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Abstract—In many science and engineering problems, we
observe high-dimensional data acquired sequentially. At each
time instant, these data correspond to one of a predefined number
of classes. The sequence of classes follows a certain pattern,
with the transition probabilities of the classes being unknown.
Our hypothesized generative model of the observed data involves
two latent processes. The first is a root process representing the
sequence of classes, while the second is a low-dimensional process
generated as a Markovian process, depending on the current
class and the previous value of the low-dimensional process. The
observed high-dimensional process is generated from the low-
dimensional state process. Our objective is to infer the posterior
distributions of the classes as they evolve over time based on the
observed data and the adopted model. To achieve this, we propose
a method for estimating the latent processes. We demonstrate the
effectiveness of our approach on synthesized data.

Index Terms—deep state-space models,
Gaussian processes, discrete latent processes, particle filtering,
preferential attachment prior

I. INTRODUCTION

In science and engineering, high-dimensional time series
are commonly modeled using state-space models, assuming
the state processes are low-dimensional. Furthermore, the
dynamics of the state process are influenced by an unobserved
discrete latent process that corresponds to different classes of
the state process. It is often of interest to find the sequence
of classes, i.e., the discrete latent process, from the observed
time series. Such models are valuable for capturing sudden
shifts in system behavior that occur randomly over time.

One approach to estimating the dynamics of discrete latent
variables that correspond to different classes is by using
multiple switching models. For these types of problems, one
can leverage methods from signal processing, such as those
based on Markovian switching systems, also known as jump
Markov systems [6], [7], [27].

An important domain where these models are applied is
neuroscience [1], [28]. There, researchers often analyze high-
dimensional time series and seek inference methods that
can effectively address the problem of identifying changes
in behavioral patterns and/or neural dynamics [2]. The
focal point revolves around modeling the spatiotemporal
dynamics of neural population activity while facilitating
flexible inference. This is frequently achieved by incorporating
lower-dimensional nonlinear latent factors and structures [1],
[25].

This work was supported by the National Science Foundation under Award
2212506.

This is close to regime switching which is an important
area of work in econometrics [15]. In these models the
statistical properties of time series data, such as mean,
variance, or autocorrelation structure, change over time
according to different regimes or states. These regimes could
represent different economic conditions, market environments,
policy regimes, or other underlying factors that influence the
behavior of the time series. The used models should capture
nonlinearities, structural breaks, and time-varying dynamics in
economic and financial time series data. They are employed to
model stock returns, interest rates, exchange rates, economic
growth, and other macroeconomic variables [11], [13], [26].

In our paper, we consider regimes that represent ordinal
classes 1, where the sequence of classes follow an unknown
pattern. For clarity, ordinal classes refer to categories or groups
that possess a natural order or ranking. Thus, in our paper,
when discussing switching between classes, such transitions
refer specifically to moving to a ‘neighboring’ class only.
Ordinal classes are of importance in machine learning because
of many applications where outcomes are described by ordered
categories (e.g., in healthcare [3], natural language processing
[18], and economics [14]). In the remainder of the paper,
we will mostly omit the adjective “ordinal” before “classes,”
although our discussion exclusively concerns ordinal classes.

We adopt a generative model of the data, where classes
representing a system form a sequence following the Yule-
Simon process law once the system enters a particular regime
(class). When the system decides to transition to a new class,
the next class is selected following a model similar to the
Polya-urn model. Specifically, the probability of selecting the
new regime is proportional to the total time the system has
historically spent in that regime. Given the selected class at
time t, the system generates a low-dimensional latent process
xt that depends on the class. The process value xt also
depends on its previous value, xt−1. Once xt is generated, a
high-dimensional vector yt is obtained from xt. The function
that maps xt onto yt is independent of the system’s regime.
In our study, we assume a lack of knowledge regarding the
functions generating the latent and observed processes, as well
as the parameters of the model governing the class sequence.

Our inference of the unknowns is formulated within the
Bayesian framework. To estimate the unknown functions,
we use an approximation of Gaussian processes based on

1In the remainder of the paper, we interchangeably use the terms “class,”
“regime,” or “discrete latent variable”.
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random features. This model includes four sets of unknowns:
1) parameters associated with the class generation model, 2)
linear parameters of the Gaussian process approximations,
3) unknown variances of the noises, and 4) the state and
the discrete latent processes. We assume knowledge of the
dimension of the state process, the number of classes, and
the availability of training data for each class. (The relaxation
of these assumptions is left for future work.) The proposed
solution is based on integrating out the linear parameters of
the models and the noise variances, and on particle filters (PFs)
for estimating the state process xt.

