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1 | INTRODUCTION

Wildfires have increased in frequency and size across the United States (US) (Dennison et al., 2014; Goss et al., 2020; Iglesias
et al., 2022). In the last few years alone, the world has seen an unprecedented speed, intensity, and breadth in wildfires (Duane
et al., 2021), with the likelihood of large wildfires expected to increase over the long term (Stavros et al., 2014). As regions
continue to develop risk mitigation, land management, and resource allocation policies, it is imperative to quantitatively assess
the changing wildfire risk factors and be able to predict future extreme wildfire behavior at a national (and global) level (Goss
et al., 2020). To address this problem, we build a joint model for wildfire counts and burned areas in the contiguous United
States (CONUS), conditional on meteorological and demographic predictors. We model the entire distribution of burned areas
to simultaneously capture extreme and moderate events, leveraging extreme value theory to focus on the right tail, since extreme

burn events are the most critical for risk assessment. Our model borrows strength spatially using the concept of ecoregions,
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which are geographic areas with common topographic features and vegetation types. We link the sub-models for wildfire counts
and burned areas with shared random effects.

The proportion of total wildfire burned area in the Western US that can be attributed to the top 1% of the largest wildfires has
been shown to range between 80-96% (Strauss et al., 1989), and as large fires increase in frequency across parts of the world,
so too will the large proportion of burned area that they cause (Barbero et al., 2014). Climate models have demonstrated that
climate change has and will continue to worsen wildfire weather and lengthen the wildfire season and is anticipated to cause
a large increase in the number of expected wildfires through the end of the century (Liu et al., 2010; Martinuzzi et al., 2019;
Pimont et al., 2022; Jones et al., 2022). With temperature extremes becoming more common due to climate change, there is a
higher risk of seeing extreme wildfire seasons (Parente et al., 2018), particularly like those seen with the Australian wildfires
of 2019-2020 (Van Oldenborgh et al., 2021).

When considering the effects of climate change, climate scientists have stressed the importance of studying and understanding
the relationships among climate, climate extremes, humans, and wildfire activity to appropriately predict wildfire activity and
protect against fires’ risks (Jones et al., 2022). Early studies suggest that human factors have led to more than half of the observed
increase in wildfire weather and danger (Abatzoglou & Williams, 2016; Williams et al., 2019; Barbero et al., 2020), suggesting
that anthroprogenic covariates should be incorporated in wildfire modeling. And while humans have impacted climate change,
their presence has also modified wildfire ignition patterns and landscapes so that, when coupled with extreme weather conditions
in areas with wildfire fuel sources, there is an increased probability of wildfire ignitions (Pausas & Keeley, 2021; Hawbaker et
al., 2013).

Like some previous studies assessing wildfire risk, we use ecoregions to pool information across space according to charac-
teristics that are directly relevant to wildfire behavior (unlike, e.g. political boundaries). Ecoregions provide a convenient way
to incorporate differences in covariates along with differences in soil, vegetation, and land-use (Hawbaker et al., 2013; Littell
et al., 2009). The feedback process between wildfires and the vegetation they influence further demonstrates the need to look
at wildfire patterns by ecoregions (Malamud et al., 2005).

Given this multifaceted nature of the occurrence and burned area of wildfires, we endeavor to tackle this problem by in-
corporating climate, anthropogenic, and wildfire risk covariates in a joint model that captures zero-inflated counts along with
moderate and extreme sized burned areas.

Many previous works have studied the distribution of wildfires. Joseph et al. (2019) also use ecoregions as their areal units,
independently modeling wildfire counts using zero-inflated models and burned areas using a variety of response distributions.
However, while their interpretation focuses on extremes, they eschew established best practices by fitting a generalized Pareto
distribution to the entire burn size dataset, rather than just the tail, and conversely draw inferences about the tail based on dis-

tributions that are not suitable for extremes. Opitz et al. (2020) incorporate a log-Gaussian Cox process model into a Bayesian
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framework to regress wildfires on a set of land use and weather covariates using Laplace approximations. Pimont et al. (2021)
develop a two-component flexible Bayesian model called ‘firelihood’ to fit the full distribution of wildfire burned areas and
wildfire counts. Their approach requires categorizing the wildfire burned areas into four size categories through logistic regres-
sion, then fitting Pareto distributions to each. Drawbacks to this approach are that the piecewise specification is discontinuous,
requires many parameters, and does not allow sharing of covariate and wildfire information across model pieces. Castel-Clavera
et al. (2022) extend ‘firelihood’ by adding a spatio-temporal component. Becker et al. (2022) use a joint model to look at the
counts and sizes of wildfires in a Canadian province, restricting their study period to the months of April-November across four
decades, and linking count and burned area sub-models using a shared random effect similar to our model. Koh et al. (2023)
builds upon Opitz et al. (2020) and Pimont et al. (2021) by developing a two-component mixture model for wildfire sizes that
allows sharing of information between the moderate and extreme components. Their approach requires selecting a threshold se-
lection prior to model fitting. Cisneros et al. (2023) develop a complex four-stage approach using stochastic partial differential
equations to model wildfires in the US, which does not allow for sharing of information across stages. Also somewhat related is
Richards & Huser (2022), who propose a neural-network model with extreme quantile regression to examine burned fractions
of spatial grid boxes in the CONUS. However, their model focuses only on predicting extreme wildfires and does not capture
the full distribution of wildfires.

