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Abstract—Direction-of-arrival (DoA) estimation is critical
to obtaining precise information of targets for automotive
radar sensors. To obtain fine radar imaging, super-resolution
DoA estimation is needed to distinguish adjacent targets.
Moreover, to adapt to the rapidly changing driving dynamics,
the processing time for DoA estimation must meet very
stringent timing requirement. Unfortunately, none of the
existing methods can achieve both super-resolution and
real-time requirement at the same time. In this article,
we present the maximum-likelihood-based real-time super-
resolution (MARS)—a real-time super-resolution DoA estima-
tion algorithm. The main idea in MARS is to use maximum
likelihood estimation (MLE) as the objective function. Unlike
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traditional MLE, MARS exploits the intrinsic correlation between the input data of adjacent time slots to substantially
reduce the search space. Moreover, instead of using an exhaustive search to find the DoA solution, we employ the
compressed sensing algorithm orthogonal matching pursuit (OMP) to efficiently discover an optimal or near-optimal
solution for the MLE objective function based on the reduced search space. To further accelerate computation time,
MARS decomposes the problems in each step into independent subproblems that can be efficiently executed on a GPU
parallel computing platform. Simulation experiments show that MARS can achieve super-resolution in DoA estimation
under 1 ms. Compared to state-of-the-art algorithms such as multiple signal classification (MUSIC) and estimation of
signal parameters via rotational invariance techniques (ESPRIT), MARS outperforms both of them in DoA estimation
while being the only known algorithm that can meet the stringent real-time requirement. Hardware experiments further
illustrate that MARS outperforms state-of-the-art algorithms in target detection by achieving superior resolution.

Index Terms— Automotive radar, direction-of-arrival (DoA) estimation, real time, super-resolution.

. INTRODUCTION
ECHNOLOGIES for autonomous driving have advanced
rapidly in recent years and have the potential to revolu-
tionize future transportation. A critical component to achieving
a high level of automation (or full automation) is to obtain
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accurate information of targets on the road. Although camera
and LiDAR can offer a fine resolution of imaging, they have
their own limitations. For example, both camera and LiDAR
are sensitive to weather conditions (e.g., fog, rain, and snow).
For camera, although it can capture high-resolution images,
it is not able to offer information on range, velocity, and
direction-of-arrival (DoA) directly and needs other auxiliary
algorithms to compute the information. In contrast, radar sen-
sors are robust to weather conditions, inexpensive, and highly
reliable. Due to these advantages, radar sensors are expected
to remain indispensable in current advanced driver assistant
systems (ADASs) and future autonomous driving systems [2].

An automotive radar sensor can simultaneously transmit and
receive electromagnetic (EM) waves in the millimeter-wave
(mmWave) frequency range of 76-81 GHz [3]. It can extract
information about targets based on the EM waves reflected
from the targets. For each target, an automotive radar sensor
can be used to estimate range, velocity, and DoA [4], [S]. The
range of the target can be determined by measuring the round-
trip time delay that the EM waves take to propagate to and
from a target. Estimation of the target velocity is based on the
Doppler effect. The DoA estimation can be made by means
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of an antenna array. By collecting reflected signals across
different antenna elements, DoAs can be estimated from the
phase offset between the received signals.

A fundamental problem in automotive radar sensor is how
to achieve high-resolution estimation of all three parameters
in real time [6]. In automotive systems, the target detection
process, which spans from the reception of the reflected
signal to the generation of detection results, should occur
within 25-40 ms [7]. Considering additional processes such
as down-chirp, passing through a low-pass filter (LPF),
and possibly interference mitigation, the time available for
parameter estimation is very limited. Although there is no
explicit standard in the literature on the exact number,
we believe that faster parameter estimation is preferable and
our goal is to achieve ~1-ms real-time estimation. The range
and velocity estimation problems have already been well-
solved by the hardware-based fast Fourier transform (FFT).
Current automotive sensors can already achieve 30-cm range
resolution and 2-m/s velocity resolution, respectively, in real
time [3]. But for DoA estimation, it remains a challenging
problem in the research community and is the focus of this
article.

For DoA estimation, FFT-based algorithms require a
prohibitively large number of antennas to achieve high
resolution. For instance, to attain a resolution of 1° across
a [—50°,50°] field of view (FOV), an FFT-based algorithm
would require up to 100 antennas in one dimension. Hence,
there is a critical need to achieve high resolution by using
only a (reasonable) limited number of antennas [2], [3], [8],
[9]. According to [10], super-resolution is defined as the
ability of a DoA estimation method to surpass the natural
resolution limit imposed by the FFT-based approach, which
is fundamentally constrained by the number of antennas. It is
important to note that the term—super-resolution—does not
prescribe a specific degree of resolution. It merely refers to an
algorithm’s ability to achieve a finer DoA estimation resolution
beyond what can be achieved by an FFT-based algorithm with
practical constraints on its antennas.

The state-of-the-art super-resolution algorithms include
two categories: maximum likelihood and subspace-based
algorithms. The maximum likelihood estimation (MLE)
algorithm [11], [12] can achieve super-resolution and enjoys
high estimation accuracy but its computation time is
prohibitively high, due to the large size of its search space and
exhaustive search. Subspace-based algorithms such as multiple
signal classification (MUSIC) [13] and estimation of signal
parameters via rotational invariance techniques (ESPRIT) [14]
can offer super-resolution more efficiently compared to MLE,
but their computation time is still too high to meet the real-time
requirement. They also suffer from poor performance under
low SNR [15]. More discussions on related work are given in
Section II.

In this article, we present a novel maximum-likelihood-
based real-time super-resolution (MARS) algorithm. The main
idea of MARS is to retain the MLE’s capability of finding
an optimal solution and to exploit its unique mathematical
structure for parallel computation. The main contributions of
MARS are the following.

1) We employ MLE as our objective function as MLE is
most capable of finding an optimal DoA that meets

our super-resolution requirement. Another benefit of
choosing MLE over possible approaches is that MLE
only requires a single snapshot (small amount of
samples) and thus is more flexible and responsive
than multisnapshot-based algorithms (e.g., MUSIC and
ESPRIT). The challenge now is how to solve an MLE
problem in ~1-ms timescale.

2) To address this problem, we propose to exploit the
correlation between the input data of adjacent time
slots. Since the range, velocity, and DoA of each target
only have modest change over two consecutive time
slots, we propose to use the estimation results from
the previous time slot to form a promising and reduced
search space. Specifically, we use the DoA estimation
result from the previous time slot as the center of the
new search space and the possible deviation of DoA
as the radius of the search space. This step effectively
reduces the search space from the original entire FOV
to a much narrower angle set.

3) After identifying the reduced search space, we utilize
the compressed sensing algorithm orthogonal matching
pursuit (OMP) [16] instead of an exhaustive search
to find the optimal or near-optimal solution to MLE
objective function. OMP significantly enhances time
efficiency and substantially reduces processing time.

4) To reduce computation time and meet our real-time
requirement, we propose to decompose the problems
at each step into independent subproblems and employ
commercial off-the-shelf (COTS) GPU to perform
parallel computation. First, the DoA estimation problem
is divided into many independent subproblems, which
are executed in different blocks in parallel. For each
subproblem, all the elements in the reduced search
space are calculated in different threads in parallel,
and the parallel reduction technique is used to find the
optimal solution. Finally, by combining the solutions
from all the subproblems, the original DoA estimation
problem is solved. Throughout the process, we make
meticulous engineering efforts to exploit the full power
of GPU computing, including generating a sufficiently
large number of threads, practicing a proper indexing
method, and using shared memory wisely.

