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Abstract—Counterfactual reasoning allows us to explore hy-
pothetical scenarios in order to explain the impacts of our de-
cisions. However, addressing such inquires is impossible without
establishing the appropriate mathematical framework. In this
work, we introduce the problem of counterfactual reasoning in
the context of vector autoregressive (VAR) processes. We also
formulate the inference of a causal model as a joint regression
task where for inference we use both data with and without
interventions. After learning the model, we exploit linearity of
the VAR model to make exact predictions about the effects of
counterfactual interventions. Furthermore, we quantify the total
causal effects of past counterfactual interventions.

Index Terms—causal models, counterfactuals, interventions,
time series, vector autoregressive models

I. INTRODUCTION

In many situations, we may be interested in “what-if”
questions. As decisions in real life are rarely made with
perfect knowledge of their effects, it is only natural that
later one may question the optimality of their choices and
ask how things would be if a different decision had been
made. This process of reasoning about decisions and actions
that contradict what actually occurred pertains to problems of
counterfactual reasoning.

A counterfactual event is an event which does not agree with
a particular outcome that was observed in a given experiment
[1, p. 29]. For example, a student applying to a college
might be rejected due to a low score on an entrance exam.
A counterfactual question could then be “would this student
have been accepted if their score were higher?” In asking
this question, we are imagining a hypothetical scenario in
which we modify the score of this student, and keep all other
variables (i.e., the scores of all the other applicants) constant.
In general, counterfactual questions may help us understand
whether our actions are effective.

For the problem of detecting the presence of causal relation-
ships and learning the graphical structure of a causal system,
a large variety of approaches have been proposed, often
arising from different fundamental principles [2]–[5]. Many
of these methods attempt to rely on entirely observational
data, where the experimenter cannot intervene upon the system
under study to probe into its cause and effect relationships.
While it is sometimes possible to detect causalities without
intervention, observational approaches often require strong
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assumptions that are difficult to verify empirically or are
otherwise restrictive.For instance, identification of a linear
causal model from only observations is ill-posed if the noises
are Gaussian [6, pp.50-51]. Methods based on predictability,
such as Granger causality [7], can deliver false positives when
not all relevant variables are included in the model. Other
methods may require strong assumptions; for example, conver-
gent cross mapping [8] requires the existence of a dynamical
attractor, which is difficult to test on small data sets [9].
In comparison, when it is possible to perform interventions,
causal inference becomes considerably simpler, with several
standard algorithms [3], [10]. Under ideal conditions, when
experiments can be carried out perfectly and there are no
hidden processes, all causal relationships in system of N
variables can be detected with N single-variable interventions
[11].

To answer counterfactual questions, more information than
just the direction of causalities is required: one must also
have a functional model of how the effect is determined by
all of its causes [1]. For the college student example, we
would need to know the entrance exam scores of the other
applicants to determine the functional model for acceptance
and subsequently if the given student would be accepted, as
their acceptance would depend on all of the scores.

In this work, we consider the counterfactual prediction
problem: Given a particular realization of a causal system, i.e.,
a multivariate time series and a causal model that explains it,
can we predict what we would have observed if a previous,
hypothetical intervention occurred?

We present several contributions relevant to studying coun-
terfactual events with time series. Firstly, We introduce an
approach to learning the causal structure of a system by
leveraging multiple data sets with different interventions. We
apply this approach to the setting of vector autoregressive
(VAR) models. After learning the causal model, we address the
problem of making counterfactual predictions. Due to linearity
of the VAR model, we are able to make exact predictions
without needing to estimate unobserved variables. Finally, we
validate our approach using several examples.

II. PROBLEM FORMULATION

We consider the problem of modeling causal relationships
from a multivariate time series xt = [x1,t, ..., xD,t]

⊤. For each
node i and time instant t, we assume that the value of xi,t

is determined by a function of the values of the system at
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previous time steps, xt−1, ...,xt−Q, up to some order Q, as
well as a separate independent noise term wi,t. As a simple
example, we examine the vector autoregressive (VAR) model:

xt :=

Q∑
q=1

Bqxt−q +wt, (1)

where the Bq are matrices of linear coefficients, and wt ∼
N (0,C), for some given noise covariance C. The notation
:= expresses the direction of causality, where we consider (1)
as a causal generative process.