We note that PFs have received significant attention in the
literature regarding the inference of regime switching. Some
recent contributions include [12], [20]. In [12], a PF algorithm
for general regime-switching systems was introduced, which
incorporates the model index as an unknown variable in the
system. The model index is jointly estimated with the time-
varying parameters of the system. Unlike existing approaches,
the algorithm allows for a diverse set of candidate models by
appropriately selecting the model index proposal distribution.
In [20], the authors propose a new differentiable PF for
regime-switching state-space models, where a set of unknown
candidate dynamic and measurement models is learned and
tracked. Other literature that addresses this problem with PFs
includes [4], [9], [23], [24], [29].

The contributions of our paper include the following:
we propose a fully Bayesian solution for the sequential
classification of high-dimensional time series. Our approach
involves estimating unknown functions in the state equation
under model uncertainty and unknown functions in the
observation equation. The assumptions about the generative
model of the data are minimal.

The rest of the paper is organized as follows: In the next
section, we present the generative model of our data and
the problem we aim to solve. Section III elaborates on the
proposed solution. We present numerical results demonstrating
the performance of the proposed method in Section IV. Finally,
Section V offers concluding remarks.

II. THE GENERATIVE MODEL AND THE PROBLEM
FORMULATION

Let zt be a latent process representing a sequence of classes,
where zt ∈ Z = {c1, c2, c3, ..., cK}, where K represents the
number of different classes. The classes are of ordinal nature,
e.g., c1 is the “worst” class, c2 is better than c1, and so on.
The class z0 is drawn from a prior probability mass function,
p(z), i.e.,

z0 ∼ p(z0), (1)

where p(z0) is known. When zt equals ck, in the subsequent
time step, it may either retain the same class or transition to
an adjacent class, namely ck−1 or ck+1, where k ranges from
2 to K − 1. In the special cases where zt is equal to c1, zt+1

is restricted to either c1 or c2. Similarly, if zt is equal to cK ,
its value at zt+1 can only be either cK−1 or cK .

Let zt = ck. The probability that the class process does not
change its value at t+ 1, is given by

p(zt+1 = zt) =
nk

ρk + nk
, (2)

where nk is the number of consecutive instants of the process
holding class ck since the last change, and ρk > 0 is a
parameter of the class ck. The probability that the process
changes the class at t+ 1 is

p(zt+1 ̸= zt) =
ρk

ρk + nk
. (3)

The duration of the class process keeping the same value
follows a Yule-Simon distribution.

Let zt = ck, k = 2, 3, . . . ,K−1. After the system “decides”
to change its value ck at t+1, it must make another decision:
selecting the next class. This selection is done according to

zt+1 =

{
ck−1, with P =

ρk−1+Nt,k−1

ρk−1+Nt,k−1+ρk+1Nt,k+1

ck+1, with P =
ρk+1+Nt,k+1

ρk+1+Nt,k−1+ρk+1Nt,k+1

, (4)

where Nt,k−1 and Nt,k+1 are the total numbers of samples of
the class process with values ck−1 and ck+1 up to time instant
t, respectively.

Given the drawn class zt, we generate a low-dimensional
vector process xt according to

xt = fzt(xt−1) + ηzt,t, (5)

where xt ∈ Rdx ; fzt(·) : Rdx → Rdx is a class-dependent
function that maps the input vector xt−1 to a vector of the
same size; the symbol ηzt,t ∈ Rdx is a zero-mean Gaussian

perturbation, or more specifically ηzt,t
i.i.d.∼ N (0,Σηzt

), where
Σηzt

is a diagonal matrix with corresponding variances along
its diagonal. Once xt is obtained, we generate another vector
yt by

yt = h(xt) + νt, (6)

where yt ∈ Rdy , and dy >> dx; The function h(·) : Rdx →
Rdy is shared by all the classes, and it takes the vector
xt as input and produces a vector of much larger size; the
vector νt stands for noise, and νt

i.i.d.∼ N (0,Σν), where Σν

is a diagonal matrix with corresponding variances along its
diagonal.

Given the above model, the objective is to estimate the
sequence of classes zt from the observed sequence of vectors
yt. The functions fk(·), ∀k and h(·), along with the variances
σ2
η,k and σ2

ν , are unknown. We assume that we have training
data from each class for learning the functions fk(·) and h(·).

