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ABSTRACT. We study the weight part of Serre’s conjecture for generic n-dimensional mod p Galois
representations. We first generalize Herzig’s conjecture to the case where the field is ramified at
p and prove the weight elimination direction of our conjecture. We then introduce a new class of
weights associated to nm-dimensional local mod p representations which we call extremal weights.
Using a “Levi reduction” property of certain potentially crystalline Galois deformation spaces, we
prove the modularity of these weights. As a consequence, we deduce the weight part of Serre’s
conjecture for unit groups of some division algebras in generic situations.
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1. INTRODUCTION

In [Ser87], Serre announced his celebrated modularity conjecture for two-dimensional mod p
Galois representations (now a theorem of Khare-Wintenberger [KW09]). Much of that paper is
dedicated to formulating a strong version which predicts the minimal level and weight at which one
would find a suitable modular form in terms of the restriction of the mod p Galois representation to
decomposition groups. There has been enormous progress on generalizing Serre’s strong version to
other number fields and higher dimensions as well as proving that the strong version follows from
the weak version. This includes rather complete results in dimension two [CV92, Edi92, Gro90,
BDJ10, Sch08, Geell, New14, GLS14, GLS15] which have led to a much better understanding of
the hypothetical mod p Langlands correspondence [BP13, BHH™]. Still, there has been no complete
generalization of the weight part of Serre’s conjecture in any dimension larger than two, reflecting
difficulties in integral p-adic Hodge theory.

Already in Serre’s original paper, the most subtle case occurs when the restriction p to the
decomposition group at p is not semisimple: the tres ramifiée extensions have fewer modular Serre
weights than the peu ramifiée ones. Still in dimension two but for unramified extensions of Q,, the
set of Serre weights attached to a nonsplit extension by [BDJ10] depends in a subtle way on the
extension class even in generic cases (see also [DDR16, CEGM17]). In higher dimensions, [Her09,
GHS18] define a conjectural weight set for unramified extensions of Q, only when p is generic and
semisimple. This conjecture was proven in [LLHLMa| (for many definite unitary groups) under a
somewhat exotic genericity condition—again only for semisimple p. Further, [LLHLMa, Conjecture
9.1.5] extended (still for unramified extensions of Q) the weight part of Serre’s conjecture to generic
non-semisimple Galois representations using stacks defined by Emerton—Gee [EGa] and their local
models. It predicts that p is modular of a Serre weight o if p lies on a certain cycle on the Emerton—
Gee stack attached to o using known cases of the Breuil-Mézard conjecture. It seems that this
geometric perspective is essential because already in dimension three the set of modular weights
cannot be described by linear conditions on extension classes [LLHLMDb]. At present, this conjecture
seems difficult to access for several reasons. First, proving the conjecture using the Breuil-Mézard
perspective would require showing that various Taylor—Wiles patched modules have full support
which is a notoriously difficult problem. (The relevant deformation rings are not always integral
domains when 7 is not semisimple.) Second, the cycle attached to o depends on cycle multiplicities
appearing in local models that are not well understood at present. Finally, a classification of
possible weight sets seems complicated because the formal definition of the Emerton—Gee stack
makes it difficult to understand basic geometric questions such as the intersection patterns of its
irreducible components. The goal of this paper is to establish upper and lower bounds for the set
of modular Serre weights which apply to generic non-semisimple Galois representations in arbitrary
dimension over possibly ramified extensions of Q,. When applicable, our bounds greatly improve
the existing ones in the literature (cf. Remark 1.1.7). They arise from our study of (potentially
crystalline) Emerton—Gee stacks. The new symmetries and geometric structures we observe should
play a role in organizing further investigations on Serre weight conjectures. Our results are new
even in the semisimple case: we formulate a generalization of Herzig’s conjecture for ramified p-adic
fields which we prove is always an upper bound. We give two concrete applications of our bounds.
Under a mild and explicit genericity condition, we establish the weight part of Serre’s conjecture
for unit groups of certain division algebras and generalize Gross’ automorphic tameness criterion.

1.1. Results. Let p be a prime and n > 2 be an integer. Let F'/F'* be a CM extension of a totally
real field F™ # Q. Assume for the sake of exposition that there is a single place v of F' dividing
p which splits in F. (Our results apply whenever all the places of F'* dividing p split in F.) Let G
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be a definite unitary group over F'* split over F which is isomorphic to U(n) at each infinite place
and split at v. A (global) Serre weight is an irreducible smooth F,-representation V' of G(Op+ ),
i.e. the inflation to G(Op+ ,) of an irreducible Fy-representation of G(k,), where k, is the residue
field of F™ at v. For a mod p Galois representation 7 : Grp — GL,(F,), let W(7) denote the
collection of modular Serre weights for 7. That is, V € W(7) if the Hecke eigensystem attached to
T appears in a space of mod p automorphic forms on G of weight V' for some prime to v level.

Fix a place v of F' dividing v which identifies G(k,) with GLy(ky). Define 7y := 7|q 7. /-
The goal of the weight part of Serre’s conjecture is to predict W (7) in terms of 7, or more precisely,
the restriction of 7, to inertia.

Our global (and local) results include genericity conditions on 7, which will be made precise in
the body of the paper. We stress that our genericity conditions are completely explicit, unlike those
of [LLHLMa]. We note however that for most results the genericity conditions require p to be at
least O(en?) (where e is the absolute ramification index of Fj).

Let K/Q, be a finite extension with residue field k. For any tame n-dimensional Fp—representation
7 of Iy C Gal(K/K) which extends to Gal(K /K), one associates a Deligne-Lusztig representation
V(7) of GL, (k) (generalizing [GHS18, Proposition 9.2.1]) which is defined over a finite extension
E/Q,. It is also a representation of GL,(Ok) by inflation. Recall also the operator R (see [GHS18,
§9.2]) on the set of irreducible F,-representations of GL, (k) (i.e. the set of Serre weights).

If K is unramified over @, and p is tame and generic, then Herzig defined the collection W*(p) =
{R(c) | o € JH(V(p|1,))}- In the ramified setting, we make the following generalization:

Definition 1.1.1. If p is tame and generic, we define

) E{R(0) | o € (M(V(pl) @ W(0,1-e,2(1=¢),....(n=1)(1 = e))) ) }.

where W(0,1—e,2(1—¢),...,(n— 1)(1 —e)) is the irreducible algebraic representation of (parallel)
highest weight (0,1 — e, 2(1 —e),...,(n—1)(1—¢e)).

Remark 1.1.2. (1) In [LLHLMa] (see Theorem 4.7.6), in the unramified case, we give a geomet-
ric interpretation of Herzig’s W7 (p) in terms of torus fixed points on certain subvarieties
of the affine flag variety. Although we don’t directly use this description here because of a
lack of local model theory in the ramified case, it motivated Definition 1.1.1.
(2) When n = 2, Schein gave in [Sch08] an explicit description of a weight set for tamely
ramified p. The two sets agree when p is sufficiently generic, cf. §2.4.1.

We prove the weight elimination direction generalizing [LLHL19]:

Theorem 1.1.3 (“Weight elimination”, cf. Theorem 5.1.1). Suppose that T : Gp — GL,(F,)
satisfies standard Taylor—Wiles hypotheses and that T, is tame and sufficiently generic. If o is a
sufficiently generic Serre weight, then

ceW(FT) = oW (7).

When p is not tame, unless n < 3, we don’t have an analogue of W?(ﬁ). Historically, certain
classes of Serre weights have been identified which are expected to belong to W’ (p). For example,
Gee-Geraghty proved very generally the modularity of ordinary weights, i.e., those weights for
which 7, admits ordinary crystalline lifts. For tame p and K unramified, [GHS18] introduce a
notion of obvious weight which roughly speaking are characterized by the property that p admits an
“obvious” crystalline lift of specified Hodge—Tate weights, namely a sum of inductions of characters.
Building on what we discovered when n = 3 in [LLHLMDb]|, we introduce a notion of extremal weights
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Wextr(p) which encompasses (in generic cases) both these earlier notions and prove the following
theorem:

Theorem 1.1.4 (“Modularity of extremal weights”, Theorem 5.5.5). Let 7 : Gr — GL,(F) be
an automorphic representation satisfying standard Taylor—Wiles conditions and such that T, is
sufficiently generic. If either T is potentially diagonalizably automorphic or Wexi(T) N W (F) is
non-empty, then

Wextr () C W(T).

When 7 is tamely ramified at v and F'* is unramified at p, Theorem 1.1.4 was proven in [LLHL19]
and played a critical role in the theory of local models in [LLHLMa] and its applications to the
weight part of Serre’s conjecture and the Breuil-Mézard conjecture. We expect Theorem 1.1.4 to
have similar applications when F7T is ramified at p and hope to return to this in future work.

There are two main ingredients in the proof of Theorem 1.1.4: a geometric one (which will be
discussed in the next section) and a combinatorial one. The combinatorial ingredient is a hidden
Weyl group symmetry. When 7 is tame and generic, then Wey,(p) is naturally a torsor for a product
of [k : F,]-copies of the Weyl group S,, of GL,,, as explained in [GHS18]. Wildly ramified p have
fewer weights in general and fewer extremal weights (see Proposition 3.7.3), but it turns out that
the symmetry can be restored by enhancing an extremal weight with the data of a specialization.

A tame inertial Fp-type is a continuous tame representation Iy — GL,(F,) which admits an
extension to Gx. Tame inertial Fp-types admit a combinatorial description in terms of fundamental
characters of G (see §2.3.3). To a generic p, we attach a collection of tame inertial F,-types which
we call (extremal) specializations (Definition 3.4.1). This notion is somewhat elaborate, relying on
the geometry of the Emerton—Gee stack (see e.g. §3.10). The semisimplification of p restricted to
I is a prototypical example of a specialization but there are always others when p is not tame. It
is generally expected that the predicted Serre weights of a wildly ramified p should be a subset of
those of p**. What we discover is the same is true for the other specializations of p as well.

Theorem 1.1.5 (cf. Theorem 5.1.1). Suppose 7 : Gg — GL,(F,) satisfies standard Taylor-Wiles
hypotheses and that T, is sufficiently generic. Let 7% be a specialization of ¥,,. If o is a sufficiently
generic Serre weight, then

o e W(F) = o € W (FP).

The proof follows from a purely local result, showing that if 7, admits a tamely potentially
crystalline lift of type (7,(n — 1,n — 2,...,0)) then so does any extension of the specialization of
7o to Gk, combined with the same weight elimination combinatorics used in the tame case.

Remark 1.1.6. Theorems 1.1.4 and 1.1.5 interact in an interesting way to constrain W (7). Weight
elimination can be used to produce further extremal Serre weights which in turn can be used to
produce further specializations, and hence further weight elimination. Each iteration sharpens the
bounds on W (7).

Remark 1.1.7. (1) When F,f/Q, is unramified the assumption that o is sufficiently generic
can be removed ([LLHL19]). A similar argument can remove this assumption even in the
ramified case, but we don’t pursue this here.

(2) Theorem 1.1.4 improves on previous lower bounds for the set of modular weights given by
the sets of ordinary weights [GG12] and Fontaine—Laffaille weights [BGG18]. For example,
if 7, is completely reducible and generic, then 7, has n! ordinary weights, nf Fontaine-
Laffaille weights, and (n!)/ extremal weights where f denotes [k, : F)].
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(3) The only previously known upper bound for W (7) was W (7%) (when F,/Q, is unramified)
[LLHL19]. If 7, has (n!)f specializations (which is the generic behavior geometrically on
the Emerton—Gee stack), Theorem 1.1.5 gives a far better upper bound. For instance when
n =3, F,S/Q, is unramified, and 7, has 67/ specializations, Theorem 1.1.5 gives an upper
bound with a set of size at most 27 rather than 97.

(4) When n = 2 and F,//Q, is unramified, the lower and upper bounds are equal and agree
with the set defined in [BDJ10]. When n = 3 and F, /Q, is unramified, the lower and upper
bounds are close and play a major role in the resolution of the Serre weight conjecture in
generic cases [LLHLMb].

A byproduct of our methods is an automorphic tameness criterion in the spirit of [Gro90]. When
n =2 and F = Q, Gross’s tameness criterion says that for generic modular 7, tameness of 7 at p is
equivalent to W (7) having two distinct Serre weights (as opposed to one). Here we show a similar
criterion in terms of the modularity of two extremal weights.

Theorem 1.1.8 (“Automorphic tameness criterion”, Theorem 5.5.6). Let 0,0, € Wextr(T5) be
extremal weights of 7, which differ by the longest element wy under the Weyl group symmetry.
Suppose that o, € W(T) and that 7, is sufficiently generic. Then the following are equivalent:

(1) ol, € W(F); and

(2) Ty is tame.

Remark 1.1.9. In the case where W (7) contains a lowest alcove weight, our methods also give
a refined version of the tameness criterion, showing that automorphic information even detects
the stratum of 7, in the moduli of Fontaine-Laffaille representations (with respect to a natural
partition). This idea plays a crucial role in [LLHM™].

Finally, we discuss our results on the weight part of Serre’s conjecture for division algebras. When
G is an anisotropic mod center inner form of GL,, locally at v, Serre weights lift to characteristic
zero, and hence the modularity of a Serre weight can be rephrased in terms of the existence of
automorphic lifts of specified types. By local-global compatibility, a necessary condition for the
modularity of a generic Serre weight x, is the existence of a lift which is potentially crystalline at v
of type (7(xv), (n—1,n—2,...,0)) for a certain tame cuspidal type 7(x,). We prove the converse
under some hypotheses.

Theorem 1.1.10 (Serre weights for division algebras, Theorem 5.5.13). Suppose that v is unram-
ified in F*, that G is an anisotropic mod center inner form of GL, locally at v, that T : Gp —
GL, (Fp) satisfies standard Taylor—Wiles hypotheses and is potentially diagonalizably automorphic,
and that p,, is sufficiently generic. Then x, € W(T) if and only if p,, admits a potentially crystalline
lift of type (T(xv), (n —1,n—2,...,0)).

This generalizes results in [GS11] when n = 2 and [Dotb] (announced in 2019) when 7 is tamely
ramified at v. The main difficulty lies in the construction of automorphic lifts. One has access
to powerful potentially Barsotti-Tate modularity lifting results when n = 2 [GK14] that are not
available in general. Via a transfer a la Jacquet—Langlands, it suffices to construct automorphic
lifts for a group which is quasisplit at places dividing p. Generalizing [LLHL19] in the tame case,
we construct the desired automorphic lifts using the modularity of extremal weights. In fact, we
prove a more general criterion for the existence of automorphic lifts where 7(y, ) is replaced by any
sufficiently generic tame inertial type (Corollary 5.5.11). That the modularity of extremal weights
suffices to produce the desired automorphic lifts reduces to combinatorics of the extended affine
Weyl group when 7 is tamely ramified at v. In general, it requires an analysis of the geometry of
local models (§3.10).
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1.2. Geometric methods: Levi reduction for deformation rings. We now explain how we
go about proving the modularity of the extremal weights (Theorem 1.1.4). As mentioned earlier,
this notion expands on the notions of ordinary and obvious weights. Gee-Geraghty [GG12] proved
modularity of ordinary weights in considerable generality. Three of the authors proved modularity
of obvious weights in the unramified and generic semisimple case ([LLHL19]). Both of these results
rely on producing potentially diagonalizable lifts of some prescribed type. Using these methods, we
can access some but not all of the extremal weights. Instead, we adopt the strategy of [LLHLM18|
and exploit the symmetry of our situation.

As described above, extremal weights when enhanced with the data of a specialization admit a
Weyl group symmetry. The main point is to show that if two extremal weights o, ¢’ are related by
a simple reflection then the modularity of one implies the modularity of the other. To do this, we
show that we can find a sequence of well-chosen tame types 79, ..., To. connecting o to o’ where we
can establish good combinatorial behavior of Serre weights and show that the Galois deformation
rings are integral domains. The following is the main result on deformation rings that we use.

Theorem 1.2.1 (particular case of Theorem 4.1.1). Let 7; be one of the well-chosen tame inertial
types described above (which will be sufficiently generic in our setup).

(

Then RWI=20T 4o cither zero or is a normal domain. Furthermore, if it is nonzero, then
either it is formally smooth over O or the special fiber is reduced with exactly two irreducible
components.

We actually prove a more general result for a larger class of deformation rings (Theorem 4.1.1).
We approach the deformation spaces using the methods for studying Breuil-Kisin modules devel-
oped in [LLHLM18, LLHL19, LLHLMa]. This is the first time these methods have been adapted
to the ramified setting. The key ingredient in our proof of Theorem 4.1.1 is the fact that the local
models (in the sense of [LLHLMa] adapted to the ramified setting) of these Galois deformation
spaces have a Levi reduction property: namely, they are formally smooth over similar local models
attached to suitable Levi subgroups of GL,,. This turns out to be a general phenomenon whenever
the shape of p relative to the type 7 is suitably “decomposable”, which may be of independent in-
terest. In the specific case of Theorem 1.2.1, the Levi subgroup we reduce to is GLa X GL?‘Q. Thus,

we are able to show essentially that R(;_l’n_2""’0)’T is smooth over the completed local ring of a

ramified local model of Pappas—Rapoport from which we deduce the normality and the description
of the special fiber. We prove a similar Levi reduction property for the Pappas—Zhu local models,
which is a key geometric input (Lemma 2.2.7) into the analysis of Serre weight combinatorics for
these tame types.

Remark 1.2.2. When K /Q, is unramified, the relevant local model is a product of the Iwahori local

models for GLg. Concretely, Theorem 1.2.1 says that R%nil’nﬂ’“"o)ﬁ will either be power series
ring over O or will be formally smooth over O[xz,y]/(zy — p). This observation in the case of GL3

in [LLHLM18] was the starting point for this work.

1.3. Overview. In §2, after preliminaries on the affine Weyl group and admissible sets (§2.2),
and recollections on Serre weights (§2.3), we formulate a Serre type conjecture on the weights of
tame Galois representations over a possibly ramified field (cf. Definition 2.3.1) and obtain our main
results on the combinatorics of Serre weights and tame inertial types for the shapes we will be
interested in (cf. Propositions 2.4.8, 2.4.9).

§3 introduces the notion of extremal weights for Galois representations (§3.7). This requires
preliminaries on the semicontinuity of shapes for Kisin modules (§3.3, 3.5, in different degrees of
generality), the notion of specializations for Galois representations (§3.4) and the closely related
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notion of specialization pairs (§3.6). The non-emptiness of the set of the extremal weights is proved
in §3.8 and §3.10 with different methods. In particular the geometric interpretation of this set in
terms of the Emerton—Gee stack in the unramified case is in §3.9, 3.10.

§4 calculates the tamely potentially crystalline deformation rings which appear when studying
extremal weights of Galois representations. We first establish structural results on of Breuil-Kisin
modules of certain parabolic shapes (§4.2) and then analyze the monodromy condition on them
(84.4, Lemma 4.4.3).

In §5, after a number of preliminaries on patching functors and cycles on potentially crystalline
deformation rings (§5.2, 5.3), we prove in §5.4 the modularity of extremal weights in an axiomatic
setup (Theorem 5.4.3). §5.5 contains our global applications to automorphic forms on definite
unitary groups.
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1.5. Notation. For a field K, we denote by K a fixed separable closure of K and let Gg e
Gal(K/K). If K is defined as a subfield of an algebraically closed field, then we set K to be this
field.

If K is a nonarchimedean local field, we let I C G i denote the inertial subgroup and Wi C Gg
denote the Weil group. We fix a prime p € Z~q. Let £ C @p be a subfield which is finite-dimensional
over Q,. We write O to denote its ring of integers, fix an uniformizer @ € O and let F denote the
residue field of E. We will assume throughout that E is sufficiently large.

1.5.1. Reductive groups. Let G denote a split connected reductive group (over some ring) together
with a Borel B, a maximal split torus 7' C B, and Z C T the center of G. Let d = dim G — dim B.
When G is a product of copies of GL,, we will take B to be upper triangular Borel and T the
diagonal torus. Let T C ® (resp. @7 C ®V) denote the subset of positive roots (resp. positive
coroots) in the set of roots (resp. coroots) for (G, B,T'). We use the notation a > 0 (resp. a < 0) for
a positive (resp. negative) root a € ®. Let A (resp. AY) be the set of simple roots (resp. coroots).
Let X*(T) be the group of characters of T', and set X°(7") to be the subgroup consisting of characters
A € X*(T) such that (\,a") = 0 for all ¥ € AY. Let Ag C X*(T) denote the root lattice for
G. Let W(G) denote the Weyl group of (G,T'). Let wp denote the longest element of W(G). We

sometimes write W for W(G) when there is no chance for confusion. Let W, (resp. W) denote the
affine Weyl group and extended affine Weyl group

W,=ArxW(G), W=X*T)xW(G)



EXTREMAL WEIGHTS AND A TAMENESS CRITERION FOR MOD p GALOIS REPRESENTATIONS 9

for G. We use t, € W to denote the image of v € X*(T).

The Weyl groups W(G), W, and W, act naturally on X*(T"). If A is any ring, then the above
Weyl groups act naturally on X*(7T') ®z A by extension of scalars.

Let M be a free Z-module of finite rank (e.g. M = X*(T')). The duality pairing between M
and its Z-linear dual M* will be denoted by (, ). If A is any ring, the pairing ( , ) extends by
A-linearity to a pairing between M ®z A and M* ®z A, and by an abuse of notation it will be
denoted with the same symbol ( , ).

We write GV = GyZ for the split connected reductive group over Z defined by the root datum
(X(T), X*(T),®",®). This defines a maximal split torus TV C GV such that we have canonical
identifications X*(TV) = X, (T) and X,(TV) = X*(T).

Let V% X*(T) @z R \ (U(a,n) Hom). For (a, k) € ® x Z, we have the root hyperplane

Hg oo {x € V | (\,a") = k} and the half-hyperplanes H:{k ={z eV | (x,a") > k} and
Ha,n ={zeV](za ) < k}. An alcove is a connected component of V' \ (U(a,n) Hap).

We say that an alcove A is restricted if 0 < (A, a¥) < 1 for all « € A and A € A. We let Ay
denote the (dominant) base alcove, i.e. the set of A € X*(T") ®z R such that 0 < (A,a") < 1 for all
a e <I>+ Let A denote the set of alcoves. Recall that W acts transitively on the set of alcoves, and
W = W x ) where (Q is the stabilizer of Ag. We define

Wt {w e W w(Ap) is dominant}.
and

Wﬁ & {w € W+ :w(Ap) is restricted}.
We fix an element 19 € X*(T') such that (ng,a) = 1 for all positive simple roots «a and let wy, be
wot_m S Wl—’— .

When G = GL,,, we fix an isomorphism X*(7') & Z" in the standard way, where the standard i-
th basis element (0,...,1,...,0) (with the 1 in the i-th position) of the right-hand side corresponds
to extracting the i-th diagonal entry of a diagonal matrix. When G is a product of copies of GL,,
indexed over a set J we take 9 € X*(T') to correspond to the element (n —1,n —2,...,0)c7 €
(Z™)7 in the identification above. In this case, given j € J we write 79 ; € to denote the element
which corresponds to the tuple (n — 1,...,1,0) at j and to the zero tuple elsewhere.

Let F" be a finite étale Qp-algebra. Then F" is isomorphic to a product ] s, F;} for some finite
set S, where for each v € Sy, I, is finite extension of Q,. For each v € Sy, let Op+ C F be
the ring of integers, k, the residue field, Fj o C F;f the maximal unramified subextension, f, the
unramified degree | ;ro Q,], and e, the ramification degree [F,' : F;r ol. Let O, be the product
[l.es, O+ and ky the product [[,cq &

In global applications, S, will be a ﬁmte set of places dividing p of a number field F*. When
working locally, S, will have cardinality one, in which case we drop the subscripts from f,, e,, and
k, and denote the single extension F, of Q, by K

If G is a split connected reductive group over [, with Borel B, maximal split torus 7', and
center Z, we let Gg o Resy, /r, Gk, with Borel subgroup By o Resy, /r, B/k,, maximal torus Tp o
Resy, /v, Tk, and Zg = Resy jr,Z 1, Assume that F contains the image of any ring homomorphism
k, — F, and let J be the set of ring homomorphisms k, — F. Then G o (Go)r is naturally
identified with the split reductive group G‘/F We similarly define B,T, and Z. Corresponding to
(G, B,T), we have the set of positive roots ®* C ® and the set of positive coroots @' C @Y. The



EXTREMAL WEIGHTS AND A TAMENESS CRITERION FOR MOD p GALOIS REPRESENTATIONS 10

notations Ap, W, W, W, E+, Ej, € should be clear as should the natural isomorphisms X*(T') =
X*(T)7 and the like. The absolute Frobenius automorphism ¢ on k, induces an automorphism
of the identified groups X*(T') and X, (T") by the formula w(\); = Ayo,-1 for all A € X*(T) and
o : k, - F. We assume that, in this case, the element 17y € X*(I') we fixed is m-invariant. We

similarly define an automorphism 7 of W and W.