According to (1), the components of xt−1, xt−2, and xt−Q

exert causal influences on xt. It is traditional in causality to
express these relationships in terms of a graph, although there
are several options as to how this can be done. In Figure
1, we present one approach that treats each time instance
as a separate vertex, with the purpose of understanding the
temporal dependencies of the VAR model, which will later
simplify the calculation and prediction of counterfactuals.

· · · xt−2 xt−1 xt · · ·B1 B1 B1 B1

B2

B2

B2

Fig. 1: A causal graph obtained from unfolding the causal
relationships in (1) to show their dependencies in time, in the
Q = 2 case. Each vertex represents a random vector, and each
edge represents the presence of a cause-effect relationship.

To answer counterfactual queries about a system, we must
first have a structural causal model (SCM) of the system
[1]. A SCM is a hypothesis about the generative process
that created a data set. The SCM represents each variable in
the system as a function of its parents, a subset of variables
directly influencing a given variable, along with an exogenous
noise variable. In this way, the VAR model in (1) can be
interpreted as a SCM after we declare that the equation
explicitly describes how the value of xt is determined.

Asserting that a VAR model is a causal model is a stronger
statement than asserting it is a statistical model. A statistical
model needs only to generate the correct joint probability
distribution over the family of variables, but a causal model
is a hypothesis about the generative process as it exists in
reality. In the same way that multiple generative processes
can represent the same probability distribution, there might
be multiple SCMs that are compatible with a given data set.
Additionally, different causal models will produce different
answers to counterfactual questions, so care should be taken
to learn the most accurate causal model before discussing
counterfactuals. In the next section, we introduce interventions
and how SCMs respond to them.

A. Interventions

A major feature of causal models is that they are mod-
ularized, meaning that we may think of them as a set of

individual components which can be changed or modified. In
our example, each variable xi,t receives a value according to
the formula

xi,t :=

Q∑
q=1

b⊤
q,ixt−q + wi,t, (2)

where b⊤
q,i is the i-th row of Bq , and wi,t is the i-th element

of wt in (1). An intervention at node i and time t is a
modification to the causal model which replaces the function
that assigns a value to xi,t with a new one. For example, we
may intervene by replacing the function in (2) with a new one:

xi,t :=

Q∑
q=1

b̃⊤
q,ixt−q + σ̃wi,t,+ũi,t, (3)

where b̃q,i are modified linear coefficients, ũi,t is a signal
injected by the experimenter, and σ̃ ∈ [0, 1] is a parameter
that may be used to control the level of noise. Under ideal
conditions, the experimenter’s intervention perfectly controls
the value of xi,t by tuning the parameters in (3) to achieve a
desired effect.

In this paper, we assume that all interventions are able
to perfectly control the value of the node intervened upon,
so that xi,t satisfies (3) whenever an intervention on xi,t is
being performed. While intervening on a node i, it is assumed
that the functions governing other nodes in the system remain
unchanged, which is a form of modularity of the system. In
real life, there might be some uncertainty in the values of b̃q,i

and σ̃i when the intervention is performed, due to imperfect
experimental conditions. An intervention can be applied for
a period of time, during which we can actively observe the
behavior of the rest of the system, i.e., the unperturbed nodes.
We illustrate this process visually in Figure 2.

Data that we record while performing an intervention are
called interventional, contrasting with observational data that
we record while not altering the system under study. While
performing an experiment with multiple interventions, we
allocate recorded data into separate data sets according to the
type of intervention being applied (cf. Figure 2). In Section
III-A, we introduce a method to leverage multiple data sets to
improve estimation of Bq over purely observational data. The
caveat is that this approach is only possible when obtaining
interventional data is feasible.