III. THE PROPOSED SOLUTION FOR SEQUENTIAL
CLASSIFICATION

In [22] and [21], the challenge of estimating latent processes
is addressed as defined in the preceding section, specifically
within a single-class context. This present work aims to extend
the methodology introduced in [22] and [21] to accommodate
multi-class scenarios. We will outline the approach for
modeling and estimation of the unknown functions fk(·) and
h(·), describe the training process, and present our solution
for multi-class applications.
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A. Modeling the functions

We employ Gaussian processes (GPs) [30] to model
the functions specified in (5) and (6). In this context, an
unknown function f is conceptualized as a stochastic entity,
sampled from a GP denoted as f ∼ GP(m,κ), where
m represents the mean function, and κ denotes the kernel
function. Consequently, the function values f exhibit Gaussian
distribution, expressed as:

p(f |X) = N (f |m,K), (7)

where the size of f aligns with the dimensions of the input-
output data used for function learning. The covariance matrix
K is formulated from the inputs of the function.

Scaling up GPs with a large number of input-output pairs
poses challenges, particularly when inverting the covariance
matrix K becomes computationally expensive. To address this,
we turn to approximations leveraging the concept of sparsity.
One common approach to address this approximation is by
constructing GPs with features derived from a feature space
[16].

In particular, GPs employing a shift-invariant kernel
can undergo approximation within a feature space [16].
This approach allows computations to bypass matrix
decompositions, relying solely on matrix multiplications. We
explain this on the function h(·) from (6). This is a vector
function with dy outputs, and we model it by

h(xt) = Θ⊤ϕ(xt) (8)

where h(·) : Rdx → Rdy , Θ ∈ R2J×dy , and ϕ ∈ R2J×1 is a
feature vector defined by [16]

ϕ(xt) =
1√
J
[sin(x⊤

t ω
1), cos(xtω

1), ...,

sin(xtω
J), cos(xtω

J)]⊤, (9)

with Ω = {ω1,ω2, . . . ,ωJ} representing a collection of
samples randomly extracted from the power spectral density
of the GP kernel.

We have a similar approximation of all the class functions
in (5), i.e.,

fk(xt−1) = Ψ⊤
k φ(xt−1), (10)

where fk(xt−1) : Rdx → Rdx , ∀k, Ψ ∈ R2J×dx , and
φ(xt−1) ∈ R2J×1 is defined like ϕ(·) in (9).

In summary, we work with the following models of xt and
yt:

xt = Ψ⊤
ztφ(xt−1) + ηzt,t, (11)

yt = Θ⊤ϕ(xt) + ϵt. (12)

Clearly, the number of parameters in (11) and (12) that need
to be estimated is dx × K × 2J + dy × 2J plus dxK noise
variances from (11) and dy variances from (12).

B. Training the models

Our model involves several types of unknowns, including
the sequence of classes, zt, their respective parameters ρk
for k = 1, 2, . . . ,K , the latent process xt, the parameters

Θ and Ψk for k = 1, 2, . . . ,K , the noise covariance matrix
Σηk

for k = 1, 2, . . . ,K , and the covariance matrix Σν . Our
approach is Bayesian, and during the training phase, we obtain
the joint posterior distributions of Ψk and Σηk

, denoted as
p(Ψk,Σηk

|Dk) for all classes k and p(Θ,Σϵ|D). Here, Dk

represents the training data belonging to class k and D is the
set of all training data. The posteriors derived from the training
data serve as the initial priors for the subsequent filtering
operation.

We estimate the unknowns of the model given by (11) and
(12) via particle filtering and using analytical expressions.
Particle filtering is employed to track the state process xt,
and given xt, we update the posterior of Ψk and Σηk

as well
as the posterior of Θ and Σϵ. The particle filter generates
many possible trajectories of the state process, and we denote
them by x

(m)
t , m = 1, 2, . . . ,M . We note that each trajectory

has its own joint posterior of the parameters. We update the
parameters of the posteriors and estimate the state process, as
described next.

a) Updating the posteriors of (Ψk,Σηk
) and (Θ,Σϵ):

We explain the update of the posterior of θi ∈ R2J×1 (the
i−th column of Θ) and [Σϵ]ii = σ2

iϵ. We start with the prior

p(θi, σ
2
iϵ) ∝

1

σa0+1
iϵ

e
− 1

2σ2
iϵ
(bi0+(θi−θi0)

⊤Σ−1
i0 (θ−θi0))

