2017), and Cary (2021) for floodplain clays, estua-
rine, and alluvial deposits. The values reported in these efforts are
compared with the values estimated in this study for tailings, con-
sidering 8,,;,/6,pss Oyy» and 6,,,. The best estimates are presented
with different markers in Fig. 17; the horizontal/vertical bars re-
present the range of estimates. It can be observed that the estimated
Oon/ Oy Values for the thickened tailings (2 to 18) and conventional
tailings (4 to 21) are on the lower bound of values reported for most
of the considered natural soils (i.e., 10 to 50).

The estimated §,,, for mine tailings is generally within the
ranges reported by Cami et al. (2020) for natural soils, whereas 0,
is generally more consistent with the lower range reported by the
same authors (Fig. 17). The estimated 6,,, is also consistent with
studies on deltaic soils (Wickremesinghe and Campanella 1993)
and alluvial plains (Cai et al. 2017). Considering studies that esti-
mated vertical and horizontal correlation lengths, the 6,,,, O,
and ¢,,,/0,,, estimated values in this study for mine tailings are
comparable with values estimated in low-energy environments such
as the Beaumont alluvial floodplain clay deposit examined by
Stuedlein et al. (2012), the estuarine sand deposit investigated by
Bong and Stuedlein (2017), and the alluvial sand deposits exam-
ined by Cary (2021), as illustrated by Fig. 17. These deposits are
mainly alluvial in low-energy environments, corresponding to sedi-
ments or soils transported and deposited by running water, such as
rivers or streams. For instance, deltas are low-lying plains formed
by sediments deposited by rivers when they meet seas (i.e., estua-
ries) or stagnant water bodies. On the other hand, a floodplain is
an area adjacent to a river stream characterized by unconsolidated
sedimentary materials and periodically inundated by that stream.
In the context of mine tailings, spigots are typically used to deposit
them; tailings flow into multiple streams (associated with changes
in spigot locations) toward the pond until they sediment, which can
be associated to some extent with braided river channels in alluvial
deposits. The processes just discussed resemble the formation of
the alluvial deposits discussed in this section (see Fig. 18 for an
example), hence potentially explaining the similarities in the spatial
variability parameters (i.e., 6,,,/9,,,) of alluvial deposits and mine
tailings. As the energy environment during the deposition impacts
the correlation length (Jones et al. 2002), it is also reasonable to
expect that lacustrine formations deposited under low-energy envi-
ronments may have comparable correlation lengths to the tailings
examined in this study. However, we were unable to find recent
studies quantifying §,,, in lacustrine deposits with a dense array
of CPTus, as considered in this study. The similarities/differences
in correlation lengths between mine tailings and natural deposits

Fig. 18. Aerial views: (a) Example of a thickened tailings impoundment (image © Google, © 2024 Airbus); and (b) Kachemak Bay estuary in Alaska
[image courtesy of ShoreZone, under Creative Commons-BY-3.0 license (https://creativecommons.org/licenses/by/3.0/)].
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should be further investigated once more data on spatial variability
for mine tailings and low-energy environments is collected as part
of future efforts.

It is also relevant to highlight that the estimated horizontal cor-
relation length for the examined tailings varies between 1.5 and
4 m; thus, the lower end of the range is similar to the average CPTu
spacing. In this context, the estimated horizontal correlation length
lower bound is relatively uncertain. Several previous studies pro-
viding correlation lengths for natural soils (e.g., Jaksa et al. 1999;
Stuedlein et al. 2012; Lloret-Cabot et al. 2014; Cai et al. 2017;
Bong and Stuedlein 2017; Cary 2021) also share this potential limi-
tation. As the correlation length is unknown a priori, in this study,
consistent with Cary et al. (2022), the average horizontal scale of
observation was 1.5 m, and it was set to minimize the CPTu spacing
while also minimizing the potential disturbance of a CPTu push
to neighboring CPTus. Some previous efforts also suggest that the
scale of observation can play a role in determining the horizontal
correlation length. For example, Jaksa (1995) and Jaksa et al.
(1999) compared correlation lengths obtained from vertically and
horizontally pushed CPTus (data collected every 1.0 and 0.2 m,
respectively) on Keswick clay and postulated the idea of a nested
correlation structure with correlation lengths that can be influenced
by the observation scale. Conducting horizontal CPTus in a TSF is
currently impractical. In this context, future efforts could consider
pushing small-diameter CPTus, allowing closer spacing while min-
imizing potential disturbance effects on neighboring CPTus. For
example, Meisina et al. (2021) recently used a 2 cm? CPTu to in-
vestigate natural silts; similar CPTu probes could be used for in-
vestigating mine tailings and assessing correlation lengths. One
challenge for this is that data quality from a 2 cm> CPTu may
be inferior compared to a standard CPTu. Last, there are also on-
going research efforts to develop bioinspired, robotic-based tech-
nologies that would potentially allow penetration devices to
investigate subsurface properties in multiple directions (e.g., Chen
etal. 2021; Borela et al. 2021). Such next-generation penetrometers
would likely allow further investigation of the challenging problem
of estimating horizontal correlation lengths and the postulate of
nested correlation structures.

