

Metamaterial Antenna Design to Enhance Near Field Inductive Coupling for Biomedical Implants

Karthik Kakaraparty¹, Marinus H. Daling¹, Julian Alonzo¹, Jihun Lee², Ah-Hyoung Lee², David Durfee¹, Lawrence Larson², Arto Nurmikko², and Vincent W. Leung¹

¹ Baylor University, Waco, TX, USA

² Brown University, Providence, RI, USA

Abstract—This paper presents a concept for a double negative metamaterial (DNM)-based antenna to simultaneously enhance Wireless Power Transfer (WPT) and reduce Specific Absorption Rate (SAR) here for a network of distributed brain microimplants. The DNM copper coils are integrated in a FR-4 substrate, which has a dielectric constant of 4.3 and tangent loss (δ) of 0.025. Occupying a $2 \times 2 \text{ cm}^2$ area, the DNM structure is introduced into our target wireless brain-machine interface (BMI) system operating at 915 MHz. Preliminary HFSS simulations show it provides 2 dB WPT enhancement and a 20% SAR reduction. We believe the work has the potential to address the WPT/ SAR co-optimization challenges for biomedical implants in general.

I. INTRODUCTION

Brain-machine interfaces (BMIs) have advanced considerably and translated into successful human clinical trials. Scaling these systems to support thousands of flexible, reconfigurable, and densely integrated neural nodes is one next research frontier. To that goal, sub-millimeter-sized wireless implants have been proposed [1-2]. Termed "Neurograins", these silicon chips integrate an on-chip coil for RF energy harvesting and up/ downlink wireless communication, as well as electrodes for single-channel neural recording/ stimulation.

The clinical viability for these implants hinges on delivering the required wireless power without violating the specific absorption rate (SAR) restrictions [3]. While research has explored SAR reduction for on-body applications [4-6], the implants' near-field inductively coupled wireless power transfer (WPT) system presents a different set of design challenges, and is relatively understudied [7-9].

This work proposes applying double negative metamaterial (DNM) structures in the inductive-coupled system of [1] to co-optimize WPT and SAR. Fig. 1(a) shows the trimetric view of the 3-layer system (highlighted in purple). Operating at 915 MHz, it is composed of: (i) a 'window-type' Tx coil external to the head, (ii) a 'window-type' relay coil implanted on the cortex, and (iii) a micro Rx-coil integrated on each Neurograin. Two metamaterial structures, each composed of copper coils (yellow) integrated in a FR4 substrate (gray), are placed under the Tx coil and within (on the same plane as) the relay coil, respectively. Fig. 1(b) provides the example design dimensions of the metamaterial element. Fig. 1(c) presents a cross-sectional view, displaying the relative vertical locations for the 3-layer coil system, the DNM structure and the brain tissues.

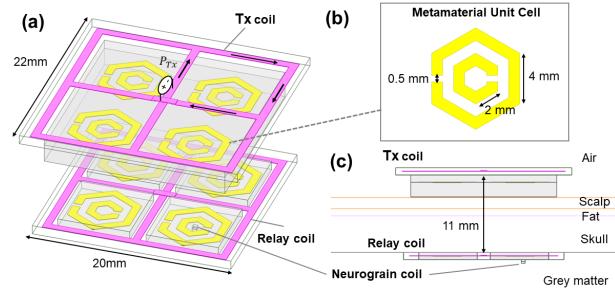


Fig. 1. (a) 3-layer inductively coupled "Neurograin" WPT system, (b) Proposed metamaterial unit cell, and (c) Cross-sectional view.

II. METAMATERIAL DESIGN

Inspired by a split-ring resonator (SRR) architecture, the metamaterial structure of Fig. 1(b) incorporates hexagonal structures with integrated slots. A substrate-integrated technique is employed to achieve double-negative metamaterial properties. The side lengths of the inner and the outer rings are 2 mm and 4 mm, respectively. The slots have a gap of 0.5 mm. Fig. 2(a) illustrates the unit structure with the assigned floquet port, and Fig. 2(b) shows the substrate-enclosed structure, which has a total 3 mm thickness. Fig. 2(c) depicts the 2×2 metamaterial array structure with overall dimensions of 20 mm \times 20 mm. Fig. 2(d) presents the cross-sectional view. The 1 oz copper patch material is sandwiched between a 2 mm thick FR-4 superstrate and a 1 mm thick bottom substrate.

