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Abstract—In many science and engineering problems, we
observe high-dimensional data acquired sequentially. At each
time instant, these data correspond to one of a predefined number
of classes. The sequence of classes follows a certain pattern,
with the transition probabilities of the classes being unknown.
Our hypothesized generative model of the observed data involves
two latent processes. The first is a root process representing the
sequence of classes, while the second is a low-dimensional process
generated as a Markovian process, depending on the current
class and the previous value of the low-dimensional process. The
observed high-dimensional process is generated from the low-
dimensional state process. Our objective is to infer the posterior
distributions of the classes as they evolve over time based on the
observed data and the adopted model. To achieve this, we propose
a method for estimating the latent processes. We demonstrate the
effectiveness of our approach on synthesized data.

Index Terms—deep state-space models,
Gaussian processes, discrete latent processes, particle filtering,
preferential attachment prior

I. INTRODUCTION

In science and engineering, high-dimensional time series
are commonly modeled using state-space models, assuming
the state processes are low-dimensional. Furthermore, the
dynamics of the state process are influenced by an unobserved
discrete latent process that corresponds to different classes of
the state process. It is often of interest to find the sequence
of classes, i.e., the discrete latent process, from the observed
time series. Such models are valuable for capturing sudden
shifts in system behavior that occur randomly over time.

One approach to estimating the dynamics of discrete latent
variables that correspond to different classes is by using
multiple switching models. For these types of problems, one
can leverage methods from signal processing, such as those
based on Markovian switching systems, also known as jump
Markov systems [6], [7], [27].

An important domain where these models are applied is
neuroscience [1], [28]. There, researchers often analyze high-
dimensional time series and seek inference methods that
can effectively address the problem of identifying changes
in behavioral patterns and/or neural dynamics [2]. The
focal point revolves around modeling the spatiotemporal
dynamics of neural population activity while facilitating
flexible inference. This is frequently achieved by incorporating
lower-dimensional nonlinear latent factors and structures [1],
[25].
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This is close to regime switching which is an important
area of work in econometrics [15]. In these models the
statistical properties of time series data, such as mean,
variance, or autocorrelation structure, change over time
according to different regimes or states. These regimes could
represent different economic conditions, market environments,
policy regimes, or other underlying factors that influence the
behavior of the time series. The used models should capture
nonlinearities, structural breaks, and time-varying dynamics in
economic and financial time series data. They are employed to
model stock returns, interest rates, exchange rates, economic
growth, and other macroeconomic variables [11], [13], [26].

In our paper, we consider regimes that represent ordinal
classes !, where the sequence of classes follow an unknown
pattern. For clarity, ordinal classes refer to categories or groups
that possess a natural order or ranking. Thus, in our paper,
when discussing switching between classes, such transitions
refer specifically to moving to a ‘neighboring’ class only.
Ordinal classes are of importance in machine learning because
of many applications where outcomes are described by ordered
categories (e.g., in healthcare [3], natural language processing
[18], and economics [14]). In the remainder of the paper,
we will mostly omit the adjective “ordinal” before “classes,”
although our discussion exclusively concerns ordinal classes.

We adopt a generative model of the data, where classes
representing a system form a sequence following the Yule-
Simon process law once the system enters a particular regime
(class). When the system decides to transition to a new class,
the next class is selected following a model similar to the
Polya-urn model. Specifically, the probability of selecting the
new regime is proportional to the total time the system has
historically spent in that regime. Given the selected class at
time ¢, the system generates a low-dimensional latent process
x; that depends on the class. The process value x; also
depends on its previous value, x;_;. Once x; is generated, a
high-dimensional vector y, is obtained from x;. The function
that maps x; onto y; is independent of the system’s regime.
In our study, we assume a lack of knowledge regarding the
functions generating the latent and observed processes, as well
as the parameters of the model governing the class sequence.

Our inference of the unknowns is formulated within the
Bayesian framework. To estimate the unknown functions,
we use an approximation of Gaussian processes based on

'In the remainder of the paper, we interchangeably use the terms “class,”
“regime,” or “discrete latent variable”.
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random features. This model includes four sets of unknowns:
1) parameters associated with the class generation model, 2)
linear parameters of the Gaussian process approximations,
3) unknown variances of the noises, and 4) the state and
the discrete latent processes. We assume knowledge of the
dimension of the state process, the number of classes, and
the availability of training data for each class. (The relaxation
of these assumptions is left for future work.) The proposed
solution is based on integrating out the linear parameters of
the models and the noise variances, and on particle filters (PFs)
for estimating the state process X;.

