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Abstract—In the field of neuroscience, the task of accurately
deciphering brain connectivity from observed data has continued
to receive increased attention. In this paper, we address the
challenge of inferring candidates for brain functional connectivity
using local field potential data, taking into account nonlinear
interactions and multiple delays. Our approach leverages Gaus-
sian processes and automatic relevance determination kernels
to learn mapping functions from one brain area to another.
The resulting learned topology is represented as a directed
graph with an adjacency matrix. We validate the approach on
both synthetic computational neural datasets and real macaque
datasets. The results demonstrate the capability of the method
to successfully reveal synthetic graph structures and uncover
biologically meaningful pathways in real-world data.

Index Terms—Topology inference, Gaussian processes, brain
functional connectivity

I. INTRODUCTION

Undoubtedly, the brain is one of the most complex systems
we know of. It is a vast network of 100 billion of neurons
connected with more than 100 trillion of connections. One of
the biggest mysteries of our time is where and how different
cognitive functions, such as working memory, are coded in
the brain. It is critical to address this gap to improve our
understanding of how the brain works and to develop future
therapeutic approaches for neurological disorders. In this pa-
per, we use signal processing tools to illuminate the functional
connectivity of the thalamocortical network involved in work-
ing memory from recorded local field potentials (LFPs). The
results of this work could be used to answer other neuroscience
and neurosurgery questions.

Several existing methodological approaches to learning
neural connectivity use either covariance or graph Laplacian
matrices [6], [20]. However, these methods encounter limita-
tions in effectively capturing unidirectional relationships in the
system that generated the data, and we note that these directed
relationships are crucial to understanding how information
is processed in the brain. Our primary focus is to extract
directional information from LFP data about the relationships
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between brain regions of interest [7]. The LFP data have been
recorded in the cerebral cortex and thalamus regions [15].

The propagation of information in the brain is not instan-
taneous; therefore, models of brain connectivity must account
for propagation delays. This raises questions about the appli-
cability of structural equation models (SEMs) [13], which are
designed to accommodate simulated influences but may not
be suitable for revealing nuanced functional topologies of the
brain. Another major approach to recovering a brain topology
is based on vector autoregressions (VARs) [9], [18], including
structural VARs [2]. These models aim to incorporate delayed
dependencies, making them more suitable tools for topology
recovery. Furthermore, to capture nonlinearities, which aligns
better with reality, the concept of kernel-based Granger causal-
ity has been introduced [16], [21].

Some previous studies employ the Gaussian process (GP)
in the analysis of brain data. For instance, [19] modeled the
LFP as a mixture of GPs to analyze the brain states. In [1],
the authors used GPs to model the latent cognitive states
underlying observed neural and behavioral data. Additionally,
[11] learned the undirected covariance matrix, representing
brain functional connectivity. This was achieved by modeling
the log-covariance elements as a linear combination of GP
latent factors.

In this paper, we address the problem of learning possible
functional connectivities between brain regions using GPs [3]–
[5], [12]. GPs offer a straightforward means to incorporate
prior knowledge into the inference process, simplifying the
analysis and interpretations for practitioners [10]. Our method
effectively captures nonlinearities and multiple delayed influ-
encing signals while making very mild assumptions about
the dependency functions. We use the length scale of the
automatic relevance determination (ARD) kernel to indicate
the contribution weight of different brain areas to a specific
region. The length scales from the ARD kernel have proven
successful in feature selection for machine learning problems
[22].

We worked on one data set generated by a computational
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neural model and on a macaque memory task dataset. For
the former, we had the ground truth of the network topology,
which we used to evaluate the performance of the proposed
method. For the second data set, we had a hypothesis of the
topology of the brain network during the studied memory tasks
and compared it with the topology obtained using the proposed
method.

Our contributions to the paper are as follows: (a) we propose
a GP-based method for estimating a topology of a brain net-
work using recorded LFPs. The method measures the strengths
of influence on a node by delayed signals from other nodes
in the brain and its own delayed signals using the principle of
ARD; (b) we demonstrate, with both synthesized and real data,
that the proposed method is effective in discovering network
topologies.

