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Abstract—Robotic swarms or portable sensor networks are
emerging technologies for sensing physical processes that are
spatially distributed– and temporally dynamic, both on Earth
and in future Moon/Mars exploration missions. We develop a
portable network composed of a multitude of self-organized
“sensor eggs”. These eggs are equipped with ultra-wideband
(UWB) transceivers, providing precise time and position infor-
mation without additional infrastructures like Global Navigation
Satellite Systems (GNSSs). Each egg is additionally equipped with
environmental sensors, for example, a Sulfur dioxide gas sensor
to explore volcanic activity. We use a real time decentralized
particle filter (DPF) to estimate the a-posteriori probability
density functions (PDFs) of the egg positions. These PDFs are
then used in a static state binary Bayes filter for estimating the
gas sources with potentially complex structures such as cracks
on the volcano surface. The proposed sensor network is verified
with an in-field experiment at La Fossa volcano on the island of
Vulcano, Italy, in 2023.

Index Terms—Decentralized particle filter, gas source localiza-
tion, sensing

I. INTRODUCTION

Sensing, mapping, and monitoring spatially distributed phe-
nomena stands as an essential task across various domains. Pa-
rameters like air quality and pollution levels are important for
environmental monitoring in urban areas, forests, and oceans.
Similarly, in disaster management, tracking the progression
of wildfires or floods is essential for effective evacuation and
response efforts. In smart agriculture, data on soil moisture,
temperature, humidity, and crop health optimize practices
like irrigation and fertilization. For addressing these complex
applications, sensor networks are a promising solution due to
their ability to provide high spatial and temporal resolution
data over large areas, enabling comprehensive monitoring and
analysis of distributed phenomena or processes. Ensuring an
accurate global picture based on local measurements neces-
sitates sensors not only to measure the process of interest
but also to provide information on the locations where the
measurements were taken as well as on the time when they
were taken. However, in situations lacking of Global Nav-
igation Satellite Systems (GNSSs), which typically provide

Fig. 1: Sensor eggs deployed on the fumarole field of the
volcano “La Fossa”, Vulcano, Italy.

localization and time-synchronization functionalities, these
requirements become challenging. This is particularly relevant
in the context of future extraterrestrial space exploration
missions. One example of such an extraterrestrial exploration
mission is the localization of methane gas sources on Mars [1].
In the following, we use this as an example sensing problem.

Commonly, in-situ gas sensors in static or mobile sensor
networks are the means of choice for gas source localization
tasks [2] due to their size, power consumption, and price.
However, in-situ gas sensors can only measure the concen-
tration right at their location. In other words, they show a
very small footprint, e.g. compared to a camera. Fortunately,
due to the gas plume, every source has a larger footprint in the
environment. Thus, a lot of gas source localization approaches
exploit plume or gas dispersion models [3] that allow inferring
source location from distant measurements, e.g. [4]. In this
respect, also wind information is essential and can support
accurate source localization as shown in [5].

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on June 05,2025 at 01:49:47 UTC from IEEE Xplore.  Restrictions apply. 



To provide position and time information, a network lo-
calization algorithm based on radio-ranging measurements
between the nodes can offer an alternative to GNSS. Classical
radio-based localization approaches, as GNSS, rely on ranging
measurements to nodes with known positions. This is referred
to as non-cooperative localization. By using also inter-node
ranging measurement between nodes with unknown positions
(cooperative localization), the coverage and the accuracy of
the network localization system can be improved [6]. In
addition, cooperative localization systems can also be used for
networks where the position of all nodes is unknown. Network
localization systems can be further differentiated by where the
ranging information is processed. In centralized algorithms [7]
all observations are combined in a fusion center. In contrast,
in decentralized approaches [8], [9], each node only uses local
observations to estimate its position. Decentralized algorithms
have the advantage that they do not have a single point of
failure and the computation effort can be distributed. These
facts make decentralized approaches preferable for large-
scale cooperative sensor networks. However, in decentralized
approaches, the uncertainty of the neighbors must be taken
into account. To do so, it is necessary to marginalize over the
position of the neighbors [9]. To reduce the complexity of this
marginalization, the position uncertainty of the neighbors can
be projected onto the ranging model with equivalent ranging
variance (ERV) [10], [11].

