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A modified incremental harmonic balance (IHB) method is used to determine periodic solu-
tions of wave propagation in discrete, strongly nonlinear, periodic structures, and solutions
are found to be in a two-dimensional hyperplane. A novel method based on the Hill’s
method is developed to analyze stability and bifurcations of periodic solutions. A simplified
model of wave propagation in a strongly nonlinear monatomic chain is examined in detail.
The study reveals the amplitude-dependent property of nonlinear wave propagation in the
structure and relationships among the frequency, the amplitude, the propagation constant,
and the nonlinear stiffness. Numerous bifurcations are identified for the strongly nonlinear
chain. Attenuation zones for wave propagation that are determined using an analysis of
results from the modified IHB method and directly using the modified IHB method are in
excellent agreement. Two frequency formulae for weakly and strongly nonlinear monatomic
chains are obtained by a fitting method for results from the modified IHB method, and the
one for a weakly nonlinear monatomic chain is consistent with the result from a perturba-
tion method in the literature. [DOI: 10.1115/1.4066216]
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1 Introduction
Wave propagation in periodic structures has attracted attention of

many researchers throughout history. It can be traced back to the
Newton’s first attempt to describe sound propagation in air [1].
Early research of wave propagation in periodic structures focused
on continuous systems and linear approximations [2]. For linear
continuous periodic structures, there are propagation zones and
attenuation zones or stop bands. Waves whose frequencies are in
propagation zones can propagate without decay, while those
whose frequencies are in attenuation zones cannot propagate.
Because of attenuation zones, periodic structures can be used as
acoustic filters [3,4], waveguides [5,6], diodes [7], and so on [8].
Theories and methods on wave propagation in linear continuous
periodic structures are analyzed in detail in Ref. [9].
However, a structure with linear approximations can significantly

differ from a real nonlinear structure, and wave propagation in non-
linear structures requires further research. Nonlinear periodic

structures exhibit interesting wave propagation properties compared
to linear periodic structures, such as nonreciprocal wave propaga-
tion [10], tunable band gaps [11], and amplitude-dependent propa-
gation characteristics [12]. Nonreciprocal wave propagation plays
an important role in design of metamaterials and it can be used in
a wide range of applications, such as optics [13], acoustics [14],
and so on [15]. Librandi et al. [16] designed a one-dimensional
array of bistable arches where nonreciprocity and reversibility can
be independently programed and are not mutually exclusive. Bran-
denbourger et al. [17] used local control loops to design a robotic
metamaterial and widened design in the field of active metamater-
ials. Wang et al. [18] experimentally demonstrated nonreciprocity
in a dynamic one-dimensional phononic crystal with local elastic
properties dependent on time. Tunable band gaps can be used to
design metamaterials with the filtering property and Gil et al.
[19] designed a radio-frequency microelectromechanical tunable
metamaterial-based filter. Amplitude-dependent characteristics are
widely found in metamaterials. Manimala and Sun [20] investigated
amplitude-dependent dynamic responses in acoustic metamaterials
and Mashinskii [21] researched amplitude-dependent effects of lon-
gitudinal seismic wave propagation in an interhole space. For con-
tinuous, weakly nonlinear, periodic structures, Vakakis and King
[22] analyzed a monocoupled periodic structure and identified non-
linear attenuation and propagation zones using the method of
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multiple scales (MMS) in space and time. Manktelow et al. [23]
used spatial discretization of infinite periodic structures and a per-
turbation method, and the transfer matrix method [24], to analyze
acoustic and electromagnetic wave propagation in nonlinear
one-dimensional periodic media, and compared advantages and dis-
advantages of the two methods. Autrusson et al. [25] employed a
perturbation method and a numerical method to analyze the reflec-
tion problem of P or R waves at an edge of a homogeneous plate
with quadratic nonlinearity. For discrete nonlinear periodic struc-
tures, most researchers use continuous nonlinear periodic structures
as substitutes, which implies that wavelengths are much larger than
the distance between repeating units. However, the substitution fails
when the wavelength is relatively small.
Analysis methods for discrete nonlinear periodic structures are

reviewed in Ref. [26]. Main methods include the MMS [27,28],
the Lindstedt–Poincare (LP) method [12,29], and the incremental
harmonic balance (IHB) method [30]. Manktelow et al. [31] used
the MMS to analyze interaction of waves in a monatomic chain
with cubic nonlinearity, showing that the predictable dispersion
behavior broadens design possibilities of tunable metamaterials.
Fronk and Leamy [32] applied a high-order MMS to analyze stabi-
lity and waveform invariance of periodic solutions of both nonlinear
monoatomic and diatomic chains. Jiao and Gonella [33] introduced
a fast spatio-temporal time scale to execute the MMS and capture
the wavenumber shift of a nonlinear monatomic chain under har-
monic boundary excitation.
Compared to the MMS, the LP method is simpler and more widely