Our approach is novel in three main respects. First, it models the full distribution of wildfire burned areas with a continuous
distribution that leverages extreme value theory, considering moderate wildfires while emphasizing inference on the tails, with-
out requiring threshold selection. These models are taken from the literature but, to our knowledge, have not been previously
applied in a hierarchical model for wildfire data. Second, we share information across space using an easily interpretable random
effect that partitions the spatial domain by ecological features rather than the more typical political boundaries. This random
effects structure reflects the geographical hierarchical nesting of smaller ecoregions within larger ecoregions within even larger
ecoregions. Finally, we demonstrate the utility of two fire weather indices, which together capture somewhat orthogonal aspects

of fire risk, as effective substitutes for more complicated climate and weather covariates for predicting wildfire burned areas.

2 | OVERVIEW OF UNIVARIATE EXTREME VALUE THEORY

We present a brief overview of threshold models in univariate extreme value theory (EVT) (Coles, 2001). In the context of
wildfire burned area, denoted as the random variable Y below, the asymptotic characterization of the threshold exceedance

model states that the amount of area burned, given that it exceeds a high threshold «, is well-approximated by generalized Pareto
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distribution (GPD), as the threshold u gets large. That is,

P(Y>ylY>u)~ Hye(y),
where H, ¢ is the survival function of the GPD and is defined as

1+ E6-u)o) ™, €40
Hoely) = )

exp(~(y - u)/o), §£=0

where a; = max(a,0), £ € R is the shape parameter which controls the thickness of the right tail, and o > 0 is the scale
parameter. The GPD has support {y > u : 1 + &(x—u)/o > 0}, so that if £ < 0, the upper tail of the distribution is bounded. If
& = 0, the GPD reduces to an exponential distribution, which has finite moments. If £ > 0, the distribution has a heavy upper
tail. Empirically, the distribution of wildfire burned area over the CONUS appears to have a heavy tail (see Figure 1), which is
consistent with observations in the literature that a small number of fires cause most of the damage (e.g. Strauss et al., 1989).

Therefore, we limit the scope of this research to the latter two cases of the GPD, where £ > 0.
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FIGURE 1 Map of maximum likelihood estimates (MLE) of £ over the contiguous US, split by level 2 (L2) ecoregion.
A univariate GPD was fit to every L2 ecoregion that had 20 or more burns at or above its respective 90th quantile. Shades
correspond to the estimated shape (§) parameter. Higher values of & correspond to heavier tails.

In practice, implementation of the GPD model requires choosing a threshold u, subsequently fitting the GPD model only to
those values in excess of u. In a standard extreme value analysis (EVA), where interest lies solely in the most extreme events,
discarding observations below u is desirable; this “lets the tail speak for itself” and avoids bias that would occur by including
moderate and small values in the fitting procedure. In the current analysis, however, moderate and small values are important,

even if the extreme values are of primary interest—wildfire burned areas that would fall in the bulk of a distribution still cause
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damage, socially and ecologically. We therefore seek a model that can accurately model the full distribution of fire sizes, with

particular care taken to capture key features of the tail.

2.1 | Recent extensions of univariate EVT

Several recent works have proposed models for continuous random variables that preserve the properties of the GPD in the tail,
while also modeling the full distribution. One approach is to “stitch” one or more non-extreme distributions to a GPD tail. A
subset of these methods require threshold selection prior to model fitting (Castro-Camilo et al., 2019; MacDonald et al., 2011),
while others allow for the threshold to be treated as an unknown parameter within the model (Frigessi et al., 2002; Behrens et
al., 2004; Tancredi et al., 2006; Carreau & Bengio, 2009; do Nascimento et al., 2012). Another series of approaches models
the bulk of the distribution while achieving GPD-like tails through the composition of cumulative distribution functions (cdfs),
an idea introduced by Papastathopoulos & Tawn (2013). One flavor of this general strategy involves the composition of only
two cdfs and is intended to model positive data where the right tail is of primary interest (Naveau et al., 2016; Gamet & Jalbert,
2022; Tencaliec et al., 2020). A more flexible version allows for the composition of more than two cdfs and can accommodate
distributions with more general support and with GPD-like behavior in both the left and right tails, permitting detailed inference
on both the very large and very small values (Stein, 2021b,a; Krock et al., 2022). Since our wildfire size data is strictly positive,
and primary interest lies in the right tail, we use extended generalized Pareto distribution (EGPD) models from Naveau et al.
(2016).

The EGPD (Papastathopoulos & Tawn, 2013; Naveau et al., 2016; Gamet & Jalbert, 2022) is motivated by the probability

integral transform and takes the general form

F(y) = G{Ho ()}, @

where H,, ¢(-) is the cdf corresponding to the survival function defined in (1), and G(-) is a continuous cdf with support on
[0, 1], which Naveau et al. (2016) call a carrier function. Naveau et al. (2016) propose a set of constraints on G to preserve the
upper tail behavior of H,, ¢ and give the distribution power law behavior near 0.

These conditions result in a Pareto-like right tail and ensure that the lower portion of the distribution is driven by the carrier

function G(+), which can depend on parameters that are estimated from the data. Naveau et al. (2016) propose four parametric
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families of carrier functions that satisfy the specified constraints:

Gi(v) =Vv", k>0
Ga(v) = pv™ + (1 -p)V™, k1,k2 >0, p € [0,1]
Gs(v) =1-05{(1-v)°}, 6> 0

G4(v) = [Gs(v)]"2, Kk > 0,

where Qs in the definition of G3(v) is a Beta cdf, with & = 1/6 and § = 2. In our model, we follow de Carvalho et al. (2022)

and build upon the EGPD by adding a regression link between covariates and the parameters of the carrier functions.