In this paper, we consider the task of estimating the spatial
distribution of degassing in a volcanic fumarole field without
GNSS, presenting it as an analog case study for extraterrestrial
missions, like methane measurements on Mars. Therefore, we
design a portable sensor network composed of multiple self-
organized “sensor eggs”. These sensor eggs are equipped with
ultra-wideband (UWB) transceivers that use a self-organized
time division multiple access (SO-TDMA) scheme and 3-way
ranging to provide precise time and distance information. For
positioning, we present a decentralized particle filter (DPF).
The DPF uses the ERV to take the position uncertainty of the
neighbors into account. For sensing, the eggs are equipped
with gas sensors. We follow a similar approach as in [5]. Based
on gas detection measurements in our sensor network, we
trace back the gas plume from the sensor locations according
to recorded wind data. For this back propagation, we make
use of a particle gas dispersion model [12], [13], which
approximates advection and diffusion mechanisms by the prin-
ciple of Brownian motion. Loosely speaking, combining the
back propagated plume trajectories from multiple sensors in a
static binary Bayes filter [14] gives us the spatial distribution
of the gas sources. Thereby, we reuse the particles of the
DPF. By using this soft position information, we take the
position uncertainty of the sensor eggs into account. Finally,
we evaluate the presented algorithms in a space analog mission
on the volcano “La Fossa” on Vulcano Island, Italy (see
Fig. 1).

We use the following notation: Scalars are denoted with
lower regular letters, x ∈ R, vectors with lower underlined
letters, x ∈ Rn, and matrices with capital bold letters,

A ∈ Rn×m. Lower bold letters, x, and lower bold underlined
letters, x, denote scalar random variables and random vectors.
The expectation value and the covariance matrix of x are
indicated with x̂ = E{x} and Cx = Cov{x}. The notation
p(·) and b(·) denote a probability density function (PDF) and a
belief. For the sake of readability, we use the notation x1:k for
x1, . . . , xk. Other notations used are introduced in the text.

II. SENSOR EGG SYSTEM DESIGN

Based on the experience with the Qorvo UWB modules,
used in [15], we developed our “sensor eggs” (Fig. 2a) for
localization and sensing applications. The ostrich-egg-sized
sensor eggs have a fully self-organized and self-contained
design, so that no additional infrastructure is required. Thanks
to the integrated off-the-shelf hardware, the sensor eggs are
compact, cost effective and energy efficient. With an integrated
power bank, the sensor eggs achieve a runtime of over 8 h.
These facts allow us to scale up the number of eggs for a
sensing network.

The hardware is housed in a 3D-printed airtight casing.
Fig. 2b shows the inner life of the sensor eggs. The centerpiece
is a Raspberry Pi 3 Model A+ microcomputer, which is
supplied with power via a USB power bank. Our custom
navigation board [16] is connected to the Raspberry Pi. In
terms of sensors, the navigation board is equipped with a
UWB transceiver (Qorvo DW1000), a climate sensor (Bosch
BME680), and a general purpose 16-bit 4-channel analog-to-
digital converter (ADC) (Texas Instruments ADS1115) that
can be used for a variety of different analog sensors, such
as gas sensors. The UWB transceiver is connected to the
Rasberry Pi via serial peripheral interface (SPI). The climate
sensor and the general purpose ADC are connected via inter-
integrated circuit (I²C) bus. Thanks to the UWB transceiver,
the sensor eggs can provide position and timing information
for any kind of sensing application. This makes the sensor
eggs predestined for sensing spatially distributed phenomena
in GNSS-denied environments such as caves, canyons, and
other planets. Furthermore, the sensor eggs can be carried
easily by rovers or drones.