II. PROBLEM FORMULATION

A set of LFP signals, denoted as {yn,t}t=1:T
n=1:N , is collected

from N electrodes over a time span of T samples, and where
n represents the nth electrode. The connectivity between brain
areas is represented using a directed graph. This representation
uses a binary adjacency matrix, denoted as A, where ai,j ∈
{0, 1} is the (i, j)th element corresponding to the presence or
absence of a connection between node j and i. A value of
1 for ai,j signifies an edge pointing from node j to node i,
while 0 implies no connection between the two nodes. In the
context of the brain, a value of 1 for ai,j indicates a functional
connection between the areas represented by nodes j and i.
We can also define a weighted adjacency matrix, where the
entries wi,j ∈ [0, 1] quantify the strengths of these edges.

It is important to note that these connections are subject
to a specific delay. Our premise is based on the assumption
that brain signals in one area are influenced by signals from
other areas with some delays. Mathematically, we model these
influences by individual nonlinear functions for each node,
which are independent and described as follows:

yn,t = fn(xt,w
[1:Λ]
n ) + ϵn, (1)

where xt ∈ RNΛ := [y1:N,t−1, . . . , y1:N,t−Λ]
⊤ is a vector

composed of past observations from all the nodes, with Λ
being the maximum delay. The term ϵn represents white
Gaussian noise with zero mean and a variance of σ2

ϵn , fn is
a function associated with node n, and w

[1:Λ]
n := [w

[1]
n,1:N ,

. . . , w
[Λ]
n,1:N ]⊤are weights associated with each element of

the input vector. This formulation encapsulates the interplay
between brain regions, their delayed interactions, and the
observed signals.

When considering the graph signals of node n across the
entire timeline, we can represent them in a vector form as
follows:

yn = fn(X,w[1:Λ]
n ) + ϵn, (2)

where yn = [yn,Λ+1, . . . , yn,T ]
⊤, X aggregates the input

vectors xt (the input matrix to all nodes is the same),
t ∈ {Λ + 1,Λ + 2, . . . , T}, and fn is an unknown function.

Rather than making deterministic assumptions about linearity
or nonlinearity, we propose that the function is drawn from a
GP with a zero mean and some kernel κ. This means that the
samples of the function come from a zero mean multivariate
Gaussian with a covariance matrix Kn ∈ R(T−Λ)×(T−Λ), i.e.,

fn ∼ N (0,Kn), (3)

where the (i, j)th element kn,i,j of the covariance matrix
represents correlation between the ith and jth elements of the
output time series and is computed by the kernel function κ.
The assumption regarding the function within the framework
of GPs entails that the function is smooth, which is a much
more moderate assumption compared to a deterministic one.

III. PROPOSED SOLUTION

We adopt the automatic relevance determination (ARD)
kernel for (2) [17]. The kernel is expressed as follows:

kn,i,j = σ2
n exp

(
−1

2

N∑
m=1

Λ∑
λ=1

w[λ]
n,m(ym,i−λ − ym,j−λ)

2

)
,

(4)

where w
[λ]
n,m is the length scale of the kernel. We observe that

(4) is employed for feature selection in the field of machine
learning [8]. In a more intuitive sense, when w

[λ]
n,m takes on a

smaller value, it implies that changes in the mth node within
the input graph signal x have limited influence on the output
of node n, for a specific delay λ. For instance, as w

[λ]
n,m

approaches zero, the term ym,i−λ − ym,j−λ nullifies when
calculating the kernel. Conversely, a larger value of w

[λ]
n,m

indicates that changes in the mth node do affect the output
value of the nth node.

Based on this framework, we propose leveraging w
[λ]
n,m to

reveal the interaction occurring within the brain from the
observed LFP data when a subject engages in a memory task.
Details of optimizing the objective function and obtaining the
optimal set of hyperparameters w

[1:Λ]
n , as well as determining

the optimal topology based on w
[1:Λ]
n , can be found in [3].