3 | TUNITED STATES WILDFIRE DATA

3.1 | Wildfire counts and burned area data

We use wildfire data from the Monitory Trends in Burn Severity (MTBS) program from 1990-2020 (Eidenshink et al., 2007),
yielding 7=372 monthly timesteps. The MTBS provides a robust dataset including wildfire discovery date, wildfire occurrence
location, and final burned area of the wildfire, across the entire CONUS. Fire occurrence location is determined by the geo-
graphic centroid of the delineated burned area boundary for each wildfire. Fires are included in the MTBS dataset if they are
over 1,000 acres and 500 acres in the Western and Eastern United States, respectively. For consistency, we include only fires
that are larger than 1,000 acres in our model. This necessitates truncated versions of EGPDs, which are easily accommodated
in our model (see §4.3). To allow for better model mixing, we scale down the burned areas by a factor of 1,000, working in

units of thousands of acres.

3.2 | Meteorological and anthroprogenic data

We include four meteorological covariates and one anthropogenic covariate in our model, broadly following the approach of
Joseph et al. (2019). We use the surface meteorological data aggregated by gridMET (Abatzoglou, 2013), which is provided in
daily timesteps at 4km resolution. The gridMET dataset contains daily relative minimum humidity, maximum air temperature,
wind velocity, and precipitation accumulation, which we then aggregate to monthly timesteps, by taking the monthly mean
for the first three variables and the monthly sum for precipitation. We then further aggregate precipitation on an annual scale

to provide a measure of the previous year’s accumulated precipitation, giving us five total meteorological variables. We use
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housing density estimates captured from the 1990, 2000, 2010, and 2020 census surveys as a proxy for anthroprogenic drivers,

provided by the SILVIS lab at the block group level (Mockrin et al., 2023).

3.3 | Regional data

The Environmental Protection Agency (EPA) provides a hierarchical framework of ecological regions (ecoregions) in North
America, based on characteristics like vegetation, soil type, and land use (Omernik & Griffith, 2014). While the EPA provides
four ecoregion levels (level one being the coarsest, level four the finest), we only use the first three levels due to computational
limitations and data sparsity at the finest level. Within the contiguous US, there are S=84 total level three (L.3) ecoregions, 20

L2, and 10 L1 (see Figure 2).

A B "C D

A 1 pr+p2 p1 O

s — B |pitp 1 p1 0
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C P1 pl 1 0

D 0 0 0 1

FIGURE 2 Hierarchical nesting of ecoregions in the contiguous United States. The EPA’s L3 ecoregions are delineated by
the thin light grey lines; L2 by the different colors; and L1 by the thick dark grey lines. A small section is magnified to illustrate
the structure of the correlation matrix in the prior, as detailed in §4.1.
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3.4 | Fireindices

There is a tradition in wildfire research to combine several (usually weather-related) variables into a single index that is intended
to summarize wildfire risk (e.g. Fosberg, 1978). We were curious whether a univariate wildfire index had similar explanatory
power in a counts model or an EGPD burned area model, relative to the combination of several weather variables. We therefore
experimented with replacing the weather covariates with some combination of two indices, which are designed to capture
different aspects of wildfire risk. Fire weather and fuel indices, like the Energy Release Component (ERC, Bradshaw et al.,
1984) and Canadian Forest Fire Weather Index (FWI, Turner & Lawson, 1978) have shown conflicting results in their ability to
predict extreme wildfires. Fire indices may capture the relationships and interactions between meteorological variables better
than the variables alone and therefore be better able to predict their subsequent effects on wildfire activity (H. K. Preisler et al.,
2008; Abatzoglou & Kolden, 2013). Abatzoglou & Kolden (2013) demonstrated that, when compared to individual weather
components like temperature and precipitation, ERC had a more direct link to fuel flammability and conditions habitable to
fires burning large areas. This suggests that ERC may provide more valuable information than the four weather covariates we
initially fit our model on, particularly regarding burned area size. However, some wildfire indices (FWI specifically) consistently
under-represent the occurrence of large wildfires and their associated burned areas (Pimont et al., 2021).

ERC s a calculated fuel moisture index from the National Fire Danger Rating System, which considers the cumulative drying
effect of temperature, precipitation, humidity, and solar radiation as an overall measure of wildfire fuel (Abatzoglou & Kolden,
2013). The ERC is a relative index, meaning that an ERC value of 30 represents a potential heat release that is twice that of an
ERC value of 15. We use the daily ERC data which is derived by gridMET under a conifer forest model (Abatzoglou, 2013).
We then aggregate these data to a monthly timestep.

FW1is a wildfire danger index that incorporates the effects of fuel moisture and weather conditions into the projected behavior
of a wildfire. This index is often used as the main covariate in wildfire models (see Abatzoglou & Williams, 2016; Castel-
Clavera et al., 2022; Pimont et al., 2021). We use the R package cffdrs (Wang et al., 2017) to calculate the FWI on a daily

timestep using the meteorological raster data described in §3.2. We then aggregate these data to a monthly timestep.