A. Self-organized UWB Network

Since the sensor eggs should be compatible in static and
dynamic scenarios, we design a SO-TDMA scheme [15],
which reacts adaptively to the topology and formation changes
in the network. SO-TDMA is completely decentralized and
is therefore robust against failures of individual sensor eggs.
The SO-TDMA structure has periodic frames with a period
of 200ms. Each frame is further partitioned into N slots,
self-organized by the N sensor eggs in the network. Each
egg exclusively uses its slot to broadcast messages for de-
centralized navigation and sensing. The clocks in the UWB
transceivers are low-cost with non-negligible clock offsets and
drifts. Therefore, with the 200ms SO-TDMA periods, the
commonly used 2-way ranging does not provide sufficient
accuracy. We apply a 3-way ranging scheme detailed in [15]
to obtain accurate inter-egg distance information. It is worth
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(a) Sensor egg equipped with a gas sensor

(b) Inner life of the sensor eggs

Fig. 2: The sensor eggs.

noting that after the first two SO-TDMA cycles, the sensor
eggs receive a new range estimate to all other sensor eggs
within range every SO-TDMA cycle. This corresponds to an
update rate of 5Hz.

The number of possible sensor eggs that can actively share
ranging information is limited by the duration of a SO-TDMA
period. Without extending the period and thus reducing the
range update rate, an infinite number of passive sensor eggs
can be included. These passive eggs can estimate their own
positions and those of their neighbors solely listening to the
other sensor eggs [15]. Broadcast messages can also be used
to transmit application-specific information.

B. Sensing

As mentioned before, the sensor eggs have a free 4-channel
general purpose ADC, which can be used for application-
specific sensors. Together with the timing information pro-
vided by the UWB network, the sensor eggs are capable of
logging the sensor data with a synchronized time stamp. In this
paper, we focus on gas source localization as an application
for the sensor eggs. We therefore use a metal-oxide gas sensor
(Figaro TGS2603) as an application-specific sensor that is
sensitive to sulfurous odor gases, here H2S.

III. DECENTRALIZED LOCALIZATION AND SENSING

We consider a network with N static sensor eggs E =
{E1, . . . , EN}. The sensor eggs Ei ∈ E are equipped with

gas sensors for in-situ gas sensing and UWB transceivers for
network localization and communication. The position of a
sensor egg Ei is denoted as xi = [xi, yi]

T ∈ R2. Since
the sensor eggs are placed on the surface of the volcano “La
Fossa” in an approximately two-dimensional plane, we con-
sider the localization and sensing problem in two dimensions.
An extension to three dimensions is straightforward.

A. Decentralized particle filter

In contrast to classic non-cooperative localization, sensor
egg localization requires consideration of the position uncer-
tainties of the neighboring eggs. We design a DPF, similar to
the ones in [10], [11], which operates on every egg. The DPF
uses 3-way ranging measurements described in Section II-A.
All observed range measurements in the network at time step
k are collected into a vector rk. The DPF adapts the idea of
belief propagation [9], that tracks the belief b(xi|r1:k) of its
position. The position is considered as a random variable xi,k,
and the belief approximates the a-posteriori PDF p(xi|r1:k),
i.e.

xi,k ∼ b(xi|r1:k) ≈ p(xi|r1:k) := p(xi|r1, . . . , rk). (1)

For a loopy network, obtaining the exact a-posteriori PDF
in a decentralized way requires knowledge of the network
topology and is often difficult. Therefore, the belief is only
an approximation of the a-posteriori PDF [9]. To reduce
the communication overhead, the belief b(xi|r1:k) is param-
eterized, with its first two moments, i.e. x̂i = E{xi} and
Cx

i,k = Cov
{
xi,k

}
, for broadcasting. Since the marginaliza-

tion over the neighbors’ beliefs in the sum-product algorithm
[9] is computationally expensive, we use the ERV [10], [11]
to incorporate the uncertainty of the neighbors’ position.