used. Wang and Wang [29] used the LP method to analyze active
control effects on nonlinear phononic crystals. Lazarov and Jensen
[11] employed both the LP method and a numerical method to inves-
tigate wave propagation in a one-dimensional chain with an attached
nonlinear local oscillator, finding that the nonlinear behavior can
adjust the position of the stop band. Zhou et al. [34] used the spectro-
spatial analysis and the LP method to examine wave packet propaga-
tion in weakly nonlinear, acoustic metamaterials, demonstrating that
spectro-spatial analysis could capture short-wavelength solitary wave
information that the LP method could not, which highlighted limita-
tions of the LP method. Chakraborty and Mallik [35] used the LP
method to study interaction of two opposing primary waves in semi-
infinite or finite chains, finding that this interaction could generate
secondary waves.
The LP method and the MMS are both perturbation methods,

which can only solve weakly nonlinear and low-dimensional
problems, and whose computation requires much algebra and
resources. Perturbation methods become invalid for strongly non-
linear problems. The IHB method, developed by Lau and Cheung
[36] in 1981, is widely used to solve strongly nonlinear vibration
problems. It is a semi-analytical and semi-numerical method by
combining the Newton–Raphson procedure and the Galerkin aver-
aging method, and offers high accuracy and low computational cost
since it can be implemented by a computer. However, the IHB
method requires suitable initial values, can consume substantial
computational resources when the number of harmonic terms and
dimensions of nonlinear systems are large, and is challenging to
use for obtaining solutions at turning points and jump points. To
address these issues, the IHB method has undergone 40 years of
development [37–42] and has gradually become a mature method.
For wave propagation in discrete, strongly nonlinear, periodic

structures, some researchers have used the harmonic balance
method and the IHB method to analyze wave propagation proper-
ties. Narisetti et al. [43] used the harmonic balance method to
study plane wave propagation in strongly nonlinear periodic
media, finding the amplitude-dependent dispersion behavior and
group velocities. Wang et al. [30] converted the space variable to
a time function, merged the time function with the time variable,
and transformed the nonlinear wave propagation problem to a time-
delay problem, which was solved using the IHB method. Wei et al.
[44] used the IHB method to analyze a granular diatomic lattice
chain model, discussing influences of system parameters on the
band gap property and finding nonreciprocal transmission of the

elastic metamaterial. Song and Zhu [45] used the IHB method to
analyze wave propagation and its active control in a strongly non-
linear infinite mass-in-mass lattice, investigating effects of nonline-
arity, the mass ratio, and different control actions on wave
propagation. In the above literature, the influence of the amplitude
of wave motion on the strength of nonlinearity is not considered and
the amplitude is relatively small. When the amplitude is small and
the nonlinear stiffness is large, the above periodic structures can
actually be weakly nonlinear. While the harmonic balance method
and the IHB method are effective tools for handling strongly non-
linear structures, they may not converge for discrete, strongly non-
linear, periodic structures.
While the IHB method is suitable for analyzing strongly nonlin-

ear vibration problems, wave propagation problems of discrete,
strongly nonlinear, periodic structures differ from vibration prob-
lems, requiring some adjustments to the IHB method. For wave
propagation problems, solutions of the IHB method are found in
this work to be in a two-dimensional hyperplane since most
systems lack harmonic excitation and damping. With the IHB
method, the Jacobian matrix can become singular, and the IHB
method may not converge, especially when the amplitude of
wave motion and the nonlinear stiffness are both large. Addition-
ally, for strongly nonlinear problems, bifurcation phenomena
often occur, making stability analysis crucial. To authors’ knowl-
edge, the previous literature does not analyze stability and bifurca-
tions of strongly nonlinear wave propagation problems.
This work presents an improved form of the IHB method to

address the issue of periodic solutions in a two-dimensional hyper-
plane, and analyzes relationships among the frequency, the ampli-
tude, and system parameters in detail, which is a topic that has
not been thoroughly examined before. Additionally, a novel
method based on the Hill’s method is developed to analyze stability
and bifurcations of periodic wave solutions of a strongly nonlinear
monatomic chain.
The remainder of this paper is organized as follows: the modified

IHB method is described in Sec. 2. Stability analysis of periodic
solutions is shown in Sec. 3. Detailed analyses of frequency
and amplitude curves versus system parameters are described in
Sec. 4. Finally, some conclusions are given in Sec. 5.