1.5.2. Galois Theory. We now assume that S, has cardinality one. We write K ot F;F and drop the
subscripts from f,, e,, and k,. Let W (k) be ring of Witt vectors which is also ring of integers Ok,
of Ky. We denote the arithmetic Frobenius automorphism on W (k) by ¢, which acts as raising to
p-th power on the residue field. We fix an embedding o of Ky into F (equivalently an embedding &
into F) and define o; = 0 o ¢/, which gives an identification between J = Hom(k,F) and Z/ fZ.

We normalize Artin’s reciprocity map Artyx : K* — Wf(b in such a way that uniformizers are
sent to geometric Frobenius elements.

Given an uniformizer 7 € Ok and a sequence 7y def (TK,m)meN € FN satisfying 7r7;{ el =

TK,ms TK,0 dof g we let Koo be |J K(mgm)-
meN
S U

Given an element m; & (—mr)r’ -1 € K we have a corresponding character wg : Ix — W (k)™

which, using our choice of embedding oy gives a fundamental character of niveau f
wy = 0gowr : Ix = OF.

Let p : Gxg — GL,(F) be a p-adic, de Rham Galois representation. For o : K < E, we define

HT,(p) to be the multiset of o-labeled Hodge-Tate weights of p, i.e. the set of integers i such that

dimp (p®q, i Cp(—i))GK # 0 (with the usual notation for Tate twists). In particular, the cyclotomic
character € has Hodge-Tate weights 1 for all embedding o : K — E. For u = (uj); € X*(T') we
say that p has Hodge-Tate weighs p if

HT,, (p) = {115, 12,5, -+ binj b
The inertial type of p is the isomorphism class of WD(p)|r,., where WD(p) is the Weil-Deligne
representation attached to p as in [CDT99], Appendix B.1 (in particular, p — WD(p) is covariant).
An inertial type is a morphism 7 : Ix — GL,,(F) with open kernel and which extends to the Weil
group Wi of Gg. We say that p has type (u,7) if p has Hodge-Tate weights p and inertial type
given by (the isomorphism class of) 7.

1.5.3. Miscellaneous. For any ring S, we define Mat,,(.S) to be the set of n x n matrix with entries
in S. If M € Mat,(S) and A € GL,(S) we write

(1.1) Ad(A) (M) € AM AL

If X is an ind-scheme defined over O, we write Xg e x Xspec © Opec B and Xy e x X Spec O
Spec I to denote its generic and special fiber, respectively.
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2. PRELIMINARIES

2.1. Extended affine Weyl groups. In this section, we collect some background material on
Weyl groups which will be needed throughout the paper.

Recall from §1.5.1 that G is a split reductive group with split maximal torus 7' and Borel B.
def def

Let W = W(G,T) be the Weyl group and V = X*(T) ® R = X, (TV) ® R denote the apartment

T1r def

of (G,T) on which W = X*(T') x W acts. Let Cp denote the dominant Weyl chamber in V. For
any w € W(G), let Cy, = w(Cp). In particular, denoting the longest element of W by wy, Cy, is the
anti-dominant Weyl chamber.

Recall from §1.5.1 that A denotes the set of alcoves of X*(T') ® R and that Ay € A denotes the
dominant base alcove. We let 1 denote the upper arrow ordering on alcoves as defined in [Jan03,
§11.6.5]. Since W, acts simply transitively on the set of alcoves, w — w(Ay) induces a bijection
W, = A and thus an upper arrow ordering 1 on W,. The dominant base alcove Ay also defines
a set of simple reflections in W, and thus a Coxeter length function on W, denoted ¢(—) and a
Bruhat order on W, denoted by <. s s

If Q C W is the stabilizer of the base alcove, then W = W, x Q and so W inherits a Bruhat and
upper arrow order in the standard way: For wy,ws € W, and § € Q, w10 < wad (resp. w1d T wad)
if and only if wy < wy (resp. wy T we), and elements in different right W,-cosets are incomparable.

We extend £(—) to W by letting £(@0) d:eff(@) for any w € Wy, 6 € €.
Definition 2.1.1. If wy,...,w,, € W, we say that wiws - Wy, is a reduced expression if the

m
inequality ¢(wws -+ - Wy,) < Y. ¢(w;) is an equality.
i=1

Let (WV, <) be the following partially ordered group: WV is identified with W as a group, and
¢(—) and < are defined with respect to the antidominant base alcove.

Definition 2.1.2. We define a bijection w — w* between W and WV as follows: for @ = t,w € W,
with w € W and v € X*(T) = X.(TV), then @* & w=1t, € WV.
This bijection respects notions of length and Bruhat order (see [LLHL19, Lemma 2.1.3]).
We recall some fundamental notions associated to the geometry of X*(7") and W.
Definition 2.1.3. Let A € X*(T'). The convex hull of the set {w(\) | w € W} is defined to be
Conv(\) def ﬂ wW(A) + Copup
weWw
where Cyy, denotes the closure of the Weyl chamber Cpy,-

We recall the definition of the admissible set from [KRO00]:
Definition 2.1.4. For A € X*(T'), define

Adm()) o {zﬂ eW|w< ty(n) for some w € W} .
For a positive integer e, define the e-critical strips to be strips Hc(yl_e’e) ={reV]l-e<
(z,a) < e} where a € ®T.

Definition 2.1.5. An alcove A € A is e-regular if A does not lie in any e-critical strip. For any
w € W, we say w is e-regular if w(Ap) is e-regular. Define

Adm®™(\) = {w € Adm(\) | @ is e-regular}.



EXTREMAL WEIGHTS AND A TAMENESS CRITERION FOR MOD p GALOIS REPRESENTATIONS 12

Proposition 2.1.6. If w € W s e-reqular, then there exist wy and wy € Wi and a dominant
weight v € X*(T') such that w = @51w0ty+(e_1)noﬁl. Moreover, w1, wa, and v as above are unique

up to X(T). Conversely, if w1 and ws are elements of WN/+, then @glwot(e_l)noﬁl s e-regular.

We conclude this section by recalling from [LLHLMa, Definition 2.1.10] the various notions of
genericity for elements of X*(7T').

Definition 2.1.7. Let A € X*(T') be a weight and let m > 0 be an integer.

(1) We say that X lies m-deep in its p-alcove if for all « € &, there exist integers m,, € Z such
that pmq +m < (A +n9,a") < p(mg + 1) — m.

(2) We say that A € X*(T) is m-generic if m < |(\,a) + pk| for all a € ® and k € Z (or
equivalently, A\ — 79 is m-deep in its p-alcove).

(3) We say that an element w = wt, (in either W or WV) is m-small if (v,a") < m for all
ac d.

2.2. Combinatorics of the extended affine Weyl group. In this section, we collect a variety of
results on the combinatorics of the extended affine Weyl group. These will be applied to the analysis
of the combinatorics of Serre weights in §2.4. The methods are elementary with the exception of a
geometric input from Pappas—Zhu local models in the proof of Lemma 2.2.7. We begin with results
concerning the partial orderings < and 7.

Lemma 2.2.1. Suppose that 1+ € W+ and w € W. Then wz' is a reduced eTPression.

Proof. There are galleries in the 1-direction from w~!(Ag) to Ag and from Ag to T7(Ag). We
conclude that f(wxt) = £(w) + (). O

Lemma 2.2.2. Suppose that T € W and @ € W+ and T < wow™. Then wow™ T wT for any
weWw.

Proof. Since wow™ is a reduced factorization by Lemma 2.2.1, 7 < wow™ implies that & = 52’ for
s€ W and 7' € W with @ < @*. Factoring @’ as the reduced expression s'Z+ where s’ € W and
T € W7, we have that 2+ < 2’. Replacing s by ss’ and 2’ by 2T, we can thus assume without
loss of generality that & = T is in WT. Wang’s theorem ([Wan87, Theorem 4.3] or [LLHLI19,
Theorem 4.1.1]) implies that ZT 1 wt. Then we have that wow™ 1 wez™ t wsT™ = w7 for any
w € W by [Jan03, II 6.5(5)]. O

Lemma 2.2.3. If 2 and y € W and 7 < ¥, then 2T 1+ 4T where 2T and y* are the unique elements
in WeN W and Wy N W, respectively. In particular, we have T T y+.

Proof. Let y* be wy with w € W. Since wy = (wow)w ™! and wo(wy) are reduced expressions (the
latter by Lemma 2.2.1, the former by e.g. [Hum90, §1.8]), so is (wow)w~!(wy) and therefore so is
(wow)y. Since zT < 7 (by Lemma 2.2.1) and 7 < 7, wowZ ™ < wowy = wey ™. Lemma 2.2.2 implies
that woy™ 1w so that 27 1 . The last claim follows from [Jan03, II 6.5(5)]. O

Lemma 2.2.4. If w, 0 € WN/IJF, \v € X*(T) with X dominant, then t,wotyxw < wotyw' and
t_wotzw' < wotyw imply that v € X°(T) and @' = t,w.

Proof. Suppose that t,wotxw < wetyw' and t_,wot ' < wpetyw. Lemma 2.2.2 implies that
wotyxw' T tywetyzw and wotyw 1 t_,wotyzw’. Combining these, we have that wotyw' 1 t,wotyw 1
wotyw’ which implies that wot\@w' = t,wetyw or equivalently that @’ = t,,,w. This implies
that @ and @’ have the same image in W. Using that w and @’ are both in Wf , we find that

twor = Ww~t € XO(T) and in particular wov = v. ]
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We now begin our analysis of certain elements of the admissible set which play an important
role in our modularity results. For a simple root «, let W, , be the subgroup of W, generated by
Sq, and tg,.

Lemma 2.2.5. Let o be a simple root. Suppose that @a{fvjl T wg 1 ﬁ]vfor some Wy € W o. Then
{172 € Wa@@l.

of p051t1ve simple roots On the other hand w1 () — Wewi (x) is a nonnegative multiple of . This
implies that so is w;(x) — wa(z).
There is a series of hyperplane reflections (s;)7; such that

m

wy T s1we T s251wW2 T+ 1 Sy -+ - S281W2 = Wy

If the corresponding positive roots are (a;)7,, then w;(z) — wa(x) is a positive linear combination
of the roots in {a;}",. The above paragraph implies that o; = o for all 1. O

Let e be a positive integer. Recall that the enp-admissible set Adm(eng) C W is the subset of
elements w such that w <ty for some w € W.

Proposition 2.2.6. The set w_IWa,atemw N Adm(eny) consists of elements
b1 (eno—ka) for0<k<e

and

W st —(k+1)aW foro<k<e-—1,

€70

where w € Wr is an element (unique up to X°(T)) with image w in W.

Proof. 1t is easy to check that the listed elements lie in w W, atemw Furthermore they are

all less than or equal to either t,,—1(cp)) OF ¢(s,w)—1(eny)- Indeed, set zk = t(e Dno—ka and z z;, def
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te—1)no—(e—1—k)aSa- Then
(2.1) b1 (eno—ka) = (WpW) Mwo(Zw) = (@pw) " (wosa) (Z},0)
(2.2) @_15aten0—(k+1)aw = (@h@)_l(wgsa)(gk@) == (@h@)_lwo(%@)

where 0 < k < e for the elements in (2.1) and 0 < k < e — 1 for the elements in (2.2). Both
2k, 2, T t(e— 1o ¢ and, if k # e, one is them is in WH. Wang’s theorem implies that, for 0 < k < e—1,
one among Zj, zj, is less than or equal to t(e—1)no- This implies that for 0 < k < e —1 the elements
(2.1), (2.2), with the exception of U(sqw)—1(eno): are less than or equal to ¢y,-1(cy,) in the Bruhat
ordering. The exceptional element is less than or equal to itself.

We claim that any element in w™ W, oten,w of length at most that of Lw=1(eny) 15 one of the

listed elements. This would provide the reverse inclusion. For each positive root 8 and w € W, let

— ) L), wH(8Y))] if w(f) >0
nﬂ(w) - ~ —1 \ .

[{w(z), w™(BY)] +1  ifw(f) <0
for any z € Ag. Let mg(w) be |ng(w)|. Then £(w) is the sum 5 mg(w) ([IM65, Proposition
1.23], see also [HN14, §1.3]). Let d(w) be the sum mq(w) + Zﬁ>0 za np(w). The function d(—)
has three favorable properties: d(w;) < f(wy) for all w; € W, l(wy) = d(w) if wwy € W (in
particular for w1 = t,-1(ep,)), and as we shall see next, d(w1) —ma(W1) = Y 5.0 g2, np(W1) is the

same for all w; € w_1Wa7atemw

Fix z as above such that (z,w™!(a")) = £%. Then for each w; € w™'W, atemw, wi(r) =z +

w (6770 —= ) for a some k € Z. Moreover, the map w; — k defines a bijection w™ Wa,atenow — 7.
We claim that
(2.3) > ltwt(enn @), w™ (BN = Y [@i(z),w  (8Y))).

B>0, f#a B>0, B

Assuming (2.3) for the moment, we obtain
g(tw—l(eno)) - d(iﬁl) = d(tw—l(eno)) - d(wl)
= Ma(tw-1(eng) = Ma(@1) + D ([(tw-1(en) (@), w ™ (BY))] = L@r(z), w™ (8Y))])
B>0, B
= ma(tw—l(eno)) - ma(wl)
— lel — |e — K.
If (w1) < L(ty—1(cng)), then since d(wy) < £(w1), |e] > |e — k| so that 0 < k < 2e. These 2e + 1

values for k correspond to the 2e + 1 listed elements. (See Figure 2 for the case of GL3 and e = 3.)
It suffices to justify (2.3). We need to show that

Y U@ = Y e swt ), e (8),

B>0, B#o B>0, B#a
or equivalently, letting y = w(z), that

> = Y L a8l

B>0, B#a B>0, B#a

We can ignore roots 3 such that (a, 3") = 0. The remaining positive roots come in pairs (8_, 34)
where (o, 8Y) < 0 and 84 = sq(B-). Fix such a pair. The fact that (o, 8Y) + («, 8Y) = 0 implies
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that
k

k
<y7 ﬁyr> + <y7/BX> = <y - §a7ﬁi> + <y - §Oé,ﬂx>
It suffices to show that

(24) (B0 + L4989} = (ly — oo S} + {ly — 5o, 8))

where {r} denotes the fractional part r — [r] of r € R. If (a, 8Y), and therefore (a, 8Y), is even,
then (2.4) is clear. Now suppose that (o, 8Y) is odd. Recall that we chose z so that (y,a") = +1.
Then 84 = B + (B4, a)a implies that {(y, 8Y)} = {(y, BY) + 3}. We see that the terms of each
side of (2.4) are the same (resp. permuted) when k is even (resp. odd). O

Lemma 2.2.7. Let o be a simple root and w be an element of W. If w € w1 W, oten,wNAdm(eno)

and W < to—1(cpy) for some o € W, then o € {w, sqw}.

Proof. Suppose that w is as in the statement. If w = £,,-1(¢pg) OF L5 w)~1(eno) AN W < g1 (ep,
W = t5—1(eny) Since £(w) = £(t;-1(ey,)) and the conclusion follows. Otherwise, w < -1 (cng)s t(s0w) 1 (eno)
by Proposition 2.2.6 and the first part of its proof (applying Proposition 2.2.6 with w both taken to
be w and sqw here). But by Corollary 4.3.3, there are at most two o € W with @ < t;-1(cp) (the
reader can check that the proof of Corollary 4.3.3 only involves geometric properties of Pappas—
Zhu local models, and does not make use of any of the results of this section). The conclusion
follows. O

), then

Proposition 2.2.8. Let a be a simple root and w be an element of W. Suppose that

(1) T € w ' We aten,w N Adm(enp);

(2) wy € W+ and @y € V[N/fr such that wo T wpwy; and

(3) waz < wot(e—l)noak‘
Then wa equals wywy and the image of wy in W is in the set {w, sqw}. Moreover, we can take wy
as above to have image w € W (resp. saw € W) if and only if T # (s w)~1(eno) (T€8D- T 7 toy—1(eng))-

Proof. There exists a dominant weight w (unique up to X°(7")) such that t_,wy € Wﬁ . Then

T (
@glt_w@g Then Wang’s theorem implies that _ )W < Qﬂglt_wﬁg, and so by [LLHL19, Lemma
4.1.9] we have

w)Wx € W+ and item (2) and [LLHL19, Proposition 4.1.2] give us _;(,,)wx T t_wO(w)ﬁgllEg =

Tz < w;let(e_l)noﬁ)\ = (t,wwg)‘1w0t(e_1)n0t_w0(w)GA
S (t_w{ﬁz)_1w0t(5_1)n07:6}:1t_w7:62 = t(wowz)*l(eno)
where wy € W is the image of we. Lemma 2.2.7 implies that wowg € {w, sqw}.
Suppose without loss of generality that wows = w. Let wo be t,wpw where w € /V\[;fr has image
w € W and w € X*(T) is dominant (w in the last paragraph can be chosen to coincide with
w here). By (1), we let T be (W) 'woWat(e—1)y,w for some w, € Waq. Then (3) becomes
twwﬁwat(e—l)no{ﬁ < th(e—l)nO@/\ which implies by Lemma 2.2.3 that

tuwo (w) Wat(e—1)neW T E(e—1)ne W,

which upon multiplying by ¢_(._1),, and using item (2) and [LLHL19, Proposition 4.1.2] gives

0
Whwy Mg Wy T Wy, e

for some w), € W, o (using that W, , is stable under conjugation by X*(T)). Then w) € Wmaiﬁgliﬁg

by Lemma 2.2.5, or equivalently we € W, _y () WhWA-
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FIGURE 2. The G = GL3 3ng-admissible set is in red. The set B’1Wa7atenoﬂ is in blue.

That wy € W*‘, wy T Wpw)y, and wpwy, € Wfr imply respectively that
0 < [(@a(x), —wo(a”))] < [{@pwx(2), —wo(a¥))] =0
for any x € Ag, which forces equalities throughout. Combined with the fact that wy € W, (o) WhWa,

we see that wo = wpwy. In particular, the image of wy in W is wows.
The final part follows from the first part of the proof of Proposition 2.2.6. O

Proposition 2.2.9. Let o be a simple root and w be an element of W. If wy € w_lWa,atemw and

wy < wo < tuﬁl(eno)} then wy € w_lWa,atenOw.
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Proof. By Lemma 2.2.3, the inequalities wy < Wy < f,,- imply that ww; 1 swe T wt,,-

L(eno)
we deduce

Leno)
where s € W is the unique element such that swy € WT. Since ww, € Wa,aWty,—1(
from Lemma 2.2.5 that swy € Wa,aWt -1 (ene) OF equivalently, that Wy € silWa,awtwq(eno).

We now narrow the possibilities of s. Since w1 < wo < Ls=1(eno)s where the final inequality follows
from [HH17, Corollary 4.4], s € {w, sqw} by Lemma 2.2.7. Combining with the above paragraph,
Wy € w—lwa,atenow. ]

eno)?

2.3. The weight part of a Serre-type conjecture for tame representations. The aim of
this section, and of the following one, is to recollect the necessary notions to formulate the weight
part for Serre conjectures, and to pursue a combinatorial study of the set of conjectural modular
weights in terms of the geometry of the affine Weyl group.

2.3.1. Serre weights. Recall from 1.5.1 that G is a split group defined over I, k, is a finite étale
Fp-algebra, Go = Resy,/r, G/, and F contains the image of any ring homomorphism k, — ?p SO
that G &< (Go)r = %m(k”’m. Let G be Go(Fp). A Serre weight (of G) is an absolutely irreducible
F-representation of G.

Let A € X*(T) be a dominant character. We write W () for the G-module Ind%wo)\. Let

F () denote the (irreducible) socle of the G-restriction of W(A) /g (F).
We define:

X1(T) = {he X*(T),0< (\a¥)<p—1forallaecA}

which we call the set of p-restricted weights. Then the map A — F(X) defines a bijection from
X1(T)/(p — m)X°(T) to the set of isomorphism classes of Serre weights of G (see [GHS18, Lemma
9.2.4]). We say that A € X1(T) is reqular p-restricted if (\,a¥) < p—1 for all @« € A and say a
Serre weight F'()) is regular if X is. Similarly we say that F'(\) is m-deep if \ is m-deep.

To handle the combinatorics of Serre weights it is convenient to introduce the notion of p-
alcoves and the p-dot action on them. A p-alcove is a connected component of X*(T) ®z R \
(U(a,pn)(Ha,pn—nO)) and we say that a p-alcove C is dominant (resp. p-restricted) if 0 < (A+ng, a")
(resp. if 0 < (A+mnp, ") < p) for all @« € A and X € C. We write C,, for the dominant base p-alcove,
i.e. the alcove characterized by A\ € C, if and only if 0 < (A + ng,a") < p for all & € &*. The
p-dot action of E on X*(T) ®z R is defined by w - A def w(X+ g + pv) —no for w = wt, € E and
A € X*(T) ®z R. Then we have

W= {w e W :w-C, is dominant}

and
~+ =+ . .
W, ={weW :w-C,is prestricted}
and (2 is the stabilizer of C for the dot action.
We have an equivalence relation on W x X*(T) defined by (w,w) ~ (t,w,w — v) for all v €

X%T) ([LLHLMa, §2.2]). For (w1,w — o) € Ef X (X*(T)NnCy)/ ~, we define the Serre weight

Flg, w) & F(n=Y(w1) - (w — o)) (this only depends on the equivalence class of (wy,w)). We call

the equivalence class of (w1,w) a lowest alcove presentation for the Serre weight Fig, .y and note
that Fg, . is m-deep if and only if w — 7o is m-deep in alcove (. (We often implicitly choose a
representative for a lowest alcove presentation to make a priori sense of an expression, though it
is a posteriori independent of this choice.)
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2.3.2. Deligne—Lusztig representations. To a good pair (s,u) € W x X*(T) we attach a Deligne-
Lusztig representation Rg(u) of G defined over E (see [LLHL19, §2.2] and [GHS18, Proposition
9.2.1, 9.2.2], where the representation Rs(u) is there denoted R(s,u)). We call (s, —n9) a lowest
alcove presentation for Rs(p) and say that Rs(p) is N-generic if u — ng is N-deep in alcove C|,
for N > 0 If 4 — no is 1-deep in C|, then Rs(p) is an irreducible representation. We say that a
Deligne-Lusztig representation R is N-generic if there exists an isomorphism R 2= Rg(u) where
Rs(p) is N-generic.

2.3.3. Tame inertial types. An inertial type (for K, over E) is the GL, (F)-conjugacy class of an
homomorphism 7 : Iy — GL,(E) with open kernel and which extends to the Weil group of G.
An inertial type is tame if one (equivalently, any) homomorphism in the conjugacy class factors
through the tame quotient of I.

Let s € W and p € X*(I) N C,. Associated to this data we have an integer r (the order of

the element sgs1---sp_9sp_1 € W), n-tuples a'li) € 7" for 0 < j' < fr —1, and a tame inertial

type 7(s, pu +m0) & Z?zl(wfr)a;(m. (See [LLHLMa, Example 2.4.1, equations (5.2), (5.1)] for the

explicit construction of the n-tuples a’ll’) ¢ Z™.) We say that 7(s, p+1n9) is a principal series type
if r=1.

If N >0 and p is N-deep in alcove C, the pair (s, u) is said to be an N-generic lowest alcove
presentation for the tame inertial type 7(s, u+1). We say that a tame inertial type is N-generic if
it admits an N-generic lowest alcove presentation. (Different pairs (s, ) can give rise to isomorphic
tame inertial types, see [LLHL19, Proposition 2.2.15].)

If (s, 1) is a lowest alcove presentation of 7, let w(7) &t tutnos € W. (In particular, when writing
w(7) we use an implicit lowest alcove presentation for 7).

Inertial F-types are defined similarly with E replaced by F. Tame inertial F-types have analogous
notions of lowest alcove presentations and genericity. If 7 is a tame inertial F-type we write [7] to
denote the tame inertial type over E obtained from 7 using the Teichmiiller section F* «— O*.