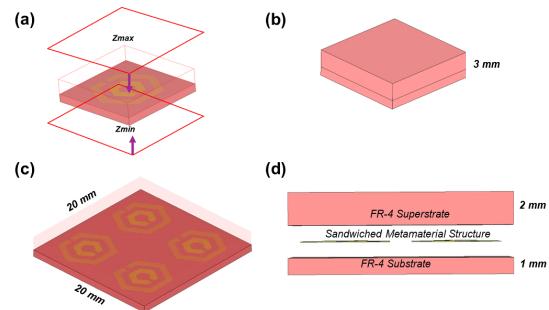


Fig. 2. The proposed metamaterial design: (a) Trimetric view with Floquet ports for the unit element, (b) Sandwiched unit structure, (c) Trimetric view of the complete metamaterial structure, and (d) Cross-sectional layer view.

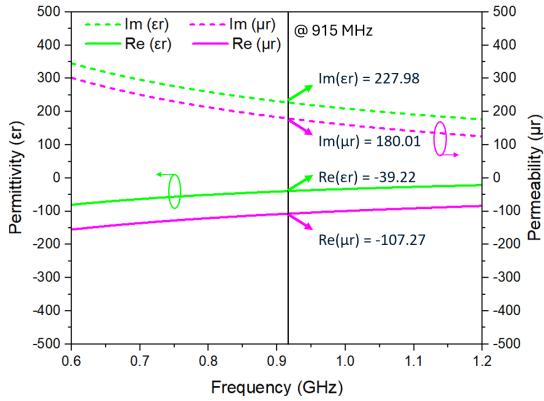


Fig. 3. Permittivity and permeability of the substrate integrated metamaterial versus frequency.

TABLE I
SAR AND S21 COMPARISON BETWEEN WPT SYSTEMS WITH/WITHOUT MATAMATERIALS

3-coil WPT system	No Metamaterial	With Metamaterial
S21 (dB)	-31.4	-29.4
P_{Tx} (dBm)	24	22
Peak SAR _{10g} (W/kg)	14.8	11.8

III. RESULTS AND DISCUSSION

A. Metamaterial Simulation and Discussion

To demonstrate the electromagnetic behavior of the designed metamaterial, the simulated permittivity and permeability results are shown in Fig. 3. The real part of the relative permittivity, $\text{Re}(\epsilon_r)$, is -39.22 , while the imaginary part, $\text{Im}(\epsilon_r)$, is 227.98 , indicating significant dielectric losses. Similarly, the real part of the relative permeability, $\text{Re}(\mu_r)$, is -107.27 , and the imaginary part, $\text{Im}(\mu_r)$, is 180.01 , reflecting substantial magnetic losses. These results confirm the metamaterial's left-handed behavior as characterized by negative permittivity and permeability, which limits the amount of electromagnetic energy dissipated on brain tissues at selected locations.

B. WPT/ SAR Simulation and Discussion

The metamaterial-enabled 3-coil Neurograin system of Fig. 1(a) is simulated in HFSS to extract the SAR performances. A Neurograin is placed at the most weakly-coupled spot to capture the worst-case WPT. The results are compared to that without the metamaterial structure. As shown in Table 1, the metamaterial enhances the WPT by 2 dB at the selected implant location, thus reducing the Tx power required from 24 dBm to 22 dBm. As a result, as presented in Fig. 4, the HFSS-simulated peak SAR substantially reduces by 20% , from 14.8 W/kg (observed in the area surrounding the intracranial relay coil) to 11.8 W/kg. While these initial results are encouraging, we are in the process of carefully analyzing the complex system, and re-optimizing the metamaterial structures/materials to enhance WPT efficiency and SAR for a large number of implants over a wider area.