5) Through simulation experiments, we find that MARS
can handle up to 300 reflection points (also known
as targets) with super-resolution within 1 ms. The
300 reflection points correspond to 15-20 objects (as
each object contains a dozen or so reflection points).
By comparing MARS to MUSIC and ESPRIT, we find
that MARS is the only algorithm that can achieve under
I-ms real-time processing. Further, MARS can offer
better estimation accuracy than MUSIC and ESPRIT
under the same SNR. To date, MARS is the only
known DoA estimation algorithm that can achieve
super-resolution in real time (sub-ms). Further hardware
experiments show that MARS outperforms the state-of-
the-art algorithms by achieving higher resolution and
better identification of close objects.

The rest of this article is as follows. In Section II, we review
the related work on DoA estimation for automotive radar
sensor. Section III describes the background and problem
statement. In Section IV, we present MARS. Section V
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elaborates on the GPU implementation. Section VI details the
results of simulation experiments, while Section VII provides
the outcomes of hardware experiments. Section VIII concludes
this article.

[I. RELATED WORK

Across the research landscape of DoA estimation for
automotive radar sensor [2], [17], the most active branch is
subspace-based methods (see [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [301, [31], [32], [33], [34],
[35], [36], [37], [38]). Another branch is FFT-based methods
based on novel antenna designs (see [41], [42], [54]). Apart
from these two branches, there are some other miscellaneous
methods reported in the literature (see [43], [44], [47]). In the
rest of this section, we review the state of the art in each of
these branches.

1) Subspace-Based Algorithms: Subspace-based algorithms
exploit the phenomenon that when there are enough samples
collected under a sufficiently high SNR, eigenvalues (corre-
sponding to DoAs) and associated eigenvectors (corresponding
to the incident signals) can be obtained from the sample
covariance matrix. There are two families of algorithms in this
class, namely, MUSIC-based algorithms [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30] and ESPRIT-
based algorithms [31], [32], [33], [34], [35], [36], [37], [38].

In the original MUSIC algorithm [13], the DoAs are
found by searching within the subspace formed by all the
eigenvectors. There are many variations and extensions of
MUSIC. References [18], [19], [20], [21], and [22] proposed
to improve the performance of MUSIC under some special
conditions by considering the mismatch of signal phase [18],
the nonuniform antenna array [19], the coexistence of the far-
field and near-field targets [20], [21], and impulsive noise [22].
However, the complexities of these algorithms are higher
than the original MUSIC and the performance under the
general conditions may not be improved. References [23],
[24], [25], and [26] implemented MUSIC on different kinds
of hardware platforms. Although the computation time was
made shorter than before, the eigen decomposition of the large
covariance matrix still remains and the final computational
time is still over ~100 ms. References [27], [28], [29],
and [30] modified the MUSIC algorithm to make it work
efficiently under different multi-in multi-out (MIMO) antenna
designs. However, the complexities of these algorithms are
much higher than the 1-D array system.

ESPRIT [14] shares the same basic idea with MUSIC but
utilizes the rotation invariance property to avoid the search
process. There are some variations and extensions of ESPRIT.
References [31], [32], [33], [34], and [35] improved the
original ESPRIT algorithm in terms of estimation accuracy
and robustness of different antenna settings. Zheng et al. [36],
Li et al. [37], and Yang et al. [38] implemented ESPRIT in
a bistatic MIMO system to support more signals and better
DoA estimation performance.

Although some of these subspace-based algorithms can
provide better performance, they still suffer from the
fundamental deficiencies of MUSIC and ESPRIT: high
complexity matrix operations on large covariance matrix,
multiple snapshots requirement, and poor performance under

low SNR. As a result, none of them can achieve super-
resolution in real time on computing platforms typically used
in automotive systems.'

2) FFT-Based Algorithms: By applying FFT to the received
signals across the antenna domain, DoAs can be estimated
based on the spectrum peaks. References [39], [40], [41],
and [42] proposed hardware-based FFT algorithms. By using
the custom-designed parallel structure and high-performance
hardware [e.g., field-programmable gate array (FPGA)], the
DoA estimation problem can be solved in real time. Traditional
FFT has a low resolution for DoA estimation due to the
limited number of antennas. Although the authors proposed to
employ MIMO [39], [40] and virtual antenna techniques [41]
to improve DoA resolution, the number of required antenna
elements is prohibitively large if one wishes to achieve high
resolution (e.g., 1°).

3) Other Methods: Zhang et al. [43], Guo et al. [44],
and Sun and Zhang [45] exploited a novel antenna design,
i.e., compressed sparse array, to achieve a high resolution
for DoA estimation with a fewer number of antennas than
the general uniform 1-D array. However, the compressed
sparse array-based algorithm still cannot meet the super-
resolution requirement unless it employs a prohibitively large
number of antennas. Zheng et al. [46] proposed a deep neural
network-based target detection algorithm to achieve high DoA
resolution for automotive radar sensor. However, this algorithm
requires a high-resolution imaging radar sensor equipped with
86 horizontal elements, which is prohibitively expensive and
impractical for the mass commercial market. Engels et al.
[47] used a multidimensional frequency model to estimate
range, velocity, and DoA. It is an iterative method, with
the estimation results being improved in each iteration. Its
computation time cannot meet the timing requirement due to
too many iterations. References [48], [49], [50], [51], and [52]
utilize Newtonized orthogonal matching pursuit (NOMP) to
estimate the DoA, taking advantage of its capability to
locate DoAs in the continuous domain and its robustness
against high noise and clutter power. However, the method’s
extensive search space and iterative process present significant
challenges in meeting the ~I1-ms real-time requirement.
In summary, none of the existing DoA estimation algorithms
can achieve both super-resolution and real-time requirement
at the same time on computing platforms typically used in
automotive systems.

[1l. BACKGROUND AND PROBLEM STATEMENT

In this section, we provide essential background on
the signal model for a general DoA estimation problem.
We assume the automotive radar system employs frequency-
modulated continuous wave (FMCW), which is the most
prevalent waveform used in the field [53]. Fig. 1 illustrates
the standard reference model, where a moving target with a
relative range R (in m) and a relative velocity V (in m/s)
to an FMCW radar sensor that is equipped with an array of
M antenna elements. Denote m = 1, ..., M as the index of

'In this article, we consider only typical platforms including CPUs, FPGAs,
and GPUs as discussed in [23], [24], [25], and [26]. High-end platforms such
as the NVIDIA H100 are not considered due to their prohibitive cost, making
them impractical for automotive systems.
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Fig. 1. Reference system model.

the receiving antenna element. The spacing between adjacent
antenna elements is d m. Denote ¢ as the azimuth angle of
the target to the receiving antenna.