Assume that p is 1-deep in C,. For each 0 < j' < fr — 1 we define Sgr,j’ to be the (neces-

sarily unique) element of W such that (s, j,)_l(a’ (")) € Z" is dominant. (In the terminology
of [LLHLM18], cf. Definition 2.6 of loc. cit., the fr-tuple (s

(a’U )< ji<pr1.) We will need the observation that (
pforall 0 <j < f—1.

grj,)ogjlgfr,l is the orientation of

sgr,j)_l(a,(j)) equals 5;1 (,uj + 770,]') modulo

2.3.4. Inertial local Langlands. Let K/Q, be a finite extension with ring of integers Ok and residue
field k. Let 7 be a tame inertial type for K. By [CEGT16, Theorem 3.7] there exists an irreducible
smooth representation o(7) of GL, (Ok) over E satisfying results towards the inertial local Lang-
lands correspondence.

Let k), = k, so that Go(FF,) = GLy, (k). When 7 = 7(s, p) with 4 —n € Cj a 1-deep character, the
representation o(7) can and will be taken to be (the inflation to GL,,(Ok) of) Rs(u) (see [LLHLMa,
Theorem 2.5.3], [LLHL19, Corollary 2.3.5]).

The following definition will play a key role in our generalization of Herzig’s Serre weight con-
jecture.

Definition 2.3.1. Let R denote the bijection on regular Serre weights given by F'(A) — F(wp, - A).
If 7: Ix — GL,(F) is a 1-generic tame inertial F-type for Ix we define

W) = R (I (o) © W((1 - eJwom)) ).
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2.3.5. Compatibilities of lowest alcove presentations. Recall the canonical isomorphism E/Ea 5
X*(Z). Let ¢ € X*(Z). We say that an element @ € W is (-compatible if it corresponds to ¢ via
the isomorphism W/W, =5 X*(2).

A lowest alcove presentation (s, u) for a tame inertial type 7 for K over E or a Deligne-Lusztig
representation R is (-compatible if ¢, s € E is (-compatible. A lowest alcove presentation (s, 1)
of a tame inertial F-type is (-compatible if ,,_(._1,,s € W is (-compatible. (If 7 is a tame inertial
type and 7 is the tame inertial F-type obtained by reduction, the same lowest alcove presentation of
7 and 7 are compatible with elements of X*(Z) that differ by ng|z.) A lowest alcove presentation
(w1, w) for Serre weight is (-compatible if the element ¢,_,,w; € W is ¢-compatible. Finally,
lowest alcove presentations (of possibly different types of objects) are compatible if they are all
¢-compatible for some ¢ € X*(Z).

2.3.6. L-parameters. Recall from §1.5.1 the finite étale Q,-algebra F];L . We adapt the constructions
of tame inertial types and the inertial local Langlands above to arbitrary S,. We assume that E
contains the image of any homomorphism Fer — Q. Let

"= 1] 6o
Ff—E

def

be the dual group of ResF;/Qp(G/F;) and G = GY x Gal(E/Q,) the Langlands dual group

of ResF;/Qp(G/F;) (where Gal(E/Qjp) acts on the set {F,f — E} by post-composition). An

L-parameter (over E) is a GY(F)-conjugacy class of an L-homomorphism, i.e. of a continuous
homomorphism p : Gg, — LG(E) which is compatible with the projection to Gal(E/Q,). An
inertial L-parameter is a G (E)-conjugacy class of an homomorphism 7 : Ig, — GY(E) with open
kernel, and which admits an extension to an L-homomorphism Gg, — LG(E). An inertial L-
parameter is tame if some (equivalently, any) representative in its equivalence class factors through
the tame quotient of Ig,.

The argument of [GHS18, Lemmas 9.4.1, 9.4.5] carries over in our setting and we have a bijec-
tion between L-parameters (resp. tame inertial L-parameters) and collections of the form (p,).cs,
(resp. of the form (7)yes,) where for all v € S, the element p, : G+ — GLy(E) is a continuous
Galois representation (resp. the element 7, : I+ — GLy(E) is a tame inertial type for F;F). (This

bijection depends on a choice of isomorphisms F, = @p for all v € Sp.) We have similar notions
for L-parameters (resp. inertial L-parameters) over F.

In this setting, given a tame inertial L-parameter 7 corresponding to the collection of tame
inertial types (7y)ves,, we let o(7) be the irreducible smooth E-valued representation of GL,(Op)
given by ®yes,0(7y), where o(7,) is the smooth representation corresponding to 7, via the inertial
local Langlands correspondence appearing in §2.3.4.

2.4. Combinatorics of Serre weights. In this section, we apply the results of §2.2 on extended
affine Weyl groups to analyze the combinatorics of the Serre weight sets defined in §2.3. We assume
for simplicity that F; = K, but the results herein do not require this. Given tame inertial types
7 and p°P over E and F, respectively, with fixed compatible lowest alcove presentations, we define
w(p*P, 7) to be W(T) " W (PP) € tey,W,.

The following two results follow readily from [LLHLMa, Proposition 2.3.7].
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Proposition 2.4.1. Suppose we fix a 2h,,-generic lowest alcove presentation of a tame inertial
type 7. The map

(2.5) (W, wa) — F,

(wxw(r)wy * (0))
induces a bijection between
e the set of pairs (wy, W), modulo the diagonal action of X°(T), with W), € Wf and Wy € W+
such that wy T ﬁ;lﬁg; and
e clements of JH(T(7)).

Moreover, these lowest alcove presentations of Serre weights are compatible with that of T. Finally,
the weight corresponding to (Wx, Wpwy) appears as a Jordan—Hélder factor with multiplicity one.

Proposition 2.4.2. Suppose we fiz an (max{2, e}hy,)-generic lowest alcove presentation of a tame
wnertial type p°P over F. The map

(0, W2) = Figg, i oy (o)
induces a bijection between
e pairs (Wy,wz) with wy € Wf“ and wy € WJF, up to the diagonal X°(T)-action, such that
@2 T t(efl)nofw}\; and
e clements of W’ (p*P).
Moreover, these lowest alcove presentations of Serre weights are compatible with that of p°P.

The following definition is central to this paper.

Definition 2.4.3 (Extremal weights). Suppose we fix a (max{2, e}h,,)-generic lowest alcove pre-

sentation for a tame inertial type p*P over F. Let w be an element of W and @ € W;" be an element
(unique up to X°(T)) whose image in W is w. The weight

F@ )= (~(e-tm)) € W' (o)
is called the extremal weight of p°P corresponding to w. Let Weyr(p™P) be the set of all extremal

weights of p°P. (While the extremal weight corresponding to w depends on the choice of lowest
alcove presentation, the set of all extremal weights does not.)

Remark 2.4.4. If p : Gx — GL,(IF) is semisimple and 2h,,-generic, and K is unramified, the notion
of obvious weight for p corresponding to w ([LLHLMa, Definition 2.6.3]) and of extremal weight
for p corresponding to w coincide, and the set Wex,(p|7) is the set defined in [GHS18, Definition
7.1.3].

The following combinatorial result relates the set W’ (p*) and the admissible set and is key to
weight elimination.

Proposition 2.4.5. Suppose we fix an (max{2, e}hy, )-generic lowest alcove presentation for w(p*P).
Let (wy,w) be a compatible lowest alcove presentation of a 3hy,-deep Serre weight 0. Then w =
w(p)w=1(0) for a unique W € W. Let 7 be the tame inertial type over E with w(p®, 1) =
(Wpwy) twow for some (necessarily compatible) lowest alcove presentation. Then

(1) o € JH(a(T)); and

(2) (wpwy) " 'wow € Adm(eng) implies that o € W’ (p).
Proof. By definition of 7, we have that w(7)(w,wy) 1(0) = w(p*P)w~1(0). Note that the lowest

alcove presentation of 7 is 2h,,,-generic by the depth assumption on o. Then o corresponds to the
pair ({E)nﬁ)/hﬁ;)\) in (25)
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Suppose that (wpwy) ‘wow € Adm(eng). If we let wy € W be the image of w)y, then we
claim that wy(wpwy) twow € WT. Indeed since wy € Wi, wowy(wpwy) ™! is an antidominant
translation so that wowy(wpwy) twew - Cp is in the antidominant Weyl chamber. By [HH17,

Corollary 4.4], we have that
(wpwy)~ 1w0w <t wil(eno) = (ﬁ;hiﬂk)_lwot(e_l)m’[ﬁ)\.

Since these expressions are reduced by [LLHL19, Lemma 4.9], we conclude that w < te—1)no WA
which implies that w 1 ¢(_1),,wx. We conclude from Proposition 2.4.2 that o € W’ (pP). O

Denote by W’ (5%, ) the intersection W’ (p%) N JH(G(7)).

Proposition 2.4.6. Suppose we fiz compatible (max{2, e}h,,)-generic and 2hy,,-generic lowest al-
cove presentations of tame inertial types p°P and T over F and E, respectively. Then the set
W’ (5, 7) is exactly the set of weights in (2.5) such that Wow(p™,T) < W0l (e—1)ny WA -

Proof. Consider an element o € JH(7(7)). Let wy and wy be as in Proposition 2.4.1. By Proposition
2.4.2 and uniqueness of compatible lowest alcove presentations (see [LLHLMa, Lemma 2.2.3]),

o € W’ (7°P) if and only if there exist 35 € W+ with 5 T t(e—1)n, W such that

w(r)wy ' (0) = w(pP)3, 1 (0),
or equivalently, wow(p*P, 7) € Wsa.
We now show that there exists 53 € W with 53 T t(c_1)p,Wx such that wow(p*P, 7) € W55 if and

only if wew(p™, 7) < Wot(e—1)y,Wa- First suppose that such an sy exists. This implies that

wow (P, ) < wos2 < Wot(e—1)ny W,

where the second inequality follows from the fact that sy < #_1),,wx by Wang’s theorem. Con-
versely, if waw(pP, 7) < wot(e—1)y,Wx, then using that wo(te—1)n,wx) is a reduced factorization,
wow(p®,7) = wsy for some Sy € W+ with 3 < tle—1)poWx (or equivalently Sa 1 t(c_1)p,wx by
Wang’s theorem) and w € W. O

Corollary 2.4.7. Suppose that tame inertial types p°® and 7 over F and E have compatz'ble
(max{2, e}hy,)-generic and 2hy,,-generic lowest alcove presentations, respectively. If W*(p®, )
is nonempty, then w(p®P?,7) € Adm(eng).

Proof. As in the statement of the corollary, we fix compatible lowest alcove presentations for p°P
and 7, respectively. If W7 (p%P, 1) is nonempty, by Proposmon 2.4.6 we have that wow(pP,7) <
Wol(e—1)no w) for some wy € W+ and wy € W1 with wy 1T w, L@,. Then @, 1 whw,\ by [LLHL19,
Proposition 4.1.2] so that we < wpwy. Since Wy wot(eq)m)w)\ and (wpwy)~ wot(e,l)nowA are
reduced expressions by [LLHL19, Lemma 4.1.9], we have that

~ ~_1 ~ ~1~-1 ~
w(p™P, 7) < Wy Wol(e—1)p WA < Wy Wy, Wot(e—1)py WA = tw;1(en0).

O
We now establish some results which will be used to prove modularity of certain Serre weights.

Proposition 2.4.8. Suppose that w(p™, ) € w™ W, aten,wNAdm(eng) for compatible (max{2, e}hy,)-
generic and 2h;,,-generic lowest alcove presentations for tame inertial types p** and 7 over F and
E, respectively.
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Then W' (PP, 7) equals

{Flaam ~—1w;1(o))} if w(p™, T) = ty=1(cno)
{ (Saw,@(7)saw ™! Wy, )} wa( P T) 7f(saw)—l(eno)
{F(m,@(r)w—lwgl(o)y (smw,i(r)sm " 1(0))} otherwise.

Moreover, each weight appears as a Jordan—Hélder factor of &() with multiplicity one.

Proof. Suppose that a weight o of the form (2.5) is in JH(g(7)). Then by Proposition 2.4.6,
o € W (p®) if and only if wew(p*P, 1) < wot (e—1)nyWx- By Proposition 2.2.8, 15;1752 and w)y are
both either @ or sqw. The last part of Proposition 2.2.8 implies the inclusion of W”’ (p°P, 7) in the
casewise defined sets.

On the other hand, using Proposition 2.2.6 and

~ 1~ ~ — 1~
(2.6) tw=1(eno—ka) = W Wy Wol(e—1)ny—kaW = SaW Wy Wol(e—1)no—(e—k)aSal
and

~_] 1~ ~ 1~ —
(2.7) W Sategy—(k+1)aW = W Wy, WoSat(e—1)ny—ka®W = SaW W), WoSal(e—1)n—(e—k—1)aSal-

we have that w,ww(p®P,7) is either wot(c—1)py—ka® O WoSat(c—1)py—kaW, Which is less than or
e—1yW if k # e. This implies that Fla a(rya- 17 (0) e W' (p®, 1) if w(p*®, 1) #
t(saw)~1(eno)- Similarly, wys,ww(p*P, 7) is either wot 1)y —(e—k)aSa OF WoSat(e—1)n—(e—k—1)aSal,
so that F — &5 151 (0)) € W (5P, 1) if W(pP,T) # t,,- 1(eno)- This gives the reverse inclusion.

The multiplicity statement follows from that of Proposition 2.4.1. O

equal to wot(

Proposition 2.4.9. Suppose we fix an (e + 2)hy,-generic lowest alcove presentation of a tame
wertial type p°P over F. For 0 < k < e, let 1o be the tame inertial type over E with compatible
lowest alcove presentation such that w(T) = W(PP)ty-1(ka—eny)- For 0 < k < e —1, let Topp1
be the tame inertial type over E with compatible lowest alcove presentation such that w(r) =
’[E(ﬁSp)@_ltka,emsa@.
For0<k<e—1, let oo be
F@@(P)a=1 (ka—(e-1)n0)):
and let oox41 be
Fsa0,8(0%) 520 ((e—k—1)a—(e=1)m0))"
Then for 0 < m < 2e, W (5, 1) = {Jm,l,am} (where oy should be omitted for £ = —1 or 2e).
Moreover, o,,—1 and oy, appear as Jordan—Hélder factors of a(7,,) with multiplicity one.

Proof. This follows from Propositions 2.2.6 and 2.4.8 using (2.6) and (2.7) noting that 7, is 2h,,-
generic for all m. O

2.4.1. The case of GLa: a comparison with Schein’s recipe. [Sch08] explicitly describes a set of
Serre weights for a semisimple p : Gxg — GLa(F) with K possibly ramified over @Q, in terms of a
“reflection operation” R’ similar to R above. We compare this description in generic cases with
the set W’(p) defined in §2.3.

Assume e < p— 1 and let p : Gg — GLa(IF) be semisimple. In [Sch08, Conjecture 1], a set of
Serre weights is associated to p, in terms of a reflection operation denoted as Rg in loc. cit. The

superscript 0 is an element in {0,...,e — 1}7 and leads to the notion of d-regular weight:

Definition 2.4.10 ([Sch08]). A Serre weight F'()) is d-regular if p—1—(X, /) € {1,...,p}+(25;—
e+1) forall j € J. (Note that this definition does not depend of the lift of A 6 X1(T)/(p—m)Xo(T).)
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A direct computation shows that if A € C is (e — 1)-deep then A is d-regular for any § €
{0,...,e =1}, and moreover A + v € C, for any weight v appearing in (W ((1 — e)wo(no))F)|z-
Let now A € C, be (e — 1)-deep. A direct computation using the definition of Rg for -regular
weights yields:
Ry(F(N) = F (@ (A= (e = Do + ) 5j015)
jeJ
and hence
U RIFQ) =REHEN) @ W((1 - e)won)))
5€{0,....e—1}7
by the translation principle (cf. [LMS, Proposition 3.3]). From [DL21, Proposition 2.15] (or Propo-
sition 2.4.1 above when e > 2), noting that for an e-generic Deligne-Lusztig representation R all
the Serre weights F' € JH(R) are e — 1-deep, we deduce

Proposition 2.4.11. Let p: Gxg — GLo(IF) be semisimple and e-generic. Then the set of weights
Wp?(ﬁ) defined in [Sch08, Conjecture 1(1)] coincides with the set W*(p) of Definition 2.3.1 above.
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3. BREUIL-KISIN MODULES

3.1. Moduli of Breuil-Kisin modules and local models. In this section, we introduce back-
ground on Breuil-Kisin modules with tame descent. We closely follow [LLHLMa, §5] making the
necessary modifications to allow K/Q, to be ramified. We will generally admit proofs as the
generalizations are straightforward. Throughout this section, we take G = GL,,.

def

Let K/Q) be finite. We let K be the maximal unramified subextension of K, with f = [Ko : Q]

and e % [K : Kp). Let k denote the residue field of K, of cardinality p/ and which coincides with
the residue field of K. Let W (k) be ring of Witt vectors of k, which is also the ring of integers
of Ky. We denote the arithmetic Frobenius automorphism on W (k) by ¢, which acts as raising to
p-th power on the residue field.

We fix a uniformizer mx € K of K. Let E(v) € W(k)[v] be the minimal polynomial for mg over
Ky, of degree e.

Let Jx = Hom(K,FE) and J = Hom(k,F) = Hom(Kj, E). Recall that we have fixed an
embedding og : Ko < E, hence an identification J = Z/fZ given by oj et 90w I .

Let 7 be a tame inertial type having a 1-generic lowest alcove presentation (s, 1) € WY x X*(T)7,
which we now fix throughout this section. Recall from [LLHLMa, Example 2.4.1] that we have a
combinatorial data attached to (s, i), in particular the element s, € W (when K = Q,, this is the
niveau of T).

Let r be the order of s,. We write K’ for the subfield of K which is unramified of degree
r over K, k' for its residue field, and K|, denote maximal unramified subextension of K’. Set
Jrx =Hom(K', E), J' &ef Hom(k',F). Let f L fr e & p/ —1 and fix an embedding oy: Ky — FE
which extends og : Ko < E, so that the identification J’ = Z/ f'Z given by o & ohop I s 4
induces the natural surjection Z/f'Z — Z/fZ when considering the restriction of embedding from
K6 to Ko.

We fix an €/-root mxs € K of mx and set L/ & K'(mgr). Let A’ dof Gal(L'/K') c A o Gal(L'/K).
) def gl

Tyt
a} € J', we get a corresponding character wg o : A’ — O* which will also be seen as a character
g

We set wg(g for g € A’; then wg does not depend on the choice of /. Composing with

. def
of Iy, = Ik. For j' =0 we set wyr = WK o -
75
def def

Let R be an Q-algebra. Let & = W(K)[u'] and &pr g = (W(K') ®z, R)[«/]. As usual,
¢ : 6 r — S g acts as Frobenius on W (k’), trivially on R, and sends ' to (u/)P. Note that
for any &/ g-module M, we have the standard R[u']-linear decomposition M = EBj,e 7 m"),
induced by the maps W (k') ®z, R — R defined by z ® r — o (z)r for j' € J'.

We endow &/ r with an action of A as follows: for any g in A, g(u') = wks(g)u’ and g acts
trivially on the coefficients; if o/ € Gal(L'/K) is the lift of the p/-Frobenius on W (k") which fixes
T, then of is a generator for Gal(K’/K), acting in natural way on W (k') and trivially on both v/

ef /

and R. Set v = (v/)¢, and define & & (S1,r)=! = (W(k)®z, R)[v]. Note that E(v) = E((u/))
is the minimal polynomial for wg+ over Kj.

We will make use of the following group schemes over O. For j € J and for any O-algebra R,
define

LGY(R) ¥ {A € GL,(R[v])"" [];j])};

L+Q(j)(R) def {Ae GLn(R[U]AEj ), is upper triangular modulo v}
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where E; = 0;(E(v)) € O], and Ag, stands for the Ej-adic completion. In particular if R is
p-adically complete, this is the same as the v-adic completion of R[v].

3.1.1. Breuil-Kisin modules with tame descent. Let R be a p-adically complete Noetherian O-
algebra. For any positive integer h, let Y[O’h]’T(R) denote the groupoid of Breuil-Kisin modules of
rank n over &1/ g, height in [0, ] and descent data of type 7 (cf. [CL18, §3], [LLHLMa, Definitions
5.1.1 and 5.1.3)):

Definition 3.1.1. An object of Y07 (R) consists of
e a finitely generated projective &1/ r-module 90t which is locally free of rank n;
e an injective G/ p-linear map ¢on : @* (M) — M whose cokernel is killed by E(v)";
e a semilinear action of A on 97 which commutes with ¢gy, and such that Zariski locally on
R, for each j' € J’,
mU) mod o =7V Ro R
as A’-representations.

Morphisms are &/ g-linear maps respecting all the above structures.

We will often omit the additional data and just write 9t € YI%".7(R) in what follows. It is
known that Y07 is a p-adic formal algebraic stack over Spf O (see, for example, [CL18, Theorem
4.7]).

Recall that an eigenbasis of M € YI9AL7(R) is a collection of bases ") for each M) for j € 7’
compatible with the descent datum (see [LLHLMa, Definition 5.1.6] for details). Given the lowest
alcove presentation (s, u) of 7, and element M € YI"7(R) and an eigenbasis 3 of M, equation
(5.4) in [LLHLMa] defines the matrix AS%?B € Mat,(Sr) for each j' € J'. We refer the reader to
loc. cit. for details rather than recall the excessive notation needed to make a precise definition.
We will recall the properties we need as we go along. A

First, the matrix Ai()gt)ﬂ only depends on j/ mod f. Abusing notation, we occasionally write Agt) 5
for j € J with the obvious meaning. Because 7 is 1-generic, the height condition is equivalent to
As();z) 5 and (Ej)h(Agg 5)_1 both lying in Mat,,(R[v]) and being upper triangular modulo v, for all
jeJd.

Definition 3.1.2. (1) For integers a < b, define
LItGUN(R) .= {A e LGYV(R) | EA, Ejl’fr1 € Mat,, (R[v]) and upper triangular mod v}.

(2) Given a pair (s,u) € W7 x X*(T)7, we define the (s, u)-twisted p-conjugation action of
[Lies LTG9(R) on [],c s LItYIGU(R) by

(3.1) ([(j)) i (A(j)) - I(J’)A(j)(Ad(sj—lvuﬁno,j)(<p<](j—1))—l))_

Remark 3.1.3. (1) The change of basis formula in [LLHLMa, Proposition 5.1.8] can be sum-
marized as follows. For the fixed lowest alcove presentation (s,u) € W7 x X*(T)7 of r,
the set of eigenbases of 901 is a torsor for [[,c 7 LtGU)(R), and given two eigenbases 3 and

8" differing by (IV0));cs € [Les LtGUY(R), the collections (Aggt)ﬂ) and (Ag%ﬂ,) differ by
(s, u)-twisted p-conjugation by (I0));c 7.

(2) Since eigenbases exist locally, we have the presentation

Y]F[O,h],r ~ H L[O,h}g(j)/(s’u)’@ H Ltg\)
jeg jeJ
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where the quotient is with respect to the twisted p-conjugation (3.1).
(3) Let w*(1) = s 't,4,. A key observation which we use frequently is that (s, p)-twisted
conjugation Hje 7 LIaYGU) is the same as usual p-conjugation on the right translation

Hjej L[a,b]g(j)@*(T).

We now recall some useful results mod p. We write Z &t L+gﬂ(,j ), which is the usual (upper
triangular) Iwahori group scheme over Noetherian F-algebras, in particular it is independent of the
choice j € J. We also write Z; C Z for pro-v Iwahori consisting of upper unipotent matrices mod
.

Remark 3.1.4. In what follows, many of our proofs refer to results in [LLHLMal, which is in the
setting where K is unramified. However, just as in loc. cit., the proofs proceed by reduction to
statements about characteristic p loop groups, to which the results apply as written, thanks to the

fact that E; = v® mod p so that Lla:b) Qﬂ(;j ) = [leaet] GL,, . For this reason, the requisite genericities
in the ramified setting are usually scaled by e.
Lemma 3.1.5 (Lemma 5.2.2 [LLHLMal). Let R be an F-algebra and (Agj))jej, (Agj))jej e LleYgU)(R).
LetZ = s, € WY where p is (e(b—a)+1)-deep in Cy and s € W Then, there is a bijection
between the following:

(1) Tuples (IV));c7 € Ty(R)Y such Aéj)zj = I(j)Agj)jzvj@(I(jfl))*l forallj € J;

(2) Tuples (X;)jes € T1(R)7 such that Agj) = XjAgj) forallje J.

Remark 3.1.6. As in [LLHLMa, Corollary 5.2.3], Lemma 3.1.5 gives a presentation of YF[a’b]’T as
quotient of [, 7 T4 \ Lla:b) QI(F]) by (s, u)-twisted conjugation by the torus TEY’J when p is (e(a—b) +
1)-deep.

