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Abstract
This paper focuses on dynamics of systems of particles that allow interactions beyond binary, and their behavior
as the number of particles goes to infinity. More precisely, the paper provides the first rigorous derivation of a
binary-ternary Boltzmann equation describing the kinetic properties of a gas consisting of hard spheres, where
particles undergo either binary or ternary instantaneous interactions, while preserving momentum and energy. An
important challenge we overcome in deriving this equation is related to providing a mathematical framework that
allows us to detect both binary and ternary interactions. Furthermore, this paper introduces new algebraic and
geometric techniques in order to eventually decouple binary and ternary interactions and understand the way they
could succeed one another in time. We expect that this paper can serve as a guideline for deriving a generalized
Boltzmann equation that incorporates higher-order interactions among particles.
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1. Introduction
The Boltzmann equation, introduced by L. Boltzmann [11] and J.C. Maxwell [27], describes the time
evolution of the probability density of a rarefied, monoatomic gas in thermal non-equilibrium inR𝛽 , for
𝑟 ≥ 2. The Boltzmann equation accurately describes very dilute gases since only binary interactions
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between particles are taken into account. However, in certain situations, higher-order interactions are
much more likely to happen; therefore, they produce a significant effect in the time evolution of the
gas. A relevant example is a colloid, which is a homogeneous non-crystalline substance consisting
of either large molecules or ultramicroscopic particles of one substance dispersed through a second
substance. As pointed out in [29], multi-particle interactions, which are modeled by a sum of higher-
order interaction terms, significantly contribute to the grand potential of the colloidal gas. A surprising
result of [29], but of invaluable computational importance in numerical simulations, is that interactions
among three particles are actually characterized by the sum of the distances between particles, as
opposed to depending on different geometric configurations among interacting particles. The results of
[29] have been further verified experimentally (e.g., [16]) and numerically (e.g., [23]).

1.1. Previous work and the goal of this paper
Motivated by the fact that the Boltzmann equation is valid only for very dilute gases and by the
observations of [29] in [5], we suggested a kinetic model which goes beyond binary interactions
incorporating sums of higher-order interaction terms. In particular, we introduced a generalized equation,
which could serve as a toy model for incorporating higher-order interactions among particles and is of
the form

∫


ℓ𝐸 𝑦 + 𝑛 · ∇𝜇 𝑦 =
𝑇∑
𝜆=2

𝜌𝜆 ( 𝑦 , 𝑦 , · · · , 𝑦︸!!!!!!!!︷︷!!!!!!!!︸
𝜆-times

), (𝑤, 𝐵, 𝑛) ∈ (0,∞) × R𝛽 × R𝛽 ,

𝑦 (0, 𝐵, 𝑛) = 𝑦0(𝐵, 𝑛), (𝐵, 𝑛) ∈ R𝛽 × R𝛽 ,
(1.1)

where, for 𝜈 = 1, ...,𝑅, the expression 𝜌𝜆 ( 𝑦 , ..., 𝑦 ) is the k-th order collisional operator and 𝑅 ∈ N
is the highest order collisions allowed. Notice that for 𝑅 = 2, equation (1.1) reduces to the classical
Boltzmann equation. We note that equations similar to (1.1) were studied for Maxwell molecules in the
works of Bobylev, Gamba and Cercignani [8, 7] using Fourier transform methods.

The task of rigorously deriving an equation of the form (1.1) from a classical many particle sys-
tem, even for the case 𝑅 = 2 (i.e., the Boltzmann equation), is a challenging problem that has been
first settled for short times and hard sphere interactions in the pioneering work of Lanford [26], and
for short range potentials by King [25]. This program was revisited by Gallagher, Saint-Raymond,
Texier in [18], where important quantitative information on the convergence was provided. See also
[12, 28, 30, 31, 19] and the references mentioned in these papers. More recent works related to
derivation of the Boltzmann equation itself have been carried out using the notion of fluctuations
in, for example, [9, 10, 20]. Regarding longer times, the equation was derived for hard spheres for
long times originally only for initial data near vacuum in [24]. However, recently, a different deriva-
tion has been carried out by Deng, Hani and Ma [15] as long as the Boltzmann equation itself is
well-posed.

A relevant step towards rigorously deriving (1.1) for 𝑅 = 3 has been recently obtained in [5],
where we considered a certain type of three-particle interactions that lead us to derive a purely ternary
kinetic equation, which we called a ternary Boltzmann equation. However, the derivation of (1.1)
for 𝑅 = 3 has not been addressed yet, and that is exactly what we do in this paper. Furthermore,
we expect that this paper can serve as a guideline for rigorously deriving generalized Boltzmann
equation.

We start by describing challenges that we faced when introducing a framework that allows detection
of binary and ternary interactions, while also accommodating a decoupling of such interactions so that
it is clear which one is responsible for a creation of a binary or ternary collision terms in the nonlinear
equation (1.1).
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1.2. Challenges of detecting both binary and ternary interactions
The first challenge we face in deriving (1.1) for 𝑅 = 3 is to provide a mathematical framework allowing
us to detect both binary and ternary interactions among particles. We achieve that by assuming the
following:

◦ Binary interactions are modeled as elastic collisions of hard spheres of diameter 𝛿 (i.e., two particles
interact when the distance of their centers defined as

𝑟2(𝐵𝐿 , 𝐵 𝜙 ) := |𝐵𝐿 − 𝐵 𝜙 |

becomes equal to the diameter 𝛿). We call this an (𝐼, ,) interaction. As known, the relevant scaling to
observe binary interactions is the Boltzmann-Grad scaling [21, 22]

𝑈𝛿𝛽−1 ' 1, (1.2)

as the number of particles 𝑈 ( ∞ and their diameter 𝛿 ( 0+.
◦ Ternary interactions that we consider in this paper are going to be of an interaction zone type as in

[5], by which we mean a particle i interacts with the pair of uncorrelated particles ( , , 𝜈) when the
non-symmetric ternary distance

𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) :=
√
|𝐵𝐿 − 𝐵 𝜙 |2 + |𝐵𝐿 − 𝐵𝜆 |2

becomes
)

2𝛿 . We call this an (𝐼; , , 𝜈) interaction. The particle i is called the central particle of the
interaction, and the particles , , 𝜈 are called adjacent particles.In terms of scaling, one could interpret
an (𝐼; , , 𝜈) interaction of interaction zone 𝛿 as a special hard sphere interaction of radius

)
2𝛿 in R2𝛽

since the collisional condition 𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) =
)

2𝛿 can be equivalently written as

|x!,! − x" ,# |2𝛽 =
)

2𝛿 ,

where x!,! =
(
𝐵𝐿
𝐵𝐿

)
and x" ,# =

(
𝐵 𝜙
𝐵𝜆

)
. Then a 2𝑟-particle with position x!,! would span a volume of

order 𝛿2𝛽−1 in a unit of time. Assuming there are N-particles in the system, in order to observe . (1)
interaction per unit of time, there are 𝑈2 − 1 options for the 2𝑟-particle positioned at x" ,# . We obtain
that 𝑈2𝛿2𝛽−1 = . (1), or equivalently,

𝑈𝛿𝛽−1/2 ' 1, (1.3)

as the number of particles 𝑈 ( ∞ and the interaction zone 𝛿 ( 0+, which is the scaling used in [5]
to control ternary interactions.

Simultaneous consideration of both binary and ternary interactions brings the first crucial obstacle
which is of conceptual nature; the apparent incompatibility of the Boltzmann-Grad scaling (1.2) dictated
by binary interactions and the scaling (1.3) of ternary interactions, if both of them are of order 𝛿 . This
incompatibility creates major difficulties even at the formal level. We overcome this scaling obstacle by
assuming that, at the N-particle level, hard spheres of diameter 𝛿2 can participate in binary interactions
as well as in ternary interactions via an interaction zone 𝛿3. Imposing scalings (1.2) with 𝛿 := 𝛿2 and
(1.3) with 𝛿 := 𝛿3, we obtain the common scaling

𝑈𝛿𝛽−1
2 ' 𝑈𝛿𝛽−1/2

3 ' 1, (1.4)
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Figure 1. Both binary and ternary interactions at the same time.

Figure 2. Binary interaction: 𝛿2
2 + 𝜋2

2 > 2𝛿2
3 , 𝜋2 > 𝛿2.

Figure 3. Ternary interaction: 𝜋2
1 + 𝜋2

2 = 2𝛿2
3 , 𝜋1, 𝜋2 > 𝛿2.

as 𝑈 ( ∞ and 𝛿2, 𝛿3 ( 0+. Notice that the scaling (1.4) implies that for sufficiently large N, we have

𝛿2 << 𝛿3, (1.5)

which will have a prominent role in this paper.
The next challenge we address is the need to decouple binary and ternary interactions for a system

of finitely many particles. More precisely, our framework a-priori allows that particles i and j interact
as hard spheres:

𝑟2(𝐵𝐿 , 𝐵 𝜙 ) = 𝛿2,

while at the same time there is another particle k such that the particle i interacts with the particles j and k:

𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) =
)

2𝛿3.

Such a configuration is illustrated in Figure 1. Pathological configurations, including the one we just
described, are going to be shown to be negligible. This is far from trivial, and for more details on the
microscopic dynamics, see Subsection 1.3 and Section 3. In particular, we shall show that as long as
0 < 𝛿2 < 𝛿3 < 1, only the following two interaction scenarios are possible with nontrivial probability
under time evolution:

1. Two particles interact as hard spheres, while all other particles are not involved in any binary or
ternary interactions at the same time. This type of configurations generates the binary collisional
operator. It is illustrated in Figure 2.

2. Three particles interact via an interaction zone, while none of them is involved in a binary interaction
with either of the other two particles of the interaction zone at the same time. The rest of the particles
are not involved in any binary or ternary interactions. This type of configurations is responsible for
generating the ternary collisional operator. It is illustrated in Figure 3.
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Figure 4.

Finally, since we will eventually let the number of particles 𝑈 ( ∞, the main challenge we need to
address is the stability of a good configuration1 under the adjunction of one or two collisional particles.
Assume, for a moment, that we have a good configuration of m-particles and we add 𝐸 particles to the
system, where 𝐸 ∈ {1, 2}, such that a binary or ternary interaction is formed among one of the existing
particles and the 𝐸 new particles. In general, under backwards time evolution, the system could run into
another binary or ternary interaction; see, for example, Figure 4, which illustrates the mathematically
most difficult case where the newly formed (𝑅 + 2)-configuration runs into a binary interaction. To the
best of our knowledge, this is the first time there was the need to address the possibility of a newly
formed interacting configuration running into an interaction of a different type (binary to ternary or
ternary to binary) backwards in time. However, in Section 8 and Section 9, we develop novel algebraic
and geometric tools which help us eliminate pathological scenarios, including the one described in
Figure 4, by showing that outside of a small measure set, negligible in the limit, the newly formed
configuration does not run into any additional interactions backwards in time. For more details on the
technical difficulties faced, see Subsection 1.6.

In the next subsection, we investigate more precisely what happens when a binary or a ternary
interactions occurs and describe the time evolution of such a system.

1.3. Dynamics of finitely many particles
Let us describe the evolution in R𝛽 , 𝑟 ≥ 2, of a system of N hard spheres of diameter 𝛿2 and interaction
zone 𝛿3, where 0 < 𝛿2 < 𝛿3 < 1. The assumption 𝛿2 < 𝛿3 is necessary for ternary interactions to be of
non trivial probability; see Remark 3.1 for more details.

1.3.1. Interactions considered
We first define the interactions considered in this paper.

Definition 1.1. Let 𝑈 ∈ N, with 𝑈 ≥ 3, and 0 < 𝛿2 < 𝛿3 < 1. We define binary and ternary interactions,
also referred to as collisions, as follows:

◦ Consider two particles 𝐼, , ∈ {1, ..., 𝑈} with positions 𝐵𝐿 , 𝐵 𝜙 ∈ R𝛽 . We say that the particles 𝐼, , are
in an (𝐼, ,) binary interaction if the following geometric condition holds:

𝑟2(𝐵𝐿 , 𝐵 𝜙 ) := |𝐵𝐿 − 𝐵 𝜙 | = 𝛿2. (1.6)

◦ Consider three particles 𝐼, , , 𝜈 ∈ {1, ..., 𝑈}, with positions 𝐵𝐿 , 𝐵 𝜙 , 𝐵𝜆 ∈ R𝛽 . We say that the particles
𝐼, , , 𝜈 are in an (𝐼; , , 𝜈) interaction2 if the following geometric condition holds:

𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) :=
√
|𝐵𝐿 − 𝐵 𝜙 |2 + |𝐵𝐿 − 𝐵𝜆 |2 =

)
2𝛿3. (1.7)

1By which we mean a configuration which does not run into any kind of interactions under backwards time evolution.
2We use the notation (𝐿; 𝜙 , 𝜆) because the interaction condition is not symmetric. The particle i is the central particle of the

interaction (i.e., the one interacting with the particles j and k, respectively).
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When an (𝐼, ,) interaction occurs, the velocities 𝑛𝐿 , 𝑛 𝜙 of the i-th and j-th particles instantaneously
transform according to the binary collisional law:

𝑛′𝐿 = 𝑛𝐿 + +𝐿1, 𝑛 𝜙 − 𝑛𝐿〉𝐿1,

𝑛′𝜙 = 𝑛 𝜙 − +𝐿1, 𝑛 𝜙 − 𝑛𝐿〉𝐿1,
(1.8)

where

𝐿1 :=
𝐵 𝜙 − 𝐵𝐿
𝛿2

. (1.9)

Thanks to (1.6), we have 𝐿1 ∈ S𝛽−1
1 . The vector 𝐿1 is called binary impact direction and it represents

the scaled relative position of the colliding particles. Moreover, one can see that the binary momentum-
energy system

𝑛′ + 𝑛′1 = 𝑛 + 𝑛1,

|𝑛′ |2 + |𝑛′1 |2 = |𝑛 |2 + |𝑛1 |2,
(1.10)

is satisfied.
When an (𝐼; , , 𝜈) interaction happens, the velocities 𝑛𝐿 , 𝑛 𝜙 , 𝑛𝜆 of the i-th, j-th and k-th particles

instantaneously transform according to the ternary collisional law derived in [5]

𝑛∗𝐿 = 𝑛𝐿 +
+𝐿1, 𝑛 𝜙 − 𝑛𝐿〉 + +𝐿2, 𝑛𝜆 − 𝑛𝐿〉

1 + +𝐿1,𝐿2〉
(𝐿1 + 𝐿2),

𝑛∗𝜙 = 𝑛 𝜙 −
+𝐿1, 𝑛 𝜙 − 𝑛𝐿〉 + +𝐿2, 𝑛𝜆 − 𝑛𝐿〉

1 + +𝐿1,𝐿2〉
𝐿1,

𝑛∗𝜆 = 𝑛𝜆 −
+𝐿1, 𝑛 𝜙 − 𝑛𝐿〉 + +𝐿2, 𝑛𝜆 − 𝑛𝐿〉

1 + +𝐿1,𝐿2〉
𝐿2,

(1.11)

where

(𝐿1,𝐿2) :=
(
𝐵 𝜙 − 𝐵𝐿)

2𝛿3
,
𝐵𝜆 − 𝐵𝐿)

2𝛿3

)
. (1.12)

Thanks to (1.7), we have (𝐿1,𝐿2) ∈ S2𝛽−1
1 . The vectors (𝐿1,𝐿2) are called ternary impact directions,

and they represent the scaled relative positions of the interacting particles. Moreover, it has been shown
that the ternary momentum-energy system

𝑛∗ + 𝑛∗1 + 𝑛∗2 = 𝑛 + 𝑛1 + 𝑛2,

|𝑛∗ |2 + |𝑛∗1 |2 + |𝑛∗2 |2 = |𝑛 |2 + |𝑛1 |2 + |𝑛2 |2,
(1.13)

is satisfied. In particular, expression (1.11) provides the unique solution to (1.13) equipped with the
extra condition

𝑛∗2 = 𝑛2 + 𝜙𝐿1, 𝑛∗3 = 𝑛3 + 𝜙𝐿2, 𝜙 ∈ R.