The carrier frequency of the FMCW radar sensor is f, (in
Hz). Then, the corresponding wavelength A is A\ = C/f,,
where C is the speed of light. Denote 7, (in s) as the chirp
duration and S. (in Hz/s) as the chirp slope of the radar
sensor. Denote the sampling rate of the radar receiver as f; (in
Hz). Denote [; as the sampling index within one chirp (also
known as the fast-time index), i.e., Iy = 1,..., Ly, where
Ly = fs - T.. Denote [, as the index of chirps within one
coherent processing interval (CPI) (also known as the slow-
time index), i.e., [; = 1,..., L.

We assume additive white Gaussian noise (AWGN) and
denote it as w[ls,l;,m] € CN(0,0?). Denote &[ly, 1, m]
as the attenuation caused by the path loss, the antenna
gain, and the radar cross section (RCS) of the target. The
output of the radar receiver within the time length of one
snapshot (corresponding to L, consecutive chirps) 7T.L; can
be represented as

x[lf,ls,m]
. Iy
~E(ly, I, m]exp{ j2m (fb+fd)7
fumdsin(@) 2f.R
- I, T,
+ C +fds + C
+a)[lf,lx,m]
fOI‘lf:l,...,Lf, ls=1,...,Ls
m=1,...,.M (L

where f, = (2S5.R/C) is the beat frequency and is dependent
on the range of the target; and f; = (2V/)) is the Doppler
shift due to the movement of the target.

From (1), the measurement x[/s, [;, m] spans over the fast
time, the slow time, and the space dimension, as illustrated
in Fig. 2. The basic radar operation is to extract range R,
relative velocity V, and DoA ¢ of each target from (1) [2].
With today’s hardware-based 2-D FFT [3], [55], [56], high-
resolution range (30 cm) and velocity (2 m/s) can be readily
obtained in real time. Specifically, for velocity V estimation,
the Doppler shift f; can be extracted by L,-point FFT across
the slow-time dimension. Similarly, f;, (and thus, range R) can
be extracted by L ¢-point FFT across the fast-time dimension.
The spectrum after 2-D FFT spans over a 2-D range—velocity

M
©
c
C
[}
€ Lg
< 2 .
RYX
1 2 <
1 2 Lf' <—>0$
Fast Time

Fig. 2. Measurement xI, Is, m] along the fast time (/), the slow time
(Is), and the space dimension (m).

Antennas

Fig. 3. Range—velocity bins with spectrum peaks after 2-D FFT.

grid. When there are Q targets, the output of the radar receiver
can be expressed as an extension of (1), represented by
Z‘?:] x4llf, s, m]. In this scenario, multiple spectrum peaks
may exist after 2-D FFT, which are identifiable by range and
velocity, as illustrated in Fig. 3.

The output after 2-D FFT can be used as the input for
DoA estimation. Note that each peak may be associated with
multiple incident signals from a cluster of targets with the
same range and velocity but different DoAs. Denote N, as the
total number of bins containing the spectrum peaks, and denote
N; as the number of DoAs to measure in the ith bin. Then,
the peak in the ith bin corresponds to a linear combination of
N; incident signals. The input data for DoA estimation at the
mth antenna element can be obtained as

i sin( ,"1)
xlml =" Eim]e™ 5 4 wlm. @)

n=1

For M antennas, denote set X; = {x;[1],..., x;[M]}. For a
total of N, bins, denote X = {X}, ..., Xy, }.

The goal of DoA estimation is to design a method (denoted
as W) to estimate ¢ via ¢ = W(X). Among the various
objectives employed in DoA estimation, we have opted to
use the least-squares method, which is also utilized in both
MUSIC and ESPRIT, due to its optimality at moderately high
SNR. The objective function is defined as follows:

N, N
. P2

DI CETAR )

i=1 n=1
As discussed in Section II, none of the existing DoA
estimation algorithms can solve (3) with super-resolution
requirement in real-time on computing platforms typically

used in automotive systems.
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IV. MARS: A NOVEL MAXIMUM-LIKELIHOOD-BASED
REAL-TIME SUPER-RESOLUTION ALGORITHM

The goal of this article is to develop an algorithm that
can achieve super-resolution in DoA estimation in real time
(under 1 ms). The main idea of MARS is as follows. First,
MARS decomposes the DoA estimation problem into a large
number of independent subproblems so that all subproblems
can be solved in parallel simultaneously. Second, for each
subproblem, one range—velocity bin could be processed with
a simplified MLE objective function that can provide an
optimal solution. Third, to address the prohibitive computation
time associated with the MLE, MARS judiciously reduces
the search space into a smaller but promising reduced search
space by exploiting the intrinsic correlations in range, velocity,
and DoA of a target between successive time slots. Fourth,
leveraging the reduced search space, the compressed sensing
algorithm OMP is employed to efficiently calculate the final
estimated DoA. In each step of MARS, we strive to exploit
parallel computing to accelerate computation time. Finally,
we show how to speed up the initialization process with a
limited number of iterations. We describe these ideas in detail
in the rest of this section.

A. Problem Decomposition

We assume the estimation of range and velocity has already
been handled by hardware-based FFT (see Fig. 3). The input
data for our DoA estimation will be a large number of
range—velocity bins with spectrum peaks, which contain the
targets that need to be detected. Here, all the targets are divided
into different clusters which have been already discriminated
from others by range and velocity. So for DoA estimation,
only the targets with the same range and velocity are coupled
with each other, which means in (3), (;3; = W (AX;). Therefore,
instead of solving (3) directly, we can decompose (3) into N,
independent subproblems as follows:

N;
: i gie .
mq}nZ|¢n o 1% i=1,...,N,. (4)
n=1
Since all the N, subproblems can be solved in parallel, the
computation time can be reduced significantly.

B. Simplifying MLE Objective Function

To obtain an optimal solution to (4), we choose to use
the MLE for W, assuming the complex Gaussian noise
at each antenna is temporally and spatially independent.
The rationale for choosing MLE includes several points.
First, unlike FFT-based methods, MLE can achieve super-
resolution without being limited by the number of antennas.
Second, whereas super-resolution algorithms like MUSIC
and ESPRIT require multiple snapshots, MLE only needs a
single snapshot, thus providing enhanced flexibility. Third,
both MUSIC and ESPRIT depend on the condition that
the eigenvalues and eigenvectors of the sample covariance
matrix accurately represent the MLE estimate, but this
holds true only in scenarios with sufficiently high SNR;
their performance deteriorates substantially in low SNR
environments. In contrast, MLE consistently delivers more
accurate DoA estimation even under high noise levels.

To solve the ith subproblem in (4), we can use the following
equivalent expression by using simplified MLE:

M N; oz 2
min Z x;[m] — Z Elexp |:j2n(—fcmds(:n(¢”) )}
T —

n=1

Denote the search space of the decision variable ¢! in the
above subproblem as {¢}. The size of {¢} is determined by
the following three parameters.

1) Field of View: The field of view, denoted as FOV[—#, 0],
is the angle through which a radar is sensitive to its
reflected signal. FOV[—0, 0] differs among different
types of radar sensors. For example, a short-range radar
may have an azimuthal FOV of [—80°, 80°], and a
long-range radar may just have an FOV of [—15°, 15°].
A larger FOV means a larger search space.

2) Granularity: The granularity is determined by the
required resolution and estimation accuracy. For exam-
ple, if 1° resolution is needed, the granularity should be
no greater than 1°.