Definition 3.1.7. Let F'/F be finite extension. The shape of a Breuil-Kisin module 9t € Y017 (F)
with respect to 7 is the element Z = (Z;);es € WY+ such that for any eigenbasis 8 and any j € J,

the matrix Aggﬂ lies in Z(F")z; Z(F).

Proposition 3.1.8. For each z € WYI such that Zj € LGNGOV for j € T, there is a locally

closed substack YF[OfZlh]’T & [Lics ZZZ/ (s )0 Ljes Z1 C Y]F[O’h]’T whose F'-points are the Breuil—

1,7

Kisin modules of shape z. The closure of Y]F[Oéh 1§ contained in the union of the strata Yﬂiozifl]’T

such that 2’ < Z in the Bruhat order.
Proof. We have maps

Y]F[o,h},T H 704 gﬂgj)/I
jeTJ

7

[Tm\r%6d /1)
JjeTJ

where the right arrow is an Z7-torsor (cf. [CL18, Proposition 5.4]). The substack VAR

pz s the
preimage of [ [ 7[Z\Z%,Z/7], so the stated closure relation follows from those on [ [ ;¢ j[I\Lgéj ) /7],

which in turn follow from those of [[ ;¢ 7 Z-orbits in J[,c 7 Lgé,j)/I. O
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We define the cocharacter n < ((n—1,...,1,0),---,(n—1,...,1,0)) € X, (TV)HomEE)  There is
a closed p-adic formal algebraic stack Y <77 C Y107=17 defined in [CL18, Theorem 5.3] [LLHLMa,
§5.3]. We recall the following result:

Proposition 3.1.9. The special fiber of YFS"’T satisfies
<n,7 <n,7
Yirea C U Yiz'-

ZeAdm" (eno)

Proof. In the principal series case, this follows from [CL18, Theorems 2.15 and 5.3]. When 7 is
n-generic and K/Q, is unramified, this follows from [LLHLMa, Corollary 5.2.3 and Proposition
5.4.7]. In general, we can reduce to the principal series case following the strategy in the proof
of [LLHL19, Theorem 3.2.20]: Let 7" = 7|, where K’ is an unramified extension such that 7’

is principal series. Let J’ = Hom(k’,F). There is a natural map Y]Fgrzg — YFSrzg’ and any strata

Y]F[?Zih]’T - YIFS,ng clearly maps to Y[?;}’T where 'zvg, = Z; where j’ restricts to j. Thus, Z € Adm" (eno)
by the principal series case. ]

Remark 3.1.10. In fact, the special fiber of Y= is reduced and the inclusion in Proposition 3.1.9
is an equality. This is shown in the principal series case in [CL18]. (See also Remark 4.2.3 and the
discussion preceding it.)

3.1.2. Etale p-modules. Let Og g (resp. Og 1) be the p-adic completion of (W (k)[v])[1/v] (resp. of
(W (EN[u'])[1/u']). Tt is endowed with a continuous Frobenius morphism ¢ extending the Frobenius
on W(k) (resp. on W(k’)) and such that p(v) = vP (resp. p(u') = (v/)P). Let R be a p-adically
complete Noetherian O-algebra. We then have the groupoid - MOdiE’"(R) (resp. - Modfltd’flL,(R))
of étale (¢, O¢, K®ZPR)—modules (resp. étale (¢, O, Lr(EA@ZpR)—modules with descent data from L’ to
K). Its objects are rank n projective modules M over Og, K(EA@ZPR (resp. O¢, L/<§>Zp R)), endowed with
a Frobenius semilinear endomorphism ¢ : M — M (resp. a Frobenius semilinear endomorphism
oM 2 M — M commuting with the descent data) inducing an isomorphism on the pull-back:

id@,haq : ©* (M) =5 M. Tt is known that &- Mods™ (R) and ®- Modjfi’,"L,(R) form fppf stacks over
Spf O (see [EGa, §3.1], [EGb, §5.2], [CEGS, §3.1] where they are denoted Rn,Rz‘fL, respectively).
We use ®- Mod}¥(R) (resp. - Mod§27L,(R)) to denote the category of étale (¢, Og,K&x\)ZpR)—moduIes
(resp. Og, 1@z, R)-modules with descent from L’ to K) of arbitrary finite rank.

Given 9 € YIOR.7(R), o ®&, 5 (O¢,1,®z, R) is naturally an object of - Modfltd’z/(R), and we
define an étale p-module M € ®-Mod%"(R) by

ME Mesg,, , (O &z,R)>

with the induced Frobenius. This construction defines a morphism of stacks e; : yOAL
- Mod%’n which is representable by algebraic spaces, proper, and of finite presentation (see
[LLHLMa, Proposition 5.4.1], which carries through in our ramified setting). Note that e, is
independent of any presentation of 7. ‘

For any (M,¢r) € ®-Mod$E(R), we decompose M = @©c7MU) over the embeddings o; :
W (k) — O, with induced maps (;Ssa : MU= 5 MU We can define the map e, explicitly in some
cases:

Proposition 3.1.11. ([LLHLMa, Proposition 5.4.2]) Let M € YIOMT(R) and set M = . (IM).
Let (s, ) be the fized lowest alcove presentation of 7. If 5 is an eigenbasis of I, then there exists
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a basis f (constructed from ) for M such that the matriz of gbs\j/? with respect to § is given by

Aggt)ﬂs.*lv“J'*'"O’j.
b ]

(Note that this is Agt)ﬂ@*(ﬂj.)
Finally, we recall that in generic situations the map e, does not lose information:

Proposition 3.1.12. ([LLHLMa, Proposition 5.4.3]) Assume 7 is (eh + 1)-generic. Then the map
[ yOhT @-Mod‘}?” 1s a closed immersion.

Proof. As in the proof of [LLHLMa, Proposition 5.4.3] this reduces to prove that whenever we have
a relation

1047 = A7) Ad(s o) (p(1071)

where AY, AY) € LOMGUI(R), and IV € LGU(R), then IVY) are in LTGW(R). Just as in
loc. cit., this reduces to checking the statement and its infinitesimal version over F. In turn, these
two statements are exactly [LLHLMa, Lemmas 5.4.4, 5.4.5], with the adjustment that L[avblgfp” =
Lleaebl QL & O

We briefly recall the relations between Breuil-Kisin modules and Galois representations. Recall
from 1.5.2 the extension K /K, and let Gx_ C Gk denote the absolute Galois group of K. Let
R be a complete Noetherian local O-algebra with residue field F. We have an anti-equivalence of
categories established by the exact functor

Vi : @ Mode"(R) — Reph(Gk..)

defined through the theory of fields of norms (cf. [LLHLM18, §2.3 and §6.1] for details) and therefore
a functor 7%, : Y07 (R) — Reph(Gk..) defined as the composite of &, followed by V.

We finally recall from [LLHLMa, §5.5] the notion of shape of an n-dimensional F-representation
of Gi (or Gk, ) with respect to .

Definition 3.1.13. Assume that 7 is (e(n — 1) 4+ 1)-generic. Let p be an n-dimensional F-
representation of Gy or Gy . If there exists M € Yo" (F) such that T7%,(9) = PlG.. then

we say that p is T-admissible, and we define w(p,7) € Adm(eng) to be the shape of M with respect
to 7 (Definition 3.1.7). This is well-defined by Propositions 3.1.9 and 3.1.12.

Proposition 3.1.14. ([LLHLMa, Proposition 5.5.7]) Assume that the fized lowest alcove presenta-
tion (s, ) of T is (e(n — 1)+ 1)-generic. Let p be a semisimple representation of G over F. Then
p is T-admissible if and only if p|r, admits a lowest alcove presentation (w,v) compatible with the
lowest alcove presentation of T such that s_lt,,,uw € Adm(eng). Furthermore, if p is T-admissible
then w(p,7) = s~ H,_ w.

Proposition 3.1.15. Assume that the fized lowest alcove presentation (s, u) of T is (eh+1)-generic.

Let M € Y[O’h}’T(F) with shape z € w7, Then, there exists an eigenbasis 5 for MM, unique up to
scaling by T(F)7, such that

AY) 5 € T(F)Z; N5, (F)
where Nz, is unipotent subgroup scheme of 1 defined in [LLHLMa, Definition 4.2.9].
Proof. This follows from [LLHLMa, Proposition 4.2.13 and Corollary 5.2.3]. O
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3.2. Mod p monodromy. Let Fl:= 7\ LG denote the affine flag variety over F where LGp = LQIEJ )
for any j denotes the usual loop group. Given w € WV, we write Sp(w) for the affine open Schubert
cell associated to w. Let a € (O™)7. We have a closed subfunctor LQFV 2 C ng defined on an
F-algebra R by

(3.2)

. , AU . . . 1
LGY*(R) & ¢ (4Y)) € LG (R) | v%(ﬁlm)_l + AVDiag(a;)(AV) ! e — LieZ(R) for all j € J} .

This condition defines a closed sub-ind-scheme Fl;a C F17. For any subset S C Lgfg (R), we set

SVa = SN LGy *(R); similarly for any subscheme X C FI7, set XVa < x Fl;a.

Following [LLHLMa, Definition 4.2.2], given an integer m > 0, we say that an element (a1, ..., a,) €
R™ is m-generic if a; —ap, —¢ € R* for all £ € {—m,—m +1,...,m — 1, m} for all i # k.

Proposition 3.2.1. Let h be a positive integer. Let @ € W and a = (aj)jes € (O™)7. Assume
that w is e-reqular and h-small (see Definitions 2.1.5 and 2.1.7(3)) and that a; mod w € F™ is

h-generic for all j € J. Then the intersection Sp(w*) N FIVa is an affine space of dimension
[K : Qp] dim(B\GLy)F.

Proof. This is a direct generalization of [LLHLMa, Theorem 4.2.4] to the ramified setting. We only
briefly outline the proof. It suffices to consider the case when #.J = 1. By [LLHLMa, Proposition
4.2.13], there is an isomorphism w* Ng« = S°(w*) where Ng-« is a unipotent subgroup scheme of 7
isomorphic to an affine space of dimension ¢(w). As w is e-regular, for each « in the support of
Ng«, we have Ng= o = v9e<o f, where f, is a polynomial of degree at least ¢ — 1 (cf. [LLHLMa,
Corollary 4.2.5], and note that, more precisely, the degree is |(w(z), —a")] — da<o, which is at
least e — 1 by the e-regularity condition). Condition (3.2) does not impose any constraint on the
coefficients of degree deg(fy),deg(fa)—1,...,deg(fa)—(e—1) of f,, while the coefficients of degree
strictly smaller than deg(f,) — (e — 1) are solved in terms of the coefficients of the polynomials f,
with o/ <¢«a for a partial order <¢ on ® determined by w (cf. equation (4.6) in loc. cit. ). Hence,
(0*Ng-)V= is an affine space of dimension e dim(B\GLy,)r. O

Let z = s‘ltu e WvJ acting by right translation on F17. Let a € (Z™)Y and assume that
aj = sj_l(uj) mod p for all j € J. An easy calculation shows that:
LGIZNLGY° = LGy*Z, FIYZNFL}° =FI» 2
We can now state the main result of the section which is the ramified analogue of [LLHLMa,

Proposition 4.3.4]:

Proposition 3.2.2. Let w,w’ € W7 be h-small, e-reqular elements such that w' < w. Write

w* = (w')*Z" and assume this is a reduced expression for w*. Let Z € WY-7 be 2h-generic. Then

(Z(F) (@) I(F)Z}Z) V" = (Z(F)@; Z(F)Z;) ¥
forallj € J.

Proof. Again, the proof is very similar to the proof of [LLHLMa, Proposition 4.3.4], and we refer
the reader to loc. cit. for further detail.

Since (w')*Z = w* is a reduced expression, there is an inclusion of the left side in the right side.
Since both sides are invariant under Z(F), we can descend to Flg0 and reduce to showing

(S°(@')ZE)V0 = (8°(@7)2)".
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By the assumptions, both z and 2’z are h-generic and so by Proposition 3.2.1, both sides are affine
spaces of the same dimension and so inclusion implies equality. [l

Definition 3.2.3. Assume that the lowest alcove presentation (s, u) of 7 is (eh + 1)-generic. We
say that M e Y07 (F) satisfies the mod p monodromy condition if for any choice of eigenbasis (3

of M, the collection (Agz)ﬁ@*(T)j) is in ngo (F).

3.3. Semicontinuity I. We fix a tame inertial type 7 with a 1-generic lowest alcove presentation
(s, 1), as defined in §2.3. In this section, we show a semicontinuity result for the shape of a mod p
Kisin module of type 7 with respect to the shape of its semisimplification. This is preliminary to
a more general semicontinuity result (Theorem 3.5.1 in section 3.5).

Proposition 3.3.1. Let M € YF[O’h]’T(F’) and set p := T;,(OM) for any finite extension F'/F. There
exists My € YIF[O’h}’T(]F’) such that

T3a(Mo) =P
Furthermore, the shape of My with respect to T is less than or equal to the shape of M with respect
to T in the Bruhat order on WY+ .

Proof. By the closure relations for the stratum of the stack YIF[O’hLT (Proposition 3.1.8), it suffices
to construct a map AIIF — YF[O’h]’T, sending = to M, such that
(1) Tj(Mo) = 7*; and
(2) forall z € F,x # 0, T7,(9M,) = p.
The construction of the map proceeds as in the proof of [LLHLMa, Proposition 5.5.9]. Let o be

the eigenbasis for 9 constructed in loc. cit. adapted to the filtration (M;) on the étale ¢-module
9M[1/u']. Define the matrix CY) € G(F’((v'))) by the condition

¢gt)((p*(a(j))) — U6

By construction, C¥) lies in a parabolic subgroup P(F'(u')) € G(F'((v')) corresponding to the
filtration (M;). Let L denote the corresponding Levi subgroup which contains the diagonal torus
T'. Choose a dominant cocharacter A\ such that L is the centralizer of \.

For x # 0, define M, to be the free Breuil-Kisin module of rank n with basis «, such that A
acts on «, in the same way it acts on a and such that the Frobenius acts by o) = Mz)CODN(z) !
(with respect to ag). Observe that the limit of ) as x — 0 exists and lies in the Levi subgroup
L(F'((u)). Thus, we can extend this to a family over AL. It is easy to check property (1). For

property (2), we note that for any x # 0, ngj ) is the matrix for Frobenius with respect to the basis
(@) . X(x)) and so M, is isomorphic to M. O

Corollary 3.3.2. Assume that 7 is (e(n — 1) + 1)-generic. If p is T-admissible, then p™ is T-

admissible and for all j € J,
w(pss’ T)j < w(ﬁv T)j'
3.4. Specializations. Throughout this section we consider a continuous Galois representation
p: Gx — GL,(F). We say that p is N-generic if the tame inertial F-type p*|7, is N-generic (see
§2.3.3). All lowest alcove presentations for tame inertial types (over F or over E) will always be
compatible with a given lowest alcove presentation for p™.
If p°P is a tame inertial F-type for K and 7 is an inertial type over F with compatible lowest

alcove presentation, then recall the combinatorially defined shape w(p*°, 7) = w(7) 'w(p*P) € wJ
defined in §2.4.
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Definition 3.4.1. Let p: Gxg — GL,(F) be a continuous Galois representation.

(1) A tame inertial F-type p°P for K over F is a specialization of p if there exists an (e(n—1)+1)-
generic tame inertial type 7 such that p is 7-admissible and w(p,7) = w(p*P, 7). We say
that 7 exhibits the specialization.

(2) A specialization p*P is called an extremal specialization of p if there exists a 7 exhibiting
the specialization such that w(p™P, 7) = t,)~1(cy,) for some w € WY and if the unique M €
Y=77(F) such that T)j;(9M) = p|e,_ satisfies the mod p monodromy condition (Definition
3.2.3).

Remark 3.4.2. By a version of [LLHLMa, Proposition 7.4.1] in the ramified setting (based on
the analysis of the monodromy condition in characteristic 0, cf. Proposition 4.4.1 below), if 7 is
(e + 1)(n — 1)-generic and p admits a potentially crystalline lift of type (7,7) then the unique
M € Y="7(F) such that Tj;;(9M) = plg,_ satisfies the mod p monodromy condition. Thus,
the technical condition in Definition 3.4.1(2) could be replaced by the existence of a potentially
crystalline lift.

Remark 3.4.3. Using the methods of [LLHLMal, it can be shown under suitable genericity conditions
that all specialization are extremal when K/Q), is unramified. It is likely that the same is true in
the ramified case but we do not attempt to prove it here.

Let S(p) (resp. Sext(p)) denote be the set of specializations (resp. extremal specializations) of p.

Remark 3.4.4. The sets S(p) and Sext(p) are finite because the set of (e(n — 1) + 1)-generic types
7 for which p* is 7-admissible is finite by Proposition 3.1.14 and the set of types for which p is
T-admissible is a subset of this set by Corollary 3.3.2. In Theorem 3.8.2, we show that 7%|7, is an
extremal specialization of 7 80 Sext(p) is also non-empty.

Example 3.4.5. We have the following examples when K = Q, and n = 2, 3.

a
(1) Let 1 < a < p—1 and assume that Prg, 15 of the form <a(1) I , where * # 0. Then we have
two specializations, given by w® @1 and w§ @ wh®. A type which exhibits the specialization
we @ wh® s (Wit @ Wb ) @ WL,

(2) ([LLHLMb, Theorem 4.2.5]) Assume that (a + 1,b+ 1,¢+ 1) € Z3 is 6-deep in alcove Cj
and that p|7, is of the form

w® % %
0 Wb %9
0 0 w°

where *1, %9 denote non-split extensions. Then p has up to 6 specializations, namely
2
WD Wt ® W, w;—i—pb @ w127+pa O W, wg-ﬁ-pc @ wb @ wg-i—pa’ W P wg-i-pc @ w§+pb, wg+pb+p €
2 2 2 2 2
w§+p P @ g TPOtP b and witrety "o w§+p GPC @ WgtP b+P°e A type which exhibits the

is wéa_l)ﬂj (=) gy =1 @wéc_l)ﬂ? @1 We have 4 specializations precisely

when p has either a potentially crystalline lift of type w,_ 1 ® wl;rp (e=2) g wéc_z)ﬂ? b (in

2 2 2
<21+pc @ wb @ u)g-kpa and wg+pc+p b @ wg+pa+p < w§+pb+p a

specialization p®°

which case the specializations w

do not appear) or of type wg+p 6-2) wéb_z)ﬂ) “ @ w! (in which case the specializations

2 2 2
wg—i—pc ® Wb @ wg-i—pa and wg-l—pb-i—p cq wg—&-pc-i-p @ g wg-l—pa-l—p b do not appear).
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3.5. Semicontinuity II. The following theorem generalizes Proposition 3.3.1.

Theorem 3.5.1. Let p: Gxg — GL,(IF) be a 3e(n — 1)-generic continuous Galois representation.
Assume that p specializes to a tame inertial F-type p°P for K and that p is T-admissible. For each
j € J, we have the inequality
w(p™®,7); < w(p,7);-
We begin by stating two combinatorial lemmas which will be needed in the proof of Theorem
3.5.1.

Lemma 3.5.2. Let 7 and 7" be (e(n — 1) + 1)-generic tame inertial types over E. Assume there
exists a p which is both T and 7'-admissible. Then, for any choice of lowest alcove presentation of
7%, 7 and 7' admit lowest alcove presentations (s, ) and (s', p'), compatible with that of p*, such
that

g — 1] < e(n —1).
Proof. Since p is both 7 and 7/-admissible, the same is true for p* by Proposition 3.3.2. Fixing a
lowest alcove presentation of p*, 7 and 7/ admit compatible presentation (s, 1) and (s', ') respec-

tively and we have enp-admissible elements w(p*,7) = t,w and w(p*,7’) = t,w’. Since v and v/
are in the convex hull of Weng (cf. [HC02, Theorem 3.3)),

(3.3) 0 <wj;vj; <e(n—1).
By Proposition 3.1.14, 7%|7,, has lowest alcove presentation (sw,u + s(v)) = (s'w’, u' + §'(V')).
The result now follows from this equation and (3.3). O

Lemma 3.5.3. Let pu, ' be dominant cocharacters which are 2e(n — 1)-deep in alcove Cy), and
assume that for all j € J, 1 <1i < mn,

g — pjal < e(n —1).
Let (By), (B)) € Mat,,(F[v])7 such that for all j, ve(”_l)B;1 € Mat,, (F[v]). Assume that for all
j € J there exists Cj € GL,(F((v))) such that
(3.4) OjBé’Uu;—Hm’j = ij'uj+770’jg0(0j_1).
Then C; € Z(F) for all j € J.

Proof. The technique is similar to the proof of [LLHLM18, Theorem 3.2] and [LLHLMa, Lemma
5.4.5]. We first show that for all j € J we have C; € Mat,,(F[v]). For all j € J, write Cj = v~k C';-r

with k; € Z, Cf € Mat,,(F[v]) and C’j # 0 modulo v. Rearranging equation (3.4), we can write:
(35) UL A( ) p(CF ) = oM B C B,

Since the RHS of (3.5) becomes integral after multiplying by pFiten=1)+maxi<i<n (1] ;=i
that

, we get

!/ \Y
kj +p 1 > kj + e(n ].) + 1.'[21134<X ‘,U/]’Z ,LL]J‘ + max |</,L],Oé >‘ pkj—l

This shows that if & = maxj<;j<fkj, then (p — 1)k < p — 1, hence k; < 0 for all j € J. Thus
C; € Mat,(F[v]), and comparing determinants we see that C; € GLy(F[v]), for all j € J. (In
particular k; = 0 for all j € J.) Finally, we show that C; € Z(F). If this were not the case, then
for some o € @~ the entry corresponding to « in Ad(v“ﬂ'no’j)cp(C;r_l) will have v-adic valuation
{pj +moj, ). Comparing the v entry in the equation

Ad(vHatm0a)p(CF ) = BJ'_IC;FBév“Q*M
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then shows that
) VY > _1) — AT

(g 0, a7) = —e(n = 1) — max [, — pjil
which contradicts the deepness assumption on . ]
Proof of Theorem 3.5.1. Let 7/ be a type which exhibits the specialization to p*P. Let (s, ) and
(s', 1) be lowest alcove presentations of 7 and 7’ respectively compatible with a fixed choice of
3e(n — 1)-generic lowest alcove presentation of p*. Note that p and u' are 2e(n — 1)-deep and
satisfy the conclusion of Lemma 3.5.2. Let w = w(p, 7) and w’' = w(p, 7).

The strategy is similar to the proof of Proposition 3.3.2. We will construct a morphism
(3.6) AL = YT
T — M,

which satisfies the following properties:

(1) for all x # 0, the Breuil-Kisin module 9, has shape w(p, 7);
(2) T3a(Mh) = Play,, ; and
(3) Taa(Mo)l 1. =~ 5.

Let M € YFS"’TI( IF) be the unique Breuil-Kisin module satisfying T;,(9') = p|g,__. By Propo-

sition 3.1.15, there is an eigenbasis 3’ for 9 such that
AY) 5 = Dj(@})*U;

where D; € T(F) and U; € N(w;)*(IE‘) C Z(F) is defined in [LLHLMa, Definition 4.2.9]. Since U; is
unipotent ([LLHLMa, Corollary 4.2.16]), there exists s; € W such that
(37) Ad(s1(103)(@)) - Uj € 1+ & Mata (B[] [o]).