The DPF has the following two steps:
1) Prediction: To improve the robustness of the particle

filter, we disperse the particles using the (no-)motion model

x+
i,k−1 = xi,k−1 + vi,k, with vi,k ∼ N (0,Cv

i,k). (2)

The belief b+(xi|r1:k−1) of the random variable x+
i,k−1 is used

as prior in the update step.
2) Update: At time step k, Sensor egg Ei ∈ E obtains

ranging measurements from egg Ej ∈ Ei,

rij,k = d(xi, xj) +wij,k, (3)

where Ei ⊆ E are the eggs in signal coverage range of Ei

and d(xi, xj) is the true distance between sensor egg Ei and
Ej . The noise wij,k is uncorrelated zero-mean Gaussian noise
with distance-dependent variance σ2

ij ∝ d(xi, xj)
2.

In order to take the uncertainty Cx
j,k of sensor egg Ej into

account, the ERV [10], [11]

σ̃2
ij,k = σ̂2

ij + uTCx
ij,ku (4)

with σ̂2
ij ∝ d(x̂i,k, x̂j,k)

2 is computed. The vector u ∈ R2

with ∥u∥2 = 1 is the normalized direction vector between
the position of the particle and x̂j,k. With (3) and (4), the
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equivalent likelihood for the range measurement rij,k is given
as

p̃(rij,k|xi) = N
(
d(xi, x̂j,k), σ̃

2
ij,k

)
. (5)

When we assume, that the range measurements are uncorre-
lated, we obtain the update step of the particle filter as

b(xi|r1:k) ∝
∏

Ej∈Ei

(
p̃(rij,k|xi)

)
b+(xi|r1:k−1). (6)

After each update, systematic resampling is applied.
As the geo-referenced positions cannot be determined with

these inter-egg range measurements r1:k, we define a local
coordinate system with the following constraints:

i) Sensor egg El has position xl = 0.
ii) Sensor egg Em lies on the positive x-axis: ym = 0 and

xm ≥ 0.
iii) The position xn of sensor egg En has a non-negative

y-value: yn ≥ 0.

B. Gas source localization

The sensor eggs are equipped with in-situ gas sensors that
can measure the concentration right at their location. Our idea
is to fuse measurements from multiple gas sensors with a
dispersion model and exploit the changing wind to identify
areas in upwind regions of the sensors where the source could
or could not be located. The left plot in Fig. 3 shows the plume
of the gas source for times t1 and t2. As the gas plume was
influenced by different wind at both times, the gas plume is
recorded by different gas sensors. In the right plot of Fig. 3, the
measuring sensors propagate the gas particles back to identify
the areas where the source might be located. For the back
propagation, as explained later in Section III-B1, the particles
of the particle filters are used to take the position uncertainty
into account. The intersection areas are where a source is more
likely to be located. With this approach, the information that
a sensor has not measured a gas plume can also be utilized
by excluding the areas of the back propagated particles for a
source.

To formalize this idea, we divide the area of interest into M
equally sized grid cells. Each grid cell can either be a source
or no source. To model this, we associate a binary random
variable qi with each grid cell. The probability that the i-th
grid cell is a source is p(qi = source) = p(qi). The probability
for the complementary event is p(qi = no-source) = p(¬qi) =
1−p(qi). The random vector q = [q1, . . . , qM ]T represents the
joint state of the area of interest. For the presented approach,
we make the following assumptions:

i) A grid cell is either a source or not a source. There are
no split cells.

ii) The sources are static, i.e., permanently emitting gas with
a constant intensity at fixed positions.

iii) The sources, and thus the random variables qi, qj for
i ̸= j, are independent of each other.

iv) The wind wk = [vx,k, vy,k]
T with wind speed vx,k and

vy,k in x and y direction is known for all time steps
1, ..., k. Furthermore, the wind is homogeneous in the

Forward propagation

t1

t2

Backward propagation

Source Sensor Particle Wind

Fig. 3: General idea of the presented approach. The left plot
shows the gas plume for two points at times t1 and t2. The
right plot shows how the gas measurements are propagated
back to estimate the position of the gas source. This approach
exploits the fact that the wind direction changes.

area of interest, i.e., the wind vector is the same at every
position.