3) Number of Targets in Each Range—Velocity Bin: The
number of targets falling in the same range—velocity bin
N; corresponds to the number of reflection points (from
the same or different objects). When N; increases, the
size of the search space will become larger.

For example, for a general short-range radar sensor with an
FOV [—80°, 80°], to achieve 1° resolution, the search space
size of one bin can be up to 10°. Due to this large space,
exhaustive search cannot be used.

To meet the stringent time requirement, the size of the
search space must be reduced. Among the three parameters
that determine the size of the search space, granularity and
the number of targets in each range—velocity bin cannot be
reduced. This is because the granularity must be small enough
to meet the super-resolution requirement and the number of
targets in each range—velocity bin is determined by the traffic
on the road that can be high in dense scenarios. Hence, the
only parameter that can be used to reduce the search space is
FOV. So instead of blindly using the FOV of the radar sensor,
we propose to reduce its size by exploiting the correlation
between estimation results from adjacent time slots.

Specifically, we explore data association to establish a
connection between data of adjacent time slots. This is
described in detail in Section IV-C. For data in the current
time slot that has correlation with some data in the previous
time slot, we propose to use the DoA estimation result from
the previous time slot as the center of the reduced search space
and possible DoA deviation as the radius to identify a much
smaller but promising search space for (5). This is described in
detail in Section IV-D. Based on the reduced search space for
DoA, OMP is employed to obtain an optimal or near-optimal
solution to (5). This is detailed in Section IV-E. For data in
the current time slot that does not have correlation with any
data in the previous time slot, we treat it as the initialization
phase and propose to address it with a speed-up algorithm.
This is described in detail in Section I'V-F.

(&)

C. Data Association Between Successive Time Slots
In each time slot, after using 2-D FFT, we can
find range—velocity bins corresponding to spectrum peaks,
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as shown in Fig. 2. To exploit the potential correlation between
data from adjacent time slots, the estimation results from the
previous time slot (including all the coordinates and DoAs)
should be saved. For the current time slot, after we get the
range and velocity of each bin, we can associate the current
bins with the saved estimation results from the last time slot
before we perform DoA estimation. Since the relative range
and velocity only change slightly between adjacent time slots
(even for a vehicle moving at a high speed), we propose a
shortest-path method as follows.

Denote E(t — 1) = {(Ri(t = 1), Vit = 1)), ..., (Ry,¢-1)
(t — 1), Vy,q—1y(t — 1))} as the estimation results for range
and velocity of all N,(r — 1) bins at time slot (r — 1).
Denote E(1) = {(R((?), Vi(¥)), ..., (Ry,»(®), Vn,(n(1))} as
the current estimation results of all N,(¢) bins at time slot ¢.
The data association problem can be formulated as follows:

Ne(r)

mfin z di, r i (6)
i=1

where f : E(t) — E(t — 1) is a function that maps elements
in E(t) to elements in E(t — 1); i € [1,..., N.(¢)] denotes
index of the bin in the current time slot # and f(i) €
[1,..., N.(t — 1)] represents index of the bin in the previous
time slot t —1. d; ¢ is the Euclidean distance between the ith
bin in the current time slot ¢ [with coordinates (R;(t), V;(z))]
and the f(i)th bin in the previous time slot (+ — 1) [with
coordinates (R (t—1), V) (t—1))]. This Euclidean distance
is calculated as

Ri()—Rpoyt—1D\ (Vi) = Viy =1\’
di,f(i):\/( Rf() )+( Vf() )

)

where R, and V, are the range and velocity resolutions used
for normalization. It should be noted that f is not necessarily
a one-to-one mapping; it can be a many-to-one mapping,
i.e., multiple current bins may be associated with the same
previous bin. This implies that targets, which were previously
located within a single bin, have now moved to two separate
range—velocity bins.

When the total number of bins N,(f) becomes large, the
time consumption of solving the data association problem
in (6) via brute force can be quite long. To accelerate the
computation time and meet the stringent real-time requirement,
we will propose a better algorithm by exploiting the following
observation.

We observe that the movement of each target on the road
is continuous. Thus, range, velocity, and DoA of a target only
change slightly over two successive slots. For example, sup-
pose two vehicles traveling in opposite directions (i.e., toward
each other) at 120 km/h (33.33 m/s), or 66.67 m/s in terms of
relative velocity. With a range resolution of R, = 30 cm and
a maximum 10 ms time estimation interval,2 according to (7),
((Ri(t) — Ry (t — 1))/R,) = ((66.67 x 107)/0.3) = 2.2

27} should not be confused with DoA estimation time, which is 1 ms in this
article. Estimation interval refers to time interval between adjacent estimations
and should not exceed 10 ms which is the time starting from receiving signals
at the radar to eventually taking specific actions on the vehicle [7]. Since at
least one snapshot is needed for DoA estimation, the estimation interval should
be larger than the time length of one snapshot 7. Lj.

and ((V;(t) — Vyi(t —1))/V,) = 0 (assuming both vehicles
are traveling at a constant speed). Hence, the distance d; 7 =
2.2, which is a small number.

Since d in (7) is a small number in practice, for each
current bin, we propose to calculate its associated bin in
the previous time slot independently. By doing so, the
original problem (6) becomes N,(#) number of independent
subproblems with much lower complexity and can be solved
in parallel. Specifically, for the ith bin at current time ¢, define
the associated bin f(i) =k; in (r — 1) as

ki = argmin d; ; (8)
j

where j = 1,2,..., N.(t — 1) is the index of the bins in
the last time slot (t — 1). To find k;, the search space can
be reduced to within a range of A (e.g., 2.2) that is centered
around [R;(t), V;(t)]. There are two cases.

1) If we can find k; within the reduced search space for (8),
then bin i can be associated with the nearest neighbor
bin k;. With the previous estimation results including the
range, velocity, and DoAs of k;, we can form a reduced
search space for (5). We will describe how to form this
new search space in detail in Section IV-D.

2) Otherwise, there are two scenarios. One is the start of the
engine; since there is no estimation before, no previous
information can be utilized. The other is the first
appearance of new targets. That is, there are new targets
coming into the detection range of the radar, and thus,
there is no correlated information in the previous time
slot. Both scenarios can be treated as the initialization
phase and the search space for the new bin cannot
be reduced. How to speed up DoA estimation for the
initialization phase will be addressed in Section I'V-F.

D. Reducing Search Space
For the ith range—velocity bin (after 2-D FFT) at the current
time slot ¢, if we can find &; in (8) within a range A, then we
can form a reduced search space for (5) where the real DoA
i is located. For each target n in k;th bin in previous time

slot [i.e., (t — 1)], a subspace for DoA estimation in time ¢
can be formed as follows:

si={p| @b — el < ¢ < gk + b} 9)

forn=1,..., Ny, where n is the index of the targets in k;th
bin at (f — 1) and N, is the total number of targets in the
k;th bin at (r — 1), ¢>ﬁ" is the last DoA estimation result of
target n and is used as the center of the subspace, and e is
the expected DoA deviation between two adjacent time slots
(i.e., the radius of the subspace).