4 | MODEL
41 | Ecoregion nesting

In building our models for wildfire counts and burned areas, we leverage the concept of ecoregions to borrow strength across
space. Rather than using generic spatially autoregressive areal models, we observe that drivers of spatial correlation in wildfire

behavior might include things like common vegetation types, common topographical features, and so forth. Furthermore, the
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ecoregions defined by EPA have an exploitable hierarchical structure, where the coarsest division is further divided into suc-
cessively finer partitions, according to levels of ecological similarity. To account for and incorporate the hierarchical nature of
the three levels of ecoregions, we build a 84 x 84 correlation matrix Y., with each row and column corresponding to an L3
ecoregion. This matrix contains ones along the main diagonal (each L3 ecoregion is perfectly correlated with itself) and values
between 0 and 1 elsewhere. Any two L3 ecoregions {i,j} that are in the same L2 ecoregion will have the correlation coeffi-
cient ps. This same pair of L3 ecoregions will also be in the same L1 ecoregion, therefore adding a correlation coefficient p;,
for a total correlation of p; + p2 assigned to this pair of L3 ecoregions. Any two L3 ecoregions {i,;} that are in the same L1,
but not the same L2 ecoregion, will have the correlation coefficient p;. L3 ecoregion pairs that do not share any nesting will
have a value of 0. See Figure 2 for an illustration of a subset of this matrix. We use this spatial nested structure throughout our

model-building process.

42 | Wildfire counts

We model wildfire counts as a zero-inflated (ZI) negative binomial (NB) random variables. This model defines the following

likelihood for 7, the number of wildfires in spatial unit s at time ¢, as

75y + (L =75,) X NB(0Ol Ay, 05) ifng, =0

Mgt | )\v,h Ts.ts 5s ~

(1 =m5s) X NB(ngl Mgy, O5) if ng; > 0,

where s = 1, ..., Sis the spatial unit (L3 ecoregion) and # = 1, . . ., T'is the monthly timestep. Different levels of complexity are
possible within this model. We tested versions of the model (see §5.1) where different parameters depended on covariates or not,
where parameters varied spatially or not, and so forth. In the most general version, the rate parameter )\, and the probability of
extra zeroes 7, depend on spatially and temporally varying covariates, while the overdispersion parameter d, varies spatially
according to the structured spatial prior described in §4.1. We also tried fixing 6, = 0 for all s = 1,...,S, which yields a
zero-inflated Poisson model. To ensure that d;, A, > 0 and 7, € (0, 1), we modeled these parameters with log and logit links,

respectively, as

log(As) = XN + &™) + g,
logit(m,) = X,8™ + &(™

log(d) ~ Normal(0, ),

corr
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where A; and 7 are vectors of length 7 for L3 ecoregion s, § is a vector of length S, and a; is a known offset equal to the area
of the L3 ecoregion s. X, is a T X (p + 1) design matrix, 8™ and 8™ are vectors of length (p + 1) with the priors discussed

in §4.5, and 29

core 18 a structured correlation matrix described in §4.1. To account for residual structured variability, we include

the spatio-temporal random effects ®™ and ™, which are (T x S) matrices, each composed of a spatial intrinsic conditional

autoregressive component and a temporal autoregressive component, as

o) ~ N0, [+ (D-W)| )
3)
Mol ~ NNV, [r(D- W)™,

and analogously for &™) where d),(A) is a row vector of length S. D is a fixed (S x S) diagonal matrix, with D;; equal to the
number of neighbors that region i has. The matrix W is a fixed (S x S) adjacency matrix, where W;; = 1 if regions i and j are

neighbors and 0 otherwise. The parameters 1 and 7 are given weakly informative priors

n™N ~ Beta(2,8)

7N~ Exp(1). (4)

43 | Wildfire burned area

We model the extreme and non-extreme wildfire burned areas simultaneously using the family of EGPD models defined in §2.1.

Taking, for example, the carrier function G (v) = v*, yields the cdf F; (y) and density fi (y)

Fi(y) = (1= [L+ €)1

fily) = g[l + 5(%)}‘(1’“”{1 ~[1+ 5(%)]-1’5}“-1 5)

Since all of the fires in our dataset are greater than 1,000 acres, we construct a truncated density from (5), as

t-EGPD; (x) := % (6)

where we normalize by 1 — F;(1) because x has units of thousands of acres. Equation (6) defines the following likelihood for

¥s...» the burned area of the ith wildfire event in spatial unit s at timestep ¢, where s and ¢ are defined as in §4.2:

Ysiti l Ksitis Ositis §S ~ t-EGPD, (yS,Ji I Ksitis Ositio Es)
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In most cases, i = 1, except when more than one wildfire occurs in the same spatial unit s in the same timestep ¢, therefore
leading to multiple burned areas with otherwise identical s and ¢. Again, several levels of complexity are possible by allowing
the EGPD parameters to depend on spatially and temporally varying covariates, to be spatially varying, to be constant across
space, etc. For this example of the carrier function G (-), the most general model we considered allows &, o, and £ to depend on
spatially and temporally varying covariates, according to the same nested spatial prior described in §4.1. To ensure that all three

parameters remained positive as required, we again use a log link, analogous to the links used in the count model (see §4.2), as

log(k,) = X,8) + @)
log(as) = X8\ + &)

log(¢,) = X8 + &©

The priors on &) &) and ®© are analogous to (3). The priors on the hyperparameters (%), (@) 5(€) 7(5) 7(@) and 7(&)
are analogous to those in (4).

While every timepoint and spatial unit in the count model contains a value in the dataset (either with n = 0 or n > 0), this
is not the case for the burned area model. To account for this, we treat any spatial unit and timepoint pair that does not have a

wildfire as “missing” and model these missing data as latent parameters within the overall Bayesian model.

44 |  Joint model

To share information between the wildfire counts and burned area sub-models, we link the two using a shared random effect.
Coupling the two models has the potential to increase performance, but it moreover has interesting interpretive potential. For
example, one conjecture that could be investigated using such a coupled model is that a region experiencing few fires may
be more likely to experience very large fires. Similar coupled count and magnitude models for marked point processes have
appeared recently (see Koh et al., 2023; Becker et al., 2022; Yadav et al., 2023).