2 Periodic Solutions of Wave Propagation in a Strongly
Nonlinear Monatomic Chain by a Modified Incremental
Harmonic Balance Method
The governing equation of the jth particle in a strongly nonlinear

monatomic chain is

müj+ f L(uj−nL , . . . , uj, . . . , uj−nR )+ f NL(uj−nL , . . . , uj, . . . , uj−nR )=0

(1)

where an overdot denotes a derivative with respect to time t, uj is the
displacement of the jth particle, nR and nL are the maximum
numbers of its right- and left-sided particles that influence it, and
f L and f NL denote linear and nonlinear restoring forces, respec-
tively. Because of periodicity of the structure, the number j can
be set to zero. Then uj+i, where i=−nR, . . . , nL, can be rewritten as

ui=u(ωt−μi), i=−nR, − (nR−1), . . . , nL (2)

where ω is the propagation frequency, and μ is the propagation
constant that is the product of the wavelength and the wavenumber.
By introducing the dimensionless time τ=ωt, Eq. (1) can be rewrit-
ten as

ω2mu′′+ f L(u−nL , . . . , u, . . . , u−nR )+ f NL(u−nL , . . . , u, . . . , u−nR )=0

(3)

where a prime donates a derivative with respect to time τ.
A modified incremental harmonic balance method can be used to

obtain a periodic solution of Eq. (3). The first step of the method is
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the increment process. By assuming that the system parameter f0,
which can be some system parameter of the structure such as the
propagation constant, the linear stiffness, or the nonlinear stiffness,
the propagation frequency ω0, and displacements u0 and ui0, where
i = −nL, . . . , nR, are solutions of Eq. (3), neighboring solutions can
be expressed as

f = f0 + Δf
ω = ω0 + Δω
u = u0 + Δu

ui = ui0 + Δui, i = −nL, . . . , −1, 1, . . . , nR

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (4)

whereΔf ,Δω,Δu, andΔui are increments. Substituting Eq. (4) into

Eq. (3) and ignoring high-order increments yield

ω0
2mΔu′′ +

∑nR
i=−nL

∂F
∂ui

Δui = R − 2ω0mu0
′′Δω −

∂F
∂f

Δf (5)

where F = f L + f NL and

R = −(ω0
2mu0

′′ + F(u0
−nL , . . . , u0, . . . , u0−nR )) (6)

is a correction term that vanishes if current solutions are exact.
The second step of the method is the harmonic balance process or

the Galerkin process. Solutions of Eq. (3) and their increments can
be expressed in Fourier series forms

u0 =
∑m

k=1 (ak cos (kτ) + bk sin (kτ)) = CsA

ui0 =
∑m

k=1 (ak cos (k(τ − iμ)) + bk sin (k(τ − iμ))) = Ci
sA, i = −nL, . . . , −1, 1, . . . , nR

Δu =
∑m

k=1 (Δak cos (kτ) + Δbk sin (kτ)) = CsΔA
Δui =

∑m
k=1 (Δak cos (k(τ − iμ)) + Δbk sin (k(τ − iμ))) = Ci

sΔA, − nL, . . . , −1, 1, . . . , nR

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where

Cs = [ cos τ, cos 2τ, . . . , cosmτ, sin τ, sin 2τ, . . . , sinmτ] (8)

Ci
s = [ cos (τ + iμ), cos 2(τ + iμ), . . . , cosm(τ + iμ), sin (τ + iμ),

sin 2(τ + iμ), . . . , sinm(τ + iμ)] (9)

A = [a1, a2, . . . , am, b1, b2, . . . , bm]T (10)

ΔA = [Δa1, Δa2, . . . , Δam, Δb1, Δb2, . . . , Δbm]T (11)

in which the superscript T represents transpose of a matrix or
a vector, and 2m is the number of harmonic terms. Submitting
Eq. (7) into Eq. (1) and applying the Galerkin process to balance
harmonic terms yield∫2π

0
CT

s ω2
0mC

′′
sΔA +

∑nR
i=−nL

∂F
∂ui

Ci
sΔA

( )
dτ

=
∫2π
0
CT

s ( − (ω0
2mu0

′′ + F(u0
−nL , . . . , u0, . . . , u0−nR ))) dτ

−
∫2π
0
CT

s 2ω0mu0
′′Δω +

∂F
∂μ

Δμ
( )

dτ (12)

Rearranging Eq. (12) in a matrix form yields

KAΔA = R − RωΔω − RfΔf (13)

where KA is a square matrix of 2m-dimensions, which is given by

KA =
∫2π
0
CT

s ω2
0mC

′′
s +

∑nR
i=−nL

∂F
∂ui

Ci
s

( )
dτ (14)

and R, Rω, and Rf are vectors of 2m × 1 dimensions, which are
given by

R =
∫2π
0
CT

s ( − (ω0
2mu0

′′ + F(u0
−nL , . . . , u0, . . . , u0−nR ))) dτ (15)

Rω =
∫2π
0
CT

s (2ω0mu0
′′) dτ (16)

Rf =
∫2π
0
CT

s

∂F
∂f

( )
dτ (17)

The number of unknowns A, ω, and f in Eq. (13) is two more
than the number of equations, and f can be prescribed as a
control variable. Equation (13) can be transformed to

KAΔA = R − RωΔω (18)

where the number of unknowns A and ω are one more than the
number of equations. The rank of K = [KA, Rω] is 2m − 1, which
is demonstrated in what follows. When A and ω are solutions of
Eq. (18), one notices that