We note that PFs have received significant attention in the
literature regarding the inference of regime switching. Some
recent contributions include [12], [20]. In [12], a PF algorithm
for general regime-switching systems was introduced, which
incorporates the model index as an unknown variable in the
system. The model index is jointly estimated with the time-
varying parameters of the system. Unlike existing approaches,
the algorithm allows for a diverse set of candidate models by
appropriately selecting the model index proposal distribution.
In [20], the authors propose a new differentiable PF for
regime-switching state-space models, where a set of unknown
candidate dynamic and measurement models is learned and
tracked. Other literature that addresses this problem with PFs
includes [4], [9], [23], [24], [29].

The contributions of our paper include the following:
we propose a fully Bayesian solution for the sequential
classification of high-dimensional time series. Our approach
involves estimating unknown functions in the state equation
under model uncertainty and unknown functions in the
observation equation. The assumptions about the generative
model of the data are minimal.

The rest of the paper is organized as follows: In the next
section, we present the generative model of our data and
the problem we aim to solve. Section III elaborates on the
proposed solution. We present numerical results demonstrating
the performance of the proposed method in Section I'V. Finally,
Section V offers concluding remarks.

II. THE GENERATIVE MODEL AND THE PROBLEM
FORMULATION

Let z; be a latent process representing a sequence of classes,
where z; € Z = {c1,¢2,¢3,...,ci }, where K represents the
number of different classes. The classes are of ordinal nature,
e.g., c1 is the “worst” class, cq is better than ¢;, and so on.
The class z( is drawn from a prior probability mass function,

p(2), ie.,
29 ~ p(20), (D

where p(zg) is known. When z; equals ¢y, in the subsequent
time step, it may either retain the same class or transition to
an adjacent class, namely ci_1 or cx41, where k ranges from
2 to K — 1. In the special cases where z; is equal to c1, 2411
is restricted to either c; or ce. Similarly, if z; is equal to cg,
its value at z;,1 can only be either cx_1 or ck.

Let z; = ci. The probability that the class process does not
change its value at ¢ + 1, is given by

23
pr + i’
where ny, is the number of consecutive instants of the process
holding class ¢ since the last change, and p;, > 0 is a
parameter of the class c;. The probability that the process
changes the class at ¢t + 1 is

2

p(Zt+1 = Zt) =

Pk

_ 3
Pk + N ©)

pztr1 # 2t) =

The duration of the class process keeping the same value
follows a Yule-Simon distribution.

Letz, = ¢, k =2,3,..., K—1. After the system “decides”
to change its value c; at ¢+ 1, it must make another decision:
selecting the next class. This selection is done according to

. _ Pr—1+Ne r—1
2 _ Ck-1, with P = Pr—1+Ne k—1+prt+1Ne kt1 (4)
t+1 = c with P = Prr1+Ne g1 ’
k+15 Pr+1+Ne k—1+pPrr1Ne k11

where Ny ;1 and Ny ;41 are the total numbers of samples of
the class process with values c;_; and cg1 up to time instant
t, respectively.

Given the drawn class z;, we generate a low-dimensional
vector process x; according to

Xt = th, (Xt—l) + nzt,t? (5)

where x; € R%; £, (-) : R% — R% is a class-dependent
function that maps the input vector x;_; to a vector of the
same size; the symbol n,, , € R9: is a zero-mean Gaussian

. . i.i.d.

perturbation, or more specifically nzhtZ ~UN(0, 3,.,), where
3., is a diagonal matrix with corresponding variances along
its diagonal. Once x; is obtained, we generate another vector

y: by
Vi = h(x¢) + vy, 6)

where y; € R%, and dy >> d; The function h(-) : Ré= —
R% is shared by all the classes, and it takes the vector
x; as input and produces a vector of much larger size; the
vector v; stands for noise, and v; i N(0,%,), where 3,
is a diagonal matrix with corresponding variances along its
diagonal.

Given the above model, the objective is to estimate the
sequence of classes z; from the observed sequence of vectors
y:. The functions f5(-), Vk and h(-), along with the variances
o2, and o2, are unknown. We assume that we have training

n,k
data from each class for learning the functions fj(-) and h(-).

III. THE PROPOSED SOLUTION FOR SEQUENTIAL
CLASSIFICATION

In [22] and [21], the challenge of estimating latent processes
is addressed as defined in the preceding section, specifically
within a single-class context. This present work aims to extend
the methodology introduced in [22] and [21] to accommodate
multi-class scenarios. We will outline the approach for
modeling and estimation of the unknown functions fj(-) and
h(-), describe the training process, and present our solution
for multi-class applications.
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A. Modeling the functions

We employ Gaussian processes (GPs) [30] to model
the functions specified in (5) and (6). In this context, an
unknown function f is conceptualized as a stochastic entity,
sampled from a GP denoted as f ~ GP(m,k), where
m represents the mean function, and x denotes the kernel
function. Consequently, the function values f exhibit Gaussian
distribution, expressed as:

where the size of f aligns with the dimensions of the input-
output data used for function learning. The covariance matrix
K is formulated from the inputs of the function.