Conclusions

As the application of performance-based approaches to tailings
management advances (Morgenstern 2018), the quantification of
variabilities (spatial and aleatory) is expected to become crucial,
particularly for TSFs where the geotechnical characterization of
mine tailings is key in assessing the overall response (e.g., the over-
all physical stability in upstream TSFs). In this context, we have
collected data using a dense CPTu array to assess the spatial vari-
ability of two different types of tailings deposited in the same TSF.
We also evaluated the potential of modern machine learning meth-
ods for informing the estimation of random field parameters; the
examined methods provided advantages, which we attribute to the
interpolation nature of CPTu detrending (caution should be exerted
for extrapolation problems where machine learning can act as a
black box). This study’s findings may prove valuable in geotech-
nical analyses that require adopting ¢ values to account for spatial
variability in mine tailings similar to those examined in this study,
specifically thickened and conventional tailings produced from
gold ore. Given the lack of spatial correlation information on mine
tailings, we expect that it would also be helpful as a benchmark for
future efforts. Of note, case studies exist documenting the impor-
tance of spatial variability parameters for water dams (Sanchez-
Lizarraga and Lai 2014; Boulanger and Montgomery 2016; Guo
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etal. 2019). Thus, it is reasonable to expect similar spatial variabil-
ity studies focused on TSFs to translate into engineering practice in
the future.

In terms of the assessment of random fields, our results show
that ML-based detrending provides higher stationarity than tradi-
tional polynomials in most cases, which was assessed using a pro-
posed new stationarity score. It is worth highlighting that utilizing
ML models in addition to traditional polynomial methods improves
the treatment of epistemic uncertainties by providing more options
to create stationary random fields. The results show that the vertical
correlation length (6,,,) and the horizontal correlation length (6,,,)
for the thickened tailings (considering the 16-84 percentile) are
in the range of 0.2-0.45 m and 2.0-3.2 m. On the other hand, é,,,
and 0,,;, for the conventional tailings (again considering the 16-84
percentile) are in the range of 0.2-0.4 m and 1.75-2.85 m. Thus, the
O,y and 6,,;, and their distributions are comparable. As discussed
in the manuscript, we attribute this to similar processes in the
deposition of the examined tailings (i.e., pauses in the discharge,
flow gradient, drying-wetting cycles, freezing, and consolidation).
Potential averaging effects on the CPTu measurements may also
contribute to some extent. In contrast, the standard deviation (o) for
the conventional tailings is about ten times higher than that esti-
mated for the thickened tailings, which we attribute to the segre-
gating nature of the conventional tailings. Ultimately, the higher
variance in the conventional tailings results in a more variable ran-
dom field, which is consistent with what would be expected in field
conditions.

Finally, the estimated autocorrelation lengths and the associated
anisotropy (8,,,/6,,, = 2-21) for the investigated tailings are put
into the context of information available for natural soils. We found
that the estimated 6,,,, 0,4, O,1/0,, values are comparable with
reported values in delta and floodplain alluvial deposits, which we
attribute to similarities in the deposition processes, but this needs to
be further investigated once more data is collected. In closing, it is
also relevant to highlight that even though this study provided the
unique opportunity of characterizing spatial variability properties
for two different types of tailings, future additional studies on other
TSFs and tailings technologies with varying sources of ore are en-
couraged. In particular, one limitation of our study is that we only
considered a line of CPTus parallel to the discharge line (Fig. 2);
future studies should consider multiple directions relative to the
discharge line.

Data Availability Statement

Some or all data, models, or code generated or used during this
study are available from the corresponding author by request.

