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1. Introduction

1.1. Foreword

Continued fractions go back to antiquity [5] and are surprisingly versatile. They appear across
athematics, from number theory [3,28] to analysis [18,21], from cluster algebras [7] to discrete
eometry [20] to signal processing [31]. In combinatorics, they famously enumerate partitions [2],
attice paths [12] (see also [13,14,27]), permutations [11,36], and perfect matchings [42] (see
lso [32,38]).
Curiously, the applications go in both directions: the asymptotics of combinatorial sequences

an be derived from analytic properties of continued functions, while combinatorial interpretations
mply positivity properties. This paper explores connections between linear extensions of finite
osets and continued fractions, and their asymptotic applications to counting.
Note that we utilize standard terminologies in order theory and continued fraction theory, and

e include detailed definitions in Section 2 for the reader’s convenience and clarity.
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.2. Linear extensions

Let P = (X,≺) ḃe a poset with |X | = n ėlements. Denote [n] := {1, . . . , n}. A linear extension of P
s a bijection f : X → [n], such that f (x) < f (y) ḟor all x ≺ y. Let E(P) be the set of linear extensions
f P , and denote e(P) := |E(P)|. Clearly, 1 ≤ e(P) ≤ n! Ṡee [10] for a detailed recent survey.
Denote by µ(n) the minimum number of elements in a poset with n linear extensions. See [35,

160371] for the numerical data (see also [35, A281723]). For example, µ(5) = 4 since e(Z4) = 5,
here Z4 is a zigzag poset on 4 elements (with an N-shaped comparability graph).
The asymptotics of {µ(n)} remains an important open problem. Clearly, µ(n) ≤ n since for the

arallel sum of chains we have: e(Cn−1⊕C1) = n. In a different direction, µ(n) = Ω(log n/ log log n)
ince e(P) ≤ n! .̇ The first nontrivial upper bound µ(n) = O(

√
n) was found by Tenner [40]. Most

ecently, this bound was greatly improved:

heorem 1.1 (Kravitz–Sah [23, Thm 1.1]). We have: µ(n) = O(log n log log n).

The authors use a simple but surprising connection to continued fractions, the starting point of
his paper (see below). They state the following:

onjecture 1.2 ([23, Conj. 7.3]). We have: µ(n) = O(log n).

In this paper, we are mostly interested in the combinatorial aspects of the connection between
linear extensions and continued fractions, suggesting new technical tools towards the conjecture.

1.3. Simple continued fractions

Let N := {0, 1, 2, . . .} ȧnd P := {1, 2, . . .}. A simple continued fraction (CF) is defined as follows:

[b0, b1, b2, . . . , bm] := b0 +
1

b1 + 1
b2 +

1

...+ 1
bm

, (1.1)

here integers b0 ≥ 0, b1, . . . , bm−1 ≥ 1, and bm ≥ 2 for m ≥ 1. Integers bi are called quotients. The
um of these quotients S(b0, . . . , bm) := b0 + · · · + bm is called the weight of [b0, . . . , bm]. Recall
hat for every α ∈ Q≥0 there is a unique simple continued fraction [b0, b1, b2, . . . , bm] = α, and we
rite s(α) := S(b0, b1, b2, . . . , bm) in this case. Note that s(α) = s

(
α−1

)
.

In the terminology of [43] (see also [22, §4.5.3]), the weight s
( c
d

)
is the number of steps of

he subtraction algorithm, the original (classical) version of the Euclidean algorithm for finding the
reatest common divisor that uses only subtractions instead of divisions. The following result is the
ey to the proof of Theorem 1.1.

heorem 1.3 (Larcher [24], See Also [23, Thm 1.2]). For every integer d ≥ 1, there exists an integer
≤ c < d, gcd(c, d) = 1, such that

s
( c
d

)
≤ C

d
φ(d)

log d log log d, (1.2)

here φ(n) is Euler’s totient function, and C > 0 is a universal constant.

See Section 5.3 for more on the theorem. Now, Kravitz and Sah observed that Conjecture 1.2
follows from the following conjectural extension of Theorem 1.3.

Conjecture 1.4 ([23, Conj. 7.2]). For every prime d, there is an integer 1 ≤ c < d, such that

s
( c
d

)
≤ C log d, (1.3)

where C > 0 is a universal constant.
2
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Note that in a CF (1.1) for c
d , the number of quotients is m = O(log d). Thus, Conjecture 1.4

ollows from the celebrated Zaremba’s conjecture (see also Section 5.5):

onjecture 1.5 (Zaremba [44, p. 76]). For every integer d ≥ 1, there is an integer 1 ≤ c < d, such that
/d = [0, b1, . . . , bm] ȧnd b1, . . . , bm ≤ A, where A > 0 is a universal constant.