, (13)

where ai0, bi0, θi0, and Σi0 are parameters of the prior,
and where ai0 > 2J and bi0 > 0. In (13), we recognize
the multivariate normal–inverted Gamma distribution. At time
instant t this distribution is still normal–inverted Gamma and
with parameters ait, b

(m)
it ,θ

(m)⊤

it , and Σ
(m)
it . These parameters

are recursively obtained by

ait = ai,t−1 + 1, (14)

b
(m)
it = b

(m)
i,t−1 + y2it

+ θ
(m)⊤

i,t−1Υ
(m)−1

i,t−1 θ
(m)
i,t−1

− θ(m)⊤

it Υ
(m)−1

i,t θ
(m)
it , (15)

θ
(m)
it = Υ

(m)
it

(
Υ

(m)−1

i,t−1 θ
(m)
i,t−1 + ϕ

y(m)

t yit

)
, (16)

Υ
(m)
it =

(
Υ

(m)−1

i,t−1 + ϕ
(m)
t ϕ

(m)⊤

t

)−1

, (17)

where the superscript (m) suggests that all the variables
are associated with the mth particle stream of the state
process. The same equations hold for all θi and σ2

iϵ, i =
1, 2, . . . , dy . Analogous equations also hold for ψ⊤

ik and σ2
ikη ,

i = 1, 2, . . . , dx, k = 1, 2, . . . ,K .
b) Estimating the latent process xt: We employ particle

filtering for estimating xt [5], [8], [10]. In summary, particle
filters approximate probability density functions (pdfs) using
discrete random measures. The pdf’s support is defined by a
set of particles, where each particle is assigned a weight. For
example, at time t − 1, the posterior pdf p(xt−1|y1:t−1) is
approximated by

pM (xt−1|y1:t−1) =
1

M

M∑
m=1

δ(xt−1 − x
(m)
t−1), (18)

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on June 05,2025 at 01:43:21 UTC from IEEE Xplore.  Restrictions apply. 



4

where x
(m)
t−1 denotes the m−th particle (sample) of xt−1,

δ(·) is the Dirac delta function, and M is the number of
particles. The approximating random measure pM (xt|y1:t) can
be obtained from pM (xt−1|y1:t−1) by

(a) Generating particles x
(m)
t according to

x
(m)
t ∼ p(xt|x(m)

t−1). (19)

(b) Computing the weights of the particles x
(m)
t by

w
(m)
t ∝ p(yt|x(m)

t ), (20)

where
M∑

m=1

w
(m)
t = 1. (21)

At this point, p(xt|y1:t) is approximated by

pM (xt|y1:t) =
M∑

m=1

w
(m)
t δ(xt − x

(m)
t ). (22)

(c) Resampling the particles using their weights w
(m)
t

[19].
In our work, the densities for sampling new particles are

multivariate Student’s t pdfs, i.e.,

p(xt|x(m)
t−1) = tνt

(
µ

(m)
t ,Υ

(m)
t

)
, (23)

where µ(m)
t is the location vector of the pdf that belongs to the

m−th stream, Υ(m)
t is its scale matrix, and νt represents the

degrees of freedom. They are both updated after every time
instant t (for details, see [22]).

We compute the weights according to

w
(m)
t ∝ p

(
yt|x(m)

1:t ,y1:t−1

)
, (24)

where the pdf of yt in (25) is also a multivariate Student’s t
pdf.

At the end of the training process, the posteriors of interest
are p(Ψk,Σηk

|Dk), for k = 1, 2, . . . ,K and p(Θ,Σϵ|D).
We form these posteriors from p(m)(Ψk,Σηk

|Dk), for
k = 1, 2, . . . ,K and p(M(k−1)+m)(Θ,Σϵ|D), where m =
1, 2, . . . ,M , and k = 1, 2, . . . ,K . There are many ways to
form the posterior from all these posteriors. In our work, we
used the mean square error estimates of the parameters of the
respective normal–inverted Gamma distributions.

C. Sequential estimation of the classes

Once the training is completed, the sequential estimation of
the classes proceeds as follows. We are interested in finding
P (zt|y1:t, z1:t−1), where z1, z2, . . . , zt are the estimates of
the classes. Recall that our unknowns are ρk,Θk, σ

2
ikη, i =

1, 2, . . . dx, k = 1, 2, . . . ,K;Ψ, and σ2
iϵ, for i = 1, 2, . . . dy .