The sensor egg network can obtain independent gas mea-
surements zk = [z1,k, . . . zN,k]

T at time step k at different
positions, i.e. x1, . . . , xN . To estimate the spatial gas source
distribution, we have to calculate the joint a-posteriori proba-
bility

p(q|z1:k, w1:k−1). (7)

As the individual components of q are independent of each
other, the joint probability can be computed as

p(q|z1:k, w1:k−1) =

M∏
i=1

p(qi|z1:k, w1:k−1). (8)

As a consequence, each random variable qi can be considered
and tracked individually. To do so, we use a static state binary
Bayes filter [14]. With Bayes’ rule, the Markov assumption,
and the independence of measurements, we get

p(qi|z1:k, w1:k−1)

=
p(zk|qi, z1:k−1, w1:k−1)p(qi|z1:k−1, w1:k−1)

p(zk|z1:k−1, w1:k−1)
(9)

=
p(zk|qi, w1:k−1)p(qi|z1:k−1, w1:k−2)

p(zk|z1:k−1, w1:k−1)
(10)

=

M∏
j=1

(
p(zj,k|qi, w1:k−1)

)
p(qi|z1:k−1, w1:k−2)

p(zk|z1:k−1, w1:k−1)
. (11)

Since the likelihood p(zj,k|qi, w1:k−1) can not easily be cal-
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culated, we apply Bayes’ rule a second time:

p(qi|z1:k, w1:k−1)

=
M∏
j=1

(
p(qi|zj,k, w1:k−1)p(zj,k|w1:k−1)

p(qi|w1:k−1)

)
×

p(qi|z1:k−1, w1:k−2)

p(zk|z1:k−1, w1:k−1)
. (12)

The probability p(qi|zj,k, w1:k−1) is the so-called inverse
sensor model [14]. Because the source qi is independent of
the wind w1:k−1, the equation can be further simplified to

p(qi|z1:k, w1:k−1)

=
M∏
j=1

(
p(qi|zj,k, w1:k−1)p(zj,k|w1:k−1)

p(qi)

)
×

p(qi|z1:k−1, w1:k−2)

p(zk|z1:k−1, w1:k−1)
. (13)

Since we can not calculate the probabilities p(zj,k|w1:k−1)
and p(zk|z1:k−1, w1:k−1), we exploit the fact that qi is a
binary random variable. Instead of tracking the probability
p(qi|z1:k, w1:k−1), we track the odds ratio

p(qi|z1:k, w1:k−1)

p(¬qi|z1:k, w1:k−1)
(14)

=
M∏
j=1

(
p(qi|zj,k, w1:k−1)p(¬qi)
p(¬qi|zj,k, w1:k−1)p(qi)

)
p(qi|z1:k−1, w1:k−2)

p(¬qi|z1:k−1, w1:k−2)

(15)

=
M∏
j=1

(
p(qi|zj,k, w1:k−1)

1− p(qi|zj,k, w1:k−1)

1− p(qi)

p(qi)

)
(16)

×
p(qi|z1:k−1, w1:k−2)

1− p(qi|z1:k−1, w1:k−2)
. (17)

With l(x) = log p(x)
1−p(x) , we can track the odds ratio more

efficiently in the log domain by the recursion

l(qi|z1:k, w1:k−1)︸ ︷︷ ︸
=:lk

=
M∑
j=1

l(qi|zj,k, w1:k−1)︸ ︷︷ ︸
inverse sensor model

− l(qi)︸︷︷︸
prior

+ l(qi|z1:k−1, w1:k−2)︸ ︷︷ ︸
=:lk−1

.

(18)

At any point in time, we can map the odds ratio back to the
desired probability by [14]:

p(qi|z1:k, w1:k−1) = 1− 1

1 + exp lk
. (19)

1) Inverse sensor model: For the Bayesian estimator ex-
plained in the previous section, we require the inverse sensor
model p(qi|zj,k, w1:k−1) for every grid cell given the mea-
surement zj,k.