We note that we had a choice in selecting the additional condition to uniquely solve (1.13). However,
the one we chose in this work expresses the uncorrelation of the adjacent particles since their velocities
are transformed uniformly with respect to the impact directions.

Remark 1.2. We note that both binary and ternary interactions are involutionary (i.e., reversible and
measure-preserving). For more details, see Proposition 2.2 and Proposition 2.5 for binary and ternary
interactions, respectively.
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8 I. Ampatzoglou and N. Pavlović

1.3.2. Phase space and description of the flow
Let 𝑈 ∈ N, with 𝑈 ≥ 3, and 0 < 𝛿2 < 𝛿3 < 1. The natural phase space3 to capture both binary and
ternary interactions is

D𝑙 ,𝛿2 ,𝛿3 =
{
𝑝𝑙 = (𝐴𝑙 ,𝛽𝑙 ) ∈ R2𝛽𝑙 : 𝑟2(𝐵𝐿 , 𝐵 𝜙 ) ≥ 𝛿2, ∀(𝐼, ,) ∈ I2

𝑙 ,

and 𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) ≥
)

2𝛿3, ∀(𝐼, , , 𝜈) ∈ I3
𝑙

}
,

(1.14)

where 𝐴𝑙 = (𝐵1, 𝐵2, ..., 𝐵𝑙 ), 𝛽𝑙 = (𝑛1, 𝑛2, ..., 𝑛𝑙 ), represent the positions and velocities of the N-
particles, and the index sets I2

𝑙 , I
3
𝑙 are given by

I2
𝑙 = {(𝐼, ,) ∈ {1, ..., 𝑈}2 : 𝐼 < ,}, I3

𝑙 = {(𝐼, ,) ∈ {1, ..., 𝑈}3 : 𝐼 < , < 𝜈}.

Let us describe the evolution in time of such a system. Consider an initial configuration 𝑝𝑙 ∈
D𝑙 ,𝛿2 ,𝛿3 . The motion is described as follows:

1. Particles are assumed to perform rectilinear motion as long as there is no interaction

/𝐵𝐿 = 𝑛𝐿 , /𝑛𝐿 = 0, ∀𝐼 ∈ {1, ..., 𝑈}.

2. Assume now that an initial configuration 𝑝𝑙 = (𝐴𝑙 ,𝛽𝑙 ) has evolved until time 𝑤 > 0, reaching
𝑝𝑙 (𝑤) = (𝐴𝑙 (𝑤),𝛽𝑙 (𝑤)), and that there is an interaction at time t. We have the following cases:
◦ The interaction is binary: Assuming there is an (𝐼, ,) interaction, the velocities of the in-

teracting particles instantaneously transform velocities according to the binary collisional law
(𝑛𝐿 (𝑤), 𝑛 𝜙 (𝑤)) ( (𝑛′𝐿 (𝑤), 𝑛′𝜙 (𝑤)) given in (1.8).

◦ The interaction is ternary: Assuming there is an (𝐼; , , 𝜈) interaction, the velocities of the interacting
particles instantaneously transform velocities according to the ternary collisional law

(𝑛𝐿 (𝑤), 𝑛 𝜙 (𝑤), 𝑛𝜆 (𝑤)) ( (𝑛∗𝐿 (𝑤), 𝑛∗𝜙 (𝑤), 𝑛∗𝜆 (𝑤)),

given in (1.11).

Let us note that (I)–(II) are not sufficient to generate a global in time flow for the particle system
since the velocity transformations are not smooth. In general, pathologies might arise as time evolves,
meaning more than one type of interactions happening at the same time, grazing interaction, or infinitely
many interactions in finite time. Although well-defined dynamics were shown to exist in [1] for hard
spheres and in [5] for the purely ternary case, those results do not imply well-posedness of the flow for
the mixed case, where both binary and ternary interactions are taken into account. The reason for that is
that a binary interaction can be succeeded by a ternary interaction and vice versa, a situation which was
not addressed in [1] or [5]. However, we are showing that a non-grazing interaction cannot be succeeded
by the same interaction. In other words, when two particles (𝐼, ,) interact, the next interaction could
be anything, binary or ternary, except a binary recollision of the particles (𝐼, ,). Similarly, when three
particles run into an (𝐼; , , 𝜈) interaction, the next interaction can be anything except a ternary (𝐼; , , 𝜈)4
interaction. This observation allows us to define the flow locally a.e. and then run some combinatorial
covering arguments to geometrically exclude a zero Lebesgue measure set such that the flow is globally
in time defined on the complement.

Let us informally state this result. For a detailed statement, see Theorem 3.23.
Existence of a global flow: Let 𝑈 ∈ N and 0 < 𝛿2 < 𝛿3 < 1. There is a global in time measure-

preserving flow (Ψ𝐸𝑇)𝐸 ∈R : D𝑙 ,𝛿2 ,𝛿3 ( D𝑙 ,𝛿2 ,𝛿3 described a.e. by (I)-(II) which preserves kinetic energy
and and is time reversible. This flow is called the N-particle (𝛿2, 𝛿3)-interaction flow.

3Upon symmetrization, one could define the phase space without ordering the particles and obtain a symmetrized version of
ternary operator (see [2] for more details). For simplicity, we opt to work upon ordering the particles.

4Any other permutation of the particle 𝐿, 𝜙 , 𝜆 cannot form an interaction since 𝐿 < 𝜙 < 𝜆. In case one does not order the
particles, a subsequent ( 𝜙; 𝐿, 𝜆) interaction, for instance, could possibly happen.
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The global measure-preserving interaction flow yields the Liouville equation5 for the evolution 𝑦𝑙
of an initial N-particle probability density 𝑦𝑙 ,0.

ℓ𝐸 𝑦𝑙 +
𝑙∑
𝐿=1

𝑛𝐿∇𝜇! 𝑦𝑙 = 0, (𝑤, 𝑝𝑙 ) ∈ (0,∞) × 𝑒̊𝑙 ,𝛿2 ,𝛿3 ,

𝑦𝑙 (𝑤, 𝑝 ′
𝑙 ) = 𝑦 (𝑤, 𝑝𝑙 ), 𝑤 ∈ [0,∞), 𝑝𝑙 is a simple binary interaction6,

𝑦𝑙 (𝑤, 𝑝∗
𝑙 ) = 𝑦 (𝑤, 𝑝𝑙 ), 𝑤 ∈ [0,∞), 𝑝𝑙 is a simple ternary interaction7,

𝑦𝑙 (0, 𝑝𝑙 ) = 𝑦𝑙 ,0(𝑝𝑙 ), 𝑝𝑙 ∈ 𝑒̊𝑙 ,𝛿2 ,𝛿3 .

(1.15)

The Liouville equation provides a complete deterministic description of the system of N-particles.
Although Liouville’s equation is a linear transport equation, efficiently solving it is almost impossible
in the case where the particle number N is very large. This is why an accurate kinetic description is
welcome, and to obtain it, one wants to understand the limiting behavior of it as 𝑈 ( ∞ and 𝛿2, 𝛿3 ( 0+,
with the hope that qualitative properties will be revealed for a large but finite N.

1.4. The binary-ternary Botzmann equation
To obtain such a kinetic description, we let the number of particles 𝑈 ( ∞ and the diameter and
interaction zone of the particles 𝛿2, 𝛿3 ( 0+ in the common scaling (1.4):

𝑈𝛿𝛽−1
2 ' 𝑈𝛿𝛽−

1
2

3 ' 1,

which will lead the binary-ternary Boltzmann equation
{
ℓ𝐸 𝑦 + 𝑛 · ∇𝜇 𝑦 = 𝜌2 ( 𝑦 , 𝑦 ) +𝜌3 ( 𝑦 , 𝑦 , 𝑦 ), (𝑤, 𝐵, 𝑛) ∈ (0,∞) × R𝛽 × R𝛽 ,
𝑦 (𝑤 = 0) = 𝑦0(𝐵, 𝑛), (𝐵, 𝑛) ∈ R𝛽 × R𝛽 .

(1.16)

The operator 𝜌2 ( 𝑦 , 𝑦 ) (see, for example, [13]) is the classical hard sphere binary collisional operator
given by

𝜌2 ( 𝑦 , 𝑦 ) =
∫
S"−1

1 ×R"
𝜇+2

(
𝑦 ′ 𝑦 ′1 − 𝑦 𝑦1

)
𝑟𝐿1 𝑟𝑛1, (1.17)

where

𝜇2 = +𝐿1, 𝑛1 − 𝑛〉, 𝜇+2 = max{𝜇2, 0},
𝑦 ′ = 𝑦 (𝑤, 𝐵, 𝑛′), 𝑦 = 𝑦 (𝐵, 𝑤, 𝑛), 𝑦 ′1 = 𝑦1(𝑤, 𝐵, 𝑛′1), 𝑦1 = 𝑦 (𝑤, 𝐵, 𝑛1).

The operator 𝜌3 ( 𝑦 , 𝑦 , 𝑦 ), introduced for the first time in [5], is the ternary hard interaction zone
operator given by

𝜌3 ( 𝑦 , 𝑦 , 𝑦 ) =
∫
S2"−1

1 ×R2"
𝜇+3

(
𝑦 ∗ 𝑦 ∗1 𝑦

∗
2 − 𝑦 𝑦1 𝑦2

)
𝑟𝐿1 𝑟𝐿2 𝑟𝑛1 𝑟𝑛2, (1.18)

where
𝜇3(𝐿1,𝐿2, 𝑛1 − 𝑛, 𝑛2 − 𝑛) := +𝐿1, 𝑛1 − 𝑛〉 + +𝐿2, 𝑛2 − 𝑛〉, 𝜇+3 = max{𝜇3, 0},

𝑦 ∗ = 𝑦 (𝑤, 𝐵, 𝑛∗), 𝑦 = 𝑦 (𝐵, 𝑤, 𝑛), 𝑦 ∗𝐿 = 𝑦 ∗𝐿 (𝑤, 𝐵, 𝑛∗𝐿 ), 𝑦𝐿 = 𝑦 (𝑤, 𝐵, 𝑛𝐿), 𝐼 ∈ {1, 2}. (1.19)

5In case 𝑙 = 2, the ternary boundary condition is not present in (1.15), while if 𝑙 = 1, equation (1.15) is just the transport
equation.

6By simple binary interaction, we mean the only interaction happening is an (𝐿, 𝜙) interaction. In this case, we write 𝐾 ′
# =

(𝑀# ,, ′
# ) , where , ′

# = (𝑊1 , ..., 𝑊!−1 , 𝑊′! , 𝑊!+1 , ..., 𝑊$−1 , 𝑊′$ , 𝑊$+1 , ..., 𝑊# ) .
7By simple ternary interaction, we mean the only interaction happening is an (𝐿; 𝜙 , 𝜆) interaction. In this case, we write

𝐾 ∗
# = (𝑀# ,, ∗

# ) , where , ∗
# = (𝑊1 , ..., 𝑊!−1 , 𝑊∗! , 𝑊!+1 , ..., 𝑊$−1 , 𝑊∗$ , 𝑊$+1 , ..., 𝑊%−1 , 𝑊∗% , 𝑊%+1 , ..., 𝑊# ) .
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10 I. Ampatzoglou and N. Pavlović

We should mention that in [3], global well-posedness near vacuum has been shown for (1.16) for
potentials ranging from moderately soft to hard in spaces of functions bounded by Maxwellian. In fact,
in [3], it is seen that the ternary collisional operator allows consideration of softer potentials that the
binary operator. In other words, the ternary correction to the Boltzmann equation does not behave worse
than the classical Boltzmann equation.

It is important to point out that, upon symmetrization of the ternary collisional operator (see [2], [4]),
the corresponding binary-ternary Boltzmann equation enjoys similar statistical and entropy production
properties, as well as conservation laws, as the classical Boltzmann equation. Inspired by this fact, in
collaboration with Gamba, Tasković [4], we studied the generation and propagation of polynomial and
exponential moments, as well as the global well-posedness, of the space homogeneous binary-ternary
Boltzmann equation. Interestingly, the results of [4] show that the co-existence of binary and ternary
collisions yields better generation properties and time decay than when only binary or ternary collisions
are considered. This suggests that such a model could potentially serve as a correction of the classical
Boltzmann equation.

Recently, in collaboration with Warner [6], based on ideas introduced in the current paper, we
were able to derive an equation of the type (1.1) for arbitrary order collisions based on a symmetric
distance/collisional law among the particles. In other words, unlike the asymmetry present in the
definition of the ternary distance (1.7), in [6] particles are fully interchangeable.