.4. From continued fractions to linear extensions

In poset P = (X,≺), an antichain is a subset of pairwise independent elements. The width of a
oset is the size of the maximal antichain. An element x ∈ X is minimal, if for every y ∈ X we have
ither x ≼ y or x ∥ y. Denote by min(P) the set of all minimal elements in P . Denote by P − x the
oset obtained by removing the element x.

heorem 1.6 (See [23, Prop. 4.1]). For all integers 1 ≤ c < d with gcd(c, d) = 1, there is a poset
= (X,≺) of width two, such that |X | = s

( c
d

)
, e(P) = d and e(P − x) = c for some minimal element

∈ min(P).

The proof of the theorem uses two simple transformations of posets (P, x)→ (P ′, x′) and (P ′′, x′′),
such that for e(P) = d, e(P − x) = c ṫhe new posets satisfy e(P ′) = e(P ′′) = c + d, e(P ′ − x′) = c ,
e(P ′′ − x′′) = d− c. In Section 3 we modify and generalize this construction.

Before we proceed to generalizations, consider

T (k) :=
{
e(P) : P = (X,≺), |X | ≤ k

}
,

so that µ(n) = min{k : n ∈ T (k)}. Open Problems 7.5 and 7.6 in [23] ask about the asymptotics
of |T (k)|, and of the largest L = Lc(k) such that

⏐⏐T (k) ∩ {1, . . . , L}
⏐⏐ > cL. We have the following

direct application of Theorem 1.6 (not noticed in [23]), which gives partial answers to both open
problems:

Corollary 1.7. We have: |T (k)| = expΩ(k). Moreover, there is a constant C > 1, such that

1
Ck

⏐⏐T (k) ∩
{
1, 2, . . . , ⌊Ck

⌋
}⏐⏐ → 1 as k→∞. (1.4)

Proof. Recall the following remarkable result of Bourgain and Kontorovich [4] (see also Section 5.5),
giving an asymptotic version of Zaremba’s Conjecture 1.5: γ (n)→ 1 ȧs n→∞, where γ (n) denotes
the proportion of d ∈ {1, . . . , n}, such that c/d has all quotients ≤ 50 for some 1 ≤ c < d,
gcd(c, d) = 1. Since s

( c
d

)
= O(log d) for such fractions, by Theorem 1.6 we obtain the result. □

1.5. Relative version

Let P = (X,≺) and let x ∈ X . Following [9], consider the relative number of linear extensions:

ρ(P, x) :=
e(P)

e(P − x)
.

t follows from Theorem 1.6, that every rational number α ≥ 1 is equal to ρ(P, x) for some poset P
nd element x ∈ X .
For d ≥ c ≥ 1, let ν(c, d) denote the minimal number of elements in a poset P = (X,≺), such

hat ρ(P, x) = d
c for some x ∈ X . The following upper bound can be viewed as a relative version of

Theorem 1.1.

Theorem 1.8. For all d ≥ 3c, we have:

ν(c, d) ≤
d
+ O(log d log log d). (1.5)
c
3
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In [9, Prop. 8.8], we showed an asymptotically matching lower bound:

ν(c, d) ≥
d
c

. (1.6)

he motivation of Theorem 1.8 comes from the approach in [8], where we studied relative versions
f several counting functions (domino tilings, spanning trees, etc.) The proof of Theorem 1.8 is based
n the approach in [9, §8.2]. It would be interesting to see if the condition d ≥ 3c can be weakened
o d ≥ (1+ ε)c or even dropped. Additionally, by analogy with the Kravitz–Sah Conjecture 1.2, we
onjecture that (1.5) can be improved to

ν(c, d) ≤ d
c + O(log d). (1.7)

n a different direction, one can ask about the smallest size poset with e(P) = d and e(P − x) = c ,
ince the construction in the proof can result in an integer multiple of both.
The key part of the proof of Theorem 1.8 is the following tail estimate for the weight of random

ontinued fractions:

heorem 1.9 (Rukavishnikova [30]). There is a universal constant C > 0, such that
1
d

#
{
c ∈ [d] :

⏐⏐⏐s( c
d

)
−

12
π2 log d log log d

⏐⏐⏐ > (log d)(log log d)2/3
}

<
C

(log log d)1/3
. (1.8)

ere we are stating a special case of the main theorem in [30] which suffices for our purposes.

.6. Generalized continued fractions

Let m ≥ 0, a1, . . . , am ∈ P, b0, . . . , bm ∈ P. A generalized continued fraction (GCF) is defined as

[a1, . . . , am; b0, . . . , bm] := b0 +
a1

b1 +
a2

b2 +
a3

...+ am
bm

. (1.9)

ote that when a1 = · · · = am = 1 ẇe get a simple continued fraction. We define the weight of
GCFs as follows:

G(a1, . . . , am; b0, . . . , bm) := (b0 + · · · + bm) − (a1 + · · · + am) + m,

nd note that G(1, . . . , 1; b0, . . . , bm) = S(b0, . . . , bm). Observe that a rational number can have
many presentations as a GCF, some of which can have weight smaller than the weight of the
corresponding CFs. For example,

20
7
= 2+

1
1+ 1

6

= 2+
2

2+ 1
3

,

o s
( 20

7

)
= S(2, 1, 6) = 9 and G(2, 1; 2, 2, 3) = 6.