B. The problem of predicting counterfactuals

Having introduced SCMs and interventions, we may now
formulate counterfactuals in our framework. In short, a
counterfactual is a hypothetical intervention. It is not an
intervention that occurred in reality, but rather one whose
behavior we can predict, having already observed a realization
of the system.

Now that the necessary causal background has been intro-
duced, we can state the primary problem of this work. Con-
sider an experiment in which we observe a multivariate signal
xt until a certain time T , and suppose that we have assumed
a particular SCM for xt. Now assume we are interested in
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Fig. 2: Interventions applied to a multivariate time series. The underlying causal model is a VAR model, (1), with Q = 2 and
D = 5. Two separate interventions were performed during the experiments in which we drove a node in the system with a
sinusoidal stimulus. For t = 101, ..., 200, x1,t (black curve) was forced to take on the value 4 sin(t/2), and for t = 301, ..., 400,
x2,t (red curve) was set to 4 sin(t/2). After recording, we partitioned the trial into three data sets, T0, T1, T2, according to the
intervention periods. Explicitly, T1 = {101, ..., 200}, T2 = {301, ..., 400}, and T0 = {1, ..., 500} \ (T1 ∪ T2)

.

a hypothetical intervention that would have occurred in the
past, and want to predict what we would have observed in
this hypothetical scenario. That is,

Given: A particular realization {xt|t = 1, ..., T},
and an SCM for xt, (4)

Predict: x̃t, (5)

where x̃t are the signals in the case that we performed a
hypothetical intervention upon xi,t for some t in the range
1 < T1 ≤ t ≤ T2 < T , and for a fixed i. Here we make an
important assumption that all conditions of the experiment,
such as the particular realization of the noise process wt,
remains the same in both cases. This is necessary, because
in considering the counterfactual problem, asserting that all
other conditions were the same implies that the noise too,
should have the same realization.

In general models, the values of wt need to be estimated
before counterfactual analysis can be performed. However, this
estimation is straightforward in any additive noise model since
wt enters the formulas additively. In our approach, we exploit
linearity of the system to circumvent the need to estimate wt

at all because the influence of the noise will cancel out.

III. PROPOSED SOLUTION

Before making counterfactual predictions, it is essential
to first learn the causal structure of the system. To learn
the parameters of the causal model in a way that leverages
both observational and interventional data, we propose a joint
regression task that allows us to infer the parameters of each
module shared across datasets. We make the tacit assumption
that these interventions are ideal, and that the parameters of
the model are unchanged when they are not related to the
intervention. We now introduce some notation. If at time t
we perform an intervention to control the value of xi,t, then
the time point t should be allocated to a set of time indices
Ti. If no intervention was performed, then the index t of xt

is allocated to the index set T0. We assume that only one
node can be intervened upon per time step t, so Ti ∩ Tj = ∅
whenever i ̸= j. We define

T−i =

 D⋃
j=0

Tj

 \ Ti (6)

to be the set of time indices of xi, where xi was not subject
to intervention. It is permissible that some index sets may be
empty, Tj = ∅. In principle, these sets could be partitions of
a single recording trial, or obtained from multiple recording
trials, with no major modification to our approach.

A. Causal structure learning

For clarity in presentation, we will first describe the case
of one lag (Q = 1), and from there we extend to the multiple
lag case.

a) SINGLE LAG: The goal is to learn the linear coeffi-
cient matrix B of the true causal model jointly across datasets
by minimizing the following objective,

min
B

∑
t∈T0

||xt−Bxt−1||22+
D∑
i=1

∑
t∈Ti

||x[−i]
t −B[−i]xt−1||22 (7)

where the operation A[−i] removes row i from the matrix A.
Using the identity ||x||22 = x2

1 + · · ·+ x2
D, we can simplify

this optimization task considerably. Recall that whenever we
intervene on a particular variable, all other linear coefficients
remain unchanged. Thus, the function that assigns a value to
xi,t is given by

xi,t := b⊤
i xt−1 +wt

whenever t /∈ Ti, or equivalently, when t ∈ T−i. These
considerations lead us to propose the following objective,
which is equivalent to (7):

min
B

D∑
i=1

∑
t∈T−i

||xi,t − b⊤
i xt−1||22, (8)

where, again, b⊤
i is the i-th row of B.