To set the value of e, refer to Fig. 4. In Fig. 4, the
DoA is the last time estimation result @Y. The range
(distance) and relative speed between the target and radar
are ((Ri(t) + Ry, (t —1))/2) and  ((Vi(t) + Vi, (t — 1))/2),
respectively, both of which are averages between adjacent
time slots. The tangential speed of the target with respect
to range is ((Vi(t) + Vi, (t —1))/2) tan(q}ﬁ"). Assume Ty is
the time interval between two consecutive estimations. Based
on the fact that the DoA has a modest change between
adjacent time slots, the DoA deviation (in degrees) caused
by mobility can be calculated using the angular speed as
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Vi (£ = D) + V()

Vi, (6 = 1) + Vi(®)

e
s——tan(@;)

Fig. 4. Calculating DoA deviation €/ from ¢} between time slots t and
(t—1).

[1801(V; (1) + Vi, (t — 1) tan(@5) | Ty1/ [ (Ri (1) + Ry, (1 — 1)].
Then, we can set eﬁ' (in degrees) to
S _ 18O0IVi0) + Vi (¢ = Dl tan(@7)| Ty
" 7 (Ri(t) + Ry, (r — 1))
where the first term represents potential DoA deviation caused
by mobility, and parameter b is used to account for potential
estimation error due to noise. By specifying X in (9), the size
of the subspace s for target n can be reduced substantially.
By combining all subspaces sf’ ey sf\}k_ , the new reduced
search space S; for the current ith subproﬁlem is

S — (sj‘stz’mUSf‘v"k/_)ﬂ{(b} (11)

where {¢} is the FOV of the radar. For each subproblem, (5)
can be solved based on the reduced search space (11).

+b

(10)

E. Estimating DoA Based on Compressed Sensing

After narrowing down the search space for DoA, solving
MLE objective (5) remains challenging for several reasons.
First, the number of targets in each range—velocity bin,
denoted by N;, is unknown, which increases both the search
space and the time required for searching. Second, the
attenuation factor ?;,’; for each target n is also unknown,
further expanding the search space. Third, given these issues,
attempting to cover all possibilities through an exhaustive
search would result in prohibitively long processing times,
failing to meet real-time processing requirements. To address
these challenges, we employ the compressed sensing algorithm
OMP to compute the estimated DoA.

The DoA estimation problem can be reformulated as
follows:

min [|a[[,

a

st. x;, =Q-a (12)
where [|-||1 denotes the 1-norm, indicating a minimization

objective focused on the sparsity of a. The vector x; represents
the aggregated signal received across all antennas, expressed
as [x;[1], ..., x;[M]]*. The matrix  is the signal basis
constructed from all possible DoAs in the reduced search
space, expressed as [Dy,..., D5, ], where [S;| is the size
of the reduced search space for the subproblem i. Each
potential signal component D; (j = 1,...,1S;) is defined
as [exp[j2r((fe - 1 - dsin(@' (j)))/O)], ..., exp[j2n((fc - M -

dsin(@' ()))/ONY, with S; = {¢'(1),...,¢'(IS;])}. Given
the observation that only a limited number of DoAs (or
targets) are present within a single subproblem (a specific
range—velocity bin), a is identified as a sparse vector. This
vector is essentially a projection of the signals within the
signal basis 2, and (12) can be effectively resolved using a
compressed sensing algorithm.

Among compressed sensing algorithms, we opt for OMP
due to its time efficiency and suitability for implementation
on parallel hardware platforms. The fundamental principle
of OMP involves identifying the most plausible signals in
each iteration and concluding the process once the signal’s
power threshold is met. After determining the sparse vector
x; by solving (12), the DoAs of the corresponding signals
are selected as the final estimated DoA solution. During the
implementation of OMP, several key considerations are as
follows.

1) Number of Iterations: In OMP, each iteration identifies
one DoA component, requiring multiple iterations
to detect multiple targets. Our MARS restricts the
total number of iterations for computational efficiency.
Specifically, OMP is applied to each subproblem
independently, so the number of iterations corresponds
to the number of DoAs within each range—velocity
bin. Given the fine range (30 cm) and velocity
(2 m/s) resolution, the number of DoAs per bin
is typically no more than three, as demonstrated
in Section VI

2) DoA Spacing: To achieve 1° super-resolution, the
DoA spacing between ¢'(j) and ¢'(j + 1) within
the reduced search space €2 is set to 1°. However,
the actual correlation between different signals in €2
depends on sin(¢’(j)) and sin(¢?(j + 1)), as detailed
in (5). Consequently, even with a consistent 1°
DoA spacing, the correlation between signals varies
as ¢'(j) changes. The impact of these varying
correlations on the performance of OMP is evaluated
in SectionVI.

3) Stop Criterion: In OMP, the iterations stop when either
the number of iterations reaches the sparsity factor or
the power of the residual signal falls below a certain
threshold. Since the sparsity factor (the number of DoAs
in each range—velocity bin) is unknown, we opt for the
power threshold as the stopping criterion. In MARS, the
power threshold of the residual signal is determined by
the lowest power that the radar sensor can successfully
detect.

F. Speeding Up Initialization

As discussed in Section IV-C, at the time of starting the
engine or when there are new targets coming into the detection
range of the radar, no previous information is available to
exploit data correlation. Both scenarios will be treated as the
initialization phase. Since we cannot find k; in (8), a different
DoA estimation method needs to be developed to solve (5).

By analyzing (5), we observe that it is an unimodal function
with relatively high SNR within the whole search space
FOV. Based on the observation, we propose an iterative
intensification to solve (5).
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In the first time slot, instead of calculating the objective
function values of (5) for all possible DoAs (in the FOV
[—6,0]) using OMP, we can just sample a small fixed
number (say I) of DoAs (i.e., {—0,—0 + 20/(I — 1)), ...,
6 — (20/(I —1)),6}) to solve (5). After solving (5), the
estimation result (]3; is among {—6, -0 4+ 20/(I — 1)), ...,
0 — 26/ —1)),0} and will have estimation errors due to
sampling. Since the objective function is unimodal, among the
I sampled DoAs, the samples within [—6, ¢! — (20 /(1 — 1))]
have a decreasing objective value while the samples within
[¢) 4+ (20/(I — 1)), 6] have an increasing objective value.
We can now narrow down the DoA search space to
the most promising subspace of [¢~>£l — 20/ — 1)),(132 +
(20/(1 — 1))] where the real DoA ol resides. We save both the
estimation result ¢, and the subspace [¢} —(20/(I — 1)), ¢! +
(26/(I — 1))] before we enter the next time slot.

In the next time slot, we form a reduced search space S;
with s as follows:

13)

Unlike (9) where ¢ is a close estimation of the real DoA ¢
at last time slot, in (13), since q)k' is not accurate, we use
the stored promising subspace [¢’< — 26/ - 1)), ¢
26/(1 — 1))] to form s . The expected DoA deviation ekf
can be calculated as follows

w  180IVi(®) + Vi, (t — D] tan(B*)| T, L,
" 7(Ri(t) + R (1 — 1))

where |tan(,8 )| = maxg|tan(B)] and B € [qb’

26/ — 1)), ¢’ +(20/(1 — 1))]. | tan(B8*)| is set as an upper
bound to make sure the DoA deviation ek‘ is large enough.
Because |tan(8)| is a nonnegative convex function, | tan(B*)|

can be calculated as
| tan(8%)|
26 20
t kY ki
(3t = 725)| (3 + 725
(15)

= max[
In (14), instead of using 7; (e.g., 10 ms) as in (10), we use
the time length of single snapshot 7.L, (e.g., 1 ms). Since the
initialization process includes multiple estimations, the smaller
the time interval between adjacent estimations is, the shorter
the initialization process will be. Hence, we can use a single
snapshot to accelerate the computation time.