IV. NUMERICAL RESULTS

We validate the approach on two datasets. The first dataset is
a synthetic one that simulates neural activity during a working
memory task requiring the sequential application of two task
rules of which the first is an abstract rule that instructs whether
the orientation or shape of an upcoming visual stimulus is
relevant, and the second is a concrete rule that instructs action
based on whether orientation or shape is relevant. The second
dataset represents real macaque data recorded during the same
working memory task. We evaluated the method’s performance
using the F-score, calculated as follows:

F-score =
2× Precision × Recall

Precision + Recall
, (5)

where Precision is defined as TP/(TP + FP) and Recall, as
TP/(TP + FN), with TP, FP, and FN denoting true positive,
false positive and true negative, respectively.
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Abs Cue Ori:
Pay attention 
to orientation
Not the shape! 

Concrete Cue: 
saccade to right

not left!

Fig. 1. The network topology of the generative model for the synthetic data.

Fig. 2. The flow of neuron engagement. The upper panel shows how the
neurons engage in the aPFC area in epoch 1, and the lower one how they do
it in the pPFC area in epoch 2.

A. A Synthetic Data Set

The synthetic data set was generated by a computational
model that replicates neural interactions that take place when
a subject engages in the working memory task. Initially, the
focus is on processing orientation cues rather than shapes.
In the second epoch, a specific orientation cue is processed.
These two task epochs correspond to a shift from left to right
in Fig. 1. The flow of information within the model follows
the topology illustrated in Fig. 1. The dataset consists of six
distinct brain areas, and each epoch is constructed using a
total of 500 samples. The anterior prefrontal cortex is delin-
eated into the superficial layer (SaPFC) and the deep layer
(DaPFC); similarly, the posterior prefrontal cortex comprises

Fig. 3. The graph topologies learned by GP and LASSO during different
time epochs, from the synthetic data set.

abs-GP abs-LASSO con-GP con-LASSO
P 0.938 0.438 0.875 0.375
R 0.682 0.778 0.700 0.750
F 0.790 0.560 0.778 0.500

TABLE I
COMPARISONS OF GP WITH LASSO

the superficial layer (SpPFC) and the deep layer (DpPFC).
Within the thalamus, three distinct areas are identified: MD1,
MD-matrix, and MD2.

In generating the synthesized data, we used the Leaky
integrate-and-fire model as a spiking neuron model [14]. The
neurons’ activity is illustrated in Fig. 2. For each area, we had
a total of 50 neurons, and we used the average of neurons
voltage as our data.

To evaluate the method’s performance, we generated his-
tograms illustrating the learned values of log(w

[λ]
n,m) across

100 trials. Further, we calculated the mean of log(w
[λ]
n,m), as

shown in Fig. 4, with Λ being three. We computed the F-
score values for both the GP and LASSO techniques in both
epochs. The results are presented in Table I, where P stands
for Precision, R for Recall, F for F-score, and abs-GP and
con-GP refer to the performance of the GP for the abstract
and concrete epochs, respectively (with analogous designation
for the LASSO method). The results show that in Precision
and F-score, the GP-based method outperformed LASSO
significantly, whereas in Recall its performance was somewhat
inferior. The inferred effective topologies are displayed in Fig.
3.

Our observations can be summarized as follows: 1) The
pathways SaPFC → DaPFC → MD1 and SpPFC → DpPFC
→ MD2 were present in both epochs. 2) Self-loops were
detected in DaPFC, SaPFC, DpPFC and SpPFC. We observed
that the SaPFC self-loop was stronger during the abstract
cue epoch, while the SpPFC self-loop was more pronounced
during the concrete cue epoch. This follows the pattern
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Fig. 4. Histogram of the weights of the edges from 100 trials. The blue color represents the weights of connections in abstract cues. The yellow represents
the weights of connection in concrete cue. Each subplot shows the histogram of the weight of each edge. The rows represent the effect, and the columns
represent the cause. If the histogram concentrates near 0, this means that the weights of the edge are large.

of stimulus addition, with the stimulus being introduced to
SaPFC during the abstract cue and to SpPFC during the
concrete cue epoch. 3) Weak modulation effects were observed
from MD1 → DaPFC, SaPFC and from MD2 → DpPFC,
SpPFC. It is important to note that our method is designed for
static topology and may face challenges in capturing dynamic,
time-varying modulation effects. 4) We identified a pathway
from DpPFC to SpPFC. According to the generative model,
there exists a pathway from DpPFC to ori-right. The SpPFC
includes cells related to ori-left, ori-right and shape.