1.5. Strategy of the derivation and statement of the main result
In order to pass from the N-particle system dynamics to the kinetic equation (1.16), we implement the
program of constructing linear finite and infinite hierarchies of equations, pioneered by Lanford [26]
and refined by Gallagher, Saint-Raymond, Texier [18], and connecting them to the new binary-ternary
Boltzmann equation. In [5], we extended this program to include ternary interactions, which led to the
rigorous derivation of a purely ternary kinetic equation for particles with hard interaction zone in the
scaling (1.3). However, rigorous derivation of (1.16) does not follow from [26, 18] or the ternary work
[5]. As mentioned in Subsection 1.2, the first difficulty is the apparent incompatibility of scalings (1.2)-
(1.3), which we overcome by introducing the common scaling (1.4). The most challenging task is to
make the argument rigorous, though, is the analysis of all the possible recollisions8 of the backwards
(𝛿2, 𝛿3)-flow. In contrast to the binary or the ternary case where each binary or ternary interaction is
succeeded by a binary or ternary interaction, respectively, here we can have any possible interaction
sequence of binary or ternary interactions. We keep track of this combinatorics using the set

𝐺𝜆 = {𝐸 = (𝐸1, ...,𝐸𝜆 ) : 𝐸𝐿 ∈ {1, 2}, ∀𝐼 = 1, ..., 𝜈}. (1.20)

In addition to more involved combinatorics, careful analysis of all the possible interaction sequences
requires development of novel geometric and algebraic tools, which we discuss in details in Subsec-
tion 1.6. For now, we continue to discuss the process of derivation.

More specifically, we first derive a finite, linear, coupled hierarchy of equations for the marginal
densities

𝑦 (.)𝑙 (𝑝.) =
∫
R2" (#−&)

𝑦𝑙 (𝑝𝑙 )1D# ,'2 ,'3
(𝑝𝑙 ) 𝑟𝐵.+1... 𝑟𝐵𝑙 𝑟𝑛.+1... 𝑟𝑛𝑙 , ℎ ∈ {1, ..., 𝑈 − 1}

of the solution 𝑦𝑙 to the Liouville equation, which we call the BBGKY.9 This hierarchy is given by

ℓ𝐸 𝑦
(.)
𝑙 +

.∑
𝐿=1

𝑛𝐿 · ∇𝜇! 𝑦
(.)
𝑙 = C𝑙.,.+1 𝑦

(.+1)
𝑙 + C𝑙.,.+2 𝑦

(.+2)
𝑙 , ℎ ∈ {1, ..., 𝑈 − 1}. (1.21)

8By recollisions we mean the possible divergence of the backwards (𝛿2, 𝛿3)-interaction flow from the backwards free flow.
9Bogoliubov, Born, Green, Kirkwood, Yvon
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For the precise form of the operators C𝑙.,.+1, C𝑙.,.+2, see (4.15)–(4.16). Duhamel’s Formula yields that
the BBGKY hierarchy can be written in mild form as follows:

𝑦 (.)𝑙 (𝑤, 𝑝.) = 𝜁 𝐸. 𝑦𝑙 ,0(𝑝.) +
∫ 𝐸

0
𝜁 𝐸−𝛼. (C𝑙.,.+1 𝑦

(.+1)
𝑙 + C𝑙.,.+2 𝑦

(.+2)
𝑙 ) (𝑞, 𝑝.) 𝑟𝑞, ℎ ∈ N,

(1.22)

where for any continuous function <. : D.,𝛿2 ,𝛿3 ( R, we write 𝜁 𝐸. <. (𝑝.) := <. (Ψ−𝐸
. 𝑝.), and Ψ𝐸. is the

(𝛿2, 𝛿3)-interaction zone flow of s-particles.
We then formally let 𝑈 ( ∞ and 𝛿2, 𝛿3 ( 0+ in the scaling (1.4) to obtain an infinite, linear, coupled

hierarchy of equations, which we call the Boltzmann hierarchy. This hierarchy is given by

ℓ𝐸 𝑦
(.) +

.∑
𝐿=1

𝑛𝐿 · ∇𝜇! 𝑦 (.) = C∞
.,.+1 𝑦

(.+1) + C∞
.,.+2 𝑦

(.+2) , ℎ ∈ N. (1.23)

For the precise form of the operators C∞
.,.+1, C∞

.,.+2, see (4.28), (4.32), respectively. Duhamel’s Formula
yields that the Boltzmann hierarchy can be written in mild form as follows:

𝑦 (.) (𝑤, 𝑝.) = 𝐺𝐸. 𝑦0(𝑝.) +
∫ 𝐸

0
𝐺𝐸−𝛼. (C∞

.,.+1 𝑦
(.+1) + C∞

.,.+2 𝑦
(.+2) ) (𝑞, 𝑝.) 𝑟𝑞, ℎ ∈ N, (1.24)

where for any continuous function <. : R2𝛽. ( R, we write 𝐺𝐸.<. (𝑝.) := <. (Φ−𝐸
. 𝑝.), and Φ𝐸. is the

s-particle free flow of s-particles defined by 𝐺𝐸.𝑝. = 𝐺𝐸. (𝐴. ,𝛽.) = (𝐴. − 𝑤𝛽.,𝛽.).
It can be observed that for factorized initial data and assuming that the solution remains factorized

in time,10 the Boltzmann hierarchy reduces to the binary-ternary Boltzmann equation (1.16). This
observation connects the Boltzmann hierarchy with the binary-ternary Boltzmann equation (1.16).

To make this argument rigorous, we first show that the BBGKY and Boltzmann hierarchy are well-
posed in the scaling (1.4), at least for short times, and then that the convergence of the BBGKY hierarchy
initial data to the Boltzmann hierarchy initial data propagates in the time interval of existence of the
solutions. Showing convergence is a very challenging task, and is the heart of our contribution. We
describe details in Subsection 1.6.

Now, we informally state our main result. For a rigorous statement, see Theorem 6.8 and Corol-
lary 6.10.

Statement of the main result: Let 𝐾0 be initial data for the Boltzmann hierarchy (1.23), and 𝐾𝑙 ,0
be some BBGKY hierarchy (1.23) initial data which ‘approximate’11 𝐾0 as 𝑈 ( ∞, 𝛿 ( 0+ under the
scaling (1.4). Let FN be the mild solution to the BBGKY hierarchy (1.21) with initial data 𝐾𝑙 ,0, and F
the mild solution to the Boltzmann hierarchy (1.23), with initial data 𝐾0, up to short time 𝜁 > 0. Then
FN converges in observables12 to F in [0,𝜁] as 𝑈 ( ∞, 𝛿 ( 0+, under the scaling (1.4). In the case of
Hölder continuous >0,𝜈 , 𝑀 ∈ (0, 1] tensorized Boltzmann hierarchy initial data and approximation by
conditioned BBGKY hierarchy initial data, we obtain convergence to the solution of the binary-ternary
Boltzmann equation (1.16) with a rate . (𝛿𝐼 ) for any 0 < 𝑊 < min{1/2, 𝑀}.

1.6. Difficulties faced in the proof of the main result
The main idea to obtain convergence (Theorem 6.8) is to inductively use mild forms (1.22), (1.24) of
the BBGKY hierarchy and Boltzmann hierarchy, respectively, to formally obtain series expansions with

10This is typically called propagation of chaos assumption.
11See Section 6 for details.
12For a precise definition of convergence in observables, see Subsection 6.2.
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12 I. Ampatzoglou and N. Pavlović

respect to the initial data:

𝑦 (.)𝑙 (𝑤, 𝑝.) = 𝜁 𝐸. 𝑦 (.)𝑙 ,0(𝑝.)+
∞∑
𝜆=1

∑
𝑈∈𝐴%

∫ 𝐸

0

∫ 𝐸1

0
...

∫ 𝐸%−1

0
𝜁 𝐸−𝐸1. C𝑙.,.+𝑈̃1

𝜁 𝐸1−𝐸2
.+𝑈̃1

...C𝑙.+𝑈̃%−1 ,.+𝑈̃%
𝜁 𝐸%
.+𝑈̃%

𝑦 (.+𝑈̃% )
𝑙 ,0 (𝑝.) 𝑟𝑤𝜆 ... 𝑟𝑤1,

(1.25)

𝑦 (.) (𝑤, 𝑝.) = 𝐺𝐸. 𝑦 (.)0 (𝑝.)+
∞∑
𝜆=1

∑
𝑈∈𝐴%

∫ 𝐸

0

∫ 𝐸1

0
...

∫ 𝐸%−1

0
𝐺𝐸−𝐸1. C∞

.,.+𝑈̃1
𝐺𝐸1−𝐸2
.+𝑈̃1

...C∞
.+𝑈̃%−1 ,.+𝑈̃%

𝐺𝐸%
.+𝑈̃%

𝑦 (.+𝑈̃% )
0 (𝑝.) 𝑟𝑤𝜆 ... 𝑟𝑤1,

(1.26)

where 𝐺𝜆 is defined in (1.20), and given 𝐸 ∈ 𝐺𝜆 , 𝛼 = 1, ..., 𝜈 , we write 𝐸̃𝜃 :=
∑𝜃
𝐿=1 𝐸𝐿 . We note that

the summation over 𝐺𝜆 in (1.25)-(1.26) allows us to keep track of the possible interaction sequences
occurring by ‘adding’ one or two particles in each time step. For more details, see Section 7.

Comparing expressions (1.25)-(1.26), we expect to obtain the required convergence under the scaling
(1.4) as long as 𝑦 (.)𝑙 ,0 ‘approximates’ 𝑦 (.)0 under the same scaling. However it is not possible to directly
compare (1.25)-(1.26) because of the possible divergence of the backwards interaction flow from the
free flow, which we call recollisions. Although recollisions were also faced in [18] and [5], the mixed
case, where both binary and ternary interactions are considered, requires different conceptual treatment
in many instances and is not implied by the results of these works. The reason for that is that a binary
interaction can be succeeded by a ternary interaction and vice versa, a situation which was not addressed
in [18, 5]. The key to overcome these difficulties is that the diameter of the particles is much smaller
than the interaction zone, as implied by the common scaling (1.4). This fact allows us to develop certain
delicate algebraic and geometric arguments to extract a small measure set of pathological initial data
which lead to recollisions. On the complement of this set, expansions (1.25)-(1.26) are comparable and
the required convergence is obtained.

The main idea for eliminating recollisions is an inductive application in each time step of Proposi-
tion 9.2 and Proposition 9.4, which treat the binary adjunction, or Proposition 9.6 and Proposition 9.7,
which treat the ternary adjunction. More precisely, we face the following different cases:

1. Binary adjunction: One particle is added forming a binary interaction with one of the existing par-
ticles. The pathological situations that might arise under backwards time evolution are the following:
◦ The newly formed binary collisional configuration runs to a binary interaction under time evolution.

This pathological situation is eliminated using arguments inspired by [18]. This is actually the
only case which is similar to the cases covered in [18].

◦ The newly formed binary collisional configuration runs to a ternary interaction under time evolu-
tion. This pathological situation did not appear in any of the previous works since merely binary
or ternary interactions were studied. However, due to the fact that 𝛿2 << 𝛿3, which comes from
the scaling (1.4), this pathological situation can be treated using techniques inspired by [5] and
adapting them to the binary case.
Proposition 9.2 and Proposition 9.4 are the relevant results controlling recollisions after a binary

adjunction.
2. Ternary adjunction: Two particles are added forming a ternary interaction with one of the exist-

ing particles. The pathological situations that might arise under backwards time evolution are the
following:
◦ The newly formed ternary collisional configuration runs to a ternary interaction under time

evolution. This case was studied in depth in [5]. We eliminate this pathological situation using
Proposition 9.5. For its proof, we refer to [5].

◦ The newly formed ternary collisional configuration runs to a binary interaction under time evo-
lution. This is the most challenging case to treat and is the heart of the technical contribution
because the scaling (1.4) does not directly help as in the case of the binary adjunction where
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one of the collisional particles enters an interaction zone. To treat this case, we need to use new
algebraic tools (see Proposition 9.6) to exclude sets of initial data which lead to these pathologi-
cal trajectories and develop elaborate geometric estimates to control its measure. The geometric
estimates needed are thoroughly presented in Section 8. In particular, Subsection 8.2 is devoted
to developing novel tools which rely on an appropriate representation of (2𝑟 − 1)-spheres (see
(8.1)). More specifically, in 8.2.1, we perform some initial truncations to the impact directions,
while in 8.2.2, we establish certain spherical cap and conic region estimates needed to control the
precollisional case, while 8.2.3 focuses on developing the necessary annuli estimates enabling us
to control the postcollisional case using precollisional arguments. After establishing the necessary
geometric tools, we employ them in Proposition 9.7 to show that the corresponding set constructed
in Proposition 9.6 is negligible.

1.7. Notation
For convenience, we introduce some basic notation which will be frequently used throughout the
manuscript:

◦ 𝑟 ∈ N will be a fixed dimension with 𝑟 ≥ 2.
◦ Given 𝐵, 𝜃 ∈ R, we write 𝐵 ! 𝜃 if there is a constant >𝛽 > 0 such that 𝐵 ≤ >𝛽𝜃. Similarly, we write
𝐵 ' 𝜃 if there is a constant >𝛽 > 0 such that 𝐵 = >𝛽𝜃.

◦ Given 𝑢 ∈ N, 𝜂 > 0 and 𝑃 ∈ R𝜂, we write 𝜉𝜂𝐽 (𝑃) for the n-closed ball of radius 𝜂 > 0, centered at
𝑃 ∈ R𝜂. In particular, we write 𝜉𝜂𝐽 := 𝜉𝜂𝐽 (0) for the 𝜂-ball centered at the origin.

◦ Given 𝑢 ∈ N and 𝜂 > 0, we write S𝜂−1
𝐽 for the (𝑢 − 1)-sphere of radius 𝜂 > 0.

◦ When we write 𝐵 << 𝜃, we mean that there is a small enough constant 0 < 𝜙 < 1 such that 𝐵 < 𝜙𝜃.

2. Collisional transformations
In this section, we define the collisional transformations of two and three interacting particles, respec-
tively. In the two-particle case, particles will interact as regular hard spheres, while in the three-particle
case, particles will interact as triplets of particles with an interaction zone.

2.1. Binary interaction
Here, we define the binary collisional tranformation of two interacting hard spheres, induced by an
impact direction 𝐿1 ∈ S𝛽−1

1 . This will be the law under which the velocities (𝑛1, 𝑛2) of two interacting
hard spheres, with impact direction 𝐿1 ∈ S𝛽−1

1 , instanteously transform. The impact direction will
represent the scaled relative position of the colliding hard spheres.

Definition 2.1. Consider a binary impact direction 𝐿1 ∈ S𝛽−1
1 . We define the binary collisional trans-

formation induced by 𝐿1 ∈ S𝛽−1
1 as the map 𝜁𝐶1 : (𝑛1, 𝑛2) ∈ R2𝛽 ( (𝑛′1, 𝑛′2) ∈ R2𝛽 , where

𝑛′1 = 𝑛1 + +𝐿1, 𝑛2 − 𝑛1〉𝐿1,

𝑛′2 = 𝑛2 − +𝐿1, 𝑛2 − 𝑛1〉𝐿1.
(2.1)

Let us introduce some notation we will be constantly using. We define the binary cross-section

𝜇2 (𝐿1, 𝐽1) := +𝐿1, 𝐽1〉, (𝐿1, 𝐽1) ∈ S𝛽−1
1 × R𝛽 . (2.2)

One can verify that the binary momentum-energy conservation system

𝑛′1 + 𝑛′2 = 𝑛1 + 𝑛2,

|𝑛′1 |2 + |𝑛2 |2 = |𝑛1 |2 + |𝑛2 |2
(2.3)
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14 I. Ampatzoglou and N. Pavlović

is satisfied. Given a binary impact direction 𝐿1 ∈ S𝛽−1
1 , the binary collisional transformation 𝜁𝐶1

satisfies the following properties (see, for example, [13]).