We include a temporally varying shared random effect 6, a vector of length 7, in the regression components of the model

parameters as

log(A,) = XS,B&\) + <I’§)‘) +a,+0

log(k,) = X8 + &) 1 ~,0. (7

We include a spatially-varying link parameter -, to spatially modulate the relationship between the rate of counts and the

distribution of wildfire sizes. To accommodate temporal correlation, the shared parameter @ has an AR(1) prior, while the



12 | Lawler and Shaby

modulating parameter ~ is modeled as a spatial random effect, as

0,10, ~ NP0, €?)

v ~ N(0, ()

corr ) 4

along with the weakly informative hyperprior € ~ t4(0, 1).

45 | Nonlinear effects

To capture nonlinear relationships between our covariates and wildfire counts and burned areas across the large spatial domain
(Brillinger et al., 2003; H. Preisler et al., 2004; H. K. Preisler & Westerling, 2007; Woolford et al., 2011, 2021), we introduce
cubic B-splines with five basis functions for each of our covariates. To smooth the relationship among the basis functions within
each covariate, we included a Gaussian auto-regressive of order 1 (AR(1)) prior for each coefficient vector (Lang & Brezger,
2004). This prior induces a penalty that is the Bayesian analogue of the classical penalized-spline approach of Eilers & Marx
(1996).

In addition, it is advantageous to borrow strength across space for the covariate effects, which we accomplish using the
spatial nesting scheme described in §4.1. This results in a Normal prior for each parameter vector 3 in the models defined
above, centered around zero, with a covariance matrix constructed as the Kronecker product of an AR(1) covariance matrix
and a nested spatial correlation matrix, as

BN ~ N0, 50 © =(0): v

with analogous specifications for 3™, 3\, 8(?) and 8&.

4.6 | Training and validation

We first assessed multiple candidate models for both the wildfire counts and wildfire burned areas, separately, on a dataset that
included five climate covariates and housing density, to determine the best model for each component. Then, we determined
the best collection of covariates (either the meteorological covariates or one or both of the wildfire indices) for each model
component. Each model was trained on 21 years of data (1995-2015, inclusive) and tested on 10 years of data (1990-1994,
2016-2020), yielding 252 monthly timesteps in the training dataset and 120 monthly timesteps in the test dataset.

We estimate all parameters through Monte Carlo Markov Chain (MCMC) sampling in Stan, using the default NUTS sampler
(Stan Development Team, 2023; Gabry et al., 2023). We run three chains for each model, with 2000 iterations per chain (1000

for warm-up, 1000 for sampling).
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5 | RESULTS

51 | Model comparison

We developed multiple candidate models for both the wildfire counts and the wildfire burned area models. We then compared
the various models on the test dataset using log-likelihood scores (log scores) for the counts and the burned areas, along with
threshold-weighted continuous ranked probability scores (twCRPS) for the burned area models. We first give a brief description
of these scores, and then we present the scores for the various candidate models.

Log scores are proper scoring rules based on the model’s predictive density (Gneiting & Raftery, 2007). We calculate the log
score at every MCMC iteration for each observation in the test dataset, and then sum all of the scores within each iteration. We
then compare the median log scores across the iterations among each model. The CRPS (Matheson & Winkler, 1976) is another
proper scoring rule, defined in terms of the probabilistic forecast (as opposed to the predictive density), and is sensitive to the
distance between predictions and the true realizations. With F(z) the predictive cdf associated with the probabilistic forecast

and y the realization, the CRPS is defined as:

o0

CRPS(F.y) = [ (F@)- 122 ) de ©)

{oe]

Gneiting & Ranjan (2011) propose the twCRPS, which incorporates a weighting function to emphasize a specific region of
interest while still being a proper scoring rule. With the same notation as (9) and weighting function w(z), the twCRPS is

defined as:

o0
{wCRPS(F. y) = / (F2) - 1{z > y})?w(z) dz. (10)
Since we are most interested in accurately capturing the upper tails of wildfire burned areas while still maintaining good
predictive accuracy in the bulk of the burned area distribution, we use a Normal cdf as our weight function, with a mean of
21 thousand acres and standard deviation of nine thousand acres. This weight function is centered around the 90th quantile of
the burned area sizes, thereby emphasizing fires above the 90th quantile while still giving some weight to fires below the 90th

quantile. We denote this weight function as ®21 9(z). We use Monte Carlo approximation to evaluate the twCRPS through the

discretization

twCRPS(F,y) ~ w Z@glg z)( -1{z; > y}) , where
(11)
max{y}—mln{y}

z; = min{y} + i 7
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(Gneiting & Ranjan, 2011). We generate /=5,000 equally spaced points z; at which we evaluate the predictive cdf, F(z;), corre-
sponding to the predictive density in (6). We perform this approximation for each burned area, y, in the test dataset for every
MCMC iteration. The score for each iteration is the mean of the scores calculated for each y. We then compare the means across
iterations for each model, with values closer to zero indicating better performance.

Ideally, we would compare all joint combinations of the counts and burned area sub-models in a full factorial design. Un-
fortunately, doing so would be computationally prohibitive due to the large number of potential models under consideration.
Therefore, we used a multi-stage approach to select the best-performing sub-models before creating the joint model. We devel-
oped six candidate models for wildfire counts. We fit a ZINB model with overdispersion parameter § held constant throughout
space, as well as a version where ¢ is spatially-varying according to the nesting structure in §4.1. We also fit a zero-inflated
Poisson (ZIP) model, which fixes § = 0. For these three models, we allowed the probability of inflated zeroes 7 to either be
spatially-varying or have a logit regression link with the covariates, yielding six candidate models in total. We did not consider
parametrizations of these models with a regression link on ¢ or 7 out of concern for overparametrizing the models. Table 1
shows the median difference of each model’s scores, along with the standard deviation (SD) of that difference, when compared

with the best performing model, which was the ZINB model with spatially-varying § parameter and spatially-varying .