A generalized continued fraction (1.9) is called balanced if

bi ≥ ai + ai+1 − 1 for all 0 ≤ i ≤ m, (1.10)

where by convention we assume that a0 = am+1 = 1. Clearly, every simple continued fraction of
α ∈ Q≥1 is balanced. The following is the GCF analogue of Theorem 1.6.

Theorem 1.10. Let m ≥ 0, a1, . . . , am ∈ P, b0, . . . , bm ∈ P be integers satisfying (1.10). Then
there exists a poset P = (X,≺) of width at most three, and a minimal element x ∈ min(P), such
that |X | = G(a1, . . . , am; b0, . . . , bm), and

[a1, . . . , am; b0, . . . , bm] = ρ(P, x),
where [a1, . . . , am; b0, . . . , bm] is a balanced GCF defined in (1.9).

4
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For α ∈ Q≥1, define

g(α) := min
{
G(a1, . . . , am; b0, . . . , bm) : [a1, . . . , am; b0, . . . , bm] = α

}
,

here the minimum is over all balanced GCF (1.10) such that all partial fractions Ci
Di

are reduced, i.e.
cd(Ci,Di) = 1 for all 1 ≤ i ≤ m (see the definition in Section 2.2). For example, if a1 = · · · = am = r

for some integer r ≥ 1, and integers b1, . . . , bm are coprime to r , then all partial fractions Ci
Di

are
reduced. In particular, this condition automatically holds for all simple CFs. From above, we have
g(α) ≤ s(α). Thus, the following conjecture is a natural weakening of Conjecture 1.4.

Conjecture 1.11. For every prime d, there is an integer 1 ≤ c < d, such that

g
( d
c

)
≤ C log d, (1.11)

here C > 0 is a universal constant.

From Theorem 1.10, we have:

roposition 1.12. Conjecture 1.11 implies Conjecture 1.2.

.7. Rational GCFs

We call a continued fraction of the form (1.9) rational if ai ∈ Q≥1. A rational generalized
ontinued fraction (RGCF) is called balanced if it is of the form

b0 + α1 +
α1

s(α1)− 1+ b1 + α2 +
α2

s(α2)−1+b2+α3+
α3

...+ αm
s(αm)−1+bm

, (1.12)

here α1, . . . , αm ∈ Q≥1 ȧnd b0, . . . , bm ∈ N ṡ.t. bm ≥ 1. We use [α1, . . . , αm; b0, . . . , bm] ṫo denote
his RGCF.

Note that for α1, . . . , αm ∈ P, this is a balanced GCF, since the inequalities (1.10) are automati-
ally satisfied. Denote by

R(α1, . . . , αm; b0, . . . , bm) := b0 + · · · + bm + s(α1)+ · · · + s(αm)

he weight of (1.12). For example, take m = 1, α1 =
3
2 , b0 = 1, b1 = 3. Then

s
( 3
2

)
= 3,

[ 3
2 ; 1, 3

]
= 1+ 3

2 +

3
2

s
( 3
2

)
− 1+ 3

=
14
5 and R

( 3
2 ; 1, 3

)
= 1+3+s

( 3
2

)
= 7.

The following result is a variation of Theorem 1.10 to RGCF:

Theorem 1.13. Let m ≥ 0, α1, . . . , αm ∈ Q≥1 and b0, . . . , bm ∈ P. Then there exists a poset P = (X,≺)
of width at most three, and a minimal element x ∈ min(P), such that |X | = R(α1, . . . , αm; b0, . . . , bm),
and

[α1, . . . , αm; b0, . . . , bm] = ρ(P, x),

where [α1, . . . , αm; b0, . . . , bm] is a balanced RGCF defined in (1.12).

For β ∈ Q≥1, define

r(β) := min
{
R(α1, . . . , am; b0, . . . , bm) : [α1, . . . , αm; b0, . . . , bm] = β

}
,

where the minimum is over all RGCF (1.12) such that all partial fractions Ci
Di

are reduced (see the
efinition in Section 2.2). From above, r(α) ≤ s(α). Thus, the following conjecture is a natural

weakening of both Conjectures 1.4 and 1.11.
5



S.H. Chan and I. Pak European Journal of Combinatorics 122 (2024) 104018

C

w

m

T

P

1

p
p
r

T
g

onjecture 1.14. For every prime d, there is an integer 1 ≤ c < d, such that

r
( d
c

)
≤ C log d, (1.13)

here C > 0 is a universal constant.

To motivate the conjecture, note that r(β) can be much smaller than s(β). Take, for example,
= 1, α1 =

13
7 and β = 173

56 . We have:

α1 = 1+
1

1+ 1
6

, s(α1) = 8 , β = 3+
1

11+ 1
5

= 1+α1+
α1

s(α1)− 1+ 1
= [α1; 1, 1] .

hus, s(β) = g(β) = 19 ẇhile r(β) ≤ R(α1; 1, 1) = 10 in this case. Again, by Theorem 1.13 we have:

roposition 1.15. Conjecture 1.14 implies Conjecture 1.2.