Since we work with particle streams, suppose that at time t−1
we have the M posterior distributions of all the unknowns,
which are used for generating particles, i.e., p(ρk|z(m)

1:t−1),
∀k, p(zt|z(m)

1:t−1,ρ
(m)
t ), and p(xt|x(m)

1:t−1, z
(m)
t ). Note that the

vector ρ(m)
t is defined by ρ(m)

t = [ρ
(m)
1t ρ

(m)
2t . . . ρ

(m)
Kt ]

⊤, The

particle generation and their weight computation at time t is
implemented as follows:

1) Sample the values of ρk from

ρ
(m)
kt ∼ p(ρk|z(m)

1:t−1), for k = 1, 2, . . . ,K, (25)

where

p(ρk|z(m)
1:t−1) ∝ p(z

(m)
1:t−1|ρk)p(ρk), (26)

where p(z
(m)
1:t−1|ρk) is the likelihood of ρk and where the

subscript t in ρ
(m)
kt suggests that the particle of ρk was

drawn from the posterior given by (26) at time instant
t− 1. One can sample from this posterior according to
a scheme based on a Gibbs sampler [17]. The priors of
all the ρks are all Gamma pdfs with parameters aρ, bρ.

2) Given the generated particles ρ(m)
kt , we draw the particles

of zt, i.e.,

z
(m)
t ∼ P (m)(zt|z(m)

1:t−1,ρ
(m)
t ), (27)

where

P (m)
(
zt|z(m)

1:t−1,ρ
(m)
t

)
=


n
z
(m)
t−1

ρ
z
(m)
t

+n
z
(m)
t−1

, zt = z
(m)
t−1

P̃
(m)
zt , zt ̸= z

(m)
t−1

,

(28)

where n
z
(m)
t−1

is the number of consecutive samples with

the same label as that of z(m)
t−1 and where

P̃ (m)
zt =

ρ
(m)
zt

ρ
z
(m)
t−1

+ n
z
(m)
t−1

× ρ
(m)
zt +N

(m)
zt

(ρ
z
(m)
t−1−1

+N
(m)

z
(m)
t−1−1

) + (ρ
(m)

z
(m)
t−1+1

+N
(m)

z
(m)
t−1+1

)
,

(29)

where zt equals z(m)
t−1+1 or z(m)

t−1−1, provided z
(m)
t−1 ̸= K

or z
(m)
t−1 ̸= 1, and N

(m)
k is the total number of samples

the stream z
(m)
1:t−1 had a value equal to k. If z(m)

t−1 = 1 or
z
(m)
t−1 = K, the probability of leaving the current regime

to the neighboring regime is given by

P̃ (m)
zt =

ρ
(m)
zt

ρ
z
(m)
t

+ n
z
(m)
t−1

. (30)

3) Next we need to sample xt. If the sample of the latent
process comes from the class z

(m)
t , we use (see (23)),

i.e.,

x
(m)
t ∼ tνt

(
µ

(m)

z
(m)
t ,t

,Υ
(m)

z
(m)
t ,t

)
. (31)

We observe that (23) is obtained by integrating out Θ(m)
k

and Σ(m)
ηk

.
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4) We compute the weights of the particles (x
(m)
t , z

(m)
t ,

ρ
(m)
t ) by (24). Namely, the weights are computed

according to

w
(m)
t ∝ p(yt|y1:t−1,x

(m)
1:t )

×
p(x

(m)
t |x(m)

1:t−1, z
(m)
1:t )

q(x
(m)
t |x(m)

1:t−1, z
(m)
1:t )

×
p(z

(m)
t |z(m)

1:t−1,ρ
(m)
1:t )

q(z
(m)
t |z(m)

1:t−1,ρ
(m)
1:t )

×
p(ρ

(m)
t |ρ(m)

1:t−1)

q(ρ
(m)
t |ρ(m)

1:t−1)
, (32)

where with q(·) we denote the respective proposal
distributions. In our implementation, we chose to set
them equal to their corresponding pdfs p(·) (e.g.,
q(ρ

(m)
t |ρ(m)

1:t−1) = p(ρ
(m)
t |ρ(m)

1:t−1)), which consequently
involves using the following equation to compute the
weights:

w
(m)
t ∝ p(yt|y1:t−1,x

(m)
1:t ). (33)

After we complete this cycle of steps, we estimate the
probabilities of the classes at t. We use

P̂ (zt = k) =
M∑

m=1

w
(m)
t I

z
(m)
t =k

, ∀k, (34)

where I
z
(m)
t =k

is the indicator function equal to one when the

condition z
(m)
t = k is satisfied.