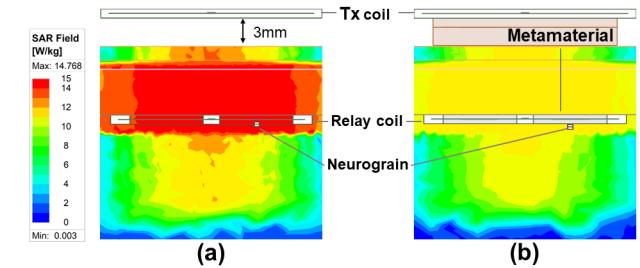


Fig. 4. HFSS-simulated SAR results (a) without metamaterial and (b) with metamaterial.

CONCLUSION

This study presents the preliminary design of double-negative metamaterial (DNM) to reduce the SAR for wirelessly-powered brain implant applications. HFSS simulations show that the metamaterial structure results in 2 dB increase in WPT efficiency and a 20% drop of SAR. Future work is needed to extend these results to cover a high number of microimplants distributed over a wider region.

ACKNOWLEDGMENT

This research is funded by NSF/ECCS Grant No. 2322601.

REFERENCES

- [1] J. Lee, V. Leung, A.-H. Lee, J. Huang, P. Asbeck, P. P. Mercier, S. Shellhammer, L. Larson, F. Laiwalla, and A. Nurmikko, "Neural recording and stimulation using wireless networks of microimplants," *Nature Electronics*, vol. 4, no. 8, pp. 604–614, Aug. 2021.
- [2] J. Lee, A.-H. Lee, V. Leung, F. Laiwalla, M. A. Lopez-Gordo, L. Larson, and A. Nurmikko, "An asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors," *Nature Electronics*, vol. 7, no. 4, pp. 313–324, Apr. 2024.
- [3] IEEE Std C95.7-2022 (Revision of IEEE Std C95.7-2014), "IEEE Standard for Electromagnetic Energy Safety Programs, 0 Hz to 300 GHz," IEEE, pp. 1–139, Mar. 2023, doi: 10.1109/IEEESTD.2023.10075348.
- [4] M. A. Sufian and N. Hussain, "Metasurface-Based Phone Case for the SAR Reduction of the 5G Mobile Phones," *IEEE Transactions on Electromagnetic Compatibility*, vol. 66, no. 2, pp. 417–426, 2024.
- [5] K. Kakaraparty and I. Mahbub, "The Design and SAR Analysis of Wearable UWB Antenna for Radiative Near-Field Wireless Power Transfer," in *2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)*, pp. 141–143, 2022. IEEE.
- [6] K. Kakaraparty and I. Mahbub, "The Design and SAR Analysis of a UWB Bow-tie Antenna for Wireless Wearable Sensors," in *2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)*, pp. 204–205, 2022. IEEE.
- [7] A. Nezaratizadeh, S. Mahmud and A. Khalifa, "Coils Parallelization: A Strategy for Improving Power Transfer Efficiency and Specific Absorption Rate in Wireless Power Transfer System for Implantable Medical Devices," in *2024 IEEE Wireless Power Technology Conference and Expo (WPTCE)*, Kyoto, Japan, 2024, pp. 217–222.
- [8] G. L. Barbruni, C. Cordara, M. Carminati, S. Carrara and D. Ghezzi, "A Frequency-Switching Inductive Power Transfer System for Wireless, Miniaturised and Large-Scale Neural Interfaces," *IEEE Transactions on Biomedical Circuits and Systems*, vol. 18, no. 3, pp. 679–690, June 2024, doi: 10.1109/TBCAS.2024.3359481.
- [9] S. Mahmud, A. Nezaratizadeh and A. Khalifa, "Enhancing Wireless Power Transfer Efficiency for Implantable Medical Devices Using Metamaterial," in *2024 IEEE Wireless Power Technology Conference and Expo (WPTCE)*, Kyoto, Japan, 2024, pp. 414–418.