After calculating all sk' ’s in (13), we use (11) to form a
reduced search space S;. If the number of elements in S;
is no more than I/, we can solve (5) by considering all the
elements within S; in parallel. After that, the initialization
process is complete. Otherwise, we can continue sampling
I DoAs within §; and repeat the same process, until the
number of elements in S; is no more than /. After the
initialization process is complete, the search space reduction
method described in Section IV-D can be applied for further
DoA estimation. The complete algorithm for the initialization
process is shown in Algorithm 1.

During the initialization process, the parameter [ is
important as it affects both computation time and estimation

e +b

(14)

’

Algorithm 1 Initialization
1: if there is a new bin then
2:  Sample I DoAs within the FOV[—6, #] with the same
interval 29 to solve (5) using OMP
3: Save estlmatlon result ¢/ and sub-space (¢!
,_I] for the next estimation time slot
while receiving new snapshot do

20 i
n 171’¢n+

5: Form a reduced search space S; using (11) with s’,f'
(13) and e i (14).
6: if the number of elements in S; is no more than /
then
7: Solve (5) by considering all the elements within
S; in parallel.
Break
9: else
10: Sample I DoAs within the S; with the same
interval to solve (5) _
11: Save the estimation result ¢! and the most

promising subspace for the next iteration.
12: end if
13:  end while
14: end if

accuracy. The larger the [ is, the longer the computation
time, and the more accurate the estimation result will be in
each iteration. In our design, the value of I depends on the
hardware of the parallel computing platform (see Section V
for more details). This approach is justified by the fact that the
number of targets with distinct DoAs (spaced greater than 1°)
in each bin is relatively small—typically fewer than three—
due to the high resolution of the range—velocity bin (30-cm
range resolution and 2-m/s velocity resolution). As a result,
the value of [ is sufficiently large to ensure accuracy without
compromising computational efficiency.

It is important to note that after the initialization process,
the DoA estimation results may be suboptimal due to
noise. However, by considering the noise factors as outlined
in (9)-(11), MARS effectively mitigates errors from previous
estimations. Consequently, any errors from the initialization
process do not propagate across radar cycles.

G. Summary

The complete algorithm for MARS is given in Algorithm 2.
In Algorithm 2, lines 1-4 show the start of the system.
In the beginning, 2-D FFT is applied to estimate the range
and velocity of all bins. Then, the initialization process in
Section IV-F is used to estimate the DoAs of all targets
since there is no previous information. Next, all the estimation
results including range, velocity, and DoA will be saved for the
next estimation. Lines 5-16 show the estimation process after
receiving new input data at a time slot to do DoA estimation.
Specifically, in line 6, 2-D FFT is applied to estimate the range
and velocity of all bins. After that, for the new bins, in line 9,
the initialization process in Section IV-F is used to estimate
the DoAs. For the other bins, in line 11, the reduced search
space in Section IV-D is used for DoA estimation. When the
estimation is over, in line 15, all the estimation results will be
saved for the next estimation.
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Algorithm 2 MARS

1: Start of the radar:

2: Use 2-D FFT to estimate R and V for all range-velocity
bins with spectrum peaks

3: Use initialization process in Section IV-F (Algorithm 1)
to estimate DoAs for all bins

4: Save the estimation results including the coordinates of all
range—velocity bins (R and V) with spectrum peaks and
the corresponding estimated DoA {¢}

5: while at a time slot to do DoA estimation do

6:  Use 2-D FFT to estimate R and V for all range-velocity

bins with spectrum peaks
7. for each bin do

8: if it is a new bin then

9: Use initialization process in Section IV-F to
estimate {¢}.

10: else

11: Reduce search space based on Section IV-D

12: Estimate DoA using OMP by considering all the

elements in the reduced search space in parallel
13: end if
14:  end for
15:  Save the current estimation results for next estimation
16: end while

Step 1

= —————,

Step 2
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DoA estimation based
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Fig. 5. Parallel implementation.

V. GPU IMPLEMENTATION

In this section, we present an implementation for MARS.
To accelerate computation time, we exploit parallelism and
implement our algorithm on NVIDIA DGX station—a COTS
GPU computing platform. The DGX station has an Intel
Xeon E5-2698 v4 2.2-GHz (20-core) CPU and four NVIDIA
V100 GPU cards. The data communication between CPU and
GPU is based on a PCle V3.0 architecture [58]. We use
only one V100 GPU card for our implementation which
has 5120 CUDA cores. We use CUDA v10.2 [59], [60] as our
programming platform. The parallel implementation is shown
in Fig. 5.

Step 1 (Transferring Data): After 2-D FFT, we transfer
measurement X for the range—velocity bins from CPU
memory to the GPU global memory through PCle V3.0—a
relatively high-speed data transfer. This transfer time will be
counted toward MARS’s total execution time.

Step 2 (Decomposing Problem): The DoA estimation prob-
lem (3) is decomposed into N, independent subproblems (5)
that can be solved in parallel. On our GPU platform, N, blocks
are allocated to solve N, subproblems, respectively. As a result
of this process, the complexity is reduced from O(N,) to O(1).
Since the on-chip shared memory of each block is much faster
than the global memory, the measurement A; is transferred
from the global memory to the shared memory of ith block
(see Fig. 5).

Step 3 (DoA Estimation): Denote |S;| as the number of
elements in the reduced search space S;. Within the ith
subproblem, after obtaining S; in (11), OMP is used to solve
each subproblem. In each iteration of OMP, |§;| threads are
generated to calculate the correlation of each possible signal in
the signal basis, reducing the complexity from O(|S;|) to O(1).
After that, parallel reduction technique is used to choose the
DoA with the highest correlation factor as the estimated DoA,
reducing the complexity from O(|S;|) to O(log |S;|). OMP will
stop once the detected signal power is smaller than a given
threshold. Then, the least-squares calculation is conducted
directly using the functions provided by cuSOLVER [61].

Step 4 (Finding Solution): By combining the estimation
results from each iteration in OMP, we can get the solution
of (3). We also save the estimation results in GPU memory
for the next estimation and transfer them to the host memory
that can be accessed by applications.

VI. SIMULATION EXPERIMENT

In this section, we evaluate the performance of MARS
through simulation experiments. The objective of this section
is twofold. First, we will check if MARS can achieve super-
resolution and compare its DoA estimation accuracy with
the state-of-the-art super-resolution algorithms (MUSIC and
ESPRIT). Second, we will compare the computation time of
MARS with MUSIC and ESPRIT to see if MARS can achieve
1-ms real-time processing.

A. Parameter Settings

We configure the number of receiving antennas M = 16 in
a 1-D antenna array with half-wavelength spacing. We assume
a medium-range FMCW radar operating from 76 to 81 GHz.
The range and velocity resolutions are 30 cm and 3 m/s,
respectively [3]. The azimuthal FOV is [—50°, 50°]. The time
length of a single snapshot is set to be 1 ms. 7y is set to
be 10 ms and contains ten snapshots. This means for all
three algorithms, the DoA estimation interval is 10 ms. For
MARS, we set A = 2.2 and b = 1. For MUSIC and
ESPRIT, ten snapshots are needed to calculate the covariance
matrix [62]. All three algorithms are implemented on the same
platform [58].