B. Macaque Data Set

The data comprised 64 channels from two prefrontal cortical
regions (anterior and posterior area 46), which we subdi-
vided into eight subregions (D/S, deep/superficial; d/v, dor-
sal/ventral): DaPFC(46d), DaPFC(46v), SaPFC(46d),
SaPFC(46v), DpPFC(46d), DpPFC(46v), SaPFC(46d)
and SaPFC(46v). Our analysis involved two epochs of
data from the working memory task: one when the subject
was presented the abstract rule cue and another when the
subject was shown the concrete rule cue. The abstract cue
epoch had 450 samples, and the concrete cue epoch, 480
samples. We hypothesized the following relationships based
on strong anatomical connectivity: SpPFC → SaPFC,
SaPFC → DaPFC, and DaPFC → SpPFC.

Unlike the results from the synthetic data, the real dataset
produced a fully connected graph with connections between

all nodes. Therefore, examining the weights w of the con-
nections made more sense than the binary connection map.
We calculated the difference in weights between the for-
ward and backward influence strengths (e.g., the weight of
SaPFC→DaPFC minus the weight of DaPFC→ SaPFC) and
recorded the number of trials when ∆w was greater than 0.
This enabled us to determine the number of trials with a
stronger forward influence compared to those with a stronger
backward influence. Using a threshold of 70%, we identified
the topologies shown in Fig. 5. We highlighted the expected
paths based on the strongest, direct anatomical connections.

Our observations can be summarized as follows: 1) the
pathway SpPFC → SaPFC contributed in the abstract
rule epoch, consistent with initial sensory information being
transmitted to higher levels of the frontal lobe; 2) the pathway
SaPFC(46d) → DaPFC(46d) contributed in both the ab-
stract and concrete rule epochs, consistent with the processing
of rule information; 3) the pathway DaPFC → SpPFC con-
tributed in the concrete rule epoch, consistent with information
about the appropriate rule-based action being transmitted to
brain areas more closely related to action execution; and
4) additional pathways suggesting even weaker anatomical
connections can significantly influence information processing
in brain networks. Overall, the results support the idea that
prefrontal cortical networks are hierarchically organized, with
higher levels in anterior prefrontal cortex processing more
abstract information, and lower levels in posterior prefrontal
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Abstract cue epoch

Fig. 5. Connection map for the macaque data. The red circles indicate known
anatomical connections.

cortex processing more concrete information, closer to action
specification.

V. CONCLUSION

In this paper, we proposed the processing of recorded LFPs
with GPs to infer the topology of a studied brain network. The
GPs were based on an ARD kernel that was used to determine
the strengths of directed connections between a set of nodes
to a given node in the brain. The proposed methodology
allows for identifying which delayed signals from other nodes
influence the studied node. We tested the method on two sets
of data, one synthesized and the other real. Both sets represent
neural activity during a memory task. The synthesized data
were generated by a computational model of the memory task
and therefore, in this experiment we had the ground truth of
the topology. The real data were recorded from a macaque’s
prefrontal cortical regions while the macaque was performing
memory tasks. The results from the synthesized data showed
very good performance of the proposed method. The results
on the macaque data demonstrated a good agreement with
our understanding of the operation of the prefrontal cortical
networks during memory tasks.

REFERENCES

[1] G. Bahg, D. G. Evans, M. Galdo, and B. M. Turner. Gaussian process
linking functions for mind, brain, and behavior. Proceedings of the
National Academy of Sciences, 117(47):29398–29406, 2020.

[2] G. Chen, D. R. Glen, Z. S. Saad, J. P. Hamilton, M. E. Thomason,
I. H. Gotlib, and R. W. Cox. Vector autoregression, structural equation
modeling, and their synthesis in neuroimaging data analysis. Computers
in Biology and Medicine, 41(12):1142–1155, 2011.

[3] C. Cui, P. Banelli, and P. M. Djurić. Gaussian processes for topology
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