We define a map «' : (Gp,)r — YFSW’T, by specifying Breuil-Kisin module 0t over Flz%!] of type
7/ and eigenbasis 3’ such that

Ag(i;z)/,ﬁ’ = D;(w;)" Ad(sj(no,;)(2)) - U;

for all z # 0. By (3.7), this map extends to a map x’ : Af — YFSW’T/
The map «’ gives rise to a family MY Eqpt (537’ ) of étale ¢p-modules over K parametrized by A]%-.
Over G,,, by Proposition 3.1.11, M admits a basis f such that
Q) & Mat(¢'0)) = Dj(@))* (Ad(s;(mo)(@)) - Uy) () ot
For z € Gy, we write Q}, = Maty, (¢(‘7~) ) in what follows. By construction, V}((/,\zﬁ = Dlog.,
and Vie(Mo)lr,.,, = 7.
By assumption, M is the étale p-module over K associated to the unique 9 € Y<”T(F)

satisfying T7;,(9M) = plg,_. Choose an eigenbasis § for M. By Proposition 3.1.11, there exists
(C;) € GL,,(F((v)))7 such that for all j € J

(3.5) CUMIQ; 1 = Ay o (D)

Applying Lemma 3.5.3 with B} = Q;Jv_“;'_no*j and B; = Agt)ﬁsj_l, we conclude that C'9) € Z(F)
for.all J € J. Hence, by changing the eigenbasis of 91 if necessary, we can arrange that Q;-J =
AG) 7 Lorstm,
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<n,T

We now construct a map « : (G,,)r — Y "' by specifying a Breuil-Kisin module M over Flz®!]

of type T with eigenbasis E such that

AZ) = Qo sy = Dy()" (Ad(s;(m0)(@)) - Uj) ()~ #5710,

To see that k is well-defined, observe that

G 40) _ 1+ 40)
Afﬁ?xﬁx = tlAﬁtlﬁth = t]_Am”BtQ
for suitable (constant) diagonal matrices t1,to € T(F’) depending on = € (F’)*. This also shows
that x satisfies property (1). The map « satisfies property (2) by construction
The construction of x shows that the fiber M, of the family M of étale ¢g-modules over Aj
comes from a point of Y]FST]’T for each & # 0. Since this is a closed condition and the map Y]FSW’T —
®-Mod " is proper (Proposition 3.1.12), it follows that x extends to a map & : A} — YFSn’T, and
property (3) holds for this extension.
]

The proof of Theorem 3.5.1 has the following useful consequence.

Corollary 3.5.4. Suppose that T and 7' are 2e(n — 1) generic tame types with compatible lowest
alcove presentations. Assume that e (M) = e (M) for objects M € Y<IT(F), M e Y07 (F).
Then M and M’ admit eigenbases [ and B’ respectively such that

AQ) s+ (r) = A) p @ (')

)

forallj € J.

3.6. Specialization pairs. In this subsection, we enhance the notion of specialization of p to a
pair of specialization and a Serre weight. The pairs exhibit a nice combinatorial structure indexed
by the Weyl group (see Definition 3.6.3).

Lemma 3.6.1. Suppose that p°P is an extremal specialization of p and that T is a tame inertial type
eno) Jor some w € WY, Let w € AW/1+‘7
be an element (unique up to X°(T)) whose image in WY is w. Let 7, be the tame inertial type
with lowest alcove presentation compatible with T such that w(p®™,7y) is the unique element in
ijot(e,l)noiﬁ N Leno W . Assume that 7, is (e(n — 1) + 1)-generic. Then p is T,-admissible and
w(p, 7g) = w(pP, 7y).

exhibiting this specialization and such that w(p,T) = t,-1(

Proof. Note that t,,—1(cy,) = w(7) " w(p®, 7) = w(p°P) and we can write tw—1(eno) = @glwot(e_l)m)@
where wy € W~/1+ 7 TLet § € Q7 such that dwy € W&j . We define 7,4 to be the unique tame inertial
type such that w(7,) = w(7)(dw2)~*. By definition 7, is endowed with a compatible lowest alcove
presentation which is (e(n — 1) + 1)-generic and w(p*?, 7,) is as desired. It remains to show that
w(p,7g) = w(p*P, 7).

Let 9 € Y7 (F) be unique Breuil-Kisin module such that T7;,(9) = p|g,__. By assumption,
O has shape t,,-1(c;,) and satisfies the mod p monodromy condition (Definition 3.2.3). Hence, for

any choice of eigenbasis 3, we have that ¢ (9) is the étale p-module with partial Frobenii given by

Aggﬁw*(r)j for j € J, where

AS()L{I),BZE* (T)j S (I(F)tw71(6n0¢j)I(F)w* (T)j)vo‘
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Applying Proposition 3.2.2 with @ = ty~1(cp, ), W' = dwot(
all j € J:

e—1)mo,; W1,j and Z = w*(7);, we have for

AR 587(7); € T(B) Gwot o1y, ,T1) T(E) " (7,);

(note that w = tw—l(enoyj),ﬁ// = 0wWol(e—1)p, ,,W1,j are e-regular and n — l-small by Proposition
2.1.6). Hence there exists ' € Y7 (F) such that €, (M) = (M) and such that M’ has shape
Swol (c—1)ny W1 = W(P*P, 7g)- 0

Definition 3.6.2 (Specialization pairs). Suppose that p, p°P, 7, and w are as in Lemma 3.6.1. Let

w e (W+)‘7 be the unique (up to X°(T)) element whose projection in W+ is w. Let o be the Serre
weight

(3.9) F(r=Nw) - (w(r)o~ w, ' (0) — no))) = Faamaa;(0)

Then we say that p specializes to the pair (o, p°P) and that 7 exhibits this specialization. Let SP(p)
be the set of pairs to which p specializes.

Note that if p°P is max{2, e}(n — 1)-generic and 7 is 2(n — 1)-generic then o is the unique element
in W7(p*P, ) by Proposition 2.4.8, and is the extremal weight corresponding to w (see Definition
2.4.3).

If p is 2e(n — 1) 4 1-generic, we have a natural map SP(p) — Sext(p) which is surjective and
hence the set SP(p) is finite. If ( € X*(T') and some p°P € Sext(p) has a (-compatible lowest alcove
presentation, then every element of Sey(p) has a (-compatible lowest alcove presentation.

Definition 3.6.3. Assume that pis (2e(n — 1)+ 1)-generic. Let ( € X*(I') and suppose that some
(equivalently any) element of Sext(p) has a (-compatible lowest alcove presentation. We define a
map

05 : SP(p) — w7
as follows: If (o,pP) is in SP(p), (wpr, pr) is a (-compatible lowest alcove presentation of p°P
and o is the extremal weight corresponding to w, we set 0%(0, p°P) = wpspw_l.
Proposition 3.6.4. Assume that p is 3e(n — 1)-generic. The map 9% is injective. (Later in §5.4,
we show that the map is bijective.)

Proof. Suppose that 9%(0, p°P) = 9%(0’,?’751’). Let 7 and 7' be as in Lemma 3.6.1 exhibiting these
specializations with w(p,7) = t-1(ep,) and W(p, T) = t()~1(eny), and let 7, and 7, also be as in
Lemma 3.6.1. Then o and ¢’ are the extremal weights of p°P and p"*P corresponding to w and w’ €
W, respectively. Let w and w’ € Wfr be elements with images w and w’ € W, respectively. Then by
Lemma 3.6.1, there exist §,d" € Q such that w(p, 7y) = dwot(e—1yy, @ and W(p, 7,) = 6" wot (e—1yp, W'
By Corollary 3.5.4 and the fact that w*(7))e(Z)w* (1)~ C T,

Tw(p, 7y) " Tw*(r4) N Zw(p, Té)*Iw*(Té) =+ (),
or equivalently by taking transposes,
(3.10) W(7g) 0L Pwot (e—1ynoWLP /TP Nw(7,)d TP wot
where Z°P is the opposite Iwahori group scheme.

To simplify notation, let 5 and 5" be w(r,)d and w( 5)0', respectively. Then we have w(p®) =
swot(e—1)pow and w(p"P) = Fwot(e_1yp,w'. Let s, & w(ﬁsP), and w(p"*P) € W be the images
of 5, 3, w(p), and w(p"*P), respectively. The equality w(p*P)w=! = 9%(0, Py = 9%(0’,?’7510) =

—1

w(p’Sp)( )

e— l)nol’z}’/IOP/IOP # @7

implies that s = s'.
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The previous paragraph and (3.10) and imply that there exists v € X*(T') such that
tl,IOPwot(e 17 wIOp/IOpﬂIOp’wot(e o ~/IOP/IOP 7& 0.
Both ¢, Z°Pwot (¢—1)p,wI°P/I°P and IOpwgt(e_l)nOw "I°P/Z°P are stable under the left action of T.

There is a Gy,-subgroup which contracts ¢, Z°Pwot (c—1)y,, w wZ°P/I°P to t,,wot(e DoW- S0 tywot
is in the closure of IOpwot(e Do wW'Z°P JI°P, or equivalently ¢ wot(e 1)n0w < wot

v 8—1)770w
e—1)nW'. Symmet-

rically, ¢, wot (e—1)p, W' < Wot(e—1)p,w. Lemma 2.2.4 implies that @' = t,w and that v € X%T). In
particular, we have w = w’ so that 7 = 7/, ¢ & ¢/, and p* = p/*P. O

3.7. Extremal weights. In this section, we define extremal weights and use them to give a tame-
ness criterion for Galois representations.

Definition 3.7.1 (Extremal weights). Let p be a (2e(n — 1) + 1)-generic representation of G.
Define Wext;(p) to be the set of Serre weights o such that there exists some p°P so that (o, pP) €
SP(p).

Proposition 3.7.2. If p is semisimple and (2e(n — 1) + 1)-generic, then Wexr(p) agrees with the
set Wextr(pl1) from Definition 2.4.3.

Proof. We first note that if p is semisimple, then it only specializes to p|;, by Proposition 3.1.14.

Fix now a (2e(n — 1) + 1)-generic lowest alcove presentation of pl|;,. For each w € WY there
is a unique type 7 (with compatible lowest alcove presentation) such that w(p|r.,7) = w(p,7) =
tuw—1(eny)- Let w € Wfr 7 be the unique element whose projection in W is w. This type realizes the
specialization to the pair p|, and o = F(w@(T)ﬁ,lwgl(o)) (see (3.9)). Using that w(7) = w(p|1, )tenos
we see that o is the extremal weight of p|7,. corresponding ot w. ([l

Proposition 3.7.3. Assume that p is 3e(n — 1)-generic. The following are equivalent:

(1) p is semisimple; and

(2) #Wextr( ) #Wj
Proof. Proposition 3.7.2 gives (1) implies (2). Next, assume that #Wey:(p) = #W. By the injec-
tivity of 65 (Proposition 3.6.4), p has a unique extremal specialization, call it p°P, and furthermore,
Wextr(ﬁ) — Wextr(ﬁSp)-

Let w € WY. Let o (resp. o) be the extremal weight associated to w (resp. wwp). We show that

if p specializes to both (o, p°P) and (o', p°P) then p is semisimple and p|,, = p*P. Let 7 and 7’ be the
types realizing these spe(nahzatlon in shape z = {,-1(¢y,) and 2’ Z = tygu- 1(eno) With corresponding

Breuil-Kisin module 9t and 99V.
By Proposition 3.1.15, there exists eigenbases 3 and 3’ respectively such that

AR s =DiUE,  AY) = DU,
where D;, D € T(F), U; € Z; N3, (F)Z;l, and U; = Ni, (F)(z5)~ 1. By definition of N3 ([LLHLMa,
Definition 4.2.9]), we have
U;,Uj € LG5 (F)
where L**QI(Fj ) denotes the negative loop group for LQH(Tj ) (in particular, its F points consist of

matrices A € GL,,(FF[1/v]) which are lower unipotent modulo 1/v).
By Corollary 3.5.4, there exists (IU)) € Z(F)7 such that

(3.11) D;Ujzjw" (r) = IV DiUZya" (') (o (19~ 1)) 7!
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By scaling 3’ by an element of T'(F)7 if necessary, we can arrange that (I7)) € Z;(F)7. Since both
7 and 7' realize the same specialization, z;w* () = zZjw*(7') = w*(p?) and so (3.11) becomes

(3.12) D;U;w* () = IV DLULw* (5°P) (p(1U 1)) 7.

By Lemma 3.1.5, there exists (X;) € Z;(F)7 such that D,;U; = X;D;U; for all j € J. Thus,
U;(U) " € Z(F) N L~~GY)(F) and so U; = U!. Finally, since t,,1(e(y))(A0) and tyu-1 (o(no)) (4o)
are in opposite Weyl chambers, Ej_lUjEj and (E;)_lUj’E; are in opposite unipotents by [LLHLMa,
Corollary 4.2.15]. Thus, U; and U] are the identity (Zj, 2 are both translations). Since A;.();t) 5=

D;z; for all j € J, it follows that T;,(9) is semisimple (see [LLHLMa, Proposition 5.5.2] for
example). O

3.8. Maximally ordinary weights. In this section, we show that the set Wy (p) contains the
set of mazimally ordinary weights. We further show that the set of maximally ordinary weights is
nonempty, so that in particular, the set Weyi (p) is nonempty. When p is an iterated extension of
characters, the set of maximally ordinary weights is the set of ordinary weights.

Lemma 3.8.1. Suppose that p: Gx — GLy(F) is (e(n — 1) + 2)-generic and an extension of py by
p1- Fori=1 and 2, let n; be the dimension of p;. Suppose that p; has a potentially crystalline lift
pi : Gk — GL,(Og) of tame inertial type 7; and parallel Hodge—Tate weights (ny +na —1,...,n2)
(resp. (ng —1,...,0)) if i =1 (resp. i =2). Then p has a lift p which is an extension of pa by p1
and is potentially crystalline of type (T,1) where T = 11 @© To.

Proof. Note that by genericity, both p and 7 are at least 2-generic, in particular are cyclotomic-
free ([LLHLMa, Lemma 7.2.9]). By genericity, ExtQGK (p2, p1) is zero. So the natural reduction
map Extng (p2,p1) — ExtéK (P9, pp) is surjective. We conclude that there exists a lift p : Gxg —
GL,,(Og) of p which is an extension of ps by p;.

Let p; g be p;®o, E. Then the containment H;(GK, PE/,E ®Ep1,E) C H'(Gk, pg/’E ®F p1,E) is an
equality for dimension reasons. Indeed, by the local Euler characteristic formula and Tate duality,
we have that h!(G, pQ/’E ®Egp1p) =dimg P{E@E p1,E. On the other hand, h;(GK, p\Q/,E QFpP1LE) =
dimg DdR(pQV’E ®E p1,E)/Dar(py, g ©F p1,e)". Since the Hodge-Tate weights of py are strictly less
than those of p;, this latter expression is dimpg pg 5 ®F p1,e as well. We conclude that p is an
Ogp-lattice in a potentially semistable representatioﬁ. Moreover, p has parallel Hodge—Tate weights
n.

There is an exact sequence of smooth Ix-representations

0— Dpst(pl,E) — Dpst(PE) — Dpst(p2,E) — 0.

We conclude that Dyt (pE) = 7 = 71 @ 12. Moreover, by genericity, Homp, (72, 71(—1)) = 0 and so
p must be potentially crystalline. O

Let PV C GL,, be a parabolic subgroup with Levi quotient M". Then MY = Hle M, where
M = GL,, and Zle n; = n. Let N; be Zf:l 4+1nj. We index these dimensions so that for all
1 <4 <k, PY has a quotient P which is isomorphic to a parabolic subgroup of GLy, with Levi
quotient Hf:l M ]v . In other words, if P is block upper diagonal, then starting from the top left,
the i-th block has size n;.

Theorem 3.8.2. Let p: Gxg — GL,(F) be (2e(n — 1) 4+ 1)-generic. Suppose that p factors through
PY(F) for a parabolic subgroup PV C GL,, as above. Let MV, M), and N; be as above. Suppose that
the associated representations p; : G — M, (F) are semisimple. For each i, let p; be a potentially
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crystalline lift of type 7; and parallel Hodge—Tate weights (n; + N; — 1, ..., N;) where w(p;(—N;), 7;)
is extremal (here, p;(—N;) means twist of p; by the (—N;)-th power of the cyclotomic character).
Then p has a potentially diagonalizable lift p (in the sense of [BLGGT14, §1.4]) of type (7,7n) where
T= @f’:ln. The corresponding specialization is @leﬁi. In particular, the semisimplification @leﬁ,»
is an extremal specialization of p.

Proof. By iterated application of Lemma 3.8.1, we obtain a potentially crystalline lift p of type
(1,m), which is an iterated extension of potentially crystalline lifts (of type 7; and parallel Hodge—
Tate weights (n; +N; —1,..., N;)) of the representations p,;. In particular, the semisimplification of
p is EBf:l pi- Then by the argument of proof of [LLHL19, Corollary 3.4.11] (replacing the reference
to Proposition 3.4.8 in loc. cit. with Proposition 4.2.2 below, and noting that the semisimple Kisin
module produced as in loc. cit. has Hodge—Tate weights exactly 7), after restriction to a finite index
subgroup the semisimplification of p is a direct sum of characters. By [BLGGT14, Lemma 1.4.3(1)],
p is potentially diagonalizable.

Since w(p;(—N;),7:) is extremal for all i = 1,...,k, so is w(B¥_,p;,7) by an easy computation.
Since the semisimplification of p is @leﬁi, we deduce that w(p, 7) is this same shape by Proposition
3.3.2. Thus 7 exhibits the specialization ©¥_;p; of p. U

Suppose that p is as in Theorem 3.8.2 with PV, MV, and N; as before. Let P C GL,, be the
dual parabolic subgroup. Let U be the unipotent radical of P. For each i let 0; € Wextr(p;). Let o
be the unique Serre weight such that

oV =2 0i(—N;).

We call a Serre weight constructed in this way mazimally ordinary. Let Wiora(p) be the set of
maximally ordinary Serre weights. Since we can always find PV as in Theorem 3.8.2, Wiora(p) is
nonempty. If p is semisimple, then we can take P to be GL,, so that Wiora(p) = Wextr(p). Taking
PV to be a minimal parabolic when p*® is a direct sum of characters, we see that ordinary weights
are maximally ordinary.

Proposition 3.8.3. There is an inclusion Winord(p) C Wextr (D).

Proof. Let p and p; be as in Theorem 3.8.2. Suppose that o € Wiyora(p). For each i, let 7; be the
tame type such that W7 (p;, ;) = {o;}. Then if we let 7 be ®F_;7;, then 7 exhibits a specialization
of 5 to p**. Moreover, one can check that W’ (5%, 7) = {0} so that (¢,7*) € SP(p). This shows
that 0 € Wextr (ﬁ) OJ

3.9. Connections to Emerton—Gee stacks. This section is a series of remarks explaining how
the notions of extremal weight and specialization can be interpreted geometrically on the stack of
mod p Galois representations A}, introduced by Emerton-Gee [EGa]. When K/Q, is unramified,
everything can be proved using the techniques of [LLHLMa]. The ramified case requires extending
[LLHLMa] which will be the subject of future work.

First, we briefly recall what we need from [EGa]. In [EGa, Theorem 6.5.1], Emerton and Gee
describe a parametrization of the irreducible components of the underlying reduced stack A}, yeq
of the moduli of (¢,T')-modules &,, by Serre weights of GL,(Ok). Let 0 = F(k) be a Serre
weight of GL,(Ok) with k = (k;) € X1(T)7. We use the normalization as in [LLHLMa] where

def 1,0V @det™ !
CU - XE’G,n,red
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If k is 1-deep, then C, is uniquely characterized by the fact that has a Zariski open subset
consisting of p of the form

X1 * *
p% : . :

where x|, = &' Hjej wﬁ?ﬁ; and p admits a unique G g-stable flag.

Remark 3.9.1. (1) Let p°P be a sufficiently generic tame F-type. If o is an extremal weight
of p°P as in Definition 2.4.3, then there is a Zariski open subset ce’ ¢ C, such that p
specializes to the pair (o, p°P) if and only if p € CE”. The Zariski open can be constructed
via the generalization of the diagram in [LLHLMa, Theorem 7.4.2] to the ramified setting.

(2) Let o be a sufficiently generic Serre weight. Then there are (n!)7 sufficiently generic tame
F-types which have o as an extremal for p corresponding to w weight. Thus, the union
CoWr = UCé’sp where pP ranges over all such types is a Zariski open subset of C, consisting
exactly of the p which have o as an extremal weight. (One can check that C&* = C, only
when K/Q, is unramified and o is Fontaine-Laffaille.)

Remark 3.9.2. As has been introduced in other settings ([LLHLMDb]), there is a natural set of Serre
weights that can be associated to an arbitrary p : Gxg — GL,(F), the geometric weights,

W9(5) = {0 | 5 € Co(F)}.

Remark 3.9.1 says that Wex,(p) C W9(p). Generally speaking the set of geometric weights will be
larger.

3.10. The extremal locus. In this section, we discuss the relationship between Wey (p) and
W9(p) when K/Q, is unramified. This gives, in this setting, an alternative to the proof of the
existence of extremal weights in §3.8. The main result of this section will also be used to construct
global lifts in §5.5.

Let K/Q, be unramified. Let (wi,w) be a lowest alcove presentation for a Serre weight o

compatible with ¢ € X*(Z). Recall from [LLHLMa, Definition 4.6.1] that C5 is the closure of
(T\Z(wow1) Z(t)") ¥

inside Fl;0 (see also §3.2). We define CS ... to be the (Zariski) open subset

o,extr
Uwew (T\Z (woin )*Z(t,w)* )V C CS.
Assume that o is (3n — 1)-deep. Then by [LLHLMa, Remark 7.4.3(2)], we have a local model

diagram for C, (the irreducible component of A}, ;q corresponding to o, cf. §3.9) and Cg. We then

let Cyextr C Co be the Zariski open set of C, corresponding to oS - Cg. (The definition of

o,extr
Co.extr does not depend on the lowest alcove presentation of o.)

Proposition 3.10.1. Let p be (2(n — 1) + 1)-generic. If o is (3n — 1)-deep and p € C,, then
P € Coextr if and only 0 € Wextr(p)-

Proof. We fix a lowest alcove presentation (wi,w) for o compatible with ¢. Let x € cs correspond
to p € Cy in the local model diagram [LLHLMa, Theorem 7.4.2]. If 0 € Wexy(p), then let 7 be a
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tame inertial type exhibiting the extremal weight . Then
T €(I\Lt{ypy )1 oy Zw(T)" Vo
=(I\L(wow1) Z(@(7)(@ptr) )"V
=(I\I(wow1)* L (tuw(r)(wowr) ~1)*)V°
cCs

oextr

where w(7) is defined with respect to the lowest alcove presentation of 7 compatible with (.
Conversely, suppose that p € Cyextr- Let w € W be such that x € (Z\T (wown )* I (t,w)*)Vo.

Then we let 7 be such that w(7) = t,wwpw;. The above calculation shows that 7 exhibits o as an

extremal weight of p. 0

Proposition 3.10.2. Assume that o is (4n — 2)-deep. There is an inclusion

CU’ C U CJ’,extr .

o covers o’

Proof. We choose a (4n — 2)-deep lowest alcove presentation (wi,w) of o and will show that

cic U C
g o covers o’ o’ extr’
Since the elements of E less than or equal to wow; are exactly those of the form sw for some s € W
and w € W+ with w 1 w; (see the proof of Lemma 2.2.2), [IM65, Proposition 2.8] gives

CS € T\ T(wown )\ Tt " = U U (T\I(s®)*Tt") "0
seW Gew
wiwi

We will show that (Z\Z(s@)*Zt)¥0 C CS,
Since (wgs~!)sw is a reduced factorization by Lemma 2.2.1,
(T\Z(sw)*Tt5) V0 C (T\I(sw)* L(wos ™) L((wos ™)) )V°
= (Z\Z(wow)* L (t 5wy *)*)VO.

exty fOr some o’ which o covers.
b

To further analyze this, let w = ¢, w} where v € X*(T') is dominant and W} € VV1 Then t,,, () wow)
is a reduced expression for wow by [LLHL19, Lemma 4.1.9], from which we deduce as before that
(D\T(wow)* Lty swyswy )Y = (I\T(wow}) (twswy () )"

C (I\T(wow)* I (tuswy 1)*)VO.
On the other hand, these are irreducible varieties of the same dimension by [LLHLMa, Theorem
4.2.4] and thus must be equal. Letting ¢’ be the Serre weight with lowest alcove presentation
(@, w + 5(v)), we have (I\Z(wo@})* T (tussw)swy ' )*) V0 C C5s qr- (Note that o’ is (3n — 1)-deep,
hence Cy/ extr is defined.) It suffices to show that o covers ¢/, or by [LLHLMa, Proposition 2.3.12(ii)]
that tw(,j)ﬁi 1 wy. However, we have tw(,j)ﬁi Tw T wy Where the first inequality follows from
[Jan03, 11.6.5(3)]. O

Proposition 3.10.3. Let K/Q, be a finite unramified extension and p : Gx — GL,(F) be a Galois
representation. Let T be a (5n — 1)-generic tame inertial L-parameter. Then the following are
equivalent.

(1) R is nonzero;

(2) p is 4n-generic and W9(p) N JH(T (7)) # 0; and
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(3) p is 4n-generic and Wexer(p) N JH(7 (7)) # 0.