Proposition 2.2. Consider a binary impact direction 𝐿1 ∈ S𝛽−1
1 . The induced binary collisional trans-

formation 𝜁𝐶1 has the following properties:

1. Conservation of momentum

𝑛′1 + 𝑛′2 = 𝑛1 + 𝑛2. (2.4)

2. Conservation of energy

|𝑛′1 |2 + |𝑛′2 |2 = |𝑛1 |2 + |𝑛2 |2. (2.5)

3. Conservation of relative velocities magnitude

|𝑛′1 − 𝑛′2 | = |𝑛1 − 𝑛2 |. (2.6)

4. Micro-reversibility of the binary cross-section

𝜇2 (𝐿1, 𝑛
′
2 − 𝑛′1) = −𝜇2(𝐿1, 𝑛2 − 𝑛1). (2.7)

5. 𝜁𝐶1 is a linear involutio (i.e., 𝜁𝐶1 is linear and 𝜁−1
𝐶1 = 𝜁𝐶1 ). In particular, | det𝜁𝐶1 | = 1, so 𝜁𝐶1 is

measure-preserving.

2.2. Ternary interaction
Now we define the ternary collisional tranformation, induced by a given pair of impact directions, and
investigate its properties. The interaction considered will be an instantaneous interaction of three parti-
cles with an interaction zone (for more details, see [5]). This will be the law under which the velocities
(𝑛1, 𝑛2, 𝑛3) of three interacting particles, with impact directions (𝐿1,𝐿2) ∈ S2𝛽−1

1 , instanteously trans-
form. The impact directions will represent the scaled relative positions of the three particles in the
interaction zone setting.

Definition 2.3. Consider a pair of impact directions (𝐿1,𝐿2) ∈ S2𝛽−1
1 . We define the ternary collisional

transformation induced by (𝐿1,𝐿2) ∈ S2𝛽−1
1 as the map 𝜁𝐶1 ,𝐶2 : (𝑛1, 𝑛2, 𝑛3) ∈ R3𝛽 −( (𝑛∗1, 𝑛∗2, 𝑛∗3) ∈

R3𝛽 , where

∫


𝑛∗1 = 𝑛1 +
+𝐿1, 𝑛2 − 𝑛1〉 + +𝐿2, 𝑛3 − 𝑛1〉

1 + +𝐿1,𝐿2〉
(𝐿1 + 𝐿2),

𝑛∗2 = 𝑛2 −
+𝐿1, 𝑛2 − 𝑛1〉 + +𝐿2, 𝑛3 − 𝑛1〉

1 + +𝐿1,𝐿2〉
𝐿1,

𝑛∗3 = 𝑛3 −
+𝐿1, 𝑛2 − 𝑛1〉 + +𝐿2, 𝑛3 − 𝑛1〉

1 + +𝐿1,𝐿2〉
𝐿2.

(2.8)

We also define the ternary cross-section as

𝜇3(𝐿1,𝐿2, 𝐽1, 𝐽2) := +𝐿1, 𝐽1〉 + +𝐿2, 𝐽2〉, (𝐿1,𝐿2) ∈ S2𝛽−1
1 , (𝐽1, 𝐽2) ∈ R2𝛽 . (2.9)

Remark 2.4. Cauchy-Schwartz inequality and the fact that (𝐿1,𝐿2) ∈ S2𝛽−1
1 yield

2
3 ≤ 1

1 + +𝐿1,𝐿2〉
≤ 2. (2.10)
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One can verify that the ternary momentum-energy conservation system

𝑛∗1 + 𝑛∗2 + 𝑛∗3 = 𝑛1 + 𝑛2 + 𝑛3,

|𝑛∗1 |2 + |𝑛∗2 |2 + |𝑛∗3 |2 = |𝑛1 |2 + |𝑛2 |2 + |𝑛3 |2,
(2.11)

is satisfied. The main properties of the ternary collisional tranformation are summarized in the following
Proposition. For the proof, see Proposition 2.3. from [5].

Proposition 2.5. Consider a pair of impact directions (𝐿1,𝐿2) ∈ S2𝛽−1
1 . The induced collisional

transformation 𝜁𝐶1 ,𝐶2 has the following properties:

1. Conservation of momentum

𝑛∗1 + 𝑛∗2 + 𝑛∗3 = 𝑛1 + 𝑛2 + 𝑛3. (2.12)

2. Conservation of energy

|𝑛∗1 |2 + |𝑛∗2 |2 + |𝑛∗3 |2 = |𝑛1 |2 + |𝑛2 |2 + |𝑛3 |2. (2.13)

3. Conservation of relative velocities magnitude

|𝑛∗1 − 𝑛∗2 |2 + |𝑛∗1 − 𝑛∗3 |2 + |𝑛∗2 − 𝑛∗3 |2 = |𝑛1 − 𝑛2 |2 + |𝑛1 − 𝑛3 |2 + |𝑛2 − 𝑛3 |2. (2.14)

4. Micro-reversibility of the ternary cross-section

𝜇3(𝐿1,𝐿2, 𝑛
∗
2 − 𝑛∗1, 𝑛∗3 − 𝑛∗1) = −𝜇3(𝐿1,𝐿2, 𝑛2 − 𝑛1, 𝑛3 − 𝑛1). (2.15)

5. 𝜁𝐶1 ,𝐶2 is a linear involution i.e.𝜁𝐶1 ,𝐶2 is linear and𝜁−1
𝐶1 ,𝐶2 = 𝜁𝐶1 ,𝐶2 . In particular, | det𝜁𝐶1 ,𝐶2 | = 1,

so 𝜁𝐶1 ,𝐶2 is measure-preserving.

3. Dynamics of m-particles
In this section, we rigorously define the dynamics of m hard spheres of diameter 𝐸2 and interaction zone
𝐸3, where 0 < 𝐸2 < 𝐸3 < 1. Heuristically speaking, particles perform rectilinear motion as long as
there is no interaction (binary or ternary) and they interact through the binary or ternary collision law
when a binary or ternary interaction occurs, respectively. However, it is far from obvious that a global
dynamics can be defined since the system might run into pathological configurations (e.g., more than
one type of interaction at a time, infinitely many interactions in finite time or interactions which graze
under time evolution). Although this problem was present is [1, 5] as well, here we need to decouple
binary and ternary interaction sequences since both types of interactions are allowed in each time step.
The goal of this section is to extract a set of measure zero such that on the complement a global in time,
measure-preserving flow can be defined.

Throughout this section, we consider 𝑅 ∈ N and 0 < 𝐸2 < 𝐸3 < 1.

3.1. Phase space definitions
For convenience, we define the following index sets:

For 𝑅 ≥ 2: I2
𝑇 =

{
(𝐼, ,) ∈ {1, ...,𝑅}2 : 𝐼 < ,

}
. (3.1)

For 𝑅 ≥ 3: I3
𝑇 =

{
(𝐼, , , 𝜈) ∈ {1, ...,𝑅}3 : 𝐼 < , < 𝜈

}
. (3.2)
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Given positions (𝐵1, 𝐵2) ∈ R2𝛽 , we define the binary distance:

𝑟2(𝐵1, 𝐵2) := |𝐵1 − 𝐵2 |, (3.3)

and given positions (𝐵1, 𝐵2, 𝐵3) ∈ R3𝛽 , we define the ternary distance:

𝑟3 (𝐵1; 𝐵2, 𝐵3) =
√
|𝐵1 − 𝐵2 |2 + |𝐵1 − 𝐵3 |2. (3.4)

For 𝑅 ≥ 3, we define the phase space of m-particles of diameter 𝐸2 > 0 and interaction zone 𝐸3 > 0,
with 𝐸2 < 𝐸3 < 1 as

D𝑇,𝑈2 ,𝑈3 =
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ R2𝛽𝑇 : 𝑟2(𝐵𝐿 , 𝐵 𝜙 ) ≥ 𝐸2, ∀(𝐼, ,) ∈ I2

𝑇,

and 𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) ≥
)

2𝐸3, ∀(𝐼, , , 𝜈) ∈ I3
𝑇

}
,

(3.5)

where 𝐴𝑇 = (𝐵1, ..., 𝐵𝑇) ∈ R𝛽𝑇 represents the positions of the m-particles, while 𝛽𝑇 = (𝑛1, ..., 𝑛𝑇) ∈
R𝛽𝑇 represents the velocities of the m-particles. For convenience, we also define

D2,𝑈2 ,𝑈3 =
{
𝑝2 = (𝐴2,𝛽2) ∈ R2𝛽 : |𝐵1 − 𝐵2 | ≥ 𝐸2

}
, D1,𝑈2 ,𝑈3 = R

2𝛽 . (3.6)

For 𝑅 ≥ 3, the phase space D𝑇,𝑈2 ,𝑈3 decomposes as D𝑇,𝑈2 ,𝑈3 = D̊𝑇,𝑈2 ,𝑈3 ∪ ℓD𝑇,𝑈2 ,𝑈3 , where the
interior is given by

D̊𝑇,𝑈2 ,𝑈3 =
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ R2𝛽𝑇 : 𝑟2(𝐵𝐿 , 𝐵 𝜙 ) > 𝐸2, ∀(𝐼, ,) ∈ I2

𝑇,

and 𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) >
)

2𝐸3, ∀(𝐼, , , 𝜈) ∈ I3
𝑇

}
,

(3.7)

and the boundary is given by

ℓD𝑇,𝑈2 ,𝑈3 = ℓ2D𝑇,𝑈2 ,𝑈3 ∪ ℓ3D𝑇,𝑈2 ,𝑈3 , (3.8)

where ℓ2D𝑇,𝑈2 ,𝑈3 is the binary boundary

ℓ2D𝑇,𝑈2 ,𝑈3 =
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ D𝑇,𝑈2 ,𝑈3 : ∃(𝐼, ,) ∈ I2

𝑇 with 𝑟2(𝐵𝐿 , 𝐵 𝜙 ) = 𝐸2
}
, (3.9)

and ℓ3D𝑇,𝑈2 ,𝑈3 is the ternary boundary

ℓ3D𝑇,𝑈2 ,𝑈3 =
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ D𝑇,𝑈2 ,𝑈3 : ∃(𝐼, , , 𝜈) ∈ I3

𝑇 with 𝑟3 (𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) =
)

2𝐸3
}
. (3.10)

Elements of D𝑇,𝑈2 ,𝑈3 are called configurations, elements of D̊𝑇,𝑈2 ,𝑈3 are called noncollisional config-
urations, and elements of ℓ2D𝑇,𝑈2 ,𝑈3 are called collisional configurations, or just collisions. Elements
of ℓD𝑇,𝑈2 ,𝑈3 are called binary collisions, while elements of ℓ3D𝑇,𝑈2 ,𝑈3 are called ternary collisions.
When we refer to a collision, it will be either binary or ternary.

Clearly, the binary boundary can be written as ℓ2D𝑇,𝑈2 ,𝑈3 =
⋃

(𝐿, 𝜙)∈I2
(
Σ2
𝐿 𝜙 , where Σ2

𝐿 𝜙 are the binary
collisional surfaces given by

Σ2
𝐿 𝜙 :=

{
𝑝𝑇 ∈ D𝑇,𝑈2 ,𝑈3 : 𝑟2(𝐵𝐿 , 𝐵 𝜙 ) = 𝐸2

}
. (3.11)

In the same spirit, the ternary boundary can be written as ℓ3D𝑇,𝑈2 ,𝑈3 =
⋃

(𝐿, 𝜙 ,𝜆)∈I3
(
Σ3
𝐿 𝜙𝜆 , where Σ3

𝐿 𝜙𝜆
are the ternary collisional surfaces given by

Σ3
𝐿 𝜙𝜆 :=

{
𝑝𝑇 ∈ D𝑇,𝑈2 ,𝑈3 : 𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) =

)
2𝐸3

}
. (3.12)
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We now further decompose collisions to simple binary collisions, simple ternary collisions and
multiple collisions. In particular, we define simple binary collisions as

ℓ2,.8D𝑇,𝑈2 ,𝑈3 :=
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ D𝑇,𝑈2 ,𝑈3 : ∃(𝐼, ,) ∈ I2

𝑇 with 𝑝𝑇 ∈ Σ2
𝐿 𝜙 ,

𝑝𝑇 ∉ Σ2
𝐿′ 𝜙′ , ∀(𝐼′, , ′) ∈ I2

𝑇 \ {(𝐼, ,)}, 𝑝𝑇 ∉ Σ3
𝐿′ 𝜙′𝜆′ , ∀(𝐼′, , ′, 𝜈 ′) ∈ I3

𝑇

}
.

(3.13)

We also define simple ternary collisions as

ℓ3,.8D𝑇,𝑈2 ,𝑈3 :=
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ D𝑇,𝑈2 ,𝑈3 : ∃(𝐼, , , 𝜈) ∈ I3

𝑇 with 𝑝𝑇 ∈ Σ3
𝐿 𝜙𝜆 ,

𝑝𝑇 ∉ Σ3
𝐿′ 𝜙′𝜆′ , ∀(𝐼′, , ′, 𝜈 ′) ∈ I3

𝑇 \ {(𝐼, , , 𝜈)}, 𝑝𝑇 ∉ Σ2
𝐿′ 𝜙′ , ∀(𝐼′, , ′) ∈ I2

𝑇

}
.