The revised objective in (8) has multiple advantages. Firstly,
it can be solved for each variable i separately as a distinct
subproblem. Secondly, it makes it clear that minimum mean
squared estimate of B can be obtained using classical methods.
If we assume some level of sparsity in B, then we can use
LASSO [12], or ℓ1 regularization, to get a sparse estimate:

min
B

D∑
i=1

∑
t∈T−i

||xi,t − b⊤
i xt−1||22 + λ||B||1, (9)

where λ is a regularization parameter.
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b) MULTIPLE LAGS: To generalize to the case in which
Q > 1, we only need to modify the approach slightly. Consider
the model in (1). If we define

Θ =
[
B1 · · · BQ

]
, (10)

and
x̄t =

[
xt−1 · · · xt−Q

]
, (11)

then we can express (1) as

xt := Θx̄t +wt. (12)

Now we can formulate a similar optimization task as before,
giving us the multiple lag version of (7):

min
Θ

∑
t∈T0

||xt −Θx̄t||22 +
D∑
i=1

∑
t∈Ti

||x[−i]
t −Θ[−i]x̄t||22,

which can again be split into tractable sub-problems. Consid-
ering sparsity, the multiple lag version of (9) is given to be

min
Θ

D∑
i=1

∑
t∈T−i

||xi,t − θ⊤
i x̄t||22 + λ||Θ||1, (13)

where θ⊤
i is the i-th row of Θ. The use of sparsity constraints

becomes increasingly relevant when considering multiple lags,
since strongly autocorrelated signals can have multiple distinct
models with similar predictive power [13].

B. Estimation of total causal effects

We now consider the problem of estimating the effects
of a past counterfactual intervention. Suppose that we have
observed xt up until some time T . For some t < T , consider
an intervention that modifies xi,t to take on a new value x∗

i,t.
If we define ∆xi,t = x∗

i,t−xi,t, then we can reason about the
hypothetical intervention as an additive change in xi,t:

xi,t −→ xi,t +∆xi,t.

Since the VAR model is linear, the additive change in xi,t

induces an additive change in all variables “downstream” from
it in the graph. For example, if we move one step into the
future, then xt+1 changes according to

xt+1 −→ xt+1 +B1ei∆xi,t,

where ei is the i-th unit vector in RD. We observe that the
linear model coefficients in B1 measure the sensitivity of xt+1

to changes in xt, and can be interpreted as a measure of the
strength of the causal relationship [14].

If we perform an intervention at time t and attempt to
predict its effect at time t + k, we need to propagate the
changes through the graph in Figure 1, that is, through each
intermediate time step. When Q > 1, the path in the graph
from xt to xt+k is not unique, and the total sensitivity of xt+k

to xt is given by a sum over all paths in the graph [15], [16].
Since the VAR model is time-invariant, the total sensitivity
is a matrix Tk which only depends upon k. We refer to this
matrix as a total causal effect matrix.

To compute the total causal effect matrix for the VAR
model, we can exploit recursion. Suppose that k > Q. Any
path from xt to xt+k must go through a node between xt+k−Q

and xt+k−1. As a result, the total causal effect decomposes
according to the same rule:

Tk = B1Tk−1 +B2Tk−2 + · · ·+BQTk−Q. (14)

If k ≤ Q, then a similar rule holds, but we define T0 = I
to be the identity matrix, and Tk = 0 for any k < 0, since
causation can only move forward in time.

IV. EXPERIMENTS

In this section, we demonstrate our approach to modeling
counterfactuals with two examples. First, we demonstrate how
joint regression can be leveraged to more accurately learn the
causal model. Second, we explore an example in which we
study the effects of a past intervention on future, forecasted
events. The presented results are of single outcomes of the
experiments.