.8. Paper structure

We recall poset theoretic definitions and notation in Section 2. Recursive constructions of posets
are studied in Section 3. We present the proofs in Section 4. We conclude with final remarks and
open problems in Section 5.

2. Basic definitions and notation

2.1. Posets

For a poset P = (X,≺) and a subset Y ⊂ X , denote by PY = (Y ,≺) a subposet of P . We use (P−z)
to denote a subposet PX−z , where z ∈ X . Element x ∈ X is minimal in P , if there exists no element
y ∈ X − x such that y ≺ x. Denote by min(P) the set of minimal elements in P .

In a poset P = (X,≺), elements x, y ∈ X are called incomparable if x ̸≺ y and y ̸≺ x. We write
x ∥ y in this case. An antichain is a subset A ⊂ X of pairwise incomparable elements. The width of
oset P = (X,≺), denoted width(P), is the size of a maximal antichain. A chain is a subset C ⊂ X of
airwise comparable elements. Denote by An and Cn the antichain and the chain with n elements,
espectively.

A dual poset is a poset P∗ = (X,≺∗), where x ≺∗ y if and only if y ≺ x. A parallel sum P ⊕ Q of
posets P = (X,≺) and Q = (Y ,≺′) is a poset (X ∪ Y ,≺⋄), where the relation ≺⋄ coincides with ≺
and ≺′ on X and Y , and x ∥ y ḟor all x ∈ X , y ∈ Y . A linear sum P 4 Q of posets P = (X,≺) and
Q = (Y ,≺′) is a poset (X ∪ Y ,≺⋄), where the relation ≺⋄ coincides with ≺ and ≺′ on X and Y , and
x ≺⋄ y ḟor all x ∈ X , y ∈ Y .

Note that e(P∗) = e(P), e(P 4 Q ) = e(P) e(Q ) and e(P ⊕ Q ) =
(n+n′

n

)
e(P) e(Q ), where |X | = n and

|Y | = n′. We refer to [39, Ch. 3] for an accessible introduction, and to surveys [6,10,41] for further
definitions and standard results.

2.2. Continued fractions

Consider a GCF [a1, . . . , am; b0, . . . , bm] ġiven by (1.9). Recursively define
Ci := Ci(a1, . . . , am; b0, . . . , bm) ȧnd Di := Di(a1, . . . , am; b0, . . . , bm), 0 ≤ i ≤ m, as follows:

Cm := bm , Dm := 1,
Di := Ci+1 , Ci := bi Di + ai+1 Di+1.

It is easy to see by induction that

[ai+1, ai+2, . . . , am; bi, bi+1, . . . , bm] =
Ci

Di
.

hese are called partial fractions or tails of continued fractions. Note that for simple CFs we have
cd(C ,D ) = 1, but this does not always hold for GCFs.
i i

6
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Similarly, consider a RGCF [α1, . . . , αm; b0, . . . , bm] ġiven by (1.12). Let αi = ci/di where
cd(ci, di) = 1, 1 ≤ i ≤ m. Recursively define Ci := Ci(α1, . . . , αm; b0, . . . , bm) ȧnd Di :=

i(α1, . . . , αm; b0, . . . , bm) ȧs follows:

Cm := bm , Dm := 1,
Di := di+1

(
Ci+1 + (s(αi+1)− 1)Di+1

)
,

Ci := bi Di + ci+1
(
Ci+1 + s(αi+1)Di+1

)
.

It is easy to see by induction that

[αi+1, αi+2, . . . , αm; bi, bi+1, . . . , bm] =
Ci

Di
.

he ratios Ci
Di

are called partial fractions in this case.

. Recursive constructions

.1. Hybrid sums

Let P = (X,≺) and Q = (Y ,≺′) be posets on |X | = n and |Y | = n′ elements. Fix x ∈ min(P). The
ybrid sum Q 4x P is the poset R = (X ∪ Y ,≺⋄) ġiven by the relations

u ≺⋄ u′ for every u ≺ u′, u, u′ ∈ X,

v ≺⋄ v′ for every v ≺′ v′, v, v′ ∈ Y ,

v ≺⋄ u for every u ∈ X − x, v ∈ Y .

Note that x is incomparable to Y in R, and thus x ∈ min(R).
We have:

e(Q 4x P) = e(Q ) e(P) + e(Q ⊕ x) e(P − x) − e(Q ) e(P − x).