[Table 1 about here.]

We then ran two additional versions of our best performing model by replacing the five climate covariates with either the ERC

or the FWI (see §3.4). The best performing set of covariates was the original set with all five climate covariates (see Table 2).

[Table 2 about here.]

We compare burned area models composed of the four EGPD carrier functions listed in §2.1, along with a lognormal model.
We include the lognormal model, despite its inflexibility with respect to tail characteristics, because it was found to be the
best-performing model in Joseph et al. (2019). With the five model families (four EGPD carrier functions and lognormal),
various permutations of which parameter(s) contains a regression link versus a nested spatial structure, and four different sets
of covariates, we have 68 candidate models for wildfire burned area. To pare down these potential candidate models, we locally
optimized in three stages. We first determined which parameter(s) would contain a regression link by running the four parameter
permutations with carrier function G on the climate covariate dataset. Table 3 shows the mean and median difference, along
with the SD of that difference, of each permutation’s twCRPS and log scores, respectively, on the test dataset. Despite the large
SD, relative to the median and mean differences of the scores, we chose to proceed with the most parsimonious and easily

interpretable model, which is the model with regression on « only.
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[Table 3 about here.]

We then ran this version of the G; model on three additional sets of covariates to determine the best combination. Table 4
shows that while all four sets of covariates perform similarly on the test dataset, the combination of ERC-FWI outperforms
them all (although the differences have very large standard errors) and lends itself nicely to interpretation by capturing different

aspects of wildfire behavior.

[Table 4 about here.]

Finally, we assessed the best model family from among the EGPD models with different carrier functions and the lognormal

model by running the analogous versions of each EGPD carrier function and the lognormal model. We show the performance

of all five models on the “best” dataset in Table 5. The additional ‘Time’ column shows that while &-—may-slichth-eutper
form-the-otherfourmedelsGs and G4 may perform similarly to G, i#t-takes they take approximately 27 13 and 19 times longer,

respectively, than G; to complete 1,000 iterations in the sampling phase. We also note that some of the MCMC chains in G5
and G4 did not mix well, and we did not encounter this issue with G1, G2, and the lognormal models. We therefore proceed

with G, for the joint model.

[Table 5 about here.]

52 | Model checking

With the best model and covariates in hand, we turn to assessing model adequacy for capturing key features of the wildfire data.
To assess overall model performance, we combine the best-performing wildfire counts model with the best-performing burned
area model using the shared random effects scheme in (7), and compare the predictive distribution to the observed wildfire
counts and burned areas.

To assess the predictive ability of the wildfire counts sub-model, we first calculate the expected number of wildfires at each

timepoint ¢ for each L3 ecoregion s:

Elng lms, Mgl = (1 =m5) X (Ags)- (12)
We do this calculation for every iteration of each chain, for a total of 3,000 values of E[n,, |, A ], foreachz = 1,...,T
and s = 1,...,S. For ease of visual representation, we then aggregate these values by summing over each year and across L1

ecoregion. Figure 3 displays the boxplots of these predictions, along with the observed wildfire counts.
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FIGURE 3 Expected wildfire counts compared with the truth. The red points represent the observed wildfire counts in a
particular year for each L1 ecoregion. The dark grey boxplots indicate the test dataset years (1990-1994 and 2016-2020). The
values shown are after applying a 95% winsorization to exclude extreme outliers and better visualize the trends across time and

by region. Note the different scalings of the y-axes.

We next look at the predictive ability of the wildfire burned areas sub-model. We estimate the expected burned area at each

timepoint ¢ for each L3 ecoregion s through the following procedure. At each MCMC iteration, given the current parameter

values,
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1. Randomly draw n;, from the ZINB model.

2. If n;, = 0, then let the expected burned area Ely,,| £, 05, &] = 0. If ng, > 0, randomly draw ng, observations from the
EGPD model and sum these observations to get ws,_, ;._, , the total expected burned area at time ¢ for region s for the first
repetition.

3. Repeat steps one and two for i = 2,. . ., 500 times for each unique pair of {s, ¢}. Then take the average of thei = 1, ..., 500

values wy, ;. to yield an estimate of E[y;, | Ky, 05, &, the expected burned area at timepoint 7 in L3 ecoregion s.

We repeat this procedure for each chain and every iteration, for a total of 3,000 values of Ely,, |y, oy, &], for each ¢ and s.
We then aggregate the these values by year and across L1 ecoregion. Figure 4 displays the boxplots of these predictions, along
with the observed total burned areas. While our model captures temporal trends in total burned areas well, it overestimates total
burned areas in some of the L1 ecoregions. We have investigated this issue and conjecture that the tail parameter £ may be
poorly estimated due to a lack of flexibility in the EGPD model. We thought we may have overestimated £ due to the standard
lognormal prior shrinking towards a value of one. To investigate this, we tried placing a logit-normal prior on £ with support

(0, 1.5), which yielded indistinguishable results. This remains a topic for further follow-up.

5.3 | Covariate partial effects

We plot the covariate partial effects for both the wildfire count and burned area components of the joint model to determine
which covariates have the strongest effect in the parameter with the regression link. The colors in each partial effects plot
correspond to unique L2 ecoregions (see Figure 2, which has the same coloring scheme).