For our evaluation purposes in the simulation experiment,
we adopt a 1° resolution as our target and benchmark for
all three algorithms. This criterion is selected because it can
meet the requirements for most on-road scenarios [2], [8], [9]
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Fig. 6. RMSE versus SNR for different numbers of DoA. (a) One DoA. (b) Two DoAs. (c) Three DoAs.
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Fig. 7. RMSE versus SNR for different spacings between DoAs. (a) 3° spacing. (b) 2° spacing. (c) 1° spacing.

and it can be easily handled in a simulation environment.
Based on the 1° resolution goal, the DoA granularity is
set to 1°.

We set the total number of bins, N,, to 100 (corresponding
to 100 clusters of targets). We use SUMO [63] to generate
a mobility model of all targets for an urban scenario. The
velocity of each target follows a uniform distribution from 0 to
120 km/h.

B. Performance of DoA Estimation

We first present the root-mean-square error (RMSE) of
estimated DoA as a function of SNR for different DoA
settings. Since DoA subproblems corresponding to different
bins are equivalent and independent, we can only consider
one subproblem within one bin while evaluating the estimation
accuracy. For each point, we average over 10000 simulations
to minimize the impact of random noise (especially under low
SNR).

In Fig. 6, RMSE versus SNR for different numbers of
DOAs is shown. When there are multiple DoAs, the RMSE
is averaged among the DoAs. The maximum number of
DoAs is set to 3 as it is unlikely to have more than three
targets (reflection points) within 30-cm interval in practice.
In Fig. 6(a)-(c), RMSEs all decrease as SNR increases for
all three algorithms (MARS, ESPRIT, and MUSIC), which is
intuitive. From Fig. 6(a) to (c), the RMSE corresponding to
each algorithm increases (for the same SNR) as the number of
DoAs increases from 1 to 3. This is because when the number
of DoAs in a bin increases, each incident signal will interfere
with the others, which makes it harder to separate different
DoAs. In Fig. 6(a), the performances of all three algorithms
meet the 1° requirement when SNR > 5 dB. As the SNR

increases, all three curves become flat because the smallest
resolution we take for accuracy is 0.01°. In Fig. 6(b), only
MARS can meet the 1° requirement for SNR > 5 dB while
ESPRIT requires SNR > 8 dB and MUSIC requires
SNR > 10 dB. In Fig. 6(c), only MARS can
meet the 1° requirement for SNR > 5 dB while
ESPRIT requires SNR > 14 dB and MUSIC requires
SNR > 18 dB.

Fig. 7 shows RMSE versus SNR under two DoAs with
different spacing between the two DoAs. From Fig. 7(a) to (c),
only MARS can achieve 1° super-resolution with all DoA
settings for SNR > 5 dB. From Fig. 7(a) to (c), ESPRIT
requires SNR > 10,11, and 14 dB for spacing 3°,2°,
and 1°, respectively, to achieve 1° super-resolution. MUSIC
cannot achieve 1° super-resolution for any SNR within
[5,20] dB.

Fig. 8 shows RMSE versus SNR with the same DoA
spacing but different DoA values. From Fig. 8(a) to (c),
RMSE corresponding to every algorithm increases as the
DoA value increases. This is because, as DoA increases, the
gradient dcos¢ of the objective function decreases. As a
result, the difference between objective function values of
different incident signals with the same spacing becomes
smaller, which makes it harder to separate different DoAs.
From Fig. 8(a) to (c), only MARS can achieve 1° super-
resolution with all DoA settings for SNR > 5 dB. In
Fig. 8(a) and (b), ESPRIT requires SNR > 20 dB to
achieve 1° super-resolution. In Fig. 8(c), ESPRIT fails to
achieve 1° super-resolution over the range (SNR € [5, 20]
dB). Note that MUSIC cannot achieve 1° super-resolution
over the entire range (SNR € [5,20] dB) for all three
settings.
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In summary, MARS is the only algorithm that can achieve
1° resolution in all experimental settings. It also outperforms
both MUSIC and ESPRIT in all settings.

C. Computation Time

We now evaluate the processing time of MARS and
compare it to ESPRIT and MUSIC. In Fig. 9(a) to (c), the
numbers of DoAs in each bin are 1, 2, and 3. Assume
the number of bins N, 100. Then, Fig. 9(a) to (c)
corresponds to 100, 200, and 300 targets (reflection points),
respectively. Unlike in Section VI-B where the accuracy of
DoA estimation is independent of the number of bins, the
computation time that we are going to measure depends on
both the total number of bins and the number of DoAs
in each bin. We set the simulation time to 10 s, which
corresponds to 1000 estimations. The initialization process is
not included in the simulation and will be studied separately in
Section VI-D.

From Fig. 9(a) to (c), the computation times of all three
algorithms increase to some extent as the number of DoAs/bins
increases. Only MARS can achieve 1-ms real-time processing
while MUSIC needs ~100-ms computation time and ESPRIT
~10-ms computation time.

In summary, MARS is the only algorithm that can achieve
1-ms real-time processing in all settings while MUSIC
and ESPRIT algorithms require orders of magnitude more
computation time.

D. Initialization Process
We now investigate MARS’ performance during initial-
ization phase. Fig. 10 shows MARS’ RMSE performance

10°
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=
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Fig. 10.  Evolution of MARS’ RMSE performance over time during
initialization phase under different DoA settings.

over time during initialization phase under different DoA
settings. The number of samples in the search space is set to
1 (N7 /N,) (2560/100) 25 and the SNR
is set to 11 dB. In Fig. 10(a), we have the following
observations.

~
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DCA1000ECM

Fig. 11. Tl radar kit used in our experiment.

1) When there is only one DoA ({17°}), after two
estimations (2 ms), RMSE falls under 1°, which
meets our required super-resolution. Therefore, the
initialization process only takes 2 ms. From this time
on, DoA estimation will follow the procedure in
Section IV-D, with its computation time performance
already shown in Section VI-C.

2) When the number of DoA increases to two (i.e.,
{17°,22°}), it takes four estimations (4 ms) to bring
RMSE down under 1° (our required super-resolution).
This initialization process is longer than the previous
case (with only one DoA) because there are more
DoAs in the search space, and thus, more iterations are
needed. After 4 ms, the initialization process is complete
and DoA estimation will then follow the procedure in
Section IV-D, with its computation time performance
shown in Section VI-C.

3) When there are three DoAs (i.e., {17°,22°,27°}), the
initialization process requires seven estimations (i.e.,
7 ms) to bring RMSE down to our required 1° super-
resolution.

Fig. 10(b) shows our experimental results for a different
set of DoA values. The results and observations are similar
to those in Fig. 10(a). In summary, these results show
that our initialization algorithm (Algorithm 1) is efficient
and only takes a few ms to reach our required 1° super-
resolution after a new target first appears in the radar detection
range.

VIl. HARDWARE EXPERIMENT

In addition to simulation study, we also conduct exper-
iments using radar hardware in an indoor laboratory
environment.