Acknowledgments

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. CMMI 2145092. Any
opinions, findings, conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the NSF. The PRONABEC program of the Peruvian
government also provided complementary support. In addition, we
would like to thank ConeTec, Newmont, and WSP-Golder for sup-
porting the site characterization efforts. Finally, we thank Prof. Ar-
min Stuedlein for sharing VBA codes we used to validate our
implementations of calculations based on polynomial fittings
and Prof. Jason Dejong for discussions when planning the CPTu
campaign for the spatial variability characterization.

J. Geotech. Geoenviron. Eng.

J. Geotech. Geoenviron. Eng., 2024, 150(10): 04024091



Downloaded from ascelibrary.org by Georgia Tech Library on 06/04/25. Copyright ASCE. For personal use only; all rights reserved.

Supplemental Materials

Table S1 and Figs. S1-S7 are available online in the ASCE Library
(www.ascelibrary.org).

References

Ahmadi, M. M., and P. K. Robertson. 2005. “Thin-layer effects on the
CPT qc measurement.” Can. Geotech. J. 42 (5): 1302—1317. https://doi
.org/10.1139/t05-036.

Baginska, 1., M. Kawa, and W. Janecki. 2016. “Estimation of spatial vari-
ability of lignite mine dumping ground soil properties using CPTu
results.” Stud. Geotech. Mech. 38 (1): 3—13. https://doi.org/10.1515
/sgem-2016-0001.

Bartlett, M. S. 1937. “Properties of sufficiency and statistical tests.”
Proc. R. Soc. London 160 (901): 268-282. https://doi.org/10.1098/rspa
.1937.0109.

Bishop, C. 2006. Pattern recognition and machine learning. New York:
Springer.

Bong, T., and A. W. Stuedlein. 2017. “Spatial variability of CPT Parameters
and silty fines in liquefiable beach sands.” J. Geotech. Geoenviron. Eng.
143 (12): 04017093. https://doi.org/10.1061/(ASCE)GT.1943-5606
.0001789.

Borela, R., J. D. Frost, G. Viggiani, and F. Anselmucci. 2021. “Earthworm-
inspired robotic locomotion in sand: An experimental study using x-ray
tomography.” Géotech. Lett. 11 (1): 1-22. https://doi.org/10.1680/jgele
.20.00085.

Boulanger, R. W., and J. Montgomery. 2016. “Nonlinear deformation
analyses of an embankment dam on a spatially variable liquefiable
deposit.” Soil Dyn. Earthquake Eng. 91 (Mar): 222-233. https://doi.org
/10.1016/j.s0ildyn.2016.07.027.

Box, G., and G. Jenkins. 1970. Time series analysis: Forecasting and
control. San Francisco: Holden-Day.

Breiman, L. 2001. “Random forests.” Mach. Learn. 45 (1): 5-32. https://doi
.org/10.1023/A:1010933404324.

Breysse, D., H. Niandou, S. Elachachi, and L. Houy. 2005. “A generic ap-
proach to soil-structure interaction considering the effects of soil
heterogeneity.” Géotechnique 55 (2): 143-150. https://doi.org/10
.1680/geot.2005.55.2.143.

Cacciuttolo, C., and A. Marinovic. 2022. “Sustainable management of
thickened tailings in Chile and Peru: A review of practical experience
and socio-environmental acceptance.” Sustainability 14 (17): 10901.
https://doi.org/10.3390/su141710901.

Cai, G., J. Lin, S. Liu, and A. J. Puppala. 2017. “Characterization of spa-
tial variability of CPTU data in a liquefaction site improved by vibro-
compaction method.” KSCE J. Civ. Eng. 21 (1): 209-219. https://doi
.org/10.1007/s12205-016-0631-1.

Cami, B., S. Javankhoshdel, K.-K. Phoon, and J. Ching. 2020. “Scale of
fluctuation for spatially varying soils: Estimation methods and values.”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 6 (4):
03120002. https://doi.org/10.1061/ajrua6.0001083.

Cary, J. 2021. “An investigation into the role of spatial variability on lique-
faction consequence severity.” Master’s thesis, School of Civil and Con-
struction Engineering, Oregon State Univ.

Cary, J. R., A. W. Stuedlein, C. R. McGann, B. A. Bradley, and B. W.
Maurer. 2022. “Effect of refinements to CPT-based liquefaction trigger-
ing analysis on liquefaction severity indices at the Avondale playground
site, Christchurch, NZ.” In Proc., 4th Int. Conf. on Performance Based
Design in Earthquake Geotechnical Engineering, 1454—1466. Berlin:
Springer.