Proof. (1) and (2) are equivalent by [LLHLMa, Theorem 7.4.2(1)]. Since Wexir(p) C W9(p), (3)
implies (2). For the converse, suppose that p € C, for some o € JH(g(7)). Proposition 3.10.2
implies that 7 € Cy/ extr for some ¢’ which o covers. Then o' € Wex:(p) by Proposition 3.10.1 and
o' € JH(a(7)) by the definition of covering. (Note that Propositions 3.10.1, 3.10.2 apply by the
genericity assumption on 7.) ]
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4. SOME POTENTIALLY CRYSTALLINE DEFORMATION RINGS

The aim of this section is to compute potentially crystalline deformation rings for a certain class
of shapes, namely those related to the subgroup W, , € W defined in 2.2. We follow the general
procedure appearing in [LLHL19], improved in [LLHLMa].

4.1. The main result on Galois deformation rings. For a mod p Galois representation p, we
write R (resp. R%"’T) for the framed universal deformation ring of p of tame inertial type 7 for

Ik over E and parallel Hodge—Tate weights 7 (resp. < n). The main result is the following:

Theorem 4.1.1. Let T be a max{(3n—"7)e— (n—2), (2n—3)e}-generic tame inertial type. Suppose
that W(p, ) is W e, WaW for some w € El , some a € AY | and W, € Waa,-
Then Rg’T = R%"’T is either zero or is a normal domain. Furthermore:

o If Wa, isid or t_cq; for each j, RY" is formally smooth over O.

e In general, Spec Rﬁgnﬂ- is reduced with 2™ geometrically irreducible components of the same
dimension, where m = #{j € J | Wa; # id,t_cq, }-

Remark 4.1.2. A key ingredient in our proof of Theorem 4.1.1 is the fact that the local model (in
the sense of [LLHLMa]) of our Galois deformation ring has a Levi reduction property: namely, it
is formally smooth over a similar local model attached to a Levi subgroup of GL,,. This turns out
to be a general phenomenon whenever the shape w(p, 7)* is suitably “decomposable”, which may
be of independent interest. In the specific case of Theorem 4.1.1, the Levi subgroup we can reduce
to is GLo x GL?‘Q, which is why we have very precise control on the relevant local models, and
hence the Galois deformation rings.

4.2. Gauge bases and parabolic structures. For each j € J, we set E; = 0;(E(v)) € Olv].
Let R be an O-algebra. We have the usual notion of degrees on R[v|, which is submultiplicative
deg(ab) < deg(a) + deg(b), with equality if either a or b are monic (but not in general). The notion
of degree and being monic extends to elements of R]v, E;l] The set of elements of degree < 0 form

a subring of R|[v, Ej_l]sg. This subring contains the set of elements R[v, Ej_l]g_l = R|v, Ej_lkg of
degree < 0 as an ideal, and another ideal given by vR[v, Ej_l]<0. More generally, the set Rv, Ej_l]gd
of elements of degree < d form an RJv, E;l]go—module.

Concretely, the elements of Rv, E;l]go are exactly those of the form % with P € R[v] such that

deg P < me, with the extra condition v | P (for some choice of fractions with m sufficiently large)

for elements of UR[U,E]-_l]<(), and the extra condition deg P < me for elements of R[U,Ej_l]<0.

Finally, note that for an element a represented by 2= with P(v) € R[v], the O-algebra generated
J
by the coefficients of P is independent of the choice of representing fraction.

Let R be a Noetherian O-algebra. We define

e 1 . .
& {A € GL,(R[v]"" [f])’ A is upper triangular mod v};
J

L+./\/l(j)(R) def {Ae Matn(R[v]AEa' ), A is upper triangular mod v};

LGY(R)

For = zt,, € W" such that e | ||v||, define 2(Z)3°*<"(R) to be the collection of A € LGW(R) such
that
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e For 1 <4,k <n,

P
Aik’ - ’U67'>k ﬁ
j
with P € R[v] such that deg P < he + vy, — 0>k — dj< (). Furthermore, this is an equality
when i = z(k), in which case P is monic. In particular, A € ﬁL*‘M(j)(R).
j
141
e det A=det(2)E;° .
If R is furthermore O-flat, then for such A we have

Az‘_kl — U5i>kE%g
J
with @ € R[v] and H sufficiently large, such that deg @ < He — v; — ;> — 6,(;)< (The condition
that R is O-flat is used to show that divisibility by v in R]v, Ej_l] is equivalent to evaluating to 0
at v = 0, and hence the numerators of all representing fractions have 0 constant terms).

For each j € J, we define Ul*%(Z;) C Y4°=79(Z;) to be the subfunctor consisting of A such that
EPA™ € LPMW(R)NLGY (R) and E;“A € LY MY (R) N LGY(R). This is clearly representable
by a finite type affine O-scheme, with a set of generators given by the coefficients of the entries of
AU). Note that this depends on J, a choice that is implicit in the symbol Z;.

Ifz=(z); € WYJ | we set Ul (3) =] Ulebl(Z;). We have the following definition:

Definition 4.2.1. Let (R, m) be a complete local Noetherian O-algebra and assume that 9 €
Y10n=1L7(R) such that 9t ®r R/m has shape Z with respect to 7. An eigenbasis 8 for 901 is said to

be a gauge basis if As(gt),ﬁ e TV(R) U™ U(Z)(R) for all j € J.

Proposition 4.2.2. Assume that T admits a (e(n—1)+1)-deep lowest alcove presentation. Suppose
R is a complete local Noetherian O-algebra and let M € YIOr—1UT(R) such that M € Y017 (F)
has shape z with respect to 7. Then 9t has a gauge basis. Moreover the set of gauge basis for M is
a torsor for the natural action of TV (R).

Proof. The proof of [LLHLMa, Proposition 5.2.7] generalizes verbatim by replacing the reference to
Proposition 5.1.8 in loc. cit. by Remark 1 above, and noting that the statement of Lemma 5.1.10 in
loc. cit. holds true in our setting. Note the proof in loc. cit. in fact proves a more general statement
where R is only assumed to be merely p-adically complete. O

Suppose we are given a gauge basis § for 9 € YI0"=17(F) with shape Z and write

A%B — pWFl)
where DY) € TV(F), TV € Ul0=1(Z;)(F).

If R is a complete local Noetherian O-algebra, and 9t € Y[O’"_l]’T(R) is such that M@z F = N,
then the set of gauge basis for 91 lifting 3 is a torsor under the natural action of ker (TVJ (R) —»
TV+J(F)). Thus, the functor representing deformations (9, 3) of the pair (9, 3) is representable
by the completion of TVU0:n—1] (z;) at the point corresponding to (ﬁ(j)ﬁ(])), and it is formally
smooth over the completion of Y0717 at 9. The subfunctor classifying deformations (M, 5)
such that 90 furthermore belongs to Y <7 correspond to the completion of the closed subscheme
TVU(Z,< 1) of TVU"=1(Z) characterized by:

e TVU(z,< n) is O-flat and reduced.
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e The elementary divisors of (AY)) € TVU(Z, < 1)(R) € [[ LGY)(R) are bounded by Ej(n_l"" 0,

i.e. for each 1 < k < n, each k x k minors of AU) (which belong to R[v]) are divisible by
(k—1)k

E; 2 (in R[v]).
Remark 4.2.3. Let
LGTU(R) o {A € GL,(R[v]""i), A is upper triangular mod v}

a twisted positive loop group. Then Grg) = LQ+’(j)\Lg(j) is a twisted affine Grassmannian.
Then the generic fiber Grg )E = (Grgr, )¢ identifies with the product of e copies of the affine

Grassmannian for the split group GL,,, while the special fiber Gr]r(gj?F 2 F1 identifies with the affine
flag variety. The Pappas-Zhu local model M;(<n) for Resp, &, (5).0,0/0GLn as defined in [Lev16]
J

is the Zariski closure of the open Schubert variety for the cocharacter (n — 1,n —2,...,1,0) for
each copy of Grgr,, g. In this setup, the scheme U(Z;, <n) identifies with an (possibly empty) open
affine subscheme of M;(<n), cf. the discussion preceding [LLHLMa, Theorem 5.3.3]. In particular,
if non-empty, U(Z;, <n) has dimension e 5. o(no, 8Y) = e%.

The following Proposition shows that in certain cases, any element of TVU (Z, < 1) automatically
acquires a parabolic structure. In Propositions 4.2.4 and 4.2.5, we work with fixed j € J and drop
the subscript for notational ease.

z: 0
0 2

Let w = wywM be the factorization so that wM has minimal length and wyr = (wg, wp) €
W (M) =W(GL,) x W(GLs) (where M is the standard Levi for the partition r + s =n). Assume
that

° w;lzbwb has elementary divisors bounded by v
eswt_lztwt has elementary divisors bounded by v

Suppose R is a O-flat algebra and A € TVU (w™'zw, < n)(R). Then A= Dw~'Pw with D € TV(R)

and
_(M; O
P=(% )

s parabolic with diagonal block sizes r, s, and furthermore:

Proposition 4.2.4. Let we WY, r+s=mn and 2 = zt, = < ) WY with block sizes r,S.

e(s—1,--0)

e U e(r—1,--0)

(1) M, € ijtU(t_se(L...71)wt_15twt)wt_1 and has elementary divisors bounded by E](-n_l""s).

(2) My € wa(wb_IEbwb)wb_l and has elementary divisors bounded by EJ(.T_L'"O).
(8) (XM; )y € v*v = 0>w=10) Rlv, BN Rlv, B <5, 1,
— [y _ _
(4) (M, LX) € 0w O>wT W Rv] N Rlv, E; 1]SVk_Vi_(Swflz(i)<w*1z(k)‘
we interpret the indices to run over the rows and columns of X as a submatriz of P,
e.r+1<i<n,1<k<r.)

y<w=1(k)’

(In the last two items,

Proof. We write A = Dw™!Pw so that P € wU(w™'Zw, < n)w~!. This means that P has entries
in R[v], with the degree bounds

Py € v’ 0>v=1® Rlv] N Rlv, B ]

Sl/k_éu)*l(i)<u}712(k) :

and that the leading coeflicient of P ;) are 1. We call the corresponding entry the pivot entries.
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. M, Y

Write P = X M,
expanding det Mp, there is a unique maximal degree term, which is given by the product of the
top degree terms in the pivot entries in M; (one can see this by noting that this is a combinatorial
statement on the degree bounds which can be checked over rings S where p = 0, where it reduces

to the fact that Mgﬂf”l7,zb_1 is conjugate to a matrix in with coefficients in S[v~!] which is upper
(s—1)s
triangular unipotent mod v~1S[v~1]). This shows det M, = det wE; * . Now

My ik = Ya(M,
1

. We first show that ¥ = 0. The degree bounds on P imply that when

We observe
o Yy €l tsuto), (M, M € v’ 10>w=1®) | Hence (Y M, 1)y, is divisible by IR ORI
in R[’U,Ej_l].
o Yu € R, B <y—s, 1 1.0y (My ik € R, B <6,
R[U’E;1]§—5w71<i)<w71(k)'

Hence (Y M, 1)

z()<w— (k)"

However, the elementary divisor conditions together with the degree bounds imply that the mi-
(s—1)s

nor formed by replacing one row of M, with one row of Y belongs to E; 2 R, hence Cramer’s

rule shows that the entries of Y M~ Lare in R. Since by the above, these entries also belong to
v5w*1<i)<w*1(k>R[U, E;l] N R[v, Efl]g—éw,l(i)<w,1(k), they must be all 0.
Thus, we see that P has the desired parabolic structure. The first two items immediately follow

from the degree bounds on P and the elementary divisor conditions. The third and fourth items
follow from the same argument used above in showing Y = 0. 0

By applying Proposition 4.2.4 to the universal case, we get

Proposition 4.2.5. Assume the setting of Proposition 4.2.4. Let R™Y = O(U(w™'Zw, < 1)), so
that the universal A™ € U(z,<n)) factors as

Auniv — Dunivwfl (Mtun.lv 0 ) > w
univ univ .
Xumivo

Then the map A"V (Eswt Lvgmiv ey, ¢y Wy YMywy) exhibits U(w™'Zw,< n) as an affine space

over U(t_se(L,,.’l)w;l%wt, < (r—1,---0)) x U(wb Zpwy, < (s — 1,---0)), whose coordinates are
the coefficients of the entries of (Mgmi")*lXuniV (which are subject to the degree bounds dictated by
Proposition 4.2.4).

Proof. The fact that we get a map follows from Proposition 4.2.4, which clearly induces a closed
immersion from U(w™'Zw,< n) into the appropriate affine space over U(t “se(1, 1) Wy 1w, <

(r—1,---0)) x U(wy *Zwp, < (s — 1,---0)). To see this injection is an isomorphism, observe that if
we set Z to be a matrix subject to the degree bounds of Proposition 4.2.4(4) and whose coefficients
are free variables, then

w—l Mtuniv 0 w— w—l Mtuniv 0 1 0 w
MI;lniVZ MuIllV - 0 Mglniv 7 0

satisfies the necessary elementary divisors and degree bounds characterizing U(w™'zZw, < n). O
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4.3. Interlude: GLy; Pappas—Zhu models. We specialize the previous section to n = 2. Thus,
Mj(t(l,o)) is a Pappas—Zhu local model for the Weil restricted group ReSOK@)W(k),UjO/OGL?v the
(minuscule) cocharacter (¢ 0y, t(1,0)) € (Z?)¢, and Iwahori level structure. The following sum-

marizes the known geometric properties of M;(t()) (see Theorem A in [PR05] or Theorem 2.3.3
and 2.3.5 in [Lev16]):

Proposition 4.3.1. (1) Mj(ta0)E = (PE)°.
(2) Mj(ta0))r is (geometrically) reduced, and identifies with the reduced union of S(t(.)) U
S(t,e)) of Fl= Gr](Fj). Each of its irreducible components are (geometrically) normal.
In particular, M;(t(1 0y) is a normal domain, whose special fiber has two irreducible components.
Further more any x € So(t(eyo)) U So(t(oﬁ)) belongs to the regular locus of M;(t(10))-

Note that the reducedness of the special fiber and the geometric normality of its irreducible
component are preserved under taking products.

We note that the e(1,0)-admissible elements are exactly t(e_rx), 0 < k < e and t(_j )Sa With
O<k<e.

Corollary 4.3.2. Let z; be (e,0)-admissible. Then U(z;,< n) is a normal domain, and it is
formally smooth over O if Z; € {t),tw,e) ) Otherwise, its special fiber has two (geometrically)
normal irreducible components.

We deduce the following combinatorial property about the admissible set from our geometric
considerations:

Corollary 4.3.3. Let w; = wj_lwa,ajtemwj N Adm(eng) for some simple root o and w; € W.

Then there are at most two o € W such that wj < t5-1(ep,)-

Proof. Set z; = ﬁ;f. By Proposition 4.2.5, U(z;, < 1) is an affine space over an affine scheme of the
form as in Corollary 4.3.2. In particular, U(z;, < n)r has at most two irreducible components. On
the other hand, this is an open neighborhood of z; in the special fiber M;(< n)r of a Pappas—Zhu
model. We conclude from the fact that M;(< n)r = Ugew S(to(eno))- O

4.4. Analysis of the monodromy condition. Suppose p admits a Breuil-Kisin module Mm <
Y[O’”_l]’T(F) of type 7, with shape z and a gauge basis 8. To analyze the potentially crystalline
deformation ring R%"’T, we need to recall its relationship with the finite height deformation ring

R%B, as in [LLHL19, §3,4] and [LLHLMa, §7.1]. One has a diagram (cf [LLHL19, Diagram (3.16)],
[LLHLMa, Proposition 7.2.3])

8,0V fs 7.8,V
(4.1) Sprﬁ — Sprﬁ

=]

SpERZT s SptRETT L spf 7

l s

<n,T
SpfR3
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where

. R%”’T is the framed potentially crystalline deformation ring representing Galois deforma-
tions p with Hodge-Tate weights < n and inertial type 7. Note that it is either zero, or is

O-flat, reduced and of Krull dimension n? + 1 + 2% (K : Qp).

. R‘rﬁﬁ represents deformations (901, 3) of (9N, ) Where 9 belongs to Y7 and 3 is a gauge
basis of 1.

° R%ﬁ %D represents potentially crystalline Galois deformations p of type (< n,7), together

with a gauge basis 3 of its (unique) Breuil-Kisin module 9t in Y <77, It is formally smooth
over R="7 of relative dimension nf.
%’B = represents a deformation (O, B) of (M, B) as above together with a framing basis

of the G -representation associated to 9t. This is formally smooth over R%B of relative
dimension n?. B _ _
o R%ﬁ V' (resp. R%B V) is the O-flat reduced quotient of R%B (resp. R%B M) cut out by

imposing the monodromy condition on the universal Breuil-Kisin module after inverting p.

We elaborate on the monodromy condition on the universal Breuil-Kisin module on R%ﬁ . Recall

that E(v) is the Eisenstein polynomial of a chosen uniformizer of K over Ky, and that e’ = p! 1=

—1. Recall from [LLHLMa, §7.1] the ring O*'¢ = & (’);i(g/ B endowed with a canonical derivation
o

Ny = —u' A% (where A = HOO % is constructed out of E(v) = E((u/)¢) instead of v+p),

and the module univ.rig 4 gppuniv ® B 5 O"8 such that 9Miv:rg[1/)] is endowed with a canonical

derivation Ngjunivrig over Ny (cf. [LLHLMa, Proposition 7.1.3(1)]). Then the monodromy condition
alluded to above is the condition that Ngjunivrig preserves opuniv.rig

We now choose a lowest alcove presentation 7 = 7(s, 4+ 19). Recall from §2.3.3 that attached
o (s, ) we have the data s;r’j, eWw, a (") € zZ". We write AU for the matrices constructed out

of the universal Breuil-Kisin module and its universal gauge basis over R%B or R%B H. We get the
following control of the monodromy condition:

Proposition 4.4.1. Assume 7(s,u + n9) is an m-deep lowest alcove presentation of 7. If the
monodromy condition holds, the for each j', 0 <t < n —2 and 7 a root of Ej, the result of the
opemtor( —)'o=r acting on

d - _ -/ AN n—
(€05 AT + 149, Ding( (s ) @ 0] ) (A7) 2

m+1—(n—2)e—
belongs to p s
Proof. This is a straightforward generalization of the computation in [LLHLMa, Proposition 7.1.10],
with the following changes: h in loc.cit. becomes n — 1, occurrences of p (outside any evaluation
at v = —p) becomes E(0), occurrences of (v + p)*(AU7)~1 becomes E;L,_I(A(j/))*l, occurrences
of |,——p becomes |,—r. Note that F;(0) € pO*, and Ej = E; depends only on j mod f. More
specifically, the computation in loc.cit. expresses the monodromy condition as

P (0 A 4 A0, Ding( ()@ D)) (A0) 1 4 B
v
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has zeroes of order n — 2 along the roots of E;, for an appropriate error term Err. It follows that
the operator (%)tlvﬂr annihilates this expression, for 0 <t <n — 2 and 7 a root of Fj.
The error term Err has the form

Z (pi—l—l()\)n—lzi(j )
i=1

it pi=t
with Zi(] ) e pi(,}ﬁ)va »=1 Mat,(R[v]). We conclude from the analysis of the effect of ()|,
on the error term Err as in loc.cit. (except that we use the differential operator d% as opposed to

v%), noting that in our current situation
o (L) umr®(N) € p'**T O+ PP O for any t,k > 1.
o If F € v™Mat, (R[v]) then (£)t],_ F € p"c Mat,(R[v]).

0

Lemma 4.4.2. Let R be a p-flat O-algebra. Let N,k be non-negative integers and F € R[v].
Assume that N < p and that (d%)tb:ﬂ(F) € p*R for 0 <t < N and 7 is any root of E;. Write
F = E}Vq + r where q,r € R[v] such that degr < Ne (this uniquely determines q, r) Then

—(2N—1)(1—%)[

repk V]

Proof. Our hypothesis implies (:£)!|,—(r) € p*R for t < N and E;(r) = 0. We decompose

r = Zi\i 61 Eﬁrt with degr; < e. Then the reduction to R/ " of the coefficients of r¢ form an element

in the kernel space of the Vandermonde matrix on the roots of E;. It follows that ro € pk*%R[v].
For t > 0, Then t!(E;)t(W)T‘t(ﬂ') differs ffom (%)”vzw(r) by a polynomial in the coefficients of ry
for t < t. This implies ry € pF~ D=2 R[v] by induction on ¢. O

The following Lemma studies the effect of the approximation of the monodromy condition under
the presence of a suitable parabolic structure:

Lemma 4.4.3. Let R be a Noetherian O-algebra, N ,r,s non-negative integers such that r +s = n.

Let k = (%t :) € X*(T) ® O viewed as a constant diagonal matriz, w € WY, and Z = zt, =
b

z 0 . . , (A O
(0 5b> (with block sizes r,s). Suppose we are also given P = (C’ D

lower triangular matrix corresponding to the partition v + s = n satisfying

vi — k)Pt i a v
(4:2) (03P = [PRDP™ € - Matn (RE)

> € Mat, (R[v]), a block

Assume the following

(1) (6‘ g) € wl (wFw)w L.

(2) For 3 € ®, the B-th entry of CA™! (inserted inside Mat,, at the same position as C) belong
to véw’1<3)<0R[v, E;1]<0.
(3) EY P~' € Mat,(R[v]).
(4) (z(0) — z(k),BY) + k € O* for all k € {0,--- ,—Ne}.
Let Op be the O-algebra generated by the coefficients of the entries of P, and O p be the O-algebra
generated by the coefficients of the entries of A,D. Then Op is generated over O p by at most
ers elements.
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Proof. In this proof only, we abbreviate dg = d,,-1(g)<0, to avoid cluttering notation.
Our hypothesis on (61 g) implies

wl <(UCZ)A —[A, k) AT 0

-1
0 D (D) N A )

and whose entries above the diagonal are in R[U,Ej_l]<0 and whose entries on and below the
diagonal are in UR[U,E;1]<0. Furthermore, modulo R[v,E{1]<o, the diagonal part is exactly

T AA(2)Y + (1 - Ad(2))(#).

Now
d 1 ’U%A — [A, K] 0 AL 0
(Uva —BRhPT = (vd{)C — Okt + kpC vd%D —[D,ky)) \-D71CA~1 D!

Set B = CA™', then the bottom left block of the above expression is

d d
(v%(BA) — BAr; + ky BA)A™! — (’U%D — [D,kp))D'B
_, 4 d . d .
—vde — Bkt + kpB + B(vdvA — A ke])AT — (vdvD —[D,kp))D™"B

We abbreviate VB = vt B—Bry+r,B, VA = (v£A—[A, k])A™  and VD = (v D—[D, k)) D72
In what follows, we label the entries of various matrices of size smaller than n x n using
roots/indices of the n x n matrix P, by interpreting such matrices as one of the non-trivial block
of P corresponding to its size. We observe:
o E;V(A) = Ac_1 + -+ Ay, where A; 5 = v5%a; 5, Ay = v'+a; y with a; 5,0, € R, for all
B and [ such that the relevant entry exists in A.
e E;V(D) = De_1+ -+ Dy, where D; 5 = v%5%id; 5, D;y = v'*id;y with d; g,aqy € R, for
all 8 and [ such that the relevant entry exists in D.
e The matrices Ajeqd, Dicad Obtained by extracting the degree e coefficients of E;V(A),

E;V(D) satisty
A 0
-1 lead
v < 0 Dlead) v

is lower triangular, with diagonal entries Ad(w=1)(z(v) + Kk — 2(k)).
e B = E%(Bo + B_1 + ) where B; g = b; g’ TN+ with b, 5 € R, and b5 = 0 if
J

t < —Ne.
Condition (4.2) means

VB + B(VA) — (VD)B € Eleatn(R[v]).