A. Radar Hardware and Experimental Setup

The hardware used in the experiment is depicted in Fig. 11.
We use the AWR2243BOOST [3] automotive radar from Texas
Instruments (TI), which operates in the 76-81-GHz frequency
band and has a 5-GHz bandwidth. This radar is equipped
with three transmit antennas and four receive antennas,
with a maximum analog-to-digital (ADC) sampling rate
of 45 Mb/s. The detailed parameters of the chirp configuration
are presented in Table I. To facilitate the capture of raw data
from AWR2243BOOST, we employ TI’'s DCA1000ECM real-
time data capture card [64]. This card is designed to support
both laboratory and mobile data collection scenarios.

The setup of our laboratory experiment is depicted in
Fig. 12. In this setup, the two objects used for target detection

TABLE |

PARAMETER SETTINGS
Parameter Value
Center frequency 77 GHz
Bandwidth 1.8 GHz
ADC samples 256
Sample rate 10000 ksps
Frequency slope 30 MHz/us
Ramp end time 60 us
Idle time 100 ps
Chirp cycle time 160 ps
# chirps/frame (snapshot) | 64

AWR2243+ l

- DCA1000EVM

Fig. 12. Setup for detecting two targets in our experiment.

are mounted on a slide to precisely control their trajectory
and velocity. Both the radar and the objects are positioned at
the same horizontal level so that we can focus exclusively on
detecting variations in the azimuth angle. The estimation of the
elevation angle has been disabled to prevent interference from
reflective signals originating from Table I and surrounding
objects.

It is important to note that laboratory-based hardware
implementation shown in Fig. 12 cannot fully capture real-
world conditions. There are mainly two limitations of
laboratory-based hardware implementation. First, the velocity
of targets in the real world could be much higher. However,
as demonstrated in (10), where velocity is considered in
forming the reduced search space, and as shown in the
simulation results presented in Section VI, the estimation
error remains within an acceptable range—typically under
1°. Second, the number of targets that need to be detected
in real-world scenarios is larger. However, the performance
of DoA estimation and timing will not change much
(compared to the performance that we observed from our
laboratory-based results). This is because our algorithm is
designed to ensure that different clusters of targets (in
separate range—velocity bins) are processed independently.
When processed on a GPU parallel platform where all bins are
handled simultaneously and in parallel, the DoA estimation
performance and computation time are nearly identical to
that in a laboratory-based setting (despite with fewer number
of targets). In conclusion, although the laboratory-based
hardware implementation cannot fully replicate real-world
on-road scenarios, the performance differences are minimal,
and the results can still be applied to address real-world
scenarios.

In the experiment, we study three DoA estimation
algorithms: 3D-FFT (which comes with the AWR2243BOOST
card), MUSIC, and MARS. The latter two algorithms are
executed on the raw data gathered by the DCA1000EVM on
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Fig. 13. Detection of object locations under three algorithms.

the same computing platform used in Section VI (i.e., NVIDIA
DGX station with one V100 GPU).

B. Experimental Results

With the experimental setup, we assess performance in
two scenarios. First, we will examine the accuracy of
DoA estimation for two fixed-location objects across three
algorithms. Then, we will assess DoA estimation of the three
algorithms when objects are placed at different positions with
varying spacings.

The experimental results to detect the two fixed-location
objects by the three algorithms are shown in Fig. 13, with
radar sensor at the origin. Fig. 13 maps the locations of the
two objects (~5° spacing with respect to the origin) onto a
2-D azimuth plane, with each position precisely defined by
their range and DoAs. It should be noted that, in contrast to
simulation experiments where the DoAs of reflected signals
can be controlled precisely by the simulator, the actual DoAs
in a hardware-based experiment cannot be controlled precisely.
This is because the exact locations of the reflection points on
the objects are unknown, and thus, the reflected signals can
come from anywhere on the actual objects (e.g., the cardboards
in our experiment).

As depicted in Fig. 13, employing 3-D FFT results in the
detection of only one object (indicated by a blue marker).
Likewise, the use of MUSIC identifies a single object
(represented by a black marker). In contrast, under MARS,
both of the two objects are successfully detected (highlighted
by the two red markers). This experiment shows that MARS
can offer a higher resolution in object detection than both 3-D
FFT and MUSIC algorithms. The computation time of MUSIC
is >100 ms and the computation time of MARS and 3D-FFT
is <1 ms.

Fig. 14 shows the DoA estimation results under the three
algorithms for the two objects with three different DoA
spacings (~40°, ~20°, and ~5°).3

1) When DoA spacing of the two objects is approximately

40° apart, the two DoAs detected by the three algorithms
are: 1) 3D-FFT: 83° and 38°; 2) MUSIC: 78° and 41°;
and 3) MARS: 79° and 42°. Due to unknown reflection
points on the objects (card boards), we cannot assess
the accuracy of DoA estimations. Hence, our results can
only be used to assess each algorithm’s ability to detect

3Unlike in a simulation environment, a DoA spacing less than 5° is not
feasible in our laboratory experiment (Fig. 12) because the reflection points
on the two objects (card boards) cannot be controlled precisely.

90 ‘ ‘
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Fig. 14. Comparison of estimated DoAs at various positions under three
algorithms.

both objects simultaneously, which is the case for this
DoA spacing.

2) When DoA spacing of the two objects is approximately
20° apart: 1) 3D-FFT only detects a single DoA at
75°; 2) MUSIC detects two DoAs at 80° and 63°;
and 3) MARS detects two DoAs at 82° and 62°.
In other words, a DoA spacing of approximately 20°
is already beyond the resolution of 3D-FFT in this
experiment.

3) When DoA spacing of the two objects is approximately
5° apart: 1) 3D-FFT only detects a single DoA at
85°; 2) MUSIC only detects a single DoA at 82°; and
3) MARS can still detect two DoAs at 83° and 78°.
In other words, MARS exhibits the highest resolution
among the three algorithms.

The computation time of MUSIC is still >100 ms and the
computation time of MARS and 3D-FFT is still <1 ms.

In summary, our hardware experimental results demonstrate
that MARS can achieve higher DoA estimation resolution than
the state-of-the-art DoA estimation algorithms and can achieve
1-ms real-time processing.

VIII. CONCLUSION

In this article, we presented MARS—a novel real-time
super-resolution DoA estimation algorithm for automotive
radar. The main idea of MARS is to employ maximum
likelihood as our objective function as it is intrinsically
designed to find an optimal solution. To address the
prohibitively high complexity associated with traditional MLE,
MARS exploited the correlation between the input data
from adjacent time slots. Specifically, MARS uses the last
estimation results to form a promising and reduced search
space to solve the maximum likelihood problem. To further
accelerate computation time, we proposed to exploit parallel
computing whenever possible. To do this, MARS decomposes
the problems at each step into independent subproblems and
employs GPU to perform parallel computation. Special efforts
were given to GPU engineering (in terms of block/thread
management) that best matches the underlying hardware
platform. Through extensive simulation experiments, we found
that MARS can achieve 1° super-resolution within 1 ms
and outperforms the state-of-the-art algorithms (MUSIC and
ESPRIT) in both DoA estimation and timing performance.
To the best of authors’ knowledge, MARS remains the only
known algorithm that can achieve super-resolution within
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1 ms. Further hardware experiment also demonstrates that
MARS can achieve higher resolution than the other state-of-
the-art algorithms.
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