Chen, T., and C. Guestrin. 2016. “XGBoost: A scalable tree boosting
system.” In Proc., 22nd ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD ’16), 785-794. New York: Associ-
ation for Computing Machinery.

Chen, Y., A. Khosravi, A. Martinez, and J. DeJong. 2021. “Modeling
the self-penetration process of a bio-inspired probe in granular soils.”
Bioinspiration Biomimetics 16 (4): 046012. https://doi.org/10.1088
/1748-3190/abf46e.

© ASCE

04024091-18

Ching, J., T.-J. Wu, A. W. Stuedlein, and T. Bong. 2018. “Estimating hori-
zontal scale of fluctuation with limited CPT soundings.” Geosci. Front.
9 (6): 1597-1608. https://doi.org/10.1016/j.gs£.2017.11.008.

DeGroot, D. J., and G. B. Baecher. 1993. “Estimating autocovariance of in
situ soil properties.” J. Geotech. Geoenviron. Eng. 119 (1): 147-166.
https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147).

Fenton, G. A., and D. V. Griffiths. 2005. “Three-dimensional probabilistic
foundation settlement.” J. Geotech. Geoenviron. Eng. 131 (2): 232—
239. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(232).

Friedman, J. 2001. “Greedy function approximation: A gradient boosting
machine.” Ann. Stat. 29 (5): 1189-1232. https://doi.org/10.1214/a0s
/1013203451.

Griffiths, D. V., G. A. Fenton, and N. Manoharan. 2006. “Undrained
bearing capacity of two-strip footings on spatially random soil.” Int. J.
Geomech. 6 (6): 421-427. https://doi.org/10.1061/(ASCE)1532-3641
(2006)6:6(421).

Guo, X., D. Dias, and Q. Pan. 2019. “Probabilistic stability analysis
of an embankment dam considering soil spatial variability.” Comput.
Geotech. 113 (Mar): 103093. https://doi.org/10.1016/j.compgeo.2019
.103093.

Hu, Y.-G., and J. Ching. 2015. “Impact of spatial variability in undrained
shear strength on active lateral force in clay.” Struct. Saf. 52 (Dec):
121-131. https://doi.org/10.1016/j.strusafe.2014.09.004.

International Council on Mining and Metals. 2020. Global industry
standard on tailings management.

ISSMGE (International Society of Soil Mechanics and Geotechnical Engi-
neering). 2021. State-of-the-art review of inherent variability and
uncertainty in geotechnical properties and models. ISSMGE-TC304.
London: ISSMGE.

Jaksa, M. B. 1995. “The influence of spatial variability on the geotechni-
cal design properties of a stiff, over consolidated clay.” Ph.D. thesis,
Faculty of Engineering, Univ. of Adelaide.

Jaksa, M. B., P. I. Brooker, and W. S. Kaggwa. 1997. “Inaccuracies
associated with estimating random measurement errors.” J. Geotech.
Geoenviron. Eng. 123 (5): 393-401. https://doi.org/10.1061/(ASCE)
1090-0241(1997)123:5(393).

Jaksa, M. B., J. S. Goldsworthy, G. A. Fenton, W. S. Kaggwa, D. V.
Griffiths, Y. L. Kuo, and H. G. Poulos. 2005. “Towards reliable and
effective site investigations.” Géotechnique 55 (2): 109—121. https://doi
.org/10.1680/geot.2005.55.2.109.

Jaksa, M. B., W. S. Kaggwa, and P. I. Brooker. 1999. “Experimental evalu-
ation of the scale of fluctuation of a stiff clay.” In Proc., 8th Int. Conf.
on Application of Statistics and Probability, 415-422. Rotterdam,
Netherlands: A.A. Balkema.

Jones, A. L., S. L. Kramer, and P. Arduino. 2002. Estimation of Uncertainty
in Geotechnical Properties for Performance-Based Earthquake Engi-
neering. PEER Rep. 2002-16. Berkeley, CA: Pacific Earthquake Engi-
neering Research Center, Univ. of California.

Kendall, M. G. 1938. “A new measure of rank correlation.” Biometrika
30 (1-2): 81-93. https://doi.org/10.1093/biomet/30.1-2.81.

Lacasse, S., and F. Nadim. 1996. “Uncertainties in characterising soil
properties.” In Uncertainty in the geologic environment: From theory
to practice, Geotechnical Special Publication No. 58, 49-75. Reston,
VA: ASCE.