K
ΔA
Δω

[ ]
= 0 (19)

The matrix K can provide 2m − 1 independent constraints of
unknowns A and ω and the number of degrees-of-freedom of solu-
tions is the number 2m + 1 of unknownsA and ωminus the number
2m − 1 of constraints or the rank 2m − 1 of K, which equals 2.
Hence, solutions of Eq. (18) are in a two-dimensional hyperplane,
as indicated earlier. In order to ensure unique solutions, two
Fourier coefficients ai and bi should be prescribed, e.g., a1 and b1
are assumed to be constant. Equation (18) can be transformed to

KA1ΔA1 = R (20)

where KA1 = [Rω, Ra2 , . . . , Ram , Rb2 , . . . , Rbm ] and ΔA1=
[Δω, Δa2, . . . , Δam, Δb2, . . . , Δbm]T, in which Rai (or Rbi ) is the
corresponding column in KA to ai (or bi). In Eq. (20), since the
number of unknowns of ΔA1 is one less than the number of equa-
tions, ΔA1 can be obtained by the least-square method:

ΔA1 = (KT
A1KA1)

−1KA1R (21)

which successfully handles the solution in a two-dimensional
hyperplane. The solution process starts from guess solutions, and
an iteration process is carried out until the norm of the updated
residue ‖R‖ is less than a permissible error for convergence,
which is 10−9 in this work. The procedure in which the propagation
frequency ω is prescribed as a control variable is similar to the
above procedure. The above methods are referred to as the fre-
quency increment method. For the amplitude increment method
and the are-length increment method, one can refer to Refs. [37,38].
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3 Stability and Bifurcation Analyses of Periodic
Solutions
Stability and bifurcation analyses of periodic solutions of nonlin-

ear wave propagation are challenging tasks. This section provides
an approximate method to analyze stability and bifurcations of peri-
odic solutions for nonlinear wave propagation. According to the
above IHB method, one can obtain periodic solutions of nonlinear
wave propagation. Adding the perturbation ΔA to the solution A,
i.e.,

A = A0 + ΔA (22)

where ΔA is a vector function of the time variable τ, one can sub-
sequently express u and ui as

u = u0 + CsΔA
ui = ui0 + Ci

sΔA, i = −nL, . . . , nR

{
(23)

By noting that u0 satisfies Eq. (1), submitting Eq. (23) into Eq.
(1), linearizing Eq. (1) in terms of ΔA, and ignoring high-order
terms of ΔA yield

ω2
0m(CsΔA′′ + 2C′

sΔA
′ + C′′

sΔA) +
∑nR
i=−nL

∂F
∂ui

Ci
sΔA = 0 (24)

Using the Galerkin process to balance harmonic items yields∫2π
0
CT

s ω2
0m(CsΔA′′ + 2C′

sΔA
′ +C′′

sΔA)+
∑nR
i=−nL

∂F
∂ui

Ci
sΔA

( )
dτ= 0

(25)

Rearranging Eq. (25) in a matrix form yields

K2ΔA′′ +K1ΔA′ +K0ΔA = 0 (26)

where K0, K1, and K0 are matrices of 2m-dimensions, which are
given by

K2 =
∫2π
0
ω2
0C

T
s mCs dτ (27)

K1 =
∫2π
0
2ω2

0C
T
s mCs dτ (28)

K0 =
∫2π
0
CT

s ω2
0mC

′′
s +

∑nR
i=−nL

∂F
∂ui

Ci
s

( )
dτ (29)

Equation (29) can be changed to the first-order form

Y′ =QY (30)

where

Y =
ΔA
ΔA′

[ ]
(31)

Q =
0 I

−K−1
2 K0 −K−1

2 K1

[ ]
(32)

The solution of Eq. (32) is

Y = eQτY0 (33)

where Y0 = ΔAT
0 Δ(A′

0)
T

[ ]T
is an initial value. According to the

Hill’s method, in order to avoid repetition of solutions, eigenvalues
of Q with absolute values of their imaginary parts less than one can
be used to determine stability and bifurcations of a periodic solu-
tion. When real parts of the eigenvalues are less than zero, the solu-
tion is stable. When one or more of real parts of eigenvalues are
larger than zero, the solution is unstable. When one or more of

real parts of eigenvalues are equal to zero and the remaining ones
are less than zero, the solution is critically stable. When the real
part of some of the eigenvalues becomes positive from zero or a
negative value, a bifurcation occurs. It is worth noting that the
current methodology does not apply to a Hopf bifurcation. When
a Hopf bifurcation occurs, the structure produces a quasi-periodic
solution. Since a quasi-periodic solution has two or more incom-
mensurable frequencies, the frequency ω in uj(ωt − μ) cannot be
determined; hence, a quasi-periodic solution does not exist in the
current model. A new methodology needs to be developed if a
quasi-periodic solution exists in a model.