Indeed, the term e(Q ) e(P) ċounts linear extensions f ∈ E(R) for which f (x) ≥ n′ + 1. Similarly, the
erm e(Q ⊕ x) e(P− x) ċounts f ∈ E(R) for which f (x) ≤ n′+1. Finally, the term e(Q ) e(P− x) ċounts
∈ E(R) for which f (x) = n′ + 1. Because e(Q ⊕ x) = (n′ + 1) · e(Q ), we then have

e(Q 4x P) = e(Q ) e(P) + n′ · e(Q ) e(P − x). (3.1)

It then follows that for all y ∈ min(Q ), we have

e(R− y) = e
(
(Q − y) 4x P

)
= e(Q − y) e(P) + (n′ − 1) · e(Q − y) e(P − x). (3.2)

ince (Q 4x P)− x = Q 4 (P − x), we also have:

e
(
(Q 4x P)− x

)
= e(Q ) e(P − x). (3.3)

Finally, note that

width(Q 4x P) ≤ max
{
width(P)− 1, width(Q )

}
+ 1. (3.4)

emark 3.1. Hybrid sum is a special case of the quasi-series composition defined similarly in [15]
or general subsets of minimal elements. Also, when Y = {y}, we have R = {y} ⊕y,x P , where ⊕y,x
s the direct sum operation defined in [23, §2].

.2. Properties of hybrid sums

We now use hybrid sums to construct posets for which the numbers of linear extensions satisfy
ecurrence relations emulating continued fractions.
7
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emma 3.2. Let P = (X,≺) and Q = (Y ,≺′) be posets on n = |X | and n′ = |Y | elements, and let
∈ min(P), y ∈ min(Q ). Let R = (Z,≺⋄) be a poset and let z ∈ min(R) be given by

R := Q 4x P, z := y.

Then we have

e(R) = e(Q )
(
e(P) + n′ · e(P − x)

)
,

e(R− z) = e(Q − y)
(
e(P) + (n′ − 1) · e(P − x)

)
,

|Z | = n + n′,
width(R) ≤ max

{
width(P), width(Q )+ 1

}
.

dditionally, we have:

ρ(R, z) = ρ(Q , y)
(
1 +

1
n′ − 1 + ρ(P, x)

)
.

roof. The first four conclusions follows from (3.1), (3.2), (3.4). We conclude that

ρ(R, z) =
e(Q )

e(Q − y)
·

e(P) + n′ · e(P − x)
e(P) + (n′ − 1) · e(P − x)

= ρ(Q , y)
(
1 +

e(P − x)
e(P) + (n′ − 1) · e(P − x)

)
= ρ(Q , y)

(
1 +

1
ρ(P, x) + (n′ − 1)

)
,

s desired. □

emma 3.3. Let P = (X,≺) be a poset on |X | = n elements, let x ∈ min(P), and let b ≥ 0. Let
= (Z,≺⋄) be a poset and let z ∈ min(R) be given by

R := Cb 4x P, z := x,

where Cb is a chain of b elements. Then we have

e(R) = e(P) + b · e(P − x),
e(R− z) = e(P − x),
|Z | = n + b,

width(R) ≤ max
{
width(P), 2

}
.

dditionally, we have:

ρ(R, z) = b + ρ(P, x).

roof. The first four conclusions follows from (3.1), (3.3), and (3.4). We conclude that

ρ(R, z) =
e(P) + b · e(P − x)

e(P − x)
= ρ(P, x) + b,

as desired. □

By combining the two lemmas above, we get the following:

Lemma 3.4. Let P = (X,≺) and Q = (Y ,≺′) be posets on n = |X | and n′ = |Y | elements, and let
x ∈ min(P), y ∈ min(Q ). Fix b ≥ 0. Let R = (Z,≺⋄) be a poset and let z ∈ min(R) be given by

R := C 4 (Q 4 P), z := y.
b y x

8
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where Cb is a chain of b elements. Then we have

e(R− z) = e(Q − y)
(
e(P) + (n′ − 1) e(P − x)

)
,

e(R) = b · e(R− z) + e(Q )
[
e(P) + n′ · e(P − x)

]
,

|Z | = n + n′ + b,
width(R) ≤ max

{
width(P), width(Q )+ 1, 2

}
.

Additionally, we have:

ρ(R, z) = b + ρ(Q , y)
(
1+

1
n′ − 1 + ρ(P, x)

)
.

roof. This follows from first applying Lemma 3.2 then applying Lemma 3.3. □

emma 3.5. Let P = (X,≺) be a poset on |X | = n elements, let x ∈ min(P), and let b ≥ a ≥ 0. Let
= (Z,≺⋄) be a poset and let z ∈ min(R) be given by

R := Cb−a 4y
(
(y⊕ Ca−1) 4x P

)
, z := y,

where Cb is a chain of b elements, and y is an element not contained in P. Then we have

e(R− z) = e(P) + (a− 1) · e(P − x),
e(R) = (b− a) · e(R− z) + a ·

[
e(P) + a · e(P − x)

]
= b · e(R− z) + a · e(P − x),

|Z | = n + b,
width(R) ≤ max

{
width(P), 3

}
.

dditionally, we have:

ρ(R, z) = b +
a

a− 1+ ρ(P, x)
.

roof. Let Q = (Y ,≺′) := y⊕ Ca−1 .̇ Note that

e(Q ) = a, e(Q − y) = 1, |Y | = a, and width(Q ) = 2.