Lizarraga, H. S., and C. G. Lai. 2014. “Effects of spatial variability of soil
properties on the seismic response of an embankment dam.” Soil Dyn.
Earthquake Eng. 64 (Mar): 113-128. https://doi.org/10.1016/j.soildyn
.2014.03.016.

Lloret-Cabot, M., G. A. Fenton, and M. A. Hicks. 2014. “On the estimation
of scale of fluctuation in geostatistics.” Georisk 8 (2): 129-140. https:/
doi.org/10.1080/17499518.2013.871189.

Lunne, T., P. K. Robertson, and J. M. Powell. 1997. Cone penetration test-
ing in geotechnical practice. London: Blackie Academic &
Professional.

Meisina, C., P. S. Oztiirk Kardogan, R. Boni, S. Stacul, D. Castaldini,
D. Fontana, S. Lugli, M. Bordoni, and D. Lo Presti. 2021. “Develop-
ment and use of a minicone for liquefaction risk evaluation in layered
soil deposits.” J. Geotech. Geoenviron. Eng. 147 (2): 04020169. https://
doi.org/10.1061/(ASCE)GT.1943-5606.0002457.

J. Geotech. Geoenviron. Eng.

J. Geotech. Geoenviron. Eng., 2024, 150(10): 04024091


http://ascelibrary.org/doi/10.1061/JGGEFK.GTENG-11969#supplMaterial
http://ascelibrary.org/doi/10.1061/JGGEFK.GTENG-11969#supplMaterial
http://ascelibrary.org/doi/10.1061/JGGEFK.GTENG-11969#supplMaterial
http://www.ascelibrary.org
https://doi.org/10.1139/t05-036
https://doi.org/10.1139/t05-036
https://doi.org/10.1515/sgem-2016-0001
https://doi.org/10.1515/sgem-2016-0001
https://doi.org/10.1098/rspa.1937.0109
https://doi.org/10.1098/rspa.1937.0109
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001789
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001789
https://doi.org/10.1680/jgele.20.00085
https://doi.org/10.1680/jgele.20.00085
https://doi.org/10.1016/j.soildyn.2016.07.027
https://doi.org/10.1016/j.soildyn.2016.07.027
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1680/geot.2005.55.2.143
https://doi.org/10.1680/geot.2005.55.2.143
https://doi.org/10.3390/su141710901
https://doi.org/10.1007/s12205-016-0631-1
https://doi.org/10.1007/s12205-016-0631-1
https://doi.org/10.1061/ajrua6.0001083
https://doi.org/10.1088/1748-3190/abf46e
https://doi.org/10.1088/1748-3190/abf46e
https://doi.org/10.1016/j.gsf.2017.11.008
https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147)
https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(232)
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(421)
https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(421)
https://doi.org/10.1016/j.compgeo.2019.103093
https://doi.org/10.1016/j.compgeo.2019.103093
https://doi.org/10.1016/j.strusafe.2014.09.004
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(393)
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(393)
https://doi.org/10.1680/geot.2005.55.2.109
https://doi.org/10.1680/geot.2005.55.2.109
https://doi.org/10.1093/biomet/30.1-2.81
https://doi.org/10.1016/j.soildyn.2014.03.016
https://doi.org/10.1016/j.soildyn.2014.03.016
https://doi.org/10.1080/17499518.2013.871189
https://doi.org/10.1080/17499518.2013.871189
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002457
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002457

Downloaded from ascelibrary.org by Georgia Tech Library on 06/04/25. Copyright ASCE. For personal use only; all rights reserved.

Morgenstern, N. 2018. “Geotechnical risk, regulation, and public policy.”
Soil Rocks 41 (2): 107-129. https://doi.org/10.28927/SR.412107.
Morrison, K. 2022. Tailings management handbook: A life-cycle approach.
Englewood, CO: Society for Mining, Metallurgy and Exploration

(SME).

Muller, S., and L. Schuler. 2019. GeoStat-framework/GSTools: Bouncy
blue (v1.0.1).

Peterson, L. 2009. “K-nearest neighbor.” Scholarpedia 4 (2): 1883. https://
doi.org/10.4249/scholarpedia.1883.

Phoon, K. K., and F. H. Kulhawy. 1999. “Characterization of geotechnical
variability.” Can. Geotech. J. 36 (4): 612—-624. https://doi.org/10.1139
/t99-038.