4 Results and Discussion
For simplicity, only the influence of neighboring cells in the

strongly nonlinear monatomic chain is considered, as shown in
Fig. 1. The governing equation of a cell particle is simplified to

mü + k(2u − u1 − u−1) + Γ(u − u1)3 + Γ(u − u−1)3 = 0 (34)

where k and Γ are the linear stiffness and the cubic nonlinear stiff-
ness of a spring between cells, respectively. With the dimensionless
time τ = ωt and the linear natural frequency ω0 =

�����
k/m

√
, Eq. (34)

can be transformed to

ω̃2u′′ + (2u − u1 − u−1) + Γ̃((u − u1)3 + (u − u−1)3) = 0 (35)

where ω̃ = ω/ω0 and Γ̃ = Γ/(mω2
0) are the new frequency and the

new cubic nonlinear stiffness. According to Eqs. (3)–(13), one
can obtain

KAΔA = R − R̃
ω
Δω̃ − RμΔμ − R̃

Γ
ΔΓ̃ (36)

where the number of unknownsA, ω̃, μ, and Γ̃ is three more than the
number of equations. Since ω and damping are not present in
Eq. (34), the solution of Eq. (36) is in a two-dimensional hyperplane
when system parameters μ and Γ̃ are prescribed. One dimension
arises because the phase can take any value when the amplitude
Ar =

��������
a21 + b21

√
corresponding to the frequency ω is prescribed.

The other dimension arises because the amplitude Ar can be any
value and is a function of the frequency ω when the phase is pre-
scribed. In order to eliminate the effect of the phase, some
Fourier coefficient should be prescribed, e.g., b1 is assumed to be
zero. Additionally, either the amplitude Ar or the frequency ω
should be prescribed to ensure a unique solution.
One dimension exists since the frequency ω is not present in

Eq. (34). To demonstrate this, when the amplitude Ar and system
parameters μ and Γ̃ are prescribed, one chooses Fourier coefficients
a1 and b1 as control variables. Equation (36) can be transformed to

Kab1ΔAab1 = R − RA1Δa1 − Rb1Δb1 (37)

where Ka1 = [R̃
ω
, Ra2 , . . . , Ram , Rb2 , . . . , Rbm ] and ΔAa1=

[Δω̃, Δa2, . . . , Δam, Δb2, . . . , Δbm]T. Coefficients a1 and b1 keep
the amplitude Ar constant and the phase ϕ changing, as shown in
Fig. 2(a). The frequency curve versus the phase ϕ is a horizontal
straight line, as shown in Fig. 2(b), indicating that the frequency
remains constant. All the points on the curve are critically stable
and differ only in the phase, demonstrating that the solution of
Eq. (34) is in a one-dimensional hyperplane with respect to the
phase when the frequency ω, the amplitude Ar , and system

Fig. 1 Schematic of the strongly nonlinear monatomic chain
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parameters μ and Γ̃ are prescribed. All the points on the curve have
the same stability. Generally speaking, one considers all the points
as the same solution, but the influence of the phase must be consid-
ered in the solution process of the modified IHB method.
The other dimension exists since damping is not present in

Eq. (35). The amplitude Ar can be any positive value and is a func-
tion of ω̃, and all the solutions are critically stable or unstable.
When system parameters μ and Γ̃ are prescribed, b1 is assumed to
be zero, and ω̃ is chosen as a control variable, Eq. (36) can be trans-
formed to

K̃
ω
ΔÃ

ω
= R − R̃

ω
Δω̃ (38)

where K̃
ω
= [Ra1 , Ra2 , . . . , Ram , Rb2 , . . . , Rbm ] and ΔÃ

ω
=

[Δa1, Δa2, . . . , Δam, Δb2, . . . , Δbm]T. Frequency curves from the
IHB method and the LP method are shown in Fig. 3, where the
amplitude Ar corresponding to the frequency ω is the abscissa
and ω̃ is the ordinate. In Fig. 3(a), the amplitude and the frequency
have a positive correlation, with the bifurcation from the IHB
method occurring at the amplitude Ar = 0.7022. Eigenvalues near
the bifurcation point are shown in Table 1. When the amplitude
Ar is zero, the frequency has a positive value, indicating that
some part of the frequency depends on the amplitude, while the
other part is independent of the amplitude and depends on system
parameters. The area A in Fig. 3(a) is analyzed in detail in
Fig. 3(b), where the square of the amplitude Ar is the abscissa
and ω̃ is the ordinate. A straight line from the IHB method
appears in Fig. 3(b), indicating a linear positive correlation
between the square of the amplitude Ar and ω̃, which can be
expressed as

ω̃ − ω̃0 = k1A
2
r (39)

where ω̃0 is the value of the new frequency when the amplitude Ar

is zero, which is a function of system parameters μ and Γ̃, and k1 is
also a function of system parameters μ and Γ̃. The enlarged figure of
the area B in Fig. 3(a) is shown in Fig. 3(c), where there are two
straight lines, indicating that the amplitude Ar and Γ̃ have a linear
correlation when the amplitude Ar is relatively large, which can
be expressed as