(3.14)

Remark 3.1. The assumption 𝐸2 < 𝐸3 made at the beginning of the section is necessary for
ℓ3,.8D𝑇,𝑈2 ,𝑈3 to be nonempty. Indeed, let 𝐸2 ≥ 𝐸3 and assume that ℓ3,.8D𝑇,𝑈2 ,𝑈3 ≠ ∅. Consider
𝑝𝑇 ∈ ℓ3,.8D𝑇,𝑈2 ,𝑈3 . Then, by (3.14), there is (𝐼, , , 𝜈) ∈ I3

𝑇 such that

|𝐵𝐿 − 𝐵 𝜙 |2 + |𝐵𝐿 − 𝐵 𝜙 |2 = 2𝛿2
3 , (3.15)

and

|𝐵𝐿 − 𝐵 𝜙 | > 𝛿2, |𝐵𝐿 − 𝐵𝜆 | > 𝛿2. (3.16)

By (3.15), at least one of |𝐵𝐿 − 𝐵 𝜙 | or |𝐵𝐿 − 𝐵𝜆 | has to be smaller than or equal to 𝛿3. Assume, without
loss of generality, that |𝐵𝐿 − 𝐵 𝜙 | ≤ 𝛿3. Since 𝛿2 ≥ 𝛿3, we obtain |𝐵𝐿 − 𝐵 𝜙 | ≤ 𝛿2, which contradicts (3.16).
Therefore, if 𝐸2 ≥ 𝐸3, we have ℓ3,.8D𝑇,𝑈2 ,𝑈3 = ∅.

A simple collision will be a binary or ternary simple collision; that is,

ℓ.8D𝑇,𝑈2 ,𝑈3 := ℓ2,.8D𝑇,𝑈2 ,𝑈3 ∪ ℓ3,.8D𝑇,𝑈2 ,𝑈3 . (3.17)

Multiple collisions are configurations which are not simple; that is,

ℓ𝑇9D𝑇,𝑈2 ,𝑈3 := ℓD𝑇,𝑈2 ,𝑈3 \ ℓ.8D𝑇,𝑈2 ,𝑈3 . (3.18)

Remark 3.2. For 𝑅 = 2, there is only binary boundary.
For the binary case, we give the following definitions:

Definition 3.3. Let 𝑅 ≥ 2 and 𝑝𝑇 ∈ ℓ2,.8𝑒𝑇,𝑈2 ,𝑈3 . Then there is a unique (𝐼, ,) ∈ I2
𝑇 such that

𝑝𝑇 ∈ Σ2
𝐿 𝜙 and 𝑝𝑇 ∉ Σ3

𝐿′ 𝜙′𝜆′ , for all (𝐼′, , ′, 𝜈 ′) ∈ I3
𝑇. In this case, we will say 𝑝𝑇 is an (𝐼, ,) collision,

and we will write

Σ2,.8
𝐿 𝜙 =

{
𝑝𝑇 ∈ D𝑇,𝑈1 ,𝑈2 : 𝑝𝑇 is (𝐼, ,) collision

}
. (3.19)

Clearly, Σ2,.8
𝐿 𝜙 ∩ Σ2,.8

𝐿′ 𝜙′ = ∅, for all (𝐼, ,) ≠ (𝐼′, , ′) ∈ I2
𝑇, and ℓ2,.8D𝑇,𝑈2 ,𝑈3 decomposes to

ℓ2,.8D𝑇,𝑈2 ,𝑈3 =
⋃

(𝐿, 𝜙)∈I2
(

Σ2,.8
𝐿 𝜙 . (3.20)

Remark 3.4. Let 𝑅 ≥ 2, (𝐼, ,) ∈ I2
𝑇 and 𝑝𝑇 ∈ Σ2,.8

𝐿 𝜙 . Then

𝐿1 :=
𝐵 𝜙 − 𝐵𝐿
𝐸2

∈ S𝛽−1
1 . (3.21)

Therefore, each (𝐼, ,) collision naturally induces a binary impact direction 𝐿1 ∈ S𝛽−1
1 and consequently

a binary collisional transformation 𝜁𝐶1 .
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Definition 3.5. Let 𝑅 ≥ 2, (𝐼, ,) ∈ I2
𝑇 and 𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ Σ2,.8

𝐿 𝜙 . We write 𝑝 ′
𝑇 = (𝐴𝑇,𝛽 ′

𝑇), where

𝛽 ′
𝑇 = (𝑛1, ..., 𝑛𝐿−1, 𝑛

′
𝐿 , 𝑛𝐿+1, ..., 𝑛 𝜙−1, 𝑛

′
𝜙 , 𝑛 𝜙+1, ..., 𝑛𝑇),

and (𝑛′𝐿 , 𝑛′𝜙 ) = 𝜁𝐶1 (𝑛𝐿 , 𝑛 𝜙 ), 𝐿1 ∈ S𝛽−1
1 is given by (3.21).

In the same spirit, for the ternary case, we give the following definitions:

Definition 3.6. Let 𝑅 ≥ 3 and 𝑝𝑇 ∈ ℓ3,.8𝑒𝑇,𝑈2 ,𝑈3 . Then there is a unique (𝐼; , , 𝜈) ∈ I3
𝑇 such that

𝑝𝑇 ∈ Σ3
𝐿 𝜙𝜆 and 𝑝𝑇 ∉ Σ2

𝐿′ 𝜙′ , for all (𝐼′, , ′) ∈ I2
𝑇. In this case, we will say 𝑝𝑇 is an (𝐼; , , 𝜈) collision, and

we will write

Σ3,.8
𝐿 𝜙𝜆 =

{
𝑝𝑇 ∈ D𝑇,𝑈2 ,𝑈3 : 𝑝𝑇 is (𝐼; , , 𝜈) collision

}
. (3.22)

Clearly, Σ3,.8
𝐿 𝜙𝜆 ∩ Σ3,.8

𝐿′ 𝜙′𝜆′ = ∅, for all (𝐼, , , 𝜈) ≠ (𝐼′, , ′, 𝜈 ′) ∈ I3
𝑇 and ℓ3,.8D𝑇,𝑈2 ,𝑈3 decomposes to

ℓ3,.8D𝑇,𝑈2 ,𝑈3 =
⋃

(𝐿, 𝜙 ,𝜆)∈I3
(

Σ3,.8
𝐿 𝜙𝜆 . (3.23)

Remark 3.7. Let 𝑅 ≥ 3, (𝐼, , , 𝜈) ∈ I3
𝑇 and 𝑝𝑇 ∈ Σ3,.8

𝐿 𝜙𝜆 . Then

(𝐿1,𝐿2) := 1)
2𝐸3

(
𝐵 𝜙 − 𝐵𝐿 , 𝐵𝜆 − 𝐵𝐿

)
∈ S2𝛽−1

1 . (3.24)

Therefore, each (𝐼; , , 𝜈) collision naturally induces ternary impact directions (𝐿1,𝐿2) ∈ S2𝛽−1
1 and

consequently a collisional transformation 𝜁𝐶1 ,𝐶2 .

Definition 3.8. Let 𝑅 ≥ 3, (𝐼, , , 𝜈) ∈ I3
𝑇 and 𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ Σ3,.

𝐿 𝜙𝜆 . We write 𝑝∗
𝑇 = (𝐴𝑇,𝛽∗

𝑇), where

𝛽∗
𝑇 = (𝑛1, ..., 𝑛𝐿−1, 𝑛

∗
𝐿 , 𝑛𝐿+1, ..., 𝑛 𝜙−1, 𝑛

∗
𝜙 , 𝑛 𝜙+1, ..., 𝑛𝜆−1, 𝑛

∗
𝜆 , 𝑛𝜆+1, ..., 𝑛𝑇),

and (𝑛∗𝐿 , 𝑛∗𝜙 , 𝑛∗𝜆 ) = 𝜁𝐶1 ,𝐶2 (𝑛𝐿 , 𝑛 𝜙 , 𝑛𝜆 ), (𝐿1,𝐿2) ∈ S2𝛽−1
1 are given by (3.24).

3.2. Classification of simple collisions
We will now classify simple collisions in order to eliminate collisions which graze in time. For this
purpose, we come across the following definitions for the binary and the ternary case, respectively.

For the binary case:

Definition 3.9. Let 𝑅 ≥ 2, (𝐼, ,) ∈ I2
𝑇 and 𝑝𝑇 ∈ Σ2,.

𝐿 𝜙 . The configuration 𝑝𝑇 is called

◦ binary precollisional when 𝜇2(𝐿1, 𝑛 𝜙 − 𝑛𝐿) < 0,
◦ binary postcollisional when 𝜇2 (𝐿1, 𝑛 𝜙 − 𝑛𝐿) > 0,
◦ binary grazing when 𝜇2(𝐿1, 𝑛 𝜙 − 𝑛𝐿) = 0,

where 𝐿1 ∈ S𝛽−1
1 is given by (3.21) and 𝜇2 is given by (2.2).

Remark 3.10. Let 𝑅 ≥ 2, (𝐼, ,) ∈ I2
𝑇 and 𝑝𝑇 ∈ Σ2,.

𝐿 𝜙 . Using (2.7), we obtain the following:

1. 𝑝𝑇 is binary precollisional iff 𝑝 ′
𝑇 is binary postcollisional.

2. 𝑝𝑇 is binary postcollisional iff 𝑝 ′
𝑇 is binary precollisional.

3. 𝑝𝑇 = 𝑝 ′
𝑇 iff 𝑝𝑇 is binary grazing.
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For the ternary case:

Definition 3.11. Let 𝑅 ≥ 3, (𝐼, , , 𝜈) ∈ I3
𝑇 and 𝑝𝑇 ∈ Σ3,.

𝐿 𝜙𝜆 . The configuration 𝑝𝑇 is called

◦ ternary precollisional when 𝜇3(𝐿1,𝐿2, 𝑛 𝜙 − 𝑛𝐿 , 𝑛𝜆 − 𝑛𝐿) < 0,
◦ ternary postcollisional when 𝜇3(𝐿1,𝐿2, 𝑛 𝜙 − 𝑛𝐿 , 𝑛𝜆 − 𝑛𝐿) > 0,
◦ ternary grazing when 𝜇3 (𝐿1,𝐿2, 𝑛 𝜙 − 𝑛𝐿 , 𝑛𝜆 − 𝑛𝐿) = 0,

where (𝐿1,𝐿2) ∈ S2𝛽−1
1 is given by (3.24) and b is given by (2.9).

Remark 3.12. Let 𝑅 ≥ 3, (𝐼, , , 𝜈) ∈ I3
𝑇 and 𝑝𝑇 ∈ Σ3,.

𝐿 𝜙𝜆 . Using (2.15), we obtain the following:

1. 𝑝𝑇 is ternary precollisional iff 𝑝∗
𝑇 is ternary postcollisional.

2. 𝑝𝑇 is ternary postcollisional iff 𝑝∗
𝑇 is ternary precollisional.

3. 𝑝𝑇 = 𝑝∗
𝑇 iff 𝑝𝑇 is ternary grazing.

We will just say precollisional, postcollisional or grazing configuration when it is implied whether a
simple collision is binary or ternary.

For 𝑅 ≥ 2, we refine the phase space defining

D∗
𝑇,𝑈2 ,𝑈3 := D̊𝑇,𝑈2 ,𝑈3 ∪ ℓ.8,𝜂:D𝑇,𝑈2 ,𝑈3 , (3.25)

where ℓ.8,𝜂:D𝑇,𝑈2 ,𝑈3 denotes the part of ℓD𝑇,𝑈2 ,𝑈3 consisting of simple, non-grazing collisions – that
is, defined as

ℓ.8,𝜂:D𝑇,𝑈2 ,𝑈3 :=
{
𝑝𝑇 ∈ ℓ.8D𝑇,𝑈2 ,𝑈3 : 𝑝𝑇 is non-grazing

}
. (3.26)

It is immediate that D∗
𝑇,𝑈2 ,𝑈3 is a full measure subset of D𝑇,𝑈2 ,𝑈3 and ℓ.8,𝜂:D𝑇,𝑈2 ,𝑈3 is a full surface

measure subset of ℓD𝑇,𝑈2 ,𝑈3 , since its complement constitutes of lower dimension submanifolds of
ℓD𝑇,𝑈2 ,𝑈3 which have zero surface measure.

3.3. Construction of the local flow
The next Lemma shows that the flow can be locally defined for any initial configuration 𝑝𝑇 ∈ D∗

𝑇,𝑈2 ,𝑈3
up to the time of the first collision.

Lemma 3.13. Let 𝑅 ≥ 3 and 𝑝𝑇 ∈ D∗
𝑇,𝑈2 ,𝑈3 . Then there is a time 𝑞1

𝐾(
∈ (0,∞] such that defining

𝑝𝑇 (·) : [0, 𝑞1
𝐾(

] ( R2𝛽𝑇 by

𝑝𝑇 (𝑤) =
∫


(𝐴𝑇 + 𝑤𝛽𝑇,𝛽𝑇) if 𝑝𝑇 is noncollisional or postcollisional,
(𝐴𝑇 + 𝑤𝛽 ′

𝑇,𝛽
′
𝑇), if 𝑝𝑇 is binary precollisional,

(𝐴𝑇 + 𝑤𝛽∗
𝑇,𝛽

∗
𝑇), if 𝑝𝑇 is ternary precollisional,

the following hold:

1. 𝑝𝑇 (𝑤) ∈ D̊𝑇,𝑈2 ,𝑈3 , ∀𝑤 ∈ (0, 𝑞1
𝐾(

).
2. if 𝑞1

𝐾(
< ∞, then 𝑝𝑇 (𝑞1

𝐾(
) ∈ ℓD𝑇,𝑈2 ,𝑈3 .

3. If 𝑝𝑇 ∈ Σ2,.8
𝐿 𝜙 for some (𝐼, ,) ∈ I2

𝑇, then 𝑝𝑇(𝑞1
𝐾(

) ∉ Σ2
𝐿 𝜙 .

4. If 𝑝𝑇 ∈ Σ3,.8
𝐿 𝜙𝜆 for some (𝐼, , , 𝜈) ∈ I3

𝑇, then 𝑝𝑇(𝑞1
𝐾(

) ∉ Σ3
𝐿 𝜙𝜆 .

An analogous statement holds in the case 𝑅 = 2, where we just neglect the ternary terms.
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Proof. Let us make the convention inf ∅ = +∞. We define

𝑞1
𝐾(

=

∫


inf
{
𝑤 > 0 : 𝐴𝑇 + 𝑤𝛽𝑇 ∈ ℓD𝑇,𝑈2 ,𝑈3

}
, if 𝑝𝑇 is noncollisional or postcollisional,

inf
{
𝑤 > 0 : 𝐴𝑇 + 𝑤𝛽 ′

𝑇 ∈ ℓD𝑇,𝑈2 ,𝑈3

}
, if 𝑝𝑇 is binary precollisional,

inf
{
𝑤 > 0 : 𝐴𝑇 + 𝑤𝛽∗

𝑇 ∈ ℓD𝑇,𝑈2 ,𝑈3

}
, if 𝑝𝑇 is ternary precollisional.

Since D̊𝑇,𝑈2 ,𝑈3 is open, we get 𝑞1
𝐾(

> 0, ∀𝑝𝑇 ∈ D̊𝑇,𝑈2 ,𝑈3 , and claims (i)–(ii) follow immediately for
𝑝𝑇 ∈ D̊𝑇,𝑈2 ,𝑈3 .