he lemma now follow from substituting b← (b− a) into Lemma 3.4. □

.3. A flip-flop construction

We will need the following variation on the hybrid sum construction to prove Theorem 1.8.
Let P = (X,≺) and Q = (Y ,≺′) be posets on n = |X | and n′ = |Y | elements, and let x ∈ min(P),
∈ min(Q ). The flip-flop poset R = (Z,≺⋄) is defined by

Z := (X − x) ∪ (Y − y) ∪ {z, v},

here z, v are new elements. The partial order ≺⋄ is defined by

p ≺⋄ p′ for every p, p′ ∈ X − x s.t. p ≻ p′,
q ≺⋄ q′ for every q, q′ ∈ Y − y s.t. q ≺′ q′,
p ≺⋄ z for every p ∈ X − x s.t. x ≺ p,
z ≺⋄ q for every q ∈ Y − y s.t. y ≺′ q,

p ≺⋄ v ≺⋄ q for every p ∈ X − x, q ∈ Y − y,
and z ∥ ⋄ v.
≺

9
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L

R

emma 3.6. The flip-flop poset R = (Z,≺⋄) ṡatisfies

e(R) = e(P) e(Q − y) + e(P − x) e(Q ),
e(R− z) = e(P − x) e(Q − y),
|Z | = n + n′,

width(R) ≤ width(P) + width(Q ).

Additionally, we have:

ρ(R, z) = ρ(P, x) + ρ(Q , y).

We warn the reader that the element z is not necessarily a minimal element of R, so this
construction cannot be easily iterated.

Proof. We have:

e(R) = e(P) · e(Q − y) + e(P − x) · e(Q ).

Indeed, the factor e(P) · e(Q − y) ċounts linear extensions f ∈ E(R) for which f (u) < f (v), while the
factor e(P − x) e(Q ) ċounts linear extensions f ∈ E(R) for which f (u) > f (v). Also note that

e(R− z) = e(P − x) · e(Q − y),

because (R− z) is isomorphic to the linear sum (P − x) 4 {v} 4 (Q − y). Finally, note that

width(R) ≤ width(P) + width(Q ),
|Z | = |X | + |Y |,

by construction. This completes the proof. □

4. Proofs

4.1. Proof of Theorem 1.10

We prove the claim by induction on m. First, let m = 0. Recall the notation in Section 2.2. Note
that condition (1.10) becomes b0 ≥ 1, which holds by the assumption. Let P = (X,≺) := {x}⊕Cb0−1.
Then we have:

e(P) = b0 = C0(b0) and e(P − x) = 1 = D0(b0).

We also have |X | = b0 ȧnd width(P) = 2, as desired.
Suppose now that the claim holds for m − 1. Let b′1 := b1 − a1 + 1. The balanced assumptions

(1.10) gives b′1 ≥ a2. Thus, by the inductive assumption, there exist P ′ = (X ′,≺′) and x′ ∈ min(P)′,
such that

e(P ′ − x′) = D0(a2, . . . , am; b′1, b2, . . . , bm) = D1(a1, . . . , am; b0, b1, . . . , bm),

e(P ′) = C0(a2, . . . , am; b′1, b2, . . . , bm)

= C0(a2, . . . , am; b1, b2, . . . , bm) − (a1 − 1) · D0(a2, . . . , am; b1, b2, . . . , bm)

= C1(a1, . . . , am; b0, . . . , bm) − (a1 − 1) · D1(a1, . . . , am; b0, . . . , bm).

Now, apply Lemma 3.5 to P ← P ′ with b ← b0 ȧnd a ← a1 ȧnd x ← x′. We obtain a poset
= (Z,≺⋄) on |Z | = n elements, and z ∈ min(R), such that

e(R− z) = e(P ′) + (a1 − 1) · e(P ′ − x′) = C1(a1, . . . , am; b0, . . . , bm)

= D0(a1, . . . , am; b0, . . . , bm),

e(R) = b · e(R− z) + a · e(P ′ − x′)
0 1

10
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= b0 · D0(a1, . . . , am; b0, . . . , bm) + a1 · D1(a1, . . . , am; b0, . . . , bm)

= C0(a1, . . . , am; b0, . . . , bm).

ince induction assumption implies that |X |′ = G(a2, . . . , am; b′1, b2, . . . , bm), we also have

n = b0 + |X ′| = b0 + b′1 +
m∑
i=2

bi −
m∑
i=2

ai + m− 1

=

m∑
i=0

bi −
m∑
i=1

ai + m = G(a1, . . . , am; b0, . . . , bm),

nd width(R) ≤ max
{
width(P ′), 3

}
≤ 3. Finally, we have:

ρ(R, z) =
C0(a1, . . . , am; b0, . . . , bm)
D0(a1, . . . , am; b0, . . . , bm)

= [a1, . . . , am; b0, . . . , bm].