A. Learning causal models with joint regression

We simulated a time-series of length T = 390, and system
dimension D = 5 with lag Q = 2. Each element bq,i,j in the
matrix coefficients Bq was generated as bq,i,j ∼ U(−0.5, 0.5),
for q = 1, 2. We set about 30% sparsity for each matrix. The
dynamics were perturbed with Gaussian noise wt ∼ N (0,C),
where the covariance C is a Toeplitz matrix with Cii = 1,
Cij = 0.5 if |i−j| = 1, and 0 otherwise. We intervened on the
node x1,τ within the interval τ ∈ {101, 170} and the node x2,τ

in the interval τ ∈ {201, 270}. For this example, we let the
intervened nodes be driven by a sine wave, specifically xi,τ :=
ũi,t, where ũi,t = 10 sin( τ2 ), for i = 1, 2 in their respective
time intervals. The rest of the nodes (i = 3, 4, 5) were left
unperturbed. We learned the B coefficients in two ways: i)
by using only the observational (unintervened data T0), and
ii) using intervened data as well - the proposed method. To
insure a fair comparison, we opted to use the same number

Fig. 3: Learning the causal model of a small system. The
performance is quantified by the MSE of the estimated entries
of Bq , defined by MSE = 1

D2

∑
i,j(bq,i,j − b̂q,i,j)

2.
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of data points T0 = 250 for learning in both i) and ii), where
in the case of i), 140 of those points are the interventional
dataset. With the current setup, the proposed method is at a
slight disadvantage in regards to amount of data used, since we
lose 140 points for learning the coefficients bq,i for i = 1, 2,
q = 1, 2. However, those same 140 points of intervention allow
us to better estimate the coefficients bq,i for q = 3, 4, 5.

In Figure 3, we show the true matrices Bq , for q = 1, 2, their
estimate using T0 only, and their estimate with the proposed
method, i.e., using interventional data as well. We can see there
is a drop in MSE when using the proposed method, which is
also reflected visually in the heat maps. The effect becomes
even more prominent when learning larger systems.

B. Predicting the effects of a counterfactual intervention

In this experiment, we consider the problem of predict-
ing the effects of a counterfactual intervention in the past.
Consider a multivariate time series of length T = 100 and
dimension D = 2. We assume that the causal model is given
by a VAR model, (1), with Q = 2, whose parameters are
known from prior investigation. Let us consider a counterfac-
tual situation in which, at times t = 240 until the end of the
experiment, the experimenter intervenes upon x1,t by driving
the signal with a new signal, u(t) ∼ N (1, 1).

In Figure 4, we predict the effects of the counterfactual
intervention on x1,t, as perceived by another variable x2,t.
We plot the signal x2,t that we observed originally alongside
its variant in an “alternate universe,” in which the counter-
factual intervention is performed. For times t < 40, both the
observed time series and the counterfactual one coincide, as
no intervention has not occurred yet. For 40 ≤ t, we see the
counterfactual intervention begin to make the two time series
diverge due to the effects of the intervention. Again, the model
is able to well anticipate the counterfactual universe.

Fig. 4: Predicting the effects of a past counterfactual interven-
tion. We consider a counterfactual (hypothetical) intervention
in which, starting at time 40. We visualize three curves: the
original observed signal x2,t (black), the signal which would
have been observed if the hypothetical intervention upon x1,t

was performed (blue), and our prediction of what would have
been observed in the counterfactual situation (red). The black
and blue curves were generated precisely by simulation of the
system, and the red curve is produced by making predictions
using the observed realization.

V. CONCLUSION

In this work, we studied the problems of counterfactual
reasoning and causal inference in the context of vector au-
toregressive models. By considering the system as modular
and assigning separate functions to each variable, we can
approach regression and model learning in a nonlinear manner.
Learning of the causal model is a necessary requirement
to reason about counterfactual interventions and other what-
if scenarios. The analysis of counterfactuals for nonlinear
settings is analogous to what we have presented here, al-
though additional care must be taken to estimate unobserved
variables like the noises. Future work involves understanding
the interventions for improved learning of the studied system
and combining counterfactual analysis with interventions to
achieve desired outcomes. Other directions include extending
the counterfactual analysis to nonlinear models and models
where the functional relationships are unknown and need to
be estimated.
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