Scaling up GPs with a large number of input-output pairs
poses challenges, particularly when inverting the covariance
matrix K becomes computationally expensive. To address this,
we turn to approximations leveraging the concept of sparsity.
One common approach to address this approximation is by
constructing GPs with features derived from a feature space
[16].

In particular, GPs employing a shift-invariant kernel
can undergo approximation within a feature space [16].
This approach allows computations to bypass matrix
decompositions, relying solely on matrix multiplications. We
explain this on the function A(-) from (6). This is a vector
function with d,, outputs, and we model it by

h(xe) = O (xy) (8)

where h(-) : R% — R%, ©® € R?/*% and ¢ € R?’*! is a
feature vector defined by [16]

1 .
(%) = ﬁ[sm(x;rwl),cos(xtwl), vy
sin(x;w?), cos(xw?)] T, )
with @ = {w! w? ... ,w’/} representing a collection of

samples randomly extracted from the power spectral density
of the GP kernel.

We have a similar approximation of all the class functions
in (5), i.e.,

fr(xeo1) = ¥ p(x-1),

where fi(x:-1) : Rl — Ri= Vi, ¥ e R2/xde
p(x¢—1) € R?27X1 is defined like ¢(-) in (9).

In summary, we work with the following models of x; and
yi:

(10)

and

Y
12)

x =Wl o(xi1) + 1.,
yi =OTp(x) + €.
Clearly, the number of parameters in (11) and (12) that need

to be estimated is d, x K x 2J 4 d, x 2J plus d, K noise
variances from (11) and d,, variances from (12).

B. Training the models

Our model involves several types of unknowns, including
the sequence of classes, z;, their respective parameters py
for K = 1,2,..., K, the latent process x;, the parameters

® and ¥, for £k = 1,2,..., K, the noise covariance matrix
3, for k=1,2,..., K, and the covariance matrix X,. Our
approach is Bayesian, and during the training phase, we obtain
the joint posterior distributions of ¥; and X,,, denoted as
p(¥r, Xy, |Di) for all classes k and p(©,3|D). Here, Dy,
represents the training data belonging to class k& and D is the
set of all training data. The posteriors derived from the training
data serve as the initial priors for the subsequent filtering
operation.

We estimate the unknowns of the model given by (11) and
(12) via particle filtering and using analytical expressions.
Particle filtering is employed to track the state process Xy,
and given x;, we update the posterior of ¥;, and X,, as well
as the posterior of ® and X.. The particle filter generates
many possible trajectories of the state process, and we denote
them by xgm), m =1,2,..., M. We note that each trajectory
has its own joint posterior of the parameters. We update the
parameters of the posteriors and estimate the state process, as
described next.

a) Updating the posteriors of (¥,%,,) and (©,%,):
We explain the update of the posterior of 8; € R2/*1 (the
i—th column of ©) and [X.];; = o2. We start with the prior

—ﬁ(bi0+(9i—9i0)TEi_01(9—9i0)) (13)

p(eiva?e) X ap+1
Oie
where a9, b0, 050, and ;o are parameters of the prior,
and where a;o > 2J and b,y > 0. In (13), we recognize
the multivariate normal-inverted Gamma distribution. At time
instant ¢ this distribution is stil] normal—inverted Gamma and
with parameters a;;, b7, 0™ and (™). These parameters
are recursively obtained by

(14)

Qi = a1+ 1,
b =00+l
o X el
—oy iy el (15)
0" = (x 0l + o ). a6)

1 Ty -1
= (e eme™ ) (17)
where the superscript (™) suggests that all the variables
are associated with the mth particle stream of the state
process. The same equations hold for all §; and o2, i =
1,2,...,d,. Analogous equations also hold for 1., and af,m,
i1=1,2,...,d;,k=1,2,... K.

b) Estimating the latent process x;: We employ particle
filtering for estimating x; [5], [8], [10]. In summary, particle
filters approximate probability density functions (pdfs) using
discrete random measures. The pdf’s support is defined by a
set of particles, where each particle is assigned a weight. For
example, at time ¢ — 1, the posterior pdf p(x;—1|y1.4—1) is
approximated by