The two covariates that exhibited the greatest effect on the rate parameter A within the negative binomial component of the
joint model were minimum relative humidity and maximum air temperature (Figure 5). Wind speed also has a prominent effect
in the Marine West Coast (L1 and L2 ecoregion of the same name). Interestingly, precipitation in the same month has a strong
negative relationship with wildfire counts in this same region. However, the Marine West Coast did have many years with zero
fires, so the lack of data may be contributing to these perceived effects. Precipitation in the same month has a positive relationship
with wildfire counts in the Everglades (L2 ecoregion within the Tropical Wet Forests L1 ecoregion), which potentially reflects
ignitions due to lightning strikes, which are common in this region.

The ERC partial effects plot for x suggests that the importance of ERC in wildfire burned area begins at values of around 20 or
above (Figure 6). Recall from §3.4 that the ERC is a relative index, so an ERC value of 20 indicates a heat potential double that
of 10, similarly for an ERC value of 60 compared to ERC of 30. In the South Central Semi-Arid Prairies (part of the Great Plains
L1 ecoregion), the Western Cordillera (part of the Northwestern Forested Mountains), and the Mediterranean California, ERC

has a strong prominent effect on wildfire burned area. In contrast, the FWI partial effects on burned area are minimal in these
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FIGURE 4 Predicted expected total wildfire burned area compared with the observed wildfire burned areas. Analogous
to Figure 3, the red points are the observed wildfire burned area and the dark grey boxplots indicate the test dataset years. The
values shown are on the log scale and are post 95% winsorization.

twothree ecoregions, suggesting that heat potential is a more important driver of larger burned areas than wildfire weather. In
the Cold and Warm Deserts (both part of the North American Deserts L1 ecoregion), FWI has a strong effect on wildfire burned
area, while the ERC partial effects are much smaller in thisthese regions. This suggests that wildfire weather is a more important

determinant of burned area in the North American Deserts than the heat potential of a wildfire. In the Marine West Coast and
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FIGURE 5 Partial effects on log-transformed rate parameter A of negative binomial piece of overall model. These partial
effects are solely the effects from the linear and basis functions of the covariates. These plots do not incorporate the spatio-
temporal ICAR parameter ®, the shared random effect 6,, nor the area offset. Lines shown are posterior medians for each L3
ecoregion, colored by L2 ecoregion.

in the Northern Forests (corresponding to the two L2 ecoregions Atlantic Highlands and Boreal Plain), changes in ERC and

FWI have minimal effects on the x parameter. Again, this is likely due to lower numbers of wildfires in these ecoregions.
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FIGURE 6 Partial effects on log-transformed parameter « of the EGPD piece of overall model. Lines shown are posterior
medians for each L3 ecoregion, colored by L2 ecoregion.
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54 | Burned area return levels and high quantiles

‘We now turn to investigating predicted high quantiles of burned areas in L1 ecoregions in two ways. These plots are colored by

L1 ecoregion, matching the map of the US in Figure 7.

FIGURE 7 Map of the contiguous United States colored by L1 ecoregion.

First, we look at the 50-year return levels of wildfire burned areas by L1 ecoregion. We determine these burned area levels
u through the following equation:

F (gm0} = ug,, (13)

where F; L'is the quantile function corresponding to the predictive density of (6) for L3 ecoregion s at time 7. The variable 7,
is the expected number of wildfires, as calculated from (12). We set g = % to correspond to the 50-year return levels. From
Figure 8, we see that Mediterranean California, North American Deserts, and Northwestern Forested Mountains have the most
extreme wildfire burned areas. These predictions align with what we have experienced in the Western US over the past decade.

We then look at the 98th quantile of wildfire burned areas by L1 ecoregions. We calculated this by setting g = % in the
following equation:

FHq) = ug,. (14)

While (14) describes the 98th quantile of the distribution of wildfire burned area for any individual wildfire, given that such a
wildfire occurs, (13) describes the 98th quantile of the distribution of total burned areas, marginalized over the distribution of
wildfire counts. From Figure 9, we see that Marine West Coast Forest and Eastern Temperate Forests have the largest burned
areas at the 98th quantile, but their credible intervals are also quite wide. Northwestern Forested Mountains and North American

deserts have the least variability in their predictions.
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FIGURE 8 50-year return levels for wildfire burned areas by L1 ecoregion. Each grey line represents an L3 ecoregion and
the colored ribbons represent that 95% credible interval for each line. The values shown are on the log scale.

5.5 | Maps of posterior parameter estimates

We compare the univariate GPD estimates of £ with the posterior medians of ¢ from our model (see Figure 10). Estimates of &

from our model are larger in the Western US than in the Eastern US, which is consistent with the proliferation of high-impact
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FIGURE 9 98th quantile of wildfire burned areas by L1 ecoregion. The lines and ribbons are analogous to those in Figure 8.

wildfire events in the West. In addition, the spatial borrowing of strength allows us to obtain estimates of £ in areas where there
were not enough observations to fit a GPD in the exploratory stage.

Figure 11 visualizes the spatially-varying modulating parameter ~y of the joint model across the US by L3 ecoregion. Marine
West Coast Forest ecoregions have a strong negative correlation between counts and burned areas, so the relationship between
wildfire counts and burned area will follow the patterns in the first row of Table 6, while ecoregions in the Great Plains have a

strong positive correlation (second row of the same table).
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g value

FIGURE 10 Posterior median of £ by L3 ecoregion (right) compared to estimates £ obtained from the MLE using the GPD
by L2 ecoregion, with a the threshold set at the 90th percentile (left). The map on the left is the same as in Figure 1 but with an
adjusted scale to be comparable to the posterior values of £ on the right.