Phoon, K. K., S. T. Quek, and P. An. 2003. “Identification of statistically
homogenous soil layers using modified Bartlett statistics.” J. Geotech.
Geoenviron. Eng. 129 (7): 649-659. https://doi.org/10.1061/(ASCE)
1090-0241(2003)129:7(649).

Reid, D., and M. Jefferies. 2017. “State parameter as a geological principle
in tailings.” In Proc., of Tailings and Mine Waste, 305-314. Edmonton,
AL, Canada: Univ. of Alberta.

Reid, D., and M. Jefferies. 2018. “A geological principle for the density of
thickened tailings.” In Paste 2018: Proc., 21st Int. Seminar on Paste
and Thickened Tailings. Perth, Australia: Australian Centre for
Geomechanics.

Robertson, P. K. 2016. “Cone penetration test (CPT)-based soil behaviour
type (SBT) classification system—an update.” Can. Geotech. J. 53 (12):
1910-1927. https://doi.org/10.1139/cgj-2016-0044.

Robinsky, E. I. 1979. “Tailing disposal by the thickened discharge method
for improved economy and environmental control.” In Vol. 2 of Proc.,
2nd Int. Tailings Symp., 75-95. San Francisco: Miller Freeman
Publications.

Spearman, C. 1904. “The proof and measurement of association between
two things.” Am. J. Psychol. 15 (1): 72. https://doi.org/10.2307
/1412159.

© ASCE

04024091-19

Stuedlein, A. W. 2008. “Bearing capacity and displacement of spread
footings on aggregate pier reinforced clay.” Ph.D. thesis, Dept. of Civil
and Environmental Engineering, Univ. of Washington.

Stuedlein, A. W. 2011. “Random field model parameters for Columbia
River silt.” In Georisk 2011: Risk Assessment and Management,
Geotechnical Special Publication 224, 169-177. Reston, VA: ASCE.

Stuedlein, A. W., and T. Bong. 2017. “Effect of spatial variability on static
and liquefaction-induced differential settlements.” In Geo-Risk 2017.
Reston, VA: ASCE.

Stuedlein, A. W., S. L. Kramer, P. Arduino, and R. D. Holtz. 2012.
“Geotechnical characterization and random field modeling of desic-
cated clay.” J. Geotech. Geoenviron. Eng. 138 (11): 1301-1313. https:/
doi.org/10.1061/(ASCE)GT.1943-5606.0000723.

Uzielli, M., G. Vannucchi, and K. Phoon. 2005. “Random field char-
acterization of stress-normalised cone penetration testing param-
eters.” Géotechnique 55 (1): 3-20. https://doi.org/10.1680/geot.2005
.55.1.3.

Vanmarcke, E. H. 1977. “Probabilistic modeling of soil profiles.” J. Geo-
tech. Eng. Div. 103 (11): 1227-1246. https://doi.org/10.1061/AJGEB6
.0000517.

Vick, S. 1990. Planning, design, and analysis of tailings dams. Richmond,
BC: BiTech Publishers.

Watson, A. H., P. G. Corser, E. E. Garces Pardo, T. E. Lopez Christian, and
J. Vandekeybus. 2010. “A comparison of alternative tailings dis-
posal methods—The promises and realities.” In Mine Waste 2010: Proc.,
1st Int. Seminar on the Reduction of Risk in the Management of Tailings
and Mine Waste, edited by R. Jewell and A. B. Fourie, 499-514. Perth,
Australia: Australian Centre for Geomechanics.

Wickremesinghe, D., and R. G. Campanella. 1993. “Scale of fluctuation
as a descriptor of soil variability.” In Proc., Conf. on Probabilistic
Methods in Geotechnical Engineering, 233-239. Rotterdam, Nether-
lands: A.A. Balkema.

J. Geotech. Geoenviron. Eng.

J. Geotech. Geoenviron. Eng., 2024, 150(10): 04024091


https://doi.org/10.28927/SR.412107
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1139/t99-038
https://doi.org/10.1139/t99-038
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(649)
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(649)
https://doi.org/10.1139/cgj-2016-0044
https://doi.org/10.2307/1412159
https://doi.org/10.2307/1412159
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723
https://doi.org/10.1680/geot.2005.55.1.3
https://doi.org/10.1680/geot.2005.55.1.3
https://doi.org/10.1061/AJGEB6.0000517
https://doi.org/10.1061/AJGEB6.0000517