Assume 𝑝𝑇 ∈ ℓ.8,𝜂:D𝑇,𝑈2 ,𝑈3 which yields that 𝑝𝑇 is non-grazing. Therefore, we may distinguish
the following cases:

◦ 𝑝𝑇 is an (𝐼, ,) binary postcollisional configuration: For any 𝑤 > 0, we have

|𝐵𝐿 − 𝐵 𝜙 + (𝑛𝐿 − 𝑛 𝜙 )𝑤 |2 = |𝐵𝐿 − 𝐵 𝜙 |2 + 𝑤2 |𝑛𝐿 − 𝑛 𝜙 |2 + 2𝑤+𝐵𝐿 − 𝐵 𝜙 , 𝑛𝐿 − 𝑛 𝜙〉
≥ 𝐸2

2 + 2𝑤𝜇2(𝐵 𝜙 − 𝐵𝐿 , 𝑛 𝜙 − 𝑛𝐿)
> 𝐸2

2 ,

since 𝜇2(𝐿1, 𝑛 𝜙 − 𝑛𝐿) > 0. This inequality and the fact that 𝑝𝑇 is a simple binary collision imply that
𝑞1
𝐾(

> 0 and claims (𝐼), (𝐼𝐼), (𝐼𝐼𝐼) as well.
◦ 𝑝𝑇 is (𝐼, ,) binary precollisional configuration: We use the same argument for 𝑝 ′

𝑇 which is (𝐼, ,)
binary postcollisional.

◦ 𝑝𝑇 is an (𝐼; , , 𝜈) ternary postcollisional configuration: For any 𝑤 > 0, we have

|𝐵𝐿 − 𝐵 𝜙 + (𝑛𝐿 − 𝑛 𝜙 )𝑤 |2 + |𝐵𝐿 − 𝐵𝜆 + (𝑛𝐿 − 𝑛𝜆 )𝑤 |2

= |𝐵𝐿 − 𝐵 𝜙 |2 + |𝐵𝐿 − 𝐵𝜆 |2 + 𝑤2
(
|𝑛𝐿 − 𝑛 𝜙 |2 + |𝑛𝐿 − 𝑛𝜆 |2

)
+ 2𝑤

(
+𝐵𝐿 − 𝐵 𝜙 , 𝑛𝐿 − 𝑛 𝜙〉 + +𝐵𝐿 − 𝐵𝜆 , 𝑛𝐿 − 𝑛𝜆〉

)
≥ 2𝐸2

3 + 2𝑤𝜇3 (𝐵 𝜙 − 𝐵𝐿 , 𝐵𝜆 − 𝐵𝐿 , 𝑛 𝜙 − 𝑛𝐿 , 𝑛𝜆 − 𝑛𝐿)
> 2𝐸2

3 ,

since 𝜇3(𝐿1,𝐿2, 𝑛 𝜙 −𝑛𝐿 , 𝑛𝜆 −𝑛𝐿) > 0. This inequality and the fact that 𝑝𝑇 is a simple ternary collision
imply that 𝑞1

𝐾(
> 0 and claims (𝐼), (𝐼𝐼), (𝐼𝑛) as well.

◦ 𝑝𝑇 is an (𝐼; , , 𝜈) ternary precollisional configuration: We use the same argument for 𝑝∗
𝑇 which is

(𝐼; , , 𝜈) ternary postcollisional.

"

Let us make an elementary but crucial remark.

Remark 3.14. Clearly, for configurations with 𝑞1
𝐾(

= ∞, the flow is globally defined as the free flow.
In the case where 𝑞1

𝐾(
< ∞ and 𝑝𝑇 (𝑞1

𝐾(
) is a non-grazing (𝐼, ,) collision or non-grazing (𝐼; , , 𝜈)

collision, we may apply Lemma 3.13 once more and get a corresponding time 𝑞2
𝐾(

with the property
that 𝑝𝑇 (𝑞2

𝐾(
) ∉ Σ2

𝐿 𝜙 or 𝑝𝑇(𝑞2
𝐾(

) ∉ Σ3
𝐿 𝜙𝜆 , respectively, if 𝑞2

𝐾(
< ∞. Therefore, in this case, the flow can

be defined up to time 𝑞2
𝐾(

.

Remark 3.15. Note that Lemma 3.13 implies that given a non-grazing (𝐼, ,) collision, the next collision
(if it happens) will not be (𝐼, ,). Similarly, given a non-grazing (𝐼; , , 𝜈) collision, the next collision (if
it happens) will not be (𝐼; , , 𝜈). However, Lemma 3.13 does not imply that the same particles are not
involved in a collision of a different type. For instance, one could have the sequence of collisions (𝐼, ,)
and (𝐼; , , 𝜈), or (𝐼; , , 𝜈) and (𝐼, ,), etc. All these cases will be taken into account when establishing a
global flow in Subsection 3.4.

Remark 3.16. Similar results hold for the case 𝑅 = 2 where there are no ternary interactions.
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3.4. Extension to a global flow
Now, we extract a zero measure set from D∗

𝑇,𝑈2 ,𝑈3 such that the flow is globally defined on the
complement. For this purpose, we will first truncate positions and velocities using two parameters
1 << H < 𝜂 and then perform time truncation with a small parameter I in the scaling:

0 < IH << 𝐸2 < 𝐸3 < 1 << H < 𝜂. (3.27)

Throughout this subsection, we consider parameters satisfying the scaling (3.27).
Recall that given 𝑊 > 0, we denote the 𝑟𝑅-ball of radius 𝑊 > 0, centered at the origin as 𝜉𝛽𝑇𝐼 . We

first assume initial positions are in 𝜉𝛽𝑇𝐽 and initial velocities in 𝜉𝛽𝑇; .
For 𝑅 ≥ 2, we decompose 𝑒∗

𝑇,𝑈2 ,𝑈3 ∩ (𝜉𝛽𝑇𝐽 × 𝜉𝛽𝑇; ) in the following subsets:

J < 𝐼== =
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ 𝑒∗

𝑇,𝑈2 ,𝑈3 ∩ (𝜉𝛽𝑇𝐽 × 𝜉𝛽𝑇; ) : 𝑞1
𝐾(

> I
}
,

J1
.8,𝜂: =

{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ 𝑒∗

𝑇,𝑈2 ,𝑈3 ∩ (𝜉𝛽𝑇𝐽 × 𝜉𝛽𝑇; ) : 𝑞1
𝐾(

≤ I, 𝑝𝑇 (𝑞1
𝐾(

) ∈ ℓ.8,𝜂:D𝑇,𝑈2 ,𝑈3 , 𝑞
2
𝐾(

> I
}
,

J1
.8,: =

{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ 𝑒∗

𝑇,𝑈2 ,𝑈3 ∩ (𝜉𝛽𝑇𝐽 × 𝜉𝛽𝑇; ) : 𝑞1
𝐾(

≤ I, 𝑝𝑇 (𝑞1
𝐾(

) ∈ ℓ.8D𝑇,𝑈2 ,𝑈3 ,

and 𝑝𝑇 (𝑞1
𝐾(

) is grazing
}
,

J1
𝑇9 =

{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ 𝑒∗

𝑇,𝑈2 ,𝑈3 ∩ (𝜉𝛽𝑇𝐽 × 𝜉𝛽𝑇; ) : 𝑞1
𝐾(

≤ I, 𝑝𝑇 (𝑞1
𝐾(

) ∈ ℓ𝑇9D𝑇,𝑈2 ,𝑈3

}
,

J2
.8,𝜂: =

{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ 𝑒∗

𝑇,𝑈2 ,𝑈3 ∩ (𝜉𝛽𝑇𝐽 × 𝜉𝛽𝑇; ) : 𝑞1
𝐾(

≤ I, 𝑝𝑇 (𝑞1
𝐾(

) ∈ ℓ.8,𝜂:D𝑇,𝑈2 ,𝑈3 , 𝑞
2
𝐾(

≤ I
}
.

We remark that there is a well-defined flow up to time I for 𝑝𝑇 ∈ J < 𝐼== ∪ J1
.8,𝜂:, since in such

cases, one has at most one simple non-grazing collision in [0, I]. We aim to estimate the measure of the
pathological set J1

.8,: ∪ J1
𝑇9 ∪ J2

.8,𝜂:, with respect to the truncation parameters.
Before proceeding to the next result, let us note that conservation of energy (2.5), (2.13) imply the

following elementary but useful remark:

Remark 3.17. The following hold:

◦ For 𝑅 ≥ 2: 𝑝𝑇 ∈ ℓ2,.8D𝑇,𝑈2 ,𝑈3 ∩ (R𝛽𝑇 × 𝜉𝛽𝑇; ) ⇔ 𝑝 ′
𝑇 ∈ ℓ2,.8D𝑇,𝑈2 ,𝑈3 ∩ (R𝛽𝑇 × 𝜉𝛽𝑇; ).

◦ For 𝑅 ≥ 3: 𝑝𝑇 ∈ ℓ3,.8D𝑇,𝑈2 ,𝑈3 ∩ (R𝛽𝑇 × 𝜉𝛽𝑇; ) ⇔ 𝑝∗
𝑇 ∈ ℓ3,.8D𝑇,𝑈2 ,𝑈3 ∩ (R𝛽𝑇 × 𝜉𝛽𝑇; ).

Lemma 3.18. For 𝑅 ≥ 3, the following inclusion holds:

J1
𝑇9 ∪ J2

.8,𝜂: ⊆ K22 ∪K23 ∪K32 ∪K33, (3.28)

where

K22 :=
⋃

(𝐿, 𝜙)≠(𝐿′, 𝜙′)∈I2
(

(K2
𝐿 𝜙 ∩K2

𝐿′ 𝜙′), (3.29)

K23 :=
⋃

(𝐿, 𝜙)∈I2
( , (𝐿′, 𝜙′,𝜆′)∈I3

(

(K2
𝐿 𝜙 ∩K3

𝐿′ 𝜙′𝜆′), (3.30)

K32 :=
⋃

(𝐿, 𝜙 ,𝜆)∈I3
( , (𝐿′, 𝜙′)∈I2

(

(K3
𝐿 𝜙𝜆 ∩K2

𝐿′ 𝜙′), (3.31)

K33 :=
⋃

(𝐿, 𝜙 ,𝜆)≠(𝐿′, 𝜙′,𝜆′)∈I3
(

(K3
𝐿 𝜙𝜆 ∩K3

𝐿′ 𝜙′𝜆′), (3.32)
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and given (𝐼, ,) ∈ I2
𝑇, (𝐼, , , 𝜈) ∈ I3

𝑇, we denote

K2
𝐿 𝜙 :=

{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ 𝜉𝛽𝑇𝐽 × 𝜉𝛽𝑇; : 𝐸2 ≤ 𝑟2(𝐵𝐿 , 𝐵 𝜙 ) ≤ 𝐸2 + 2IH

}
. (3.33)

K3
𝐿 𝜙𝜆 :=

{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ 𝜉𝛽𝑇𝐽 × 𝜉𝛽𝑇; : 2𝐸2

3 ≤ 𝑟2
3 (𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) ≤ (

)
2𝐸3 + 4IH)2

}
. (3.34)

For 𝑅 = 2, we have J𝑇91 = J2
.8,𝜂: = ∅.

Proof. For 𝑅 = 2, we have that ℓ𝑇9D2,𝑈2 ,𝑈3 = ∅, and hence, J1
𝑇9 = ∅. Also, since 𝑅 = 2, we trivially

obtain I2 = {(1, 2)}, and hence, Remark 3.14 implies that 𝑞2
𝐾(

= ∞ (i.e., J2
.8,𝜂: = ∅).

Assume now that 𝑅 ≥ 3. We prove the inclusion only for J2
.8,𝜂:; the inclusion for J1

𝑇9 is similar but
simpler. We first assume that either 𝑝𝑇 ∈ D̊𝑇,𝑈2 ,𝑈3 or 𝑝𝑇 is postcollisional. Therefore, up to time 𝑞1

𝐾(
,

we have free flow (i.e., 𝑝𝑇 (𝑤) = (𝐴𝑇 + 𝑤𝛽𝑇,𝛽𝑇), for all 𝑤 ∈ [0, 𝑞1
𝐾(

]). Remark 3.14 guarantees that
{
𝑝𝑇(𝑞1

𝐾(
) ∈ Σ2

𝐿 𝜙 ⇒ 𝑝𝑇(𝑞2
𝐾(

) ∉ Σ2
𝐿 𝜙 ,

𝑝𝑇(𝑞1
𝐾(

) ∈ Σ3
𝐿 𝜙𝜆 ⇒ 𝑝𝑇 (𝑞2

𝐾(
) ∉ Σ3

𝐿 𝜙𝜆 .
(3.35)

We claim the following:

1. 𝑝𝑇 (𝑞1
𝐾(

) ∈ Σ2
𝐿 𝜙 , 𝑝𝑇 (𝑞2

𝐾(
) ∈ Σ2

𝐿′ 𝜙′ ⇒ 𝑝𝑇 ∈ K2
𝐿 𝜙 ∩K2

𝐿′ 𝜙′ , ∀(𝐼, ,), (𝐼′, , ′) ∈ I2
𝑇.

2. 𝑝𝑇 (𝑞1
𝐾(

) ∈ Σ2
𝐿 𝜙 , 𝑝𝑇 (𝑞2

𝐾(
) ∈ Σ3

𝐿′ 𝜙′𝜆′ ⇒ 𝑝𝑇 ∈ K2
𝐿 𝜙 ∩K3

𝐿′ 𝜙′𝜆′ , ∀(𝐼, ,) ∈ I3
𝑇, ∀(𝐼′, , , 𝜈 ′) ∈ I3

𝑇.
3. 𝑝𝑇 (𝑞1

𝐾(
) ∈ Σ3

𝐿 𝜙𝜆 ,𝑝𝑇 (𝑞2
𝐾(

) ∈ Σ2
𝐿′ 𝜙′ ⇒ 𝑝𝑇 ∈ K3

𝐿 𝜙𝜆 ∩K2
𝐿′ 𝜙′ , ∀(𝐼, , , 𝜈) ∈ I3

𝑇, ∀(𝐼′, , ′) ∈ I2
𝑇.

4. 𝑝𝑇 (𝑞1
𝐾(

) ∈ Σ3
𝐿 𝜙𝜆 ,𝑝𝑇 (𝑞2

𝐾(
) ∈ Σ3

𝐿′ 𝜙′𝜆′ ⇒ 𝑝𝑇 ∈ K2
𝐿 𝜙 ∩K3

𝐿′ 𝜙′𝜆′ , ∀(𝐼, , , 𝜈), (𝐼′, , ′, 𝜈 ′) ∈ I3
𝑇.