In our case, zj,k is binary, i.e. zj,k ∈ {0, 1}, and indicates
if we detected gas or not. In practice, if we get an analog

voltage reading of the gas sensor above a certain threshold, we
consider this as a gas detection, i.e. zj,k = 1; if the voltage is
below, the measurement is 0. Since the voltage, which is non-
linearly related to the measured gas concentration, depends
on many factors such as temperature, calibration, response
times, etc., the exact measured concentration is difficult to
use. To assign these probabilities for every cell, we use the
particles of the DPF and propagate them back according to
the wind history and the diffusion noise, which is modeled as
zero-mean Gaussian noise with covariance matrix CD (see
Fig. 4). In this way, the starting positions of the particles
account inherently for uncertainties of the DPF, since they
represent the a-posteriori distribution of the positions of the
sensor eggs. For a sensor with zj,k = 1, all cells that are
visited by the back propagated particles are assigned with the
predefined source probability psource. For sensors with zj,k = 0,
we assign visited cells with pno-source. Unvisited cells are
assigned the probability pprior. This approach requires the three
hyper-parameters psource, pno-source and pprior. For performance
reasons, we only propagate the particles h time steps back.
Algorithm 1 shows how to calculate the inverse sensor model
for a sensor egg Ej at time step k.

The inverse sensor model can be calculated independently
on each sensor egg Ei. The wind wk must either be measured
from each sensor egg or be broadcasted to the network. Since
only summation is involved in the filter (18), the estimation
problem can be decentralized in a hierarchical or consensual
fashion.

Algorithm 1 Inverse sensor model for sensor egg Ej at time
step k

for all i ∈ {1, . . . ,M} do
p(qi|zj,k, wk−h:k−1)← pprior

end for
zj,k ← measure gas on Ej

for all particles of the particle filter of Ej do
xk ← position of particle at time step k
for l ∈ {1, . . . , h} do

Draw n ∼ N (0,CD)
xk−l ← xk−l+1 ·∆t · (wk−l + n)
i← find corresponding cell at xk−l

if zj,k = 1 then
p(qi|zj,k, wk−h:k−1)← psource

else
p(qi|zj,k, wk−h:k−1)← pno−source

end if
end for

end for

IV. EXPERIMENT ON VULCANO ISLAND

For the experimental evaluation, we conducted experiments
on the volcano “La Fossa” on Vulcano Island in July 2023.
Vulcano is a small island 25 km north of Sicily, Italy, in the
Mediterranean Sea. On the edge of the “La Fossa” crater,
there is a fumarolic field with active volcanic degassing. In
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Fig. 4: Example for the inverse sensor model. Sensor S1 mea-
sures a concentration higher than the threshold. The particle
positions of the DPF are propagated back according to the
past wind. Grid cells that are visited by a particle are possible
locations of the source and are assigned the probability psource.
Sensor S2 measures a concentration smaller than the threshold.
The visited cells are assigned the probability pno-source.

Fig. 5: The experimental setup on Vulcano Island. The red
circles with numbers highlight the sensor egg positions. The
yellow areas mark the areas with active fumarolic degassing.
The ultrasonic anemometer was used to measure the wind
speed and direction.

the emitted plumes, we can expect primarily water vapor but
also high concentrations of CO2 and SO2 as well as H2S
gas [17]. In this area, we carried out our localization and
sensing experiment.

A. Setup

Fig. 5 shows our setup with N = 12 sensor eggs on the
fumarolic field. All sensor eggs were switched on at the same
position (with the same gas concentration) and then placed
in the field. Since all sensors were placed approximately on
the same plane, we consider the localization problem as a
2-dimensional problem. The ground truth positions of the
sensor eggs were measured using a GNSS-RTK system, which
provides accuracy in the centimeter range. For the wind, we
used an ultrasonic anemometer (see Fig. 5), which measures
the wind speed and direction. Fig. 6 shows the wind speed
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Fig. 6: Wind speed and direction during the experiment period.
A direction of 0◦ means wind coming from the north and 90◦

wind from the east.
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Fig. 7: The root mean squared error (RMSE) of the DPF over
the considered time period.

and direction during a 10.5min experiment period, which
we are going to analyze in more detail further down. The
anemometer and all sensor eggs were synchronized over the
network time protocol (NTP). During the experiment, the wind
and gas measurements were time-stamped and saved locally
at 10Hz and the range measurements at 5Hz. The evaluation
was carried out in post-processing.