Using ”d%(ELN) =-N %F + ELN%, clearing denominators in the above expression yields
J j J
(4.3)

d
—NvEj(EN B)+vE;— (E} B)—E;(E} B)r+E;ry(E) B)+(E} B)(E;VA)—(E;VD)(ENB) = E}'X

dv
for some X € Mat,, (R[v]).
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The observations on the degree ranges of A;, D;, B; show that for each relevant 8 € ®, Xz =

098 37w gvt (recall that an element of R[v][E%] is divisible by v if and only if its evaluation at

v =0is 0, a condition that makes sense because R C R[%])
The degree Ne + e — 1 + i+ g part of the 5-th entry of equation (4.3) reads

(4.4) — Nebi g+ (6g+Ne —1+0)b; g+ (k, )i g+ O(> i, B)+
+ Z Z bkﬁ/amu + Z Zdl’,fy’bk/,ﬂ// = Xe_14ip + O(>e—1+1,0)

B=p'+B" k1l B=~"+~" k' I/
where

e The symbol O(> ¢, 3) (resp. O(> e —1+1,[3)) stands for a polynomial with O-coefficients
in by g (resp. Xe_14i ) for i’ > i.

e The decompositions S = ' + 3" runs over decompositions in ®, with the added possibil-
ity that 8” = 0, in which case a; g~ is interpreted as the unique diagonal term a;4 that
contributes to the S-entry of the matrix product. A similar remark applies to 5 =" ++".

e The pairs k,l and k’,!’ are constrained by

Ne—1+k:+l+55/+55//:N€+€—1+i—|—55

Ne—1+4+K +1U'"+0y+6 =Ne+e—1+1i+dp.
In particular, we learn that k > i (resp. k' > i), with equality if and only if [ = ¢ — 1 and
03 +1=20p +0gr (resp. ' =e—1and ég+ 1 =0y + d,#). Also observe that when k =i
the product by gra g (vesp. dpy 4nbys 1) is zero as soon as dgr = 0 (resp. d,» = 0).
Let O4,p,B—top be the O-algebra generated by the coefficients of A, D and B; for i > 1 —e. The
above observation implies that X 5v_5ﬁ has degree < e — 1, and each of its coefficients belong to
OA,D,B—top-

We now show that the coefficient of each entry of B; belongs to O 4 p,B—top by downward induction
on ¢. The claim clearly holds for ¢ > 1 — e. Suppose it holds up to ¢ + 1. Let B;r be the matrix
given by B;ﬁ = 5[33@5. It follows (using (55/ + (55// =1+ 0 = 2 if and only if (55/ = 55// = 1) from
the above facts that

ZBj_ + (’ib - Dlead)B:_ - B:_(’it - Alead) S MSXT(OA,D,BftOp[/U])

As in Proposition 4.2.4, the element w € W(GL,) induces an element (w¢,wp) € W(GL,) x
W (GL;). We then have Ad(w; ')(Aieaa), Ad(wy ") (Dieqa) are lower triangular. Thus Lemma 4.4.4
below applies, and shows B;r € Myxr(Oa,D,B—top[v]). Now set B, = B; — Bj. Using what we just
proved, we also get

(i - 1)Bz+ + (’ib - Dlead)BiJr - B;r(ﬁt - Alead) € MSXT(OA,D,BftOp[v])

and the same argument shows B, € Mx,(Oa,p,B—top[v]). This finishes the inductive step.
Finally, since C = BA, Op also belongs to O4 p B—top- ]

Lemma 4.4.4. Let R be a ring with a subring S, r+s =mn, w1 € W(GL;),ws € W(GL;). Suppose
we are given Ay € M,(S), Ay € M,(S), B € Msx,(R) such that
o Ad(w; 1) (4;) is lower triangular for i = 1,2.

e [f s1 is a diagonal entry of A1 and sq is a diagonal entry of Ao, then s — s9 € S*.
e BA; — A;B € Msxr(s)-

Then B € Mgy, (S).
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Proof. Replacing B by waBw; ! we may assume w; = 1, wy = 1. In this case, looking at the
(k,1)-th entry of BA; — A9 B shows that (s1 — s2) By belong to the subalgebra generated by S and
By with k' —1" < k—1, where s1, s9 are suitable diagonal entries of A, As. We conclude induction
on k — [ that By € S. O

Remark 4.4.5. Suppose that in the setting of Lemma 4.4.3, we don’t have equation (4.2) exactly
but only an approximately: for 0 <t < N and 7 a root of Ej, the operator (Ul%)’t(EJ].\H'l-)\fU:7T

hitting on the matrix in (4.2) belongs to p*Mat,,(R). Then the proof shows that the conclusion of
Lemma 4.4.3 also holds approximately: there is an O-subalgebra S of R generated over O4 p by

at most ers elements such that Op C S —I—pk_(QN_l)(l_%)R. This follows from Lemma 4.4.2.
4.5. Proof of Theorem 4.1.1.

Proof. We recall the setting of Theorem 4.1.1. We are given 7, a tame inertial type over F, together
with a fixed lowest alcove presentation (s, u) for it, such that p is max{(3n—7)(e—1)+2n—6, (2n—
3)e}-deep. Furthermore, w(p, 1) = (fﬁj_lten{/}ajfﬁj)j for some simple root «; for each j € J.

We assume R%"’T # 0, otherwise there is nothing to prove. In particular we obtain 9t € Y <77 (F)
such that T7,(9M) = plg,_. Then M has shape w™'Zw = w(p, 7)*, where w € WY, 7 € WY are
as in the statement of Proposition 4.2.4.

We need to analyze R%ﬂ V' in the context of diagram (4.1).

We first observe that for each j, z; has a block diagonal structure

Zig 00
Zi=| 0 Zz ~0
0 0 Zjb

with sizes r, 2, s where

d ;Z:j,t = te(n—l,m ,5+2)

® Zib = te(sfl,---())'

e v “Z,, has elementary divisors bounded by v(©0),
In particular, we are in a position to repeatedly apply Proposition 4.2.4 to R%ﬁ and each Agz) for
the universal Breuil-Kisin module 9. This gives

Agt) = D(j)wj_1 (P(j)) w;

where PU) is block lower triangular, whose Levi blocks from top to bottom are E;-L_l, e Ej“, M., E;_l, a1
(in particular, this defines M, as the 2 by 2 block of P(j)). Furthermore, the entries of DU, PU)

over all 5 topologically generate R%B .

Set z; = Maj be the reduction of M, modulo the maximal ideal. Then z; can be natu-
rally interpreted as an element of M;(t(;))(F). By Proposition 4.2.5, we get an O-algebra map

O]/\\/[j(l,o),:rj —
of M%. Set x = (z;) € Mg(tn0) = Hj M;(t1,0))- Thus R%B acquires an ®OOJA\/[J-(1,0),$J- =

-algebra structure, and the image of O?\\/[J (ti.0))e coincides with the topological subal-

A

— R%ﬂ sending generators of O M, (1,0),2; to the corresponding coefficients of the entries

g

A
OMJ(t(l,O))vm
gebra generated by the coefficients of the entries of (M) for all possible j.

Repeated applications of the approximate version of Lemma 4.4.3 to R™%V as in Remark 4.4.5
(with the control of the monodromy condition obtained by combining Proposition 4.4.1 and Lemma
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4.4.2) show that R%B’V is topologically generated over OJ/\\/[j(l,o),x by fn+ed ;dimN_q; = fn+
(@ — 1)[K : Q] elements. But since we assumed R<"" # 0, dim R%B’V =1+ fn+ @[K :
Qp) = dim 01/\\/[3(1 0, T+ (@ —1)[K : Qp]. Since (’)J/\\/[J(l 0, 1 an integral domain (being the
completion of an excellent normal scheme), the equality of dimension can only happen if R%B Visa

power series ring over OJA\/[J (1,0), in the correct number of variables. All the assertions of Theorem

4.1.1 now follows from properties of the M (¢ )) which follows form Corollary 4.3.2. O
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5. THE MAIN RESULTS

In this section, we prove our main results on the weight part of Serre’s conjecture. We start with
an axiomatic setup before defining the relevant spaces of automorphic forms in §5.5.

Recall from §2.3.6 that given an F-valued L-homomorphism 7 : Gg, — “G(F) (resp. a tame
inertial L-parameter 7 : Iy, — G"(E)) we have a corresponding collection (p,)ves, of continuous
Galois representations p, : G+ — GLy(F) (resp. a corresponding collection (7)ves, of tame
inertial types 7, : I+ — GLy(E)).

5.1. Weight elimination.

Theorem 5.1.1. Let p : Gg, — “G(F) be a 3e(n — 1)-generic F-valued L-homomorphism. Let
PP be a specialization of p with a compatible max{2,e}(n — 1)-generic lowest alcove presentation.
Assume that we have a set Wi (p) of 3(n—1)-deep Serre weights satisfying the following local-global
compatibility axiom:
(i) for any tame inertial L-parameter T, JH(T (7)) N Weim(p) # 0 implies that p has a potentially
crystalline lift of type (1,7m).
Then Weiim(p) € W (pP).

Proof. Suppose that F(\) € Weim(p). Choose the tame inertial L-parameter 7 with F(\) €
JH(G (7)) constructed in Proposition 2.4.5. By Proposition 3.1.9 and Theorem 3.5.1, w(p*™,7) €
Adm(enp), and we conclude by Proposition 2.4.5. O

Remark 5.1.2. If e > 2 the hypothesis on p°P follows from the hypothesis on p.
5.2. Patching functors. We recall weak patching functors. Let

def K O
R- = R=
P ®v€$’p,0 Po?

and let RP be a nonzero complete local Noetherian equidimensional flat O-algebra with residue field
F such that each irreducible component of Spec RP and of Spec R’ is geometrically irreducible.
(The latter hypothesis can be guaranteed after passing to a finite extension of the coefficient field

E.) We let Roo & R;®0RP and suppress the dependence on RP below. We let RY" be

® . o
vESP,0 Pu
def

and define Ry (7) = Roo @R, Rg’T. We write Xoo, Xoo(T), and X (7) for Spec Roo, Spec Roo(T),
and Spec R (7) respectively, denote by Mod(X4,) the category of coherent sheaves over X, and
let Repp(GL,,(O,)) be the category of topological O[GL,,(O,)]-modules which are finitely generated
over 0. We say that an E-point of Spec Ry is potentially diagonalizable if for each v € S, the
corresponding Galois representation G+ — GL,(FE) is potentially diagonalizable in the sense of
[BLGGT14, §1.4]. We say that an E-point of X, is potentially diagonalizable if its image in
Spec Ry is.

Definition 5.2.1. A weak patching functor for an L-homomorphism p : Gg, — LG(F) is a nonzero
covariant exact functor My : Repp(GL,(O,)) — Mod(X«) satisfying the following: if 7 is an
inertial L-parameter and ¢°(7) is an O-lattice in o(7) then

(1) M (0°(7)) is a maximal Cohen-Macaulay sheaf on X (7);
(2) for all ¢ € JH(7°(7)), Mo (o) is a maximal Cohen—Macaulay sheaf on X (7) (or is 0); and
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(3) if there is an inertial L-parameter 7o such that SuppMoo(o(70)°) contains a potentially
diagonalizable E-point, then for any inertial L-parameter 7, SuppMs(o(7)°) contains all
potentially diagonalizable E-points.

We say that a weak patching functor My, is minimal if RP is formally smooth over O and when-
ever T is an inertial L-parameter, M, (c°(7))[p!], which is locally free over (the regular scheme)
Spec Roo(7)[p~!], has rank at most one on each connected component.

Definition 5.2.2. We say that a weak patching functor M, is potentially diagonalizable if there
exists 79 as in Definition 5.2.1(3).

5.3. Cycles from patching functors. We recall some notation from [EG14, §2.2]. Let X be an
equidimensional Noetherian scheme of dimension d. Let Z(X) be the free abelian group generated
by integral subschemes of X of mazimal dimension d. If M is a coherent sheaf on X with finite-
dimensional support, then we can define Z(M) € Z(X) to be Z4(M) which is defined as in loc. cit.

def

Now suppose that X is a p-flat equidimensional Noetherian scheme over O. Then X[p~!]
X®RoF and X Ly R F are equidimensional Noetherian schemes, and there is a natural reduction
def

map red : Z(X[p~']) = Z(X). Moreover, if we let M[p~!] = M ®@p E and M ' M ®0 F be the
corresponding sheaves on X[p~!] and X, respectively, we have the following fact.

Proposition 5.3.1. If M is an O-flat coherent sheaf over X with finite-dimensional support, then
red(Z(M[p~'])) = Z(M).

We introduce notation for completed products of cycles. Suppose that R and S are equidi-
mensional complete local Noetherian flat O-algebras. If Z; and Z; are geometrically integral
subschemes of Spec R ®p F and Spec S ®o F corresponding to prime ideals p and q, respectively,
then we denote by Z; x Z5 the subscheme

Spec (R ®0 F)/pRr(S ®0 F)/q C Spec (R @0 F)&r(S @0 F)

which is geometrically integral by [BGHT11, Lemma 3.3(4)]. Similarly, if Z; and Z, are geomet-
rically integral subschemes of Spec R[p~!] and Spec S[p~!] corresponding to prime ideals p and g,
then we denote by Z; x Z3 the subscheme

Spec (R/(p N R)@0S/(aNS))p~"] C Spec REoS[p™']

which is geometrically integral by [BGHT11, Lemma 3.3(3)].
We now specialize to some schemes in our patching axioms. Let p be an L-homomorphism over
F. Fix a finite set T of inertial L-parameters such that:

(ii) for all 7 € T the irreducible components of Spec R7 and Spec E% are geometrically integral.

Let Spec Rg be the reduced union U,c7Spec R7. Let M be a weak patching functor for p. We
write Roo(7T) for Roo@)RﬁR% = Rp@)@Rg and X (7)) for Spec Roo(T). Recall that by assumption,
the irreducible components of Spec RP[p~!] and Spec R’ are geometrically irreducible. Every
irreducible cycle Z € Z(Xoo(T)[p~!]) is of the form ZP x Z, for geometrically irreducible cycles
ZP € Z(Spec RP[p~!]) and Z, € Z(Spec R%—) by [BGHT11, Lemma 3.3(5)]. Similarly, every
irreducible cycle Z € Z(Xoo(T)) is of the form Z” x Z,, for geometrically irreducible cycles Z" €
Z(Spec R”) and Z,, € Z(Spec Rg) by [BGHT11, Lemma 3.3(6)].
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Let e : Z(Spec R”) — Z be the homomorphism that sends the cycle of an integral subscheme to
1. We define the maps

pr: Z(Xoo(T)[p™"]) = Z(Spec R [p~ 1))
ZP x Zy, — e(red(Z?))Z,

and

pr: Z(Xoo(T)) — Z(Spec RY)
7" x Zyrs 7.

We have that red o pr = pr o red : Z(Xoo(T)[p~!]) — Z(Spec E;) (using that red(Z?P x Z,) =
red(Zp) x red(ZP)), from which we immediately obtain the following corollary.

Corollary 5.3.2. If T € T, then the image of the composition

Z(Xoe(M)lp ') ™ Z(Xeo(7)) > Z(Spec By)
is contained in red(Z(Spec R%[p_l])).

Depending on context, we denote either proZ or pr o Z by Z,.

5.4. Weight elimination and modularity of extremal weights. Let p be a 1-generic L-
homomorphism, with a lowest alcove presentation for it. Fix a weak patching functor M., for
p. Let Wis (p) be the set of 3(n — 1)-deep Serre weights o such that M. (o) is nonzero.

Proposition 5.4.1. The set Wy (p) satisfies the condition (i) for p.

Proof. Suppose that o € JH(a(7)) N Wi (p) for a generic tame inertial L-parameter 7. Then
M (o) is nonzero so that My, (o(7)°) is nonzero for any lattice o(7)° C o(7) by exactness. Defi-
nition 5.2.1(1) implies that R (7), and so RZ, is nonzero. O

Definition 5.4.2. We say that a weak patching functor M, for p is extremal if Weyr (p) "Was (D)
is nonempty.

Theorem 5.4.3. Let p be 6e(n — 1)-generic. If a weak patching functor My, is extremal, then
Wextr(p) € War, (p), and moreover, the map 05 : SP(p) — WY is a bijection.

The proof of Theorem 5.4.3 requires the following two results.

Lemma 5.4.4. Assume that p is (2¢ + max{2,e})(n — 1)-generic. Suppose that My is a weak
patching functor for p, (o,p?) € SP(p), ando € Wy _(p). Assume that p* has a compatible 4e(n—
1)-generic lowest alcove presentation. Suppose that o is the extremal weight of p*P corresponding
tow € W. Let a be a simple root.

Using p*P, w, and o, we define as in Proposition 2.4.9 (using the above 4e(n — 1)-generic lowest
alcove presentation) oy, and T, for 0 < m <2e—1 and 0 < m < 2e, respectively, so that o9 = o.
Then there exists 0 < k < 2e — 1 such that o, € War_(p) if and only if m < k. Moreover, Tx41
exhibits a specialization of p to (o, pP) for some F-valued tame inertial L-parameter p"=P.

Proof. Fix O-lattices o(7,)° C o(7y,) for 0 < m < 2e (the choices will not affect the argument
below). Let 0 < k < 2e — 1 be such that o, € Wy (p) for 0 < m < k and either o1 ¢ Wi (p)
or k = 2e — 1. That o, € Wy (p) implies that My (0(7m+1)°) is nonzero. Therefore R%m“ is
nonzero for 0 < m < k. We will first show that w(p, Tmt+1) € w_lten()Wa,aw N Adm" (eng) for
0<m<k.
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Fix m with 0 < m < k. Suppose that 7,11 exhibits the specialization to the F-valued tame
inertial L-parameter 7P i.e. that @(p, Tmi1) = W(F"P, Timy1). Since o, € War (p) € W (5'*P) by
Theorem 5.1.1 and Proposition 5.4.1, Proposition 2.4.6 implies that w,sw(p" P, Tin11) < Wol(e—1yn, S
for s € {w,sqw}. (Note that Theorem 5.1.1 applies to p and p"*P, by the genericity assumption
on p.) This implies that w(p, Tmt1) = W(F"P, Tm+1) < ts-1(epy). Combining this with the fact that
(PP, Tm+1) < W(P, Tm+1) by Theorem 3.5.1, we have that w(p, 7,+1) € w_ltenOWmawﬂAdmv(eno)
by Proposition 2.2.9.

Now Proposition 2.4.9 applied to p°P, Theorem 5.1.1, and Proposition 5.4.1 imply that

Wit (p) N JH(T(in41)°) € W () N JH(@ (71041)°) = {0m, 0pms1}

(or {opm} if m = 2e —1). We now use notation from §5.3 with 7 = {7, | 0 < m < 2e — 1}.
The set of types T satisfies condition (ii) by the genericity assumption on p°f and Theorem 4.1.1.
We continue to fix m with 0 < m < k. Since o, and 0,41 appear as Jordan—-Holder factors of
T (Tm+1)° with multiplicity one, exactness of M, gives

(5.1) Zp(Moo(&(Tn1)°)) = Zp(Moc(0n)) + Zp(Moc(0rms1)),

for 0 <m < k-1 and Zy,(Mo(0(7h+41)°)) = Zp(Moo(ok)). We will use (5.1) and the previous
paragraph to show that w(p, Tx41) is ts-1(,,) for some s € {w, sqw}.

Let us call a cycle balanced if it is a multiple of the sum of two distinct integral subschemes and
unbalanced if it is supported on at most two integral subschemes with distinct multiplicities. In
particular, an unbalanced cycle is nonzero. For 0 <m <k — 1, wW(p, Tm+1) & {tw-1(0)s t(saw) 1 (o) }
since otherwise

2 = # Wy (p) NITH(G (7 s1)%) < AW (FP) O TH(G (7s1)%) = 1

by Proposition 5.4.1. Then Z,(Mu (6 (7im+1)°)) is balanced by Corollary 5.3.2 since R%m“ 1] is ge-
ometrically irreducible and Z(Spec E;mﬂ) is balanced (see Theorem 4.1.1). By (5.1), Zy(Moo(0m))
is balanced (resp. unbalanced) if and only if Z,(Mos(0m+1)) is balanced (resp. unbalanced) for
0 <m < k-1 Since Zy(Mso(00)) = Zp(Moo((10)°)) is unbalanced as R is formally smooth
over O, we conclude that Z,(Mx (o)) = Zy(Moo(c(7k+1)°)) is unbalanced. We conclude from the
argument above that w(p, Tgy1) is 41, for some s € {w, sqw}. In particular, 7j4; exhibits a
specialization of p to (o, p""P) (not necessarily the same 7P from the first paragraph).

By the definition of o} and using that o} is an extremal weight of p"*P, we see that

- ~ tw—1(c if k is even
(P, 1) = BEP ) = 4
t(saw)~1(eno) i K 1s odd.

Then a computation shows that

~ ~71 ~ . .
F(P) = W (pP)w t(g_e)asaw if k is even
{J(ﬁSp)fﬁ_lt(%_e)a@ if k is odd.
Note that w(p"*P,7,) € w_IWa@tenow for all 0 < m < 2e. Another computation shows that
if m > k + 1, then w(p"P, 7,,) is not listed in Proposition 2.2.6. This implies that w(p"*P, ;) ¢
Adm(eng) for m > k+1. Corollary 2.4.7 implies that W’ (5P, 7,,,) = 0) for m > k+1. In particular,
om ¢ W¥(p"P) for m > k. Theorem 5.1.1 and Proposition 5.4.1 imply that o,, ¢ W (p) for
m > k. O
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Corollary 5.4.5. Let (0,p°P) € SP(p) and 0 € Wy (p) be as in Lemma 5.4.4. Let o be a simple
root. Then there exists (o, p"P) such that 05(c’,p"*P) = 05(c, p°P)sa. Moreover, if o € Wi (p),
then o’ € Wy (p) as well.

Proof. Let o, oy, p°P, and p"P be as in Lemma 5.4.4. Let ¢’ be ;. Then ¢’ € Wy, (p). It suffices
to show that 05(c”, 7"°P) = 05(c, p°)s. We have that
(75) w(pP)w tsqw if k is even
w(p"P) =
p w(7°P) if k is odd

and o}, is the extremal weight of p"°P corresponding to

w if k is even.
sqw if k is odd.

We conclude that 05(0”,P) = w(p)w ™ sq = 05(c, P°P)sa. O

Proof of Theorem 5.4.3. Suppose that o € Wy (p) and that (o, p?) € SP(p). Then using Corol-
lary 5.4.5 and the fact that simple reflections generate W, we see that for each w € W, there
is (ow,pw) € SP(p) such that 65(cw,pw) = w and o, € Wi (p). This first implies that
the map 65 is surjective and hence an isomorphism by Proposition 3.6.4. It also implies that
Wextr(ﬁ) C WMoo (ﬁ) 0

Theorem 5.4.6. Let p be 6e(n — 1)-generic and let My, be a weak patching functor for p. The
following are equivalent.

(1) My is extremal.

( 2) Wextr (ﬁ) C W, (ﬁ)
(8) My is potentially diagonalizable.

Proof. (1) implies (2) by Theorem 5.4.3. We next show that (2) implies (3). Let o be in Wira(p)
so that 7 exhibits the specialization pair (o, p*) € SP(p) as in the proof of Proposition 3.8.3. Then
Moo (o(7)°) is nonzero since Moo(0) is. Since R7 is a domain and p has a potentially diagonalizable
lift of type (7,m) by Theorem 3.8.2, M, is potentially diagonalizable.

Finally, we show that (3) implies (1). Again, let o be in Wiyea(p) so that 7 exhibits the spe-
cialization pair (o, p*) € SP(p) as in the proof of Proposition 3.8.3. Then since M, is potentially
diagonalizable and p has a potentially diagonalizable lift of type (7,7n) as before, My, (co(7)°) is
nonzero. Since Wy (p) € W*(p*) by Theorem 5.1.1 and W*(5**,7) = {o} as in the proof of
Proposition 3.8.3, My (o) is nonzero. Thus Wyora(p) N War (p) is nonempty. The result now
follows from Proposition 3.8.3. g

Remark 5.4.7. Theorem 5.4.6 generalizes [LLHL19, Theorem 4.3.8] to the nonsemisimple case in
an abstract setting. Moreover, the above proof (and §5.5) gives a different proof of this theorem.
(Specifically, the order of implications proved is reversed.) Indeed, we do not know whether every
extremal lift is potentially diagonalizable when p is wildly ramified.

Corollary 5.4.8. Suppose that O, is étale over Zy, i.e., F];r s a product of unramified extensions
of Qp. Let p be an L-homomorphism over F. Suppose that My is a weak patching functor for p
satisfying the equivalent conditions of Theorem 5.4.6. (In particular, p is T(n — 1)-generic.) If T is
an n-generic tame inertial L-parameter, then R is mnonzero if and only if Mso(0°(7)) is nonzero
for any O-lattice o°(1) C o(T).



EXTREMAL WEIGHTS AND A TAMENESS CRITERION FOR MOD p GALOIS REPRESENTATIONS 58

Proof. If My, (c°(7)) is nonzero, then R (7), and thus RZ, is nonzero. Conversely, if R is nonzero,
then Wextr(p) N JH(7(7)) # 0 by Proposition 3.10.3. Theorem 5.4.6(2) and exactness of My, imply
that My (0°(7)) is nonzero. O

The following freeness result follows from our previous results and the Diamond—Fujiwara trick.