FIGURE 11 Posterior medians of « across the United States by L3 ecoregion. Red regions have a negative v value, indi-
cating an inverse relationship between counts and burned areas. Blue regions have a positive v value, indicating that counts
and burned areas have a positive relationship. Darker shades of these two colors represent a stronger relationship between the
count and burn parameters.

[Table 6 about here.]

6 | DISCUSSION

We have implemented a joint Bayesian hierarchical model featuring a truncated EGPD sub-model, incorporating nonlinear
effects in the covariates and accounting for any residual spatio-temporal variation with a Gaussian random effect. The flexibility
of the model allows us to incorporate all of the wildfire burned area data in the estimation of our spatially-varying shape and
scale parameters, & and 0. The EGPD allows us to model the moderate and extreme wildfire burned areas, while allowing us

to exploit EVT in extrapolating burned areas at high quantiles.
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Our investigation into three datasets revealed a distinction in the covariates influencing wildfire occurrences compared to
those affecting burned sizes. Notably, individual climate covariates excel in predicting wildfire counts, while fire indices, specif-
ically ERC and FWI, outperform in predicting burned areas. This distinction underscores the nuanced nature of wildfire behavior
and necessitates a tailored approach for accurate prediction. In our burned areas sub-model, the combined use of ERC and FWI
surpasses individual fire indices, revealing regional variations in their effects. ERC significantly influences burned areas in the
Great Plains, and the Northwestern Forested Mountains, and the Mediterranean California, while FWI emerges as more crucial
in the North American Deserts. These regional differences highlight the need for a nuanced understanding of fire indices in
different ecoregions.

While our model adeptly captures temporal trends of wildfire burned areas, potential overestimation in certain ecoregions
warrants attention. We suspect that the tail parameter £ may be poorly estimated due to the EGPD model structure, suggesting
a need for further exploration. Additionally, variations in vegetation and forestry across the CONUS raise concerns about
potential overestimation stemming from the use of a coniferous forest fuel model in the calculation of ERC. Future research
should consider obtaining ERC values calculated from diverse fuel models that best represent each ecoregion.

As the threat of more extensive wildfires looms with changing climate patterns, our study contributes vital insights for
improved wildfire management within the CONUS. Recognizing the nonlinear drivers of wildfire occurrences and burned
areas is essential for developing effective mitigation strategies and resource allocation policies. Our multifaceted approach,
considering individual climate covariates, fire weather risk, and fire burn potential, provides an improved understanding of the

drivers of wildfire dynamics.
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Regression Difference

Model A mw & Median SD

v S S 0.00 0.00
. . v v s -45.93 274.42
ZI-Negative Binomial N 314.63
v vV ¢ -54413  307.83
. v v -1140.01  320.45
ZI-Poisson voos -1145.58  349.93

TABLE 1 Comparison of log scores on six candidate wildfire counts models. A ‘v in the ‘Regression’ column indicates
that the respective parameter had a regression link with the covariates. An ‘s’ indicates the parameter was spatially-varying
according to the nesting structure described in §4.1, with no regression link. A ‘c’ indicates the parameter was spatially and
temporally constant. An empty space indicates that the parameter was not involved in that particular model.
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Difference
Dataset Median SD
Climate 0.00 0.00
ERC-FWI -617.69  348.48
ERC -738.98  342.80
FWI -1030.65  395.42

TABLE 2 Comparison of log scores from the best count model, run on three different sets of covariates.
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Regression twCRPS Log score
Model « o & Mean SD Median SD
vioos s 0.00 0.00 0.00 0.00
G s v s 539  14.03  -80.52 935.30
! v voos 1245 1796  -199.66  971.43
vV v v 2184 2269 -43241 114493

TABLE 3 Comparison of twCRPS and log scores for four parameter combinations of the G; EGPD model. Scores shown
for twCRPS are multiplied by a factor of 10? to more easily see the magnitude of differences. Symbols are analogous to those

in Table 1.
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twCRPS Log score
Dataset Mean SD  Median SD
ERC-FWI 0.00 0.00 0.00 0.00
ERC 0.31 9.45 -8.40 90.86
FWI 0.74 9.28 -11.18 80.96
Climate 192 11.78 -34.33  934.27

TABLE 4 Comparison of twCRPS and log scores from the best G| parametrization medel, run on four different combinations of covariates.
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Regression twCRPS Log score
Model k() o ¢& Mean SD Median SD Time (hrs)
G1 v S s 0.00 0.00 0.00 0.00 6.90
G3 v s 1.65 9.05 -64.56 80.44 89.21
Gy v s s 3.19 10.85 -16.70 100.07 129.09
Ga v s s 8.17 12.76 -39.83 70.60 11.55
Lognormal (V) s 245 x 103 9.64 x 102 —2.74 x 103 8.17 x 103 5.23

TABLE 5 Comparison of twCRPS and log scores for one-parameter versions of five families of burn models run on the
ERC-FWI dataset. Symbols and scale of scores are analogous to those in Table 4. The ‘Time’ column indicates how long the
model took to complete 1000 MCMC iterations in the sampling phase (i.e. excluding warmup phase) using Stan.
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0; <0 9; >0
fewer counts, more counts,
% <0 larger burned area smaller burned area
fewer counts, more counts,
>0 smaller burned area larger burned area

TABLE 6 Interpretation of the spatially varying values of the scaling parameter v combined with the temporally varying
values of the shared random effect 6.
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