By (3.35), proving claims (I)–(IV) imply inclusion (3.28) for J2
.8,𝜂:.

Without loss of generality, we prove claim (III). We have 𝑝𝑇(𝑞1
𝐾(

) ∈ Σ3
𝐿 𝜙𝜆 ∩ Σ2

𝐿′ 𝜙′ ; therefore,

𝑟2
3

(
𝐵𝐿

(
𝑞1
𝐾(

)
; 𝐵 𝜙

(
𝑞1
𝐾(

)
, 𝐵𝜆

(
𝑞1
𝐾(

))
= 2𝐸2

3 , 𝑟2
(
𝐵𝐿′

(
𝑞1
𝐾(

)
, 𝐵 𝜙′

(
𝑞1
𝐾(

))
= 𝐸2. (3.36)

Since there is free motion up to 𝑞1
𝐾(

, triangle inequality implies

|𝐵𝐿 − 𝐵 𝜙 | ≤ |𝐵𝐿 (𝑞1
𝐾(

) − 𝐵 𝜙 (𝑞1
𝐾(

) | + I |𝑛𝐿 − 𝑛 𝜙 | ≤ |𝐵𝐿 (𝑞1
𝐾(

) − 𝐵 𝜙 (𝑞1
𝐾(

) | + 2IH. (3.37)

Since there is an (𝐼; , , 𝜈) ternary collision at 𝑞1
𝐾(

, we have

|𝐵𝐿 (𝑞1
𝐾(

) − 𝐵 𝜙 (𝑞1
𝐾(

) |2 + |𝐵𝐿 (𝑞1
𝐾(

) − 𝐵𝜆 (𝑞1
𝐾(

) |2 = 2𝐸2
3 ⇒ |𝐵𝐿 (𝑞1

𝐾(
) − 𝐵 𝜙 (𝑞1

𝐾(
) | ≤

)
2𝐸3. (3.38)

Combining (3.37)–(3.38), we obtain

|𝐵𝐿 − 𝐵 𝜙 |2 ≤ |𝐵𝐿 (𝑞1
𝐾(

) − 𝐵 𝜙 (𝑞1
𝐾(

) |2 + 4
)

2𝐸3IH + 4I2H2. (3.39)

Using the same argument for the pair (𝐼, 𝜈), adding and recalling the fact that there is (𝐼; , , 𝜈) collision
at 𝑞1

𝐾(
, we obtain

2𝐸2
3 ≤ 𝑟2

3 (𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) ≤ 2𝐸2
3 + 8

)
2𝐸3HI + 8IH2 ≤ 2𝐸2

3 + 8
)

2𝐸3HI + 16IH2 = (
)

2𝐸3 + 4IH)2,

where the lower inequality holds trivially since 𝑝𝑇 ∈ D𝑇,𝑈2 ,𝑈3 . Hence, 𝑝𝑇 ∈ K3
𝐿 𝜙𝜆 .

We wish to prove as well 𝑝𝑇 ∈ K2
𝐿′ 𝜙′ ; that is,

𝐸2 ≤ 𝑟2(𝐵𝐿′ , 𝐵 𝜙′) ≤ 𝐸2 + 2IH.
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The first inequality trivially holds because of the phase space. To prove the second inequality, we
distinguish the following cases:

1. 𝐼′, , ′ ∉ {𝐼, , , 𝜈}: Since particles (𝐼′, , ′) perform free motion up to 𝑞2
𝐾(

, triangle inequality and the
facts that 𝑝𝑇 (𝑞2

𝐾(
) ∈ Σ2

𝐿′, 𝜙′ , 𝑞2
𝐾(

≤ I imply

|𝐵𝐿′ − 𝐵 𝜙′ | ≤ |𝐵𝐿′ (𝑞2
𝐾(

) − 𝐵𝐿′ (𝑞2
𝐾(

) | + 2𝑞2
𝐾(
H ≤ 𝐸2 + 2IH,

and thus, 𝑝𝑇 ∈ K𝐿′ 𝜙′ .
2. There is at least one recollision (i.e., at least one of 𝐼′, , ′ belongs to {𝐼, , , 𝜈}): The argument is similar

to (i), the only difference being that velocities of the recolliding particles transform at 𝑞1
𝐾(

. Since the
argument is similar for all cases, let us provide a detailed proof only for one recollisional case – for
instance, (𝐼′, , ′) = (𝐼, 𝜈). We have

𝐵𝐿 (𝑞2
𝐾(

) = 𝐵𝐿 (𝑞1
𝐾(

) + (𝑞2
𝐾(

− 𝑞1
𝐾(

)𝑛∗𝐿 = 𝐵𝐿 + 𝑞1
𝐾(
𝑛𝐿 + (𝑞2

𝐾(
− 𝑞1

𝐾(
)𝑛∗𝐿 ,

𝐵𝜆 (𝑞2
𝐾(

) = 𝐵𝜆 (𝑞1
𝐾(

) + (𝑞2
𝐾(

− 𝑞1
𝐾(

)𝑛∗𝜆 = 𝐵𝜆 + 𝑞1
𝐾(
𝑛𝜆 + (𝑞2

𝐾(
− 𝑞1

𝐾(
)𝑛∗𝜆 ,

so

𝐵𝐿 − 𝐵𝜆 = 𝐵𝐿 (𝑞2
𝐾(

) − 𝐵𝜆 (𝑞2
𝐾(

) − 𝑞1
𝐾(

(𝑛𝐿 − 𝑛𝜆 ) − (𝑞2
𝐾(

− 𝑞1
𝐾(

) (𝑛∗𝐿 − 𝑛∗𝜆 ).

Therefore, triangle inequality, conservation of energy and the facts that 𝑝𝑇(𝑞2
𝐾(

) ∈ Σ2
𝐿,𝜆 , 𝑞2

𝐾(
≤ I

imply

|𝐵𝐿 − 𝐵𝜆 | ≤ |𝐵𝐿 (𝑞2
𝐾(

) − 𝐵𝜆 (𝑞2
𝐾(

) | + 𝑞1
𝐾(

|𝑛𝐿 − 𝑛𝜆 | + (𝑞2
𝐾(

− 𝑞1
𝐾(

) |𝑛∗𝐿 − 𝑛∗𝜆 |
≤ |𝐵𝐿 (𝑞2

𝐾(
) − 𝐵𝜆 (𝑞2

𝐾(
) | + 2𝑞1

𝐾(
H + 2(𝑞2

𝐾(
− 𝑞1

𝐾(
)H

= |𝐵𝐿 (𝑞2
𝐾(

) − 𝐵𝜆 (𝑞2
𝐾(

) | + 2𝑞2
𝐾(
H

≤ 𝐸2 + 2IH,

and hence, 𝑝𝑇 ∈ K2
𝐿,𝜆 . All the other recollisional cases are proved similarly.

Therefore, 𝑝𝑇 ∈ K3
𝐿 𝜙𝜆 ∩ K2

𝐿′ 𝜙′ , and claim (III) follows. The rest of the claims are proved in the same
spirit. We conclude that

J2
.8,𝜂: ⊆ K22 ∪K23 ∪K32 ∪K33. (3.40)

Assume now that 𝑝𝑇 is precollisional. Therefore, we obtain

𝑝𝑇 (𝑤) =
{
(𝐴𝑇 + 𝑤𝛽 ′

𝑇,𝛽
′
𝑇), ∀𝑤 ∈ [0, 𝑞1

𝐾(
], if 𝑝𝑇 ∈ ℓ2,.8D𝑇,𝑈2 ,𝑈3

(𝐴𝑇 + 𝑤𝛽∗
𝑇,𝛽

∗
𝑇), ∀𝑤 ∈ [0, 𝑞1

𝐾(
], if 𝑝𝑇 ∈ ℓ3,.8D𝑇,𝑈2 ,𝑈3 ,

where the collisional transformation is taken with respect to the initial collisional particles. The proof
follows the same lines, using Remark 3.17 for the initial collisional particles whenever needed. "

Now we wish to estimate the measure of J1
.8,: ∪ J1

𝑇9 ∪ J2
.8,𝜂: in order to show that outside of a small

measure set, we have a well defined flow. Let us first introduce some notation.
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For 𝑅 ≥ 2, (𝐼, ,) ∈ I2
𝑇, a permutation L : {𝐼, ,} ( {𝐼, ,} and 𝐵> $ ∈ R𝛽 , we define the set

𝐺>! (𝐵> $ ) = {𝐵>! ∈ R𝛽 : (𝐵𝐿 , 𝐵 𝜙 ) ∈ K2
𝐿 𝜙 }. (3.41)

For𝑅 ≥ 3, (𝐼, , , 𝜈) ∈ I3
𝑇, a permutation L : {𝐼, , , 𝜈} ( {𝐼, , , 𝜈} and (𝐵> $ , 𝐵>% ) ∈ R2𝛽 , we define the set

𝐺>! (𝐵> $ , 𝐵>% ) = {𝐵>! ∈ R𝛽 : (𝐵𝐿 , 𝐵 𝜙 , 𝐵𝜆 ) ∈ K3
𝐿 𝜙𝜆 }. (3.42)

Lemma 3.19. The following hold

1. Let 𝑅 ≥ 2, (𝐼, , , 𝜈) ∈ I2
𝑇, a permutation L : {𝐼, ,} ( {𝐼, ,} and 𝐵> $ ∈ R𝛽 . Then

|𝐺>! (𝐵> $ ) |𝛽 ≤ >𝛽,;I. (3.43)

2. Let 𝑅 ≥ 3, (𝐼, , , 𝜈) ∈ I3
𝑇, a permutation L : {𝐼, , , 𝜈} ( {𝐼, , , 𝜈} and (𝐵> $ , 𝐵>% ) ∈ R2𝛽 . Then

|𝐺>! (𝐵> $ , 𝐵>% ) |𝛽 ≤ >𝛽,;I. (3.44)

Proof. For proof of estimate (3.44), we refer to Lemma 3.10. in [5].
Let us prove (3.43). Consider (𝐼, ,) ∈ I2

𝑇, and assume without loss of generality that L(𝐼, ,) = (𝐼, ,).
Let 𝐵 𝜙 ∈ R𝛽 . Recalling (3.41), we obtain

𝐺𝐿 (𝐵 𝜙 ) =
{
𝐵𝐿 ∈ R𝛽 : 𝐸2 ≤ |𝐵𝐿 − 𝐵 𝜙 | ≤ 𝐸2 + 2IH

}
,

and thus, 𝐺𝐿 (𝐵 𝜙 ) is a spherical shell in R𝛽 of inner radius 𝐸2 and outer radius 𝐸2 + 2IH. Therefore, by
scaling (3.27), we obtain

|𝐺𝐿 (𝐵 𝜙 ) |𝛽 ' (𝐸2 + 2IH)𝛽 − 𝐸𝛽2 = 2IH
𝛽−1∑
𝜃=0

(𝐸2 + 2IH)𝛽−1−𝜃𝐸𝜃2 ≤ >𝛽,;I.

"

Remark 3.20. Estimates of Lemma 3.19 are not sufficient to generate a global flow because I represents
the length of an elementary time step; therefore iterating, we cannot eliminate pathological sets. We
will derive a better estimate of order I2 to achieve this elimination.

Lemma 3.21. Let 𝑅 ≥ 2, 1 < H < 𝜂 and 0 < IH < 𝐸2 < 𝐸3 < 1. Then the following estimate holds:

|J1
.8,: ∪ J1

𝑇9 ∪ J2
.8,𝜂: |2𝛽𝑇 ≤ >𝑇,𝛽,;𝜂

𝛽 (𝑇−2)I2. (3.45)

Proof. We first note that J.8,: is of zero measure since it is covered by lower codimension submanifolds
of the phase spase; therefore, it suffices to estimate the measure of J1

𝑇9 ∪ J2
.8,𝜂:. For 𝑅 = 2, the result

comes trivially from Lemma 3.18. For 𝑅 ≥ 3, we have

J1
𝑇9 ∪ J2

.8,𝜂: = K22 ∪K23 ∪K32 ∪K33,

where K22,K23,K32,K33 are given by (3.29)–(3.32). Therefore, it suffices to estimate the measure of
K22,K23,K32,K33. We will strongly rely on Lemma 3.19.

◦ Estimate of K22: By (3.29), we have

K22 =
⋃

(𝐿, 𝜙)≠(𝐿′, 𝜙′)∈I2
(

(K2
𝐿 𝜙 ∩K2

𝐿′ 𝜙′).
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Consider (𝐼, ,) ≠ (𝐼′, , ′) ∈ I2
𝑇. We distinguish the following possible cases:

1. 𝐼′, , ′ ∉ {𝐼, ,}: By (3.33), followed by Fubini’s Theorem and part (i) of Lemma 3.19, we have

|K2
𝐿 𝜙 ∩K2

𝐿′ 𝜙′ |2𝛽𝑇 ! H𝛽𝑇𝜂𝛽 (𝑇−4)
∫
?4"
)

1𝐴2
! (𝜇 $ )∩𝐴2

!′ (𝜇 $′ )
𝑟𝐵𝐿 𝑟𝐵𝐿′ 𝑟𝐵 𝜙 𝑟𝐵 𝜙′

≤ H𝛽𝑇𝜂𝛽 (𝑇−4)
(∫
?"
)

∫
R"

1𝐴2
! (𝜇 $ ) 𝑟𝐵𝐿 𝑟𝐵 𝜙

) (∫
?"
)

∫
R"

1𝐴2
!′ (𝜇 $′ )

𝑟𝐵𝐿′ 𝑟𝐵 𝜙′

)

≤ >𝛽,;𝜂𝛽 (𝑇−2)I2.

2. Exactly one of 𝐼′, , ′ belongs to {𝐼, ,}: Without loss of generality, we consider the case (𝐼′, , ′) = ( , , , ′),
for some , ′ > , , and all other cases follow similarly. Fubini’s Theorem and part (i) of Lemma 3.19
imply

|K2
𝐿 𝜙 ∩K2

𝜙 𝜙′ |2𝛽𝑇 ! H𝛽𝑇𝜂𝛽 (𝑇−3)
∫
?3"
)

1𝐴2
! (𝜇 $ )∩𝐴2

$ (𝜇 $′ ) 𝑟𝐵 𝜙 𝑟𝐵 𝜙
′ 𝑟𝐵𝐿

≤ H𝛽𝑇𝜂𝛽 (𝑇−3)
∫
?"
)

(∫
R"

1𝐴2
! (𝜇 $ ) 𝑟𝐵𝐿

) (∫
R"

1𝐴2
$′ (𝜇 $ )

𝑟𝐵 𝜙′

)
𝑟𝐵 𝜙

≤ >𝛽,;𝜂𝛽 (𝑇−2)I2.