Theorem 5.4.9. Let My, be a minimal weak patching functor for p. Suppose that the equivalent
conditions of Theorem 5.4.6 hold for My and that 0 € Wexr(p). Then My (o) is free of rank 1
over its support (which is formally smooth over F).

Proof. There exists a generic tame inertial L-parameter 7 which exhibits the specialization (o, p°P) €
SP(p) for some F-valued inertial L-parameter p°P. By Lemma 3.6.1, we can assume without loss of
generality that w(p, 7) = t,~1(ep,) for some w € W. By Theorem 4.1.1, R7 is formally smooth over
O, so that R (7) is as well. Since for any O-lattice 0°(7) C o(7), Moo(c°(7)) is nonzero, finitely
generated, and maximally Cohen—Macaulay over R..(7), it must be free over R (7) by Serre’s
theorem on finiteness of projective dimension and the Auslander—-Buchsbaum formula. Since the
generic rank is at most 1, its rank must be 1. ([l

5.5. Global results. In this section, we discuss algebraic automorphic forms on certain definite
unitary groups to which the Taylor—Wiles patching construction can be applied to obtain patching
functors as in §5.2. This gives a context to which results in the previous section can be applied.

5.5.1. Algebraic automorphic forms on some definite unitary groups. Let F*/Q be a totally real
field not equal to Q, and let F C F' be a CM extension of F+. We say that a finite place of F+
is split (resp. ramified or inert) if it splits (resp. ramifies or is inert) in F. We say that a place of
F is split (resp. ramified or inert) if its restriction to F'T is split (resp. ramified or inert) in F.
Let G,p+ be a reductive group which is an outer form of GLy such that

e G/ is an inner form of GLy;

o Gp+(F) =2 Uy (R) for all v|oo; and

e G/p+ is quasisplit at all inert and ramified finite places.
By [EGH13, §7.1], G admits a reductive model G over Op+[1/N], for some N € N, and an isomor-
phism

(5.2) t: GropnyN) =+ GLnjop/n)

which specializes to ty : G(Op+) 5 G(0r,) & GL,(OF,) for all split finite places w in F prime to
N where v is w|p+ here. For each split place v of F™, we choose a place ¥ of F' dividing v. For a split
v prime to N, let ¢, be the composition of 17 and the canonical isomorphism GLy,(OF;) = GLy(Op+)
(suppressing the dependence on the choice of v).

Let S, be the set of all places in F™ dividing p. Suppose from now on that all places in S,
are split. If U = U,U>? < G(A°F°+7p) X G(AT}P) is a compact open subgroup and W is a finite
O-module endowed with a continuous action of Us; for some finite set X of finite places of F'*, then

we define the space of algebraic automorphic forms on G of level U and coefficients in W to be the
(finite) O-module

(53)  S(UW)Z{f: GENGAF) = W | flgu) =us' f(9) ¥ g € GAF: ), u e U}.
We recall that the level U is said to be sufficiently small if for all t € G(A%,), the order of the
finite group ¢t~ *G(F1)t N U is prime to p. If U is sufficiently small, then S(U, —) defines an exact

functor from finite O-modules with a continuous U,-action to finite O-modules. From now on we
assume that U is sufficiently small.
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For a finite place v of F'™ prime to N, we say that U is unramified at v if one has a decomposition
U =G(Op+)U". Let S be a finite set of finite places in F'* containing all places dividing pN, X,
and all places at which U is not unramified.

Let Pg be the set of split finite places w of F such that w|p+ ¢ S. For any subset P C Pg of finite

complement that is closed under complex conjugation, we write Tp & (’)[Tl(uz), weP,0<1<n]

for the universal Hecke algebra on P. The space of algebraic automorphic forms S(U, W) is endowed
with an action of Tp, where TQSJZ) acts by the usual double coset operator

_ WJdi 0
! [GLn(on) (w o dm) GLn(on)} .

Let Tp (U, W) be the image of Tp in Endp(S(U, W))—it is a finite flat O-algebra and in particular
a complete semilocal ring. Enlarging F if necessary, we assume that the residue fields are identified
with F. If Q is the (finite) set {w|p+ : w € Ps \ P}, then we also denote Tp(U, W) by T (U, W).
For a maximal ideal m C ']I‘Q(U, W), there is a semisimple Galois representation 7 dof Tm:Gpt g —
Gn(F), where G, is the group scheme over Z defined in [CHTO08, §2.1], uniquely determined by the
equation
n .
(5.4) det (1 — |y (Froby) X) = Y (—1) (N g (w)) & (TP mod m) X7
§=0
Definition 5.5.1. We say that such a Galois representation 7 : Gp+ g — Gn(F) is automorphic
of level U and coefficients W if 7 satisfies (5.4) for a finite subset ) C Pg closed under complex
conjugation and a maximal ideal m C T?(U, W). In this case, we say that m is the maximal ideal
(of T®(U, W) or Tp) corresponding to 7.
We say that 7 is automorphic if 7 is automorphic of some level U and some coefficients W.

We now suppose that 7, is absolutely irreducible. Let o : Tp — TQ(U, W)y, be the natural
quotient map. Then there is a Galois representation ry = r(U,W)m : Gp+ g = Gu(T(U, W))
determined by the equations

det (1 — (U, W)l (Froby) X) = 3 (—1) (N g (w)) Do TH) X7
§=0
for all w € P.
For each v € S), there is an isomorphism ¢, : G i = G/, = GLg, (D5 p,) for some d, € N and

some central division algebra Dy over Fy where GLy, (Dy/r,)(R) = & GLg, (Dy ®F, R). We now let
Uy be 1;1(GLg, (Op,)) and U, be Hvesp U, = L;I(Hvesp GLg4, (Op,)) where ¢, denotes Hvesp Ly

Definition 5.5.2. Suppose that U°>? is such that U = U,U°? is a sufficiently small compact
open subgroup of G(A%,) and let o be an irreducible representation of [, S, GLg4, (Op,) over F.
We say that 7 is automorphic of weight o and level U if T is automorphic of level U and coefficients
0¥ o 1,, where 0¥ denotes the F-dual of 0. We say that 7 is automorphic of weight o or o is a
modular (Serre) weight for 7 if 7 is automorphic of weight o and some level U.
Let W (7) be the set of modular Serre weights of 7.

For each v, we fix an embedding Fr FJF such that the restriction F' — FJF induces the

~

place v. Let 7, be the restriction of 7 to G = GF;, and let 7, be the L- homomorphlsm over F
corresponding to the collection (7 ).es,. One expects that W(7) depends only on 7.
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5.5.2. Minimal level. We now introduce a space of modular forms at minimal level. Suppose that
F/F*, G, and T are as before. Assume moreover that F//F* is unramified at all finite places and
that 7 is ramified only at split places.

We begin with some notation and terminology. If v is a split place of '™, then we define the
minimally ramified type 7, at v (with respect to 7) to be the inertial type obtained from the
restriction to inertia of any minimally ramified lift of ?|GF . in the sense of [CHTO08, Definition

2.4.14)).
Let v; be a split place of F* away from p such that

e v; does not split completely in F'((,); and

. F\GF . is unramified and 7(Frob,+ ) has distinct eigenvalues, no two of which have ratio
v v1

equal to (Nvyp)*t.
(It is possible to find such a vy if 7(Gp) contains GL,, (F') with #F > 3n, see [CEGT16, §2.3].)
Let U C G(A%,) be the compact open subgroup [[, U, where U, is
. Lgl(GLn(OFE)) if v is a split place of F'™ not equal to vy;
e the preimage of the upper triangular matrices under the composition

Ly
G(OFJE) 4 GL”(OFal) — GLn(kZ’gl)
if v = wvq; and
e hyperspecial if v is an inert place.

Then the compact open subgroup U is sufficiently small.
Let ¥ be the set of places of F™ away from p where 7 ramifies. Recall that S is a finite set
of places of F* containing all places dividing pN, ¥, and v;. For any subset P C Pg of finite

el [Téf), 0 < i < n] where
Tp is the universal Hecke algebra on P as before. For a U,-module V', T/ acts on the space

S(U7 <®UEEU(T1Y)O ° Lv) ® V)

complement that is closed under complex conjugation, we write T

where the action of Tg(f) is by the double coset operator leLgll <w“(’)Idi I dg_i> Uy, .

Choose an ordering d1,. .., d, of the distinct eigenvalues of 7(Frobg, ) and let m’ be the maximal
ideal of T/, generated by m C Tp and the elements TTEI) — (Nvp)"(=9/2(§, ... §;). Then the space
S(U, (®pexo(1))° 0 1y) ® Vg is nonzero.

5.5.3. G quasisplit at p. With G as in §5.5.1, we furthermore suppose in this section that G/F;r is
quasisplit for all v € 5), i.e., G/Fj ~ GLn/FJ'

Definition 5.5.3. We say that 7 is potentially diagonalizably automorphic if there is a U, W,
@, and a homomorphism A : TQ(U, W), — Q, such that if 7\ : Gp+ — G(Q,) is the attached
semisimple Galois representation characterized by the equation

(5.5) det (1 — e, (Froby) X) = (=17 (N gy (w) AT X7,
j=0
then r) , is potentially diagonalizable for all v € S,.

Lemma 5.5.4. Let Uy be as in §5.5.1 and suppose that U = U,U°P C G(AY,) is a sufficiently
small compact open subgroup. Let Y be a finite set of finite places of ™ away from p. Let W be a
finite O[Us]-module.
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Then there is a patching functor My such that for any finite F-module V' with a continuous
Hvesp GLn(Op+)-action,

(5.6) Moo (V) /oo & S(U, W @0 VY 01,)[m]Y,

where Moo C Roo denotes the maximal ideal. In particular, My (V') is nonzero if and only if
S(U,W @0 VY oup)m) is nonzero.

If 7 is potentially diagonalizably automorphic, then there is an My, as above which is moreover
potentially diagonalizable.

Suppose now that F/F* is unramified at all finite places and that T is ramified only at split
places. Let U and w' be as in §5.5.2. If W is Quexo(1))° o 1, where T, is the minimally ramified
type with respect toT and o(1))° C o (7)) is an O-lattice, then there is a minimal patching functor
Mo such that for any finite F-module V' as before,

(5.7) Moo (V) /Mo = S(U, W @0 VY 0 1,)[m]".

If 7 is potentially diagonalizably automorphic, then this minimal My, can be taken to be potentially
diagonalizable.

Proof. Except for Definition 5.2.1(3) and the minimality, this follows from the proof of [LLHLMa,
Lemma A.1.1] using that my is the preimage of m in loc. cit. under the map R — Roo/0co.

Suppose the existence of 7 as in Definition 5.2.1(3). Then by the above, T is potentially diagonal-
izably automorphic. Let 7 be an inertial L-parameter and x be a potentially diagonalizable E-point
of Spec Roo (7). There is an E-point y of Spec Roo(7)/aso Which is on the same irreducible compo-
nent of Spec R (7) as x by [Pasl6, Lemma 3.9]. For any O-lattice o(7)° C 0(7), Moo(0(7)°)/000,
and thus Mo (o(7)°), is supported at y by [LLHL19, Theorem 4.3.1] and the properties of o(7)
(see §2.3.4). Since My (o(7)°) is a maximal Cohen-Macaulay R..(7)-module, it is supported at
as well.

The construction of My, in the minimal level case is as in [Lel8, §4] (n = 3 and p is assumed to
be split, but the modifications are simple). O

Theorem 5.5.5 (Modularity of extremal weights). Let 7 : Gp+ — G(F) be an automorphic repre-
sentation such that
° F\GF(CP) s adequate; and
o 7, is 6e(n — 1)-generic (in particular p {2n).
Then the following are equivalent:
(1) Wextr(?p) N W(Fp) #0;
(2) Wextr(?p) C W(?p); and
(8) T is potentially diagonalizably automorphic.

Proof. Using Lemma 5.5.4 with U’ = U, the result follows from Theorem 5.4.6. O

Theorem 5.5.6 (Automorphic tameness criterion). Let 0y, Owow € Wextr(?;s) be the extremal
weights of T}y corresponding to w and wow € W, respectively. Suppose that oy, € W (7). Then the
following are equivalent:

(1) owew € W(Tp); and

(2) Tp =T,

Proof. Use Theorem 5.5.5 and Proposition 3.7.3. g
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Corollary 5.5.7. Suppose that F'(X\) € W (7Fp) for X € Cy (in particular, F(X) € Wexr(Tp)). Let
(F(\), 7)) € SP(Fp) any lift of F(\) € Wextr(Tp). Then T, is semisimple if and only if

F((tnwo wbl, (FO),737)) wg" ) - (ewo(n) —n) +wo - (A= n)) € W(ry)
where w € W is such that F(\) is the obvious weight of 73° corresponding to w.

Theorem 5.5.8 (mod p multiplicity one). Suppose that F/F™ is unramified at all finite places, G
is quasisplit at all finite places, and that z'fF|GF+ is ramified for a finite place v of FT, then v splits
in F'. Let U be as in §5.5.2. ’

Let ¥ be the set of finite places of F away from p at which 7 is ramified. For each v € ¥, let
Ty be the minimally ramified inertial type corresponding to ?]GF+ : Gy — GL,(F). If 7 satisfies

the equivalent conditions of Theorem 5.5.5, then for each 0 € Wexr(Tp),
(5.8) S(U, @pexo®(1y) ot ®0 0 0 1,)[m]
is one-dimensional over .

Proof. This follows from (5.7) and Theorem 5.4.9. O

Remark 5.5.9. Using Theorem 5.5.8, one can recover the main results of [Ennl8] (with stronger
genericity assumptions) which assert a multiplicity one statement for the ordinary part of (5.8).

We require the following “change of type” result.

Theorem 5.5.10. Let F* be a totally real field and F C F" a CM estension where every place of
F* dividing p splits in F. Suppose further that (, ¢ F. For each place v of F* dividing p, choose
an embedding Fre F:.
Let 7 : Gp+ — G(F) be a Galois representation such that 7(Gp(,)) is adequate and there is a
RACSDC automorphic representation I1 of GL,(Afr) such that
o 7lg, =7p,(II); and
e for each vlp, TP’L(H)|GF+ is potentially diagonalizable.

Let A be a finite set of places in F' away from p which split in F' such that if w € A, then II,, is
supercuspidal. For each place v of FT dividing p, suppose that T, admits a potentially diagonalizable
lift which is potentially crystalline of type (Ay + Ny, Ty).-

Then there exists a RACSDC automorphic representation m of GL,(Afp) such that

® Tlgp ETpu(m);

e for each vlp, rp*b(ﬂ”Gﬁ 1s potentially diagonalizable and potentially crystalline of type
(Ao + M, T); and

o for each w € A, m,, is supercuspidal.

Proof. This follows from [LLHL19, Theorem 4.3.1], which is based on [BGG18, Theorem 3.1.3],

except for the assertion of supercuspidality. However, [BGG18, Theorem 3.1.3] with S chosen to

contain S, and AT o {w|p+ | w € A} guarantees that one can choose 7 so that r,,(I)|gy, ~

Tp.(7)|Gp, for each w € A. In particular, the irreducibility of WD(rp,,(I1)|Gy, )|wy,, implies the
irreducibility of WD(rp,.(7)|ay, )Wy, » Wwhich implies the desired assertion. O

Corollary 5.5.11. Let F'™ be a totally real field and F C F* a CM extension where every finite
place of F' is unramified in F and every place dividing p splits. Suppose further that p is unramified
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in F™ and that ¢, ¢ F. For each place v of F* dividing p, choose an embedding Fre F;r Fiz a
set A of split places in F' away from p.
Let7: Gp+ — G(F) be a Galois representation such that 7(Gp(,)) s adequate, 7| ot is (6n—2)-

generic for all v|p, and there is a RACSDC automorphic representation I of GL (AF) such that
* Tl =T, (II);
e for each vlp, Tp"(H”GFj is potentially diagonalizable; and
o for each w € A, 11, is supercuspidal.
For each place v of FT dividing p, let 7, be a tame inertial type. Then the following are equivalent:
(1) R is nonzero for all places v of F* dividing p;
(2) there is a RACSDC automorphic representation m of GLy,(Ar) such that

® HGF =Tpu(m (m);
o 1. (7)|c ot is potentially crystalline of type (ny,Ty) for all v|p; and

e for each w e A, Ty 1s supercuspidal.

Proof. (2) immediately implies (1). We now assume (1) and show the converse. (1) in particular
implies that 7 is (5n — 1)-generic, so that Proposition 3.10.3 applies. Indeed, 7 is (5n — 4)-generic
by [Ennl9, Proposition 7]. Then 7 is in fact (5n — 1)-generic by [LLHL19, Theorem 3.2.1]. Let
A" be the set {w|p+ | w € A}. Recall from the proof of Theorem 5.5.5 that for each v € S,

7» admits a potentially diagonalizable lift of type (n,, 7)) for some tame inertial type 7,. Let 7

be the RACSDC automorphic representation of GL,,(Ar) guaranteed by Theorem 5.5.10. [Labll,
Theorem 5.4] implies that for some supercuspidal inertial types (7)),ea+,

S(U, <§% o (T,[/)V)Obp® ® a® (1)) o tat)m # 0
vE A+

where 0°(7)Y) C o(7") is a GLn(Op+)-stable O-lattice for each v € S, U A™. Let M be the

potentially diagonalizable patching functor guaranteed by Lemma 5.5.4 with W ®U€ A+c®(T)Y) o

LA+
Theorem 5.4.6 implies that Wexr(Tp) C Was (7p). Properties of My, from Lemma 5.5.4 imply
that

SU, @ (6"01p)® ®@ (6°(1))0ota+))m #0

vES) vEAT
for any 0 € Wexx(Tp). Exactness of S(U, —)n and Proposition 3.10.3 imply that

S(U, ® (6°(1)) o) ® @ (0°(1) 0 ta+))m # 0.
vES) vEAT

We conclude with an application of [Labl1, Corollaire 5.3]. O

5.5.4. G anisotropic mod center at p. With G as in §5.5.1, we furthermore suppose in this section
that for all v € S, G s is anisotropic modulo center, i.e., we have an isomorphism ¢, : G s =

Dg/ F We first recall the set of irreducible Ogg—representations over F (or Serre weights).
Let mp, C Op, denote the maximal ideal. Then kp, dof Op,/mp, is a degree n field extension
of the residue field ky of F;. We say that a character of (’)g5 is tame if it factors through kgg
Since 1+ mp_ is a pro-p group (under multiplication), it acts trivially on any irreducible (’)Bg—
representation over F. Thus any irreducible Ogi—representation over F is a tame F-character.
Moreover, the O-Teichmiiller lift gives a bijection between irreducible Oég—representations over F
and tame O-valued characters of (’)BG.
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Given a tame character x,, : (’)ET} — kgi — O*, we define a tame inertial type 7(x,) as follows.

Let Ky be W(kp,)[p~'] @w,_p-1) F5 and choose an Fy-linear embedding of Ky < f: We also

w
denote by x, the character O — kJ5_ X O%. Then we let 7(x») be Indwf(’jr (Xv © Art;{;)

v

‘[ +
F’U
for an extension X, : KX — O of x,| ox - The tame inertial type 7(x,) does not depend on the

choice of embedding Ky — F: or extension Xy .

Lemma 5.5.12. Let A : TY(U,W) — Q, be a homomorphism and ry : Gp+ — G(Q,) be the
attached semisimple Galois representation characterized by (5.5).

Let x = ®ves,Xo : Hvesp (9XE — O be a tame character. If T(xy) is a regular tame inertial
type for all v € Sy, then the following are equivalent:

(1) for each v € Sp, 7">\|GF+ is potentially crystalline of type (ny, 7(xv)); and

(2) S(U7 XV 0 Lp)ker()\) 7é 0.
If T(xw) is not regular and S(U,x" o tp)er(r) # 0, then rﬂgﬂ 1s potentially semistable of type

(M, Tw) with T, not reqular.

Proof. Let 7 be the automorphic representation of G(Ag+) corresponding to A. First suppose that
T(Xv) is regular for all v € S,. We will show that (1) and (2) are equivalent to

(5.9) recr; (JL(my)) |15, = 7(x0)

for all v € Sp.

Choosing a subring of Fj, C D which is a degree n unramified field extension of Fy for each
DX
R (hmp)
some character X, : FY, — E* extending x, (see [BH11, §1.5]). This is in turn equivalent to (5.9)
for all v € S, by the main result of [BH11].

Let II be the automorphic representation of GL,(Ar) in [HKV20, Proposition 6.5.1]. Fixing
v € Sp, |[LIg(p,) Uy = my so that Iz = JL(m,) (see [Bad08, §3]). Then

v € Sy, (2) is equivalent to the fact that for each v € S}, 7, is isomorphic to Ind X for

1—n
(5.10)  WD(rlg,. )" lw,_, = WD(rp,(I)|ap )" wy, = recy, (JL(m) @ | det |7 )|wy.

by [HKV20, Lemma 6.2.2]. Since ”"Gﬁ is potentially semistable of weight n, by [BLGGT14,

Theorem 2.1.1], we conclude that (1) is also of equivalent to (5.9) for all v € ).
Now suppose that 7 () is not regular for some v € Sy, and that S(U, x¥ otp)ker(r) 7# 0. As before
r)\\GF . is potentially semistable of type (7,,7,) for some inertial type 7,. We will show that 7, is

tame and is not regular. Let II be as above. Then as before, II; = JL(m,) so that (5.10) holds.

Since recp; (JL(m,) ® | det |1_Tn)\1F~ is tame and is not regular by [HKV20, Proposition 6.2.3], we
conclude that 7, is tame and is not regular. O

Theorem 5.5.13. Let F™ be a totally real field and F C F' o OM extension where every finite
place of F* is unramified in F and every place dividing p splits. Suppose further that p is unramified
in F* and that {, ¢ F'.

Let 7 : Gp+ — G(F) be an automorphic Galois representation such that 7(Gr(,)) is adequate,
F‘Gﬁ is (6n — 2)-generic for all v|p, and there is a RACSDC' automorphic representation I of

v

GL,(AFp) such that
* Ty = Tp,(II);



EXTREMAL WEIGHTS AND A TAMENESS CRITERION FOR MOD p GALOIS REPRESENTATIONS 65

e for each vlp, rp,(II)|c ot is potentially diagonalizable; and

e for each finite place ofw of F' for which G, is not quasisplit, 11, is supercuspidal.
Let x : DX — E* be a character. Then X € W () if and only if 7“|GF;r has a potentially crystalline
lift of type T(xv) for every v € S,.
Proof. Suppose that X € W (7). Then S(U, x" o p)m is a nonzero finite free O-module so that there

exists A as in Lemma 5.5.12 such that S(U, x" o tp)ker(r) 7 0. We first claim that 7(x,) is regular
for every v € Sp,. If 7(xv) is not regular for some v € S, then Lemma 5.5.12 implies that F\GFJr

has a potentially semistable lift of type (1, 7,) for some tame inertial type 7, which is not regular.
This leads to a contradiction since T|G has no such lift by [Ennl9, Proposition 7]. Now since

T(Xv) is regular for every v € S, the existence of desired local lifts follows from Lemma 5.5.12.
Suppose now that 7| ot has a potentially crystalline lift of type 7(x,) for every v € S,. Then

let m be as in Corollary 5.5.11. (As in the proof of Corollary 5.5.11, 7(x,) is (5n — 1)-generic for
all v € S, and thus cuspidal.) Let 7’ be the base change cuspidal automorphic representation of
G(Ar) guaranteed by [HKV20, Proposition 6.5.2]. Then r,,(7) = 7,,(7') so that in particular
Tp.(m') = T and Tp,b(ﬂ—/)’GF+ is potentially crystalline of type (n,,7,) for each v € S,. Taking A

in Lemma 5.5.12 corresponding to 7', we have that S(U, x" © tp)ker(r), and thus S(U, X" o tp)m, is
nonzero. ]

Remark 5.5.14. In the setting of Theorem 5.5.13, Proposition 3.10.3 implies that for v|p, ?|GF+ has
a potentially crystalline lift of type 7(x,) if and only if W9 (F|GF ) NJH@E(T(xw))) is nonernpty.

Since 7 (7(xv)) = JLp(X,) with JL, as defined in [Dota, §5], Theorem 5.5.13 implies that x € W(rp)
if and only if JL,(,) N WY (?|GF . ) is nonempty for all v|p. For general G as in §5.5.1, we would

expect that o € W (7)) if and only if JL,(0,) N WBM(F\GFJr) is nonempty for all v|p when the set
WBM (7|4 +) is defined (see [LLHLMa, §1.6, 8]), but we use WY (?|GF . ) here because it has been

defined in greater generality.
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