he theorem is now complete by substituting P ← R and x← z. □

.2. Proof of Theorem 1.13

We prove the claim by induction on m. For m = 0, let P = (X,≺) := x⊕ Cb0−1. We have:

e(P) = b0 = C0(b0) and e(P − x) = 1 = D0(b0).

e also have |X | = b0 ȧnd width(P) = 2, which proves the case m = 0.
We now suppose the claim is already proved for (m − 1). By the induction assumption, there

exists a poset P ′ = (X ′,≺′) and element x′ ∈ min(P ′), such that

e(P ′ − x′) = D0(α2, . . . , αm; b1, b2, . . . , bm) = D1(α1, . . . , αm; b0, b1, . . . , bm),
e(P ′) = C0(α2, . . . , αm; b1, b2, . . . , bm) = C1(α1, . . . , αm; b0, . . . , bm).

Applying Theorem 1.6 to α1, there exists a poset Q = (Y ,≺′) and y ∈ min(Q ) such that

e(Q ) = c1, e(Q − y) = d1, |Y | = s(α1) and width(Q ) ≤ 2.

Now, apply Lemma 3.4 to posets P ′, Q , and element b0. We obtain a poset P = (X,≺) and
∈ min(P), such that

e(P − x) = e(Q − y)
[
e(P ′) + (|Y | − 1) e(P ′ − x)

]
,

= d1 ·
[
C1(α1, . . . , αm; b0, . . . , bm) +

(
s(α1)− 1

)
· D1(α1, . . . , αm; b0, b1, . . . , bm)

]
= D0(α1, . . . , αm; b0, . . . , bm).

e also have

e(P) = b0 · e(P − x) + e(Q )
[
e(P ′) + |Y | · e(P ′ − x′)

]
= b0 · D0(α1, . . . , αm; b0, . . . , bm)
+ c1 ·

[
C1(α1, . . . , αm; b0, . . . , bm) + s(α1) · D1(α1, . . . , αm; b0, b1, . . . , bm)

]
= C0(α1, . . . , αm; b0, . . . , bm)

nd

width(P) ≤ max
{
width(P ′),width(Q )+ 1, 2

}
≤ 3.

inally, we have

|X | = |X ′| + |Y | + b0
= (b1 + · · · + bm) + s(α2)+ · · · + s(αm) + s(α1) + b0
= R(α1, . . . , αm; b0, . . . , bm).

his completes the proof. □
11
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.3. Proof of Propositions 1.12 and 1.15

For Proposition 1.12, recall from the introduction that Conjecture 1.11 implies Conjecture 1.2
or prime d. Indeed, by Theorem 1.6 for a GCF [a1, . . . , am; b0, . . . , bm] = d

c , we obtain a poset
= (X,≺) and x ∈ X such that |X | = g

( d
c

)
≤ C log d and e(P)

e(P−x) =
d
c . By the reduced condition on

he definition of g, it then follows that e(P) = d, as desired.
To show that the first part of Conjecture 1.11 suffices, let pm1

1 . . . pmℓ
ℓ ḃe the prime factorization

of d. For each prime pi, let Pi = (Xi,≺i) be the corresponding poset with e(Pi) = pi and |Xi| ≤ C log pi.
efine

P := P1 4 · · · 4 P1  
m1 times

4 · · · 4 Pℓ 4 · · · 4 Pℓ  
mℓ times

be the linear sum of posets Pi. We have:

e(P) =
ℓ∏

i=1

e(Pi)mi = d,

and

|X | =
ℓ∑

i=1

mi |Xi| ≤ C
ℓ∑

i=1

mi log pi = C log d.

his completes the proof of Proposition 1.12. The proof of Proposition 1.15 follows verbatim. □

4.4. Proof of Theorem 1.8

First, observe that there exists a constant C > 0, such that for all coprime integers a, b ≤ d
which satisfy C < b ≤ a ≤ 2b, there exists a positive integer ℓ := ℓ(a, b) ṡuch that 1 ≤ ℓ < b, and

s
(

ℓ
b

)
≤ 2 log b log log b and s

( a−ℓ
b

)
≤ 2 log b log log b. (4.1)

Indeed, by Theorem 1.9 and using 12
π2 < 2, for random ℓ ∈ {1, . . . , b}, the probability that each

nequality fails→ 0 ȧs b→ ∞. Taking C large enough so that each probability is < 1
2 proves the

laim.
Let a, b be given by

a := c + d −
⌊
d
c

⌋
c, b := c,

o that b ≤ a ≤ 2b ȧnd b ≤ d.̇ From above, there exists 1 ≤ ℓ ≤ b, such that (4.1) holds. Let

α := 1 +
ℓ

b
and β :=

⌊
d
c

⌋
− 2 +

a− ℓ

b
.

t follows from the construction that α + β = d
c .̇ Since

d
c ≥ 3, we have α, β ≥ 1.