ω̃ − ω̃01 = k2Ar (40)

where ω01 and k2 are functions of system parameters μ and Γ̃. By
comparing results from the IHB method and the LP method, one
finds that when Ar is small, the difference between results from

the IHB method and the LP method is small. As Ar increases, the
difference between results from the IHB method and the LP
method becomes more pronounced. This discrepancy arises
because the LP method is suitable for weak nonlinearity and nonlin-
earity is strong when Ar is large. Details about the LP method can be
referred to Ref. [12]. The correctness of the IHB method and the
incorrectness of the LP method for strongly nonlinear wave propa-
gation are verified in what follows.
Figures 2 and 3 show solution curves, indicating that the solution

is in a two-dimensional hyperplane when system parameters are
prescribed, which means that every point on solution curves has
two change directions. When system parameters are prescribed,
Eq. (36) can be transformed to

KΔAp = R (41)

where K = [KA, R̃ω
] and ΔAp = [ΔA,Δω]. The first six eigenval-

ues of KTK are shown in Table 2 with two of them being approx-
imately zero when the residue R is almost 0. Two eigenvalue
vectors corresponding to two zero eigenvalues are shown in
Table 3, representing two change directions of the solution. The
component corresponding to ω̃ in one eigenvector is zero, indicat-
ing that the corresponding change direction is caused by the
phase, and the component corresponding to ω̃ in the other eigenvec-
tor is not zero, indicating that the corresponding change direction is
caused by the absence of damping.
To analyze the relationship between the amplitude Ar and Γ̃, ω̃

and the propagation constant μ should be prescribed, b1 is
assumed to be zero, and Γ̃ is chosen as a control variable. Equation
(36) can be transformed to

KΓ̃ΔAΓ̃ = R − RΓ̃ΔΓ̃ (42)

where K̃
Γ
= [Rω̃, Ra2 , . . . , Ram , Rb2 , . . . , Rbm ] and

ΔAΓ̃ = [Δω̃, Δa2, . . . , Δam, Δb2, . . . , Δbm]T. Figure 4 shows the
amplitude curve versus Γ̃, where the ordinate is the negative
second power of the amplitude Ar . A straight line starting from
the origin (0, 0) appears in Fig. 4(a), which means that the negative
second power of the amplitudeAr and the nonlinear stiffness Γ̃ has a
direct proportional correlation. The correlation can be expressed as

Γ̃ = k2/A2
r or k2 = A2

r Γ̃ (43)

where k2 is a function of the frequency ω and the propagation cons-
tant μ; in other words, the product of A2

r and the nonlinear stiffness
Γ̃ is constant when the frequency and the propagation constant are

Fig. 2 Solution for wave propagation in the strongly nonlinear monatomic chain with the amplitude Ar = 1 and system param-
eters μ= 1 and Γ̃ = 1: (a) b1 versus a1 and (b) ω̃ versus ϕ
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prescribed. According to Eq. (43), it is evident that the product ofA2
r

and the nonlinear stiffness Γ̃ as a whole influences the frequency. To
verify the influence, the frequency curve of ω̃ versus Γ̃withAr=1 and
that versusA2

r with Γ̃=1 from the IHB method are the same in Fig. 5
when the propagation constant μ is prescribed.WhenA2

r or Γ̃ is small,
the difference between results from the IHB method and the LP
method is small. When Ar or Γ̃ is large, the difference between
results from the IHB method and the LP method becomes more pro-
nounced. Two straight lines starting from the origin (0, 0) appear in
Figs. 4(b) and 4(c), where abscissas are the product of A3

r and Γ̃ and

ordinates are the amplitude Ar2 corresponding to 2ω and the ampli-
tude Ar3 corresponding to 3ω, respectively. This indicates that the
strength of nonlinearity dependsmore on the amplitudeAr than on Γ̃.
To analyze the relationship between the amplitude Ar and the

wave propagation constant μ when Γ̃ and ω̃ are prescribed and b1
is assumed to be zero, Eq. (36) can be transformed to

KμΔAμ = R − RμΔμ (44)

where Kμ = [Ra1 , Ra2 , . . . , Ram , Rb2 , . . . , Rbm ] and ΔAμ=
[Δa1, Δa2, . . . , Δam, Δb2, . . . , Δbm]T. The amplitude curve of Ar

Fig. 3 Frequency curves of ω̃ for wave propagation in the strongly nonlinear monatomic chain with μ= 1 and Γ̃ = 1 from the IHB
method and the LP method: (a) the frequency curve of ω̃ versus Ar, (b) detailed analysis of the area A in (a), and (c) the enlarged
view of the area B in (a)

Table 1 Eigenvalues near the bifurcation point of the solution
for wave propagation in the strongly nonlinear monatomic
chain with system parameters μ= 1 and Γ̃ = 1