Before we start the computations for the next time instant
t, we resample the particles [19].

IV. NUMERICAL RESULTS

A. Experiment 1

In Experiment 1, we generated two-dimensional hidden
processes, where the functions associated with each class were
defined by the following equations. If zt = c1, the latent
process xt evolved according to the following equations:

x
[1]
t = 0.9x

[1]
t−1 + 0.5 sin(x

[2]
t−1) + u

[1]
t , (35)

x
[2]
t = 0.5 cos(x

[1]
t−1) + 0.9x

[2]
t−1 + u

[2]
t . (36)

If zt = c2, we had

x
[1]
t = 0.9x

[1]
t−1 − 0.5 sin(50x

[1]
t−1x

[2]
t−1) + u

[1]
t , (37)

x
[2]
t = 0.5 cos(50x

[1]
t−1x

[2]
t−1)− 0.9x

[2]
t−1 + u

[2]
t , (38)

and if zt = c3,

x
[1]
t = 0.9x

[1]
t−1 + 0.5 sin(3x

[2]
t−1) + u

[1]
t , (39)

x
[2]
t = 0.5 cos(4x

[1]
t−1 + 1) + 0.9x

[2]
t−1 + u

[2]
t . (40)

The observation process was defined by

yt = 0.5Axt + sin(Bxt) + vt, (41)

where A ∈ R10×2 is a matrix whose elements were randomly
sampled from a standard Gaussian distribution N (0, 1), and

the elements of B ∈ R10×2 were independently sampled from
a Beta(1, 1) distribution. Thus, dx = 2, dy = 10.

We created three data sets from the respective classes c1, c2,
and c3. Each of them consisted of 10K samples, which were
used for learning the different functions fzt in the state
equation. By contrast, all the data sets were used for learning
the function h(·) of the observation equation. The number of
sampled frequencies of the Gaussian process in all cases was
J = 50.

Once the training was completed, we tested the method on
a new set of data that was 5k samples long. We did not use
the model for generating the sequence of classes, and instead
chose that each new class was 1k samples long and that the
sequence of classes was 1 → 2 → 3 → 2 → 1.

The results are shown in Fig. 1. The top plot presents the
estimated probabilities of the three classes. The middle and
bottom plots depict the two-dimensional state process and the
10-dimensional observed time series, respectively. The results
clearly demonstrate that the method was capable of estimating
the correct classes.

In Fig. 2, on the left, we see the estimated class in blue,
expressed as real numbers (where the classes are enumerated
as 0, 1, and 2) along with the actual class. In the middle
plot, we display the true class and the decided class based
on the values of the estimated classes. We observe excellent
agreement between the true and estimated classes. On the
right plot, we display the actual estimated probabilities of the
classes.

B. Experiment 2

We repeated Experiment 1 with the same sequence of
classes and state processes but changed the number of
observations to dy = 15. The results are shown in Fig. 3.
As expected, the accuracy of the estimated classes somewhat
increased. We note, however, that in this experiment, the
number of unknown parameters went up to 1,500, from 1,000
in Experiment 1.

V. CONCLUSIONS

In this paper we addressed the problem of sequential
classification of high-dimensional time series. At each time
instant, the observed vector corresponds to one of a predefined
number of classes. Our hypothesized generative model of the
observed data involves two latent processes, of which the first
represents the sequence of classes, while the second is a low-
dimensional state process generated as a Markovian process.
The observed high-dimensional process is generated from the
low-dimensional state process. All the functions in the state
and observation equations were assumed to be unknown. We
proposed a method based on Gaussian processes that requires
the estimation of both linear and nonlinear unknowns. The
linear unknowns were integrated out, and the nonlinear ones
were estimated using particle filtering. The method is fully
Bayesian and produces, as output, the estimated probabilities
of the sequence of classes to which the observed vectors
belong. The method has been tested on simulated data, and the
results suggest that it has the potential to estimate the classes
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Fig. 1: Top: The estimated probabilities of the classes; Middle: The generated two-dimensional state process; Bottom: The
generated 10-dimensional observed time series.

(a) (b) (c)

Fig. 2: (a) The estimated class as a real number; (b) The decided class based on the estimated probability; (c) The normalized
probabilities of the classes. (On this plot the classes are denoted as Class 0, 1, and 2.)

of high-dimensional multivariate time series with minimal
assumptions about the generative model of the data.
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Fig. 3: Top: The estimated probabilities of the classes; Middle: The generated two-dimensional state process; Bottom: The
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