Applying Theorem 1.10 to simple continued fractions, we obtain a poset P = (X,≺) and element
x ∈ min(P), such that

ρ(P, x) = α and |X | = 1 + s
(

ℓ
b

)
.

imilarly, we obtain a poset Q = (Y ,≺′) and element y ∈ min(Q ), such that

ρ(Q , y) = β and |Y | =
⌊ d

c

⌋
− 2 + s

( a−ℓ
b

)
.

By Lemma 3.6, there exists a poset R = (Z,≺⋄) and element z ∈ Z , such that

ρ(R, z) = ρ(P, x) + ρ(Q , y) =
d
,

c
12
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nd

|Z | = |X | + |Y | =
⌊
d
c

⌋
− 1 + s

(
ℓ
b

)
+ s

( a−ℓ
b

)
≤

d
c
+ O(log d log log d).

his completes the proof. □

. Final remarks and open problems

.1.

The nature of connections between counting combinatorial objects and continued fractions
escribed in Section 1.1 is clear and easy to explain: when objects are decomposed into smaller

objects, they often have simple recurrences of the type described in Section 2.2. Fundamentally, this
s the same reason why the generating functions are so powerful in combinatorial enumeration,
ee e.g. [14,39]. And yet, every time such a connection is found it is an unexpected delight,
temming both from the sheer elegance of continued fractions as well as the power of technical
ools developed for them. While we tend to be swayed by the latter arguments, we appreciate the
ormer sentiments.

.2.

The upper bound in Larcher’s Theorem 1.3 was sharpened by Rukavishnikova [30] to
O(log d log log d). Since d

φ(d) can be as large as C log log d, see e.g. [16, Thm 328], this is a significant
symptotic improvement. This result was further sharpened by Aistleitner, Borda and Hauke [1,
or. 2], who proved that for all d ≥ 3 there exist 1 ≤ c < d, such that

s
( c
d

)
≤

12
π2 log d log log d + O

(
log d

)
. (5.1)

Note that we are using only prime d for our applications, which it why we postponed this recent
result. We note in passing that the authors of [23] stated Conjecture 1.4 in the generality of all d;
while plausible this remains out of reach with the existing technology. They were unaware of the
earlier work and rediscovered Theorem 1.3.1

5.3.

The asymptotics in the upper bound (5.1) cannot be easily improved by probabilistic arguments.
This follows from a version on the tail estimates (1.8) given in [29]. A stronger result was proved
in [1, Thm 1], which implies that for all C < 0, d ≥ 3, and ε = ε(d) > (log d)C , for the (1 − ε)
fraction of c ∈ {1, . . . , d} with gcd(c, d) = 1, we have:⏐⏐⏐ s( c

d

)
−

12
π2 log d log log d

⏐⏐⏐ = O
( log d

ε

)
. (5.2)

Of course, this does not preclude the outlying small values predicted by Zaremba’s conjecture. In
fact, as was pointed out in [1], the distribution of s

( c
d

)
is heavy-tailed and has a large mean:

1
φ(d)

∑
c

s
( c
d

)
=

6
π2 (log d)2 + O

(
(log d)(log log d)2

)
, (5.3)

here the summation is over all c ∈ {1, . . . , d} ṡuch that gcd(c, d) = 1. This was proved
ndependently in [25,26,43].

1 Personal communication.
13
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.4.

It was pointed out by Kravitz and Sah (see Remark 5.31 in [8]), that the numerator c in
heorem 1.6 can be found in probabilistic polynomial time ṗoly(log d). Tail estimates (5.2) give
simpler (and faster) probabilistic algorithm: pick a random c , check if gcd(c, d) = 1, compute a
imple CF (1.1), repeat if s

( c
d

)
> 2 log d log log d. It is an interesting open problem if this can be

one deterministically. More broadly, is there a deterministic polynomial time construction of a
oset with exactly n linear extensions? So far, the only deterministic construction we know of is
y Tenner [40], which is exponential in (log n).

.5.

Zaremba’s Conjecture 1.5 is often stated with A = 5 or even A = 4 for all sufficiently large
ntegers. It is known to hold for integers of the form 2m3n, for other families of powers of small
rimes and sufficiently large powers of all primes, where the constant A can depend on the prime,
ee [34]. We refer to [3, §6.2] for an elegant presentation of the 2m case. Of course, the Kravitz–
ah Conjecture 1.2 is trivial in this case. Note that the constant 50 in the Bourgain–Kontorovich
heorem that was used in the proof of Corollary 1.7, has been improved to 5 in [17]. See [19] for
urther extensions, and [33, §7] for an overview.

.6.

It would be interesting to find an elementary proof of the first part of Corollary 1.7. The result is
specially surprising given that the bound is obtained on a relatively small family of posets of width
wo. On the other hand, we know of no nontrivial bound for the much larger family of height two
osets (cf. [37]).

.7.

In [8, Conj. 5.17], we conjecture that all but finitely many integers are the numbers of linear
xtensions of posets of height two. We also observe (Prop. 5.18, ibid.), that this would imply
onjecture 1.2 with a sharp Θ

( log n
log log n

)
ȧsymptotics.
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