Ar 0.7021 0.7022 0.7023 0.7024

λ1 0.0000 0.0000 0.0000 0.0000
λ2 0.0000 0.0000 0.0000 0.0000
λ3 0.0023i 0.000400i 0.002016 0.0028787
λ4 −0.0023i −0.000400i −0.002016 −0.0028787
λ5 0.7623i 0.7622960i 0.7622872i 0.7622785i
λ6 −0.7623i −0.7622960i −0.7622872i −0.7622785i

Table 2 Eigenvalues of KTK for wave propagation in the
strongly nonlinear monatomic chain with system parameters
μ= 1 and Γ̃ = 1

Eigenvalue value

λ1 0.0000
λ2 0.0000
λ3 0.0367
λ4 1.3100
λ5 12.8924
λ6 34.6309
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versus the propagation constant μ is shown in Fig. 6,
where the amplitude decreases as the propagation constant μ
increases, reaching zero at μ = 1.42. It is noteworthy that Ar

approaches infinity as μ approaches zero. The bifurcation
occurs at μ = 1.1, with eigenvalues near the bifurcation point
shown in Table 4.
To analyze the relationship between the frequency ω and the

propagation constant μ when Γ̃ and the amplitude Ar are prescribed,

Eq. (36) can be transformed to

KμωΔAμω = R − RμΔμ (45)

where Kμω = [Rω̃, Ra2 , . . . , Ram , Rb2 , . . . , Rbm ] and ΔAμω=
[Δω̃, Δa2, . . . , Δam, Δb2, . . . , Δbm]T. Due to F( − μ) = F(μ) and
F(μ + 2π) = F(μ), the frequency curve of ω̃ versus μ repeats with
a period of 2π and is symmetric about μ = 0, ± π, ± 2π, . . .
Thus, μ can be chosen to range from 0 to π. The frequency curve
of ω̃ versus the propagation constant μ for strongly nonlinear
wave propagation and that for linear wave propagation is shown
in Fig. 7. In the frequency curve for strongly nonlinear wave prop-
agation, the amplitude Ar is set to one and the nonlinear stiffness Γ̃
is also set to one, which are relatively large; this can address the
influence of the amplitude Ar on the strength of nonlinearity,
which is not considered in the previous literature [43,30,45]. Fre-
quency curves for strongly nonlinear wave propagation from the
IHB method and the LP method are shown to be significantly dif-
ferent from that for linear wave propagation, and the difference
between frequency curves from the IHB method and the LP
method is large. In Fig. 7, the frequency ω̃ increases with the prop-
agation constant μ. The bifurcation from the IHB method occurs at
μ = 1.2768, with eigenvalues near the bifurcation point shown in
Table 5.

Table 3 Change directions of the solution for wave propagation
in the strongly nonlinear monatomic chain with system
parameters μ= 1 and Γ̃= 1

Variable Direction 1 Direction 2

a1 −0.81875 0.00000
a2 0.00000 0.00000
a3 0.14499 0.00000
b1 0.00000 0.97301
b2 0.00000 0.00000
b3 0.00000 −0.22997
ω̃ −0.55543 0.00000

Fig. 4 Amplitude curves for wave propagation in the strongly nonlinear monatomic chain with μ= 1 and ω̃= 1: (a) the curve of
the negative second power of the amplitude Ar versus Γ̃ , (b) the curve of the amplitude Ar2 versus Γ̃A3

r , and (c) the curve of the
amplitude Ar3 versus Γ̃A3

r
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According to Figs. 3 and 6, there exists a region where all the
amplitudes are zero, which is called an attenuation zone; it is
depicted in Fig. 8, where the abscissa is the propagation constant
μ, the ordinate is ω̃, and the shaded region denotes the attenuation
zone. Noting that the product of A2

r and Γ̃ as a whole influences
the frequency ω; the product is zero when Ar is zero, which

implies that Γ̃ has no influence on the frequency when Ar = 0. Sub-
stituting u = a1 cos τ into the linear equation

ω̃2u′′ + (2u − u1 − u−1) = 0 (46)

yields

ω̃0 = ω̃ =
��������������
2 − 2 cos (μ)

√
(47)

Fig. 5 Frequency curves of ω̃ for wave propagation in the
strongly nonlinear monatomic chain with μ= 1 versus Γ̃ with Ar =
1 and that versus A2

r with Γ̃ = 1 from the IHB method and the LP
method

Fig. 6 Amplitude curve of Ar versus μ for wave propagation in
the strongly nonlinear monatomic chain with Γ̃ = 1 and ω̃= 1

Table 4 Eigenvalues near the bifurcation point of the solution
for wave propagation in the strongly nonlinear monatomic
chain with system parameters ω̃= 1 and μ= 1