B. Results

1) Localization: To evaluate the performance of the DPF,
we use the ground truth positions of the sensor eggs to
compute the transformation from the local to the GNSS-RTK
coordinate system. The local coordinate system is defined as
follows: Sensor egg E10 is at the origin, sensor egg E7 lies
on the positive x-axis and sensor egg E8 has a positive y-
value. For each sensor egg, a particle filter with 500 particles
is used. Fig. 8a shows the estimated sensor egg positions with
covariance ellipses at t = 8min. The black lines indicate all
ranging links that are used in this time step. From the RMSE
over the considered 10.5min (see Fig. 7), it can be seen that
the particle filters converge within the first 20 s and reach a
RMSE of about 0.4m. The abrupt deterioration in the RMSE
happens when a sensor loses the connection to the network
and drops out of the SO-TDMA schedule. The reason why
this happens needs to be investigated further.

2) Sensing: Since we do not have ground truth data on
the distribution of gas sources, we use recorded drone footage
to manually locate the gas sources. In the videos, it can be
seen that the gas emerges from two line-shaped cracks in
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Fig. 8: The left plot, Fig. 8a, shows the estimated sensor egg positions and covariance ellipses of the decentralized particle filter
(DPF) at t = 8min. The two plots on the right show the estimated spatial gas source distributions for known and estimated
sensor egg positions. The plots show the 10% of grid cells that have the highest probability of being a gas source.

the ground. The position of these cracks is roughly shown
in Fig. 5. For the hyper-parameters, we use pprior = 0.5,
psource = 0.5+2·10−4 and pno-source = 0.5−2·10−4. The small
deviations from the prior were chosen because the gas mea-
surements are very inaccurate. Further, we used ∆t = 0.1 s,
CD = diag{(2.5m/s)2, (2.5m/s)2} and h = 100, which
corresponded to a wind history of 10 s.

Fig. 8b shows the estimated spatial gas source distribution
for known sensor egg positions. Strictly speaking, what is
highlighted are the 10% of grid cells that have the highest
probabilities. The 500 particles used for back propagation are
sampled from N

(
xj , (0.05m)2

)
, where xj is the true GNSS-

RTK positions of sensor egg Ej . The result nicely confirms
the observation from the drone videos that there are two line-
shaped cracks from which a large part of the gas emerges. The
fact that the position of the cracks is somewhat more southerly,
compared to Fig. 5, could be because the wind mainly comes
from one direction and changes only slightly (cf. Fig. 6).
Since the presented approach requires measurements from
different wind directions for localization, only small changes
in direction can lead to poor localization results. Unfortunately,
more precise statements cannot be made without ground truth
data for the spatial source distribution.

Fig. 8c shows the spatial source distribution for estimated
sensor egg positions. The particle positions of the DPF are
reused for back propagation to take the position uncertainty
into account. If one compares Fig. 8b and Fig. 8c, almost no
differences can be seen. This fact indicates that the positional
accuracy of the UWB localization system is sufficient for this
sensing application.

V. CONCLUSION

We presented our “sensor eggs” for localization and sensing
applications. The sensor eggs are fully decentralized, self-
organized, and self-contained and can provide positioning
and timing information for various sensing applications. We
presented a decentralized particle filter for positioning and
a gas source localization algorithm that exploits the wind
changes to estimate the spatial gas source distribution. In a
real-world experiment on the volcano “La Fossa”, Vulcano,
Italy, we were able to show that the presented decentralized
particle filter reaches a RMSE of around 0.4m. Furthermore,
we successfully tested the presented algorithm for gas source
localization for plausibility. In June 2024, we will return to
Vulcano to do further experiments and to record ground truth
data for the gas source distribution.
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