M
1 m
PM (xealyra1) = 57 D 8- —x("),

m=1

(18)
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where xETf denotes the m—th particle (sample) of x;_i,

d(+) is the Dirac delta function, and M is the number of
particles. The approximating random measure p™ (x;|y1.;) can
be obtained from p™ (x;_1|y1.¢_1) by

(a)  Generating particles x( ™)

(m)

X"~ (e,

according to
(19)

(b)  Computing the weights of the particles x\™ by

wi™ o ply|xi™), (20)
where
M
S w™ =1 1)
m=1
At this point, p(x¢|y1.+) is approximated by
pM (x¢|y1:t) Z w(m)5 (x¢ — Xt )). (22)

(c)  Resampling the particles using their weights wt(m)

[19].
In our work, the densities for sampling new particles are
multivariate Student’s ¢ pdfs, i.e.,

plxilx™) = t, (™, (™), 23)

where ugm) is the location vector of the pdf that belongs to the
m—th stream, Tgm) is its scale matrix, and v; represents the
degrees of freedom. They are both updated after every time
instant ¢ (for details, see [22]).

We compute the weights according to

(m

w™ o p (ylx{ yia1) | 24)

where the pdf of y; in (25) is also a multivariate Student’s ¢
pdf.

At the end of the training process, the posteriors of interest
are p(¥y,X,, |Dy), for k = 1,2,..., K and p(©,%.|D).
We form these posteriors from p(™) (¥, 3, |Dy), for
E=1,2,...,K and pME=D+m)(@ X |D), where m =
1,2,...,M, and k£ = 1,2,..., K. There are many ways to
form the posterior from all these posteriors. In our work, we
used the mean square error estimates of the parameters of the
respective normal—inverted Gamma distributions.

C. Sequential estimation of the classes

Once the training is completed, the sequential estimation of
the classes proceeds as follows. We are interested in finding
P(z¢|y1:t, 21:4—1), Where z1,29,...,2; are the estimates of
the classes. Recall that our unknowns are pg, O, o lkn,z =
codyy k= 1,2, K;®, and o, for i = 1,2,...d,,.

Since we work with partlcle streams, suppose that at time ¢ —1
we have the M posterior distributions of all the unknowns,
which are used for generating particles ie., p(pk\zif?ll),
Yk, p(ze 2™ 1 pt™), and p(xe|x{™),, 2{™). Note that the

(m) (m) (m). (m)1T The

vector py™ is defined by p{"™ = [pi}" py” ... 1T,

particle generation and their weight computation at time ¢ is
implemented as follows:

1) Sample the values of pj from

(m)

Pry fork=1,2,...,K, (25

plprl2iL ),
where

plol=t) 1) o p(={) 1o )p(on), (26)

where p(zY?Zl |px) is the likelihood of py, and where the

subscript ¢ in p,(CT) suggests that the particle of p; was
drawn from the posterior given by (26) at time instant
t — 1. One can sample from this posterior according to
a scheme based on a Gibbs sampler [17]. The priors of
all the pys are all Gamma pdfs with parameters a,, b,.

2) Given the generated particles p,(gt") , we draw the particles

of z, i.e.,
2™~ PU (]2 pf™), Q27
where
N (m)
Ft—1 (m)
m m m P , 2t = Z,—
P! )(zt|z§:t117pt )> = p~2§’">+ 2{m) =1
Pz(tm)a 2 ?é Z(m)
(28)

where n_om) is the number of consecutive samples with

Zi—1
(m)

the same label as that of z;_; and where

By _ o
=t pm) N _(m)
t—1 t—1
S 4 )
(m) (m) (m) ’
N (m) 1) (p (m)+1 + NZETl)""l)
(29

X

(Poim oy F

where z; equals zt( 1) +1lorz_ ) —1, provided Z(m1) #K

or zt(ml) # 1, and N ,5 ™) is the total number of samples

the stream z\™) | had a value equal to k. If z{™) = 1 or

zt(ml) = K, the probability of leaving the current regime

to the neighboring regime is given by
- (m)
Bm = P (30)
pm) + N _(m)
t t—1
3) Next we need to sample x;. If the sample of the latent
process comes from the class zt(m), we use (see (23)),
ie.,

X (M(’zjn)) ,Ti?;g)7t) . 31)

We observe that (23) is obtained by integrating out @Ecm)
and E%T).
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4) We compute the weights of the particles (x\™, 2™

pgm)) by (24). Namely, the weights are computed

according to

Vo p Yt|Y1t 1,X§t))

|X Z(m)
p 1t 15 lt

(
(x
(™ 7).
(
(2
(o}

Q

1:t 1’th

p
q\z )|Z§T) 1 pY:tL)

pip ‘pl:t—l)

a(p™ o))
where with ¢(-) we denote the respective proposal
distributions. In our implementation, we chose to set
them equal to their corresponding pdfs p(-) (e.g.,
a(pi™ 1P\ 1) = p(p{™ |} 1)), which consequently
involves using the following equation to compute the
weights:

)
)
275 )|Z1t 17P1t)
(m )

(32)

(m)

w{™ o p(yielyre—1,x\7). (33)

After we complete this cycle of steps, we estimate the
probabilities of the classes at t. We use

M
=" w™Lm_,, Yk
m=1 '

is the indicator function equal to one when the

(34)

where Hzi’”’:k

condition 2™ = k is satisfied.
Before we start the computations for the next time instant
t, we resample the particles [19].

IV. NUMERICAL RESULTS
A. Experiment 1

In Experiment 1, we generated two-dimensional hidden
processes, where the functions associated with each class were
defined by the following equations. If z; = ¢, the latent
process x; evolved according to the following equations:

2 =094, + 0.55in(z) + Wl (35)
a:g F=0.5cos(al ) + 0927, + ul?. (36)

If z; = ¢, we had
M =092, —o. 5sm(50x£”1x£ I+dt, @
x?] = 0. 5cos(50xt 1xt 1) 0. 9x,[‘ ]1 + um (38)

and if z; = c3,
2 = 09219, + 05sin(322 ) + ul", (39)
[ V= 0.5cos(4zM, + 1) +0.922 + 4P (40)
The observation process was defined by

Yt = 0.5AXt + Sin(th) + Vi, (41)

where A € R19%2 is a matrix whose elements were randomly
sampled from a standard Gaussian distribution A/(0,1), and

the elements of B € R19%2 were independently sampled from
a Beta(1,1) distribution. Thus, d, = 2,d, = 10.

We created three data sets from the respective classes c1, co,
and c3. Each of them consisted of 10K samples, which were
used for learning the different functions f,, in the state
equation. By contrast, all the data sets were used for learning
the function A(-) of the observation equation. The number of
sampled frequencies of the Gaussian process in all cases was
J = 50.

Once the training was completed, we tested the method on
a new set of data that was 5k samples long. We did not use
the model for generating the sequence of classes, and instead
chose that each new class was 1k samples long and that the
sequence of classes was 1 -2 —3 — 2 — 1.

The results are shown in Fig. 1. The top plot presents the
estimated probabilities of the three classes. The middle and
bottom plots depict the two-dimensional state process and the
10-dimensional observed time series, respectively. The results
clearly demonstrate that the method was capable of estimating
the correct classes.

In Fig. 2, on the left, we see the estimated class in blue,
expressed as real numbers (where the classes are enumerated
as 0, 1, and 2) along with the actual class. In the middle
plot, we display the true class and the decided class based
on the values of the estimated classes. We observe excellent
agreement between the true and estimated classes. On the
right plot, we display the actual estimated probabilities of the
classes.

B. Experiment 2

We repeated Experiment 1 with the same sequence of
classes and state processes but changed the number of
observations to d, = 15. The results are shown in Fig. 3.
As expected, the accuracy of the estimated classes somewhat
increased. We note, however, that in this experiment, the
number of unknown parameters went up to 1,500, from 1,000
in Experiment 1.

V. CONCLUSIONS

In this paper we addressed the problem of sequential
classification of high-dimensional time series. At each time
instant, the observed vector corresponds to one of a predefined
number of classes. Our hypothesized generative model of the
observed data involves two latent processes, of which the first
represents the sequence of classes, while the second is a low-
dimensional state process generated as a Markovian process.
The observed high-dimensional process is generated from the
low-dimensional state process. All the functions in the state
and observation equations were assumed to be unknown. We
proposed a method based on Gaussian processes that requires
the estimation of both linear and nonlinear unknowns. The
linear unknowns were integrated out, and the nonlinear ones
were estimated using particle filtering. The method is fully
Bayesian and produces, as output, the estimated probabilities
of the sequence of classes to which the observed vectors
belong. The method has been tested on simulated data, and the
results suggest that it has the potential to estimate the classes
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Fig. 1: Top: The estimated probabilities of the classes; Middle: The generated two-dimensional state process; Bottom: The
generated 10-dimensional observed time series.
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Fig. 2: (a) The estimated class as a real number; (b) The decided class based on the estimated probability; (c) The normalized
probabilities of the classes. (On this plot the classes are denoted as Class 0, 1, and 2.)

of high-dimensional multivariate time series with minimal
assumptions about the generative model of the data.
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