μ 1.0994 1.0999 1.1003 1.1007

λ1 0.01027 0.00708 0.00235i 0.00785i
λ2 −0.01027 −0.00708 −0.00235 −0.00785
λ3 0.00000 0.00000 0.00000 0.00000
λ4 0.00000 0.00000 0.00000 0.00000
λ5 0.92207i 0.92283i 0.92359i 0.92436i
λ6 −0.92207i −0.92283i −0.92359i −0.92436i

Fig. 7 Frequency curves of ω̃ versus μ for wave propagation in
the strongly nonlinear monatomic chain with Γ̃ = 1 and Ar = 1
and in the linear monatomic chain with Ar = 1

Table 5 Eigenvalues near the bifurcation point of the solution
for wave propagation in the strongly nonlinear monatomic
chain with the amplitude Ar = 1 and Γ̃ = 1

μ 1.2766 1.2767 1.2768 1.2769

λ1 0.00337 0.002250 0.001117i 0.002750i
λ2 −0.00337 −0.002250 −0.001117i −0.002750i
λ3 0.00000 0.00000 0.00000 0.00000
λ4 0.00000 0.00000 0.00000 0.00000
λ5 1.246891i 1.247086i 1.247281i 1.247476i
λ6 −1.246891i −1.247086i −1.247281i −1.247476i

Fig. 8 Attenuation zone of wave propagation in the strongly
nonlinear monatomic chain with Γ̃ = 1
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which serves as the dividing curve of the attenuation zone. The
attenuation zone for the strongly nonlinear monatomic chain with
Γ̃ = 1 is under the dividing curve and in excellent agreement with
the attenuation zone from the modified IHB method. According
to the amplitude-dependent property of wave propagation in the
strongly nonlinear monatomic chain in Fig. 3, any point above
the attenuation zone is the solution of Eq. (34).
According to Eqs. (39), (42), and (47), when Ar is relatively

small, one obtains

ω̃ =
��������������
2 − 2 cos (μ)

√
+ k2Γ̃A2

r (48)

where k2 is a function of the propagation constant μ, which is con-
sistent with the result in Ref. [12] from a perturbation method.
When Ar is relatively large, one obtains

ω̃ = ω̃01 + k3
��̃
Γ

√
Ar (49)

where k3 and ω̃01 are functions of μ, and Γ̃ > 0.
When nonlinearity is weak, the difference between results from

both methods is small and the difference is large when nonlinearity

is strong. To verify whether results from the IHBmethod and the LP
method are correct or not, solutions from both methods are substi-
tuted into Eq. (6) to calculate their residues. Figure 9 shows that the
residue from the LP method is significantly larger than that from the
IHB method. This indicates that the LP method results in large
errors and incorrect results for wave propagation in the strongly
nonlinear monatomic chain. In contrast, the IHB method is appro-
priate for this scenario, yielding minimal errors and correct
results. Hence, results from the LP method cannot be used as
basis of analysis for wave propagation in the strongly nonlinear
monatomic chain. The time history of u versus the dimensionless
τ is shown in Fig. 10 and the periodic wave pattern of a cell in
the strongly nonlinear monatomic chain is shown in Fig. 11,
which describe wave propagation properties.

5 Conclusion
The modified IHB method proves effective for analyzing wave

propagation in discrete, strongly nonlinear, periodic structures. A
novel method based on the Hill’s method is developed to analyze sta-
bility and bifurcations of periodic wave solutions. Detailed analysis
of wave propagation in a strongly nonlinear monatomic chain
reveals that the solution of the model is in a two-dimensional hyper-
plane due to the absence of harmonic excitation and damping in it,
and the influence of the amplitude of wave motion on the strength
of nonlinearity is considered for the strongly nonlinear monatomic
chain. The product of the square of the amplitude Ar and Γ̃ as a
whole influences the frequency. It remains constant when the fre-
quency and the propagation constant are prescribed. The product of
the cubic of the amplitude Ar and Γ̃ influences coefficients Ar2 and
Ar3 of high-order harmonic terms, and the strength of nonlinearity
of a nonlinear wave propagation problem is reflected more by the
amplitude Ar than by Γ̃. Attenuation zones of nonlinear wave prop-
agation are successfully identified using an analysis of results from
the modified IHB method and directly using the modified IHB
method, demonstrating excellent agreement of results from the two
methods. Additionally, two formulae for the frequency are derived
for weakly and strongly nonlinear monatomic chains using a fitting
method, and that for the weakly nonlinear monatomic chain is consis-
tent with the previous finding from a perturbation method.
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Fig. 9 Comparison of residues of solutions from the IHB
method and the LP method for wave propagation in the strongly
nonlinear monatomic chain with Γ̃ = 1, Ar = 1, and μ= 2

Fig. 10 Periodic response of a cell versus the dimensionless
time τ in the strongly nonlinear monatomic chain with Γ̃ = 1,
Ar = 1, and μ= 0.2645

Fig. 11 Periodic wave pattern of a cell in the strongly nonlinear
monatomic chain with Γ̃ = 1, Ar = 1, and μ= 0.2645
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