Combining cases (I)–(II), we obtain

|K22 |2𝛽𝑇 ≤ >𝑇,𝛽,;𝜂
𝛽 (𝑇−2)I2. (3.46)

◦ Estimate of K23: By (3.30), we have

K23 =
⋃

(𝐿, 𝜙)∈I2
( , (𝐿′, 𝜙′,𝜆′)∈I3

(

(K2
𝐿 𝜙 ∩K3

𝐿′ 𝜙′𝜆′).

Consider (𝐼, ,) ∈ I2
𝑇, (𝐼′, , ′, 𝜈 ′) ∈ I3

𝑇. We distinguish the following possible cases:

1. 𝐼′, , ′, 𝜈 ′ ∉ {𝐼, ,}: By Fubini’s Theorem and parts (i)–(ii) of Lemma 3.19, we obtain

|K2
𝐿 𝜙 ∩K3

𝐿′ 𝜙′𝜆′ |2𝛽𝑇 ! H𝛽𝑇𝜂𝛽 (𝑇−5)
∫
?5"
)

1𝐴2
$ (𝜇!)∩𝐴3

%′ (𝜇!′ ,𝜇 $′ )
𝑟𝐵𝐿 𝑟𝐵 𝜙 𝑟𝐵𝐿′ 𝑟𝐵 𝜙′ 𝑟𝐵𝜆′

≤ H𝛽𝑇𝜂𝛽 (𝑇−5)
(∫
?"
)

∫
R"

1𝐴2
$ (𝜇!) 𝑟𝐵𝐿 𝑟𝐵 𝜙

) (∫
?"
)×?"

)

∫
R"

1𝐴3
%′ (𝜇!′ ,𝜇 $′ )

𝑟𝐵𝐿′ 𝑟𝐵 𝜙′ 𝑟𝐵𝜆′

)

≤ >𝛽,;𝜂𝛽 (𝑇−2)I2.

2. Exactly one of 𝐼′, , ′, 𝜈 ′ belongs in {𝐼, ,}: Without loss of generality, we consider the case (𝐼′, , ′, 𝜈 ′) :=
(𝐼′, 𝐼, 𝜈 ′), for some 𝐼′ < 𝐼 < 𝜈 ′, and all other cases follow similarly. Using Fubini’s Theorem and
parts (i)–(ii) of Lemma 3.19, we obtain

|K2
𝐿 𝜙 ∩K𝐿′𝐿𝜆′ |2𝛽𝑇 ! H𝛽𝑇𝜂𝛽 (𝑇−4)

∫
?4"
)

1𝐴2
$ (𝜇! )∩𝐴3

!′ (𝜇! ,𝜇%′ )
𝑟𝐵𝐿 𝑟𝐵 𝜙 𝑟𝐵𝐿′ 𝑟𝐵𝜆′

≤ H𝛽𝑇𝜂𝛽 (𝑇−4)
∫
?"
)

(∫
R"

1𝐴2
$ (𝜇! ) 𝑟𝐵 𝜙

) (∫
?"
)

∫
R"

1𝐴3
!′ (𝜇! ,𝜇%′ )

𝑟𝐵𝐿′ 𝑟𝐵𝜆′

)
𝑟𝐵𝐿

≤ >𝛽,;𝜂𝛽 (𝑇−2)I2.
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3. Exactly two of 𝐼′, , ′, 𝜈 ′ belongs in {𝐼, ,}: Without loss of generality, we consider the case (𝐼′, , ′, 𝜈 ′) =
(𝐼′, 𝐼, ,), for some 𝐼′ < 𝐼, and all other cases follow similarly. Using Fubini’s Theorem and parts (i)–
(ii) of Lemma 3.19, we obtain

|K2
𝐿 𝜙 ∩K3

𝐿′𝐿 𝜙 |2𝛽𝑇 ! H𝛽𝑇𝜂𝛽 (𝑇−3)
∫
?3"
)

1𝐴2
! (𝜇 $ )∩𝐴3

!′ (𝜇! ,𝜇 $ )
𝑟𝐵𝐿 𝑟𝐵 𝜙 𝑟𝐵𝐿′

≤ H𝛽𝑇𝜂𝛽 (𝑇−3)
∫
?"
)×?"

)

(∫
R"

1𝐴2
! (𝜇 $ )1𝐴3

!′ (𝜇! ,𝜇 $ )
𝑟𝐵𝐿′

)
𝑟𝐵𝐿 𝑟𝐵 𝜙

= H𝛽𝑇𝜂𝛽 (𝑇−3)
∫
?"
)×?"

)

1𝐴2
! (𝜇 $ ) (

∫
R"

1𝐴3
!′ (𝜇! ,𝜇 $ )

𝑟𝐵𝐿′) 𝑟𝐵𝐿 𝑟𝐵 𝜙

≤ >𝛽,;𝜂𝛽 (𝑇−3)I

∫
?"
)

∫
R"

1𝐴! (𝜇 $ ) 𝑟𝐵𝐿 𝑟𝐵 𝜙

≤ >𝛽,;𝜂𝛽 (𝑇−2)I2.

Combining cases (I)–(III), we obtain

|K23 |2𝛽𝑇 ≤ >𝑇,𝛽,;𝜂
𝛽 (𝑇−2)I2. (3.47)

◦ Estimate of K32: We use a similar argument to the estimate for K23 to obtain

|K32 |2𝛽𝑇 ≤ >𝑇,𝛽,;𝜂
𝛽 (𝑇−2)I2. (3.48)

◦ Estimate of K33: We refer to Lemma 3.11 from [5] for a detailed proof. We obtain

|K33 |2𝛽𝑇 ≤ >𝑇,𝛽,;𝜂
𝛽 (𝑇−2)I2. (3.49)

Combining (3.46)–(3.49), we obtain (3.45), and the proof is complete. "

We inductively use Lemma 3.21 to define a global flow which preserves energy for almost all
configuration. For this purpose, given 𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ R2𝛽𝑇, we define its kinetic energy as

M𝑇 (𝑝𝑇) =
1
2

𝑇∑
𝐿=1

|𝑛𝐿 |2. (3.50)

For convenience, let us define the m-particle free flow:

Definition 3.22. Let 𝑅 ∈ N. We define the m-particle free flow as the family of measure-preserving
maps (Φ𝐸𝑇)𝐸 ∈R : R2𝛽𝑇 ( R2𝛽𝑇, given by

Φ𝐸𝑇𝑝𝑇 = Φ𝐸𝑇(𝐴𝑇,𝛽𝑇) = (𝐴𝑇 + 𝑤𝛽𝑇,𝛽𝑇). (3.51)

We are now in the position to state the Existence Theorem of the m-particle (𝐸2,𝐸3)-flow.

Theorem 3.23. Let 𝑅 ∈ N and 0 < 𝐸2 < 𝐸3 < 1. There exists a full measure subset Γ𝑇,𝑈2 ,𝑈3 ⊆
D∗
𝑇,𝑈2 ,𝑈3 which is a countable intersection of dense open sets, and a measure-preserving family of dif-

feomorphisms (Ψ𝐸𝑇)𝐸 ∈R : Γ𝑇,𝑈2 ,𝑈3 ( Γ𝑇,𝑈2 ,𝑈3 such that

Ψ𝐸+.𝑇 𝑝𝑇 = (Ψ𝐸𝑇 ◦ Ψ.𝑇) (𝑝𝑇) = (Ψ.𝑇 ◦ Ψ𝐸𝑇) (𝑝𝑇), a.e. in Γ𝑇,𝑈2 ,𝑈3 , ∀𝑤, ℎ ∈ R, (3.52)

M𝑇
(
Ψ𝐸𝑇𝑝𝑇

)
= M𝑇(𝑝𝑇), a.e. in Γ𝑇,𝑈2 ,𝑈3 , ∀𝑤 ∈ R, where M𝑇 is given by (3.50). (3.53)
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Moreover, the flow is defined a.e. on Γ𝑇,𝑈 ∩ ℓ.8,𝜂:D𝑇,𝑈 with respect to the induced measure 𝑟𝐸
and preserves energy; that is,

Ψ𝐸𝑇𝑝
′
𝑇 = Ψ𝐸𝑇𝑝𝑇, 𝐸 − a.e. on Γ𝑇,𝑈2 ,𝑈3 ∩ ℓ2,.8D𝑇,𝑈2 ,𝑈3 , ∀𝑤 ∈ R, (3.54)

Ψ𝐸𝑇𝑝
∗
𝑇 = Ψ𝐸𝑇𝑝𝑇, 𝐸 − a.e. on Γ𝑇,𝑈2 ,𝑈3 ∩ ℓ3,.8D𝑇,𝑈2 ,𝑈3 , ∀𝑤 ∈ R, (3.55)

This family of maps is called the m-particle (𝐸2,𝐸3)-flow. For 𝑅 = 1, the flow is just the free flow.

Proof. The proof follows the same steps as the proof of Theorem 4.9.1 in [2], using the corresponding
estimates. For an outline of the proof, see Theorem 3.14 in [5] as well. "

3.5. The Liouville equation
Here, we introduce the flow operators used throughout the paper and formally derive the Liouville
equation for 𝑅 ≥ 2.

Definition 3.24. For 𝑤 ∈ R, we define the 𝐸-interaction zone flow of m-particles operator 𝜁 𝐸𝑇 :
N∞ (D𝑇,𝑈) ( N∞ (D𝑇,𝑈) as

𝜁 𝐸𝑇<𝑇 (𝑝𝑇) = <𝑇(Ψ−𝐸
𝑇 𝑝𝑇). (3.56)

Definition 3.25. For 𝑤 ∈ R and𝑅 ∈ N, we define the free flow of m-particles operator 𝐺𝐸𝑇 : N∞ (R2𝛽𝑇) (
N∞ (R2𝛽𝑇) as

𝐺𝐸𝑇<𝑇 (𝑝𝑇) = <𝑇(Φ−𝐸
𝑇 𝑝𝑇) = <𝑇 (𝐴𝑇 − 𝑤𝛽𝑇,𝛽𝑇). (3.57)

Given a symmetric with respect to the particles initial probability density 𝑦𝑇,0 in D𝑇,𝑈2 ,𝑈3 , we define
its evolution as 𝑦𝑇(𝑤, 𝑝𝑇) := 𝜁 𝐸𝑇 𝑦𝑇,0. Clearly, 𝑦𝑇 is symmetric and by Theorem 3.23 it formally satisfies
the m-particle Liouville equation

∫


ℓ𝐸 𝑦𝑇 +
𝑇∑
𝐿=1

𝑛𝐿 · ∇𝜇! 𝑦𝑇 = 0, (𝑤, 𝑝𝑇) ∈ (0,∞) × D̊𝑇,𝑈2 ,𝑈3

𝑦𝑇(𝑤, 𝑝 ′
𝑇) = 𝑦𝑇(𝑤, 𝑝𝑇), (𝑤, 𝑝𝑇) ∈ [0,∞) × ℓ2,.8D𝑇,𝑈2 ,𝑈3 ,

𝑦𝑇(𝑤, 𝑝∗
𝑇) = 𝑦𝑇(𝑤, 𝑝𝑇), (𝑤, 𝑝𝑇) ∈ [0,∞) × ℓ3,.8D𝑇,𝑈2 ,𝑈3 ,

𝑦𝑇(0, 𝑝𝑇) = 𝑦𝑇,0(𝑝𝑇), 𝑝𝑇 ∈ D̊𝑇,𝑈2 ,𝑈3 .

(3.58)

Let us note that in the case 𝑅 = 2, the equation has only binary boundary conditions.

4. BBGKY hierarchy, Boltzmann hierarchy and the binary-ternary Boltzmann equation
4.1. The BBGKY hierarchy
Consider N-particles of diameter 0 < 𝛿2 < 1 and interaction zone 0 < 𝛿3 < 1, where 𝑈 ≥ 3 and 𝛿2 < 𝛿3.
For ℎ ∈ N, we define the s-marginal of a symmetric probability density 𝑦𝑙 , supported in D𝑙 ,𝛿2 ,𝛿3 , as

𝑦 (.)𝑙 (𝑝.) =

∫


∫
R2" (#−&)

𝑦𝑙 (𝑝𝑙 ) 𝑟𝐵.+1... 𝑟𝐵𝑙 𝑟𝑛.+1... 𝑟𝑛𝑙 , 1 ≤ ℎ < 𝑈 ,

𝑦𝑙 , ℎ = 𝑈 ,
0, ℎ > 𝑈 ,

(4.1)
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where for 𝑝. = (𝐴. ,𝛽.) ∈ R2𝛽. , we write 𝑝𝑙 = (𝐴. , 𝐵.+1, ..., 𝐵𝑙 ,𝛽. , 𝑛.+1, ..., 𝑛𝑙 ). One can see, for all
1 ≤ ℎ ≤ 𝑈 , the marginals 𝑦 (.)𝑙 are symmetric probability densities, supported in D.,𝛿2 ,𝛿3 and

𝑦 (.)𝑙 (𝑝.) =
∫
R2"

𝑦 (.+1)
𝑙 (𝐴𝑙 ,𝛽𝑙 ) 𝑟𝐵.+1 𝑟𝑛.+1, ∀1 ≤ ℎ ≤ 𝑈 − 1.

Assume now that 𝑦𝑙 is formally the solution to the N-particle Liouville equation (3.58) with initial
data 𝑦𝑙 ,0. We seek to formally find a hierarchy of equations satisfied by the marginals of 𝑦𝑙 . For ℎ ≥ 𝑈 ,
by definition, we have

𝑦 (𝑙 )
𝑙 = 𝑦𝑙 , and 𝑦 (.)𝑙 = 0, for ℎ > 𝑈 . (4.2)

We observe that ℓD𝑙 ,𝛿2 ,𝛿3 is equivalent up to surface measure zero to Σ𝑀 × R𝛽𝑙 where

Σ𝑀 :=
⋃

(𝐿, 𝜙)∈I2
#

Σ2,.8,𝑀
𝐿 𝜙 ∪

⋃
(𝐿, 𝜙 ,𝜆)∈I3

#

Σ3,.8,𝑀
𝐿 𝜙𝜆 , (4.3)

Σ2,.8,𝑀
𝐿 𝜙 :=

{
𝐴𝑙 ∈ R𝛽𝑙 :𝑟2(𝐵𝐿 , 𝐵 𝜙 ) = 𝛿2, 𝑟2(𝐵𝐿′ , 𝐵 𝜙′) > 𝛿2, ∀(𝐼′, , ′) ∈ I2

𝑙 \ {(𝐼, ,)}

and 𝑟3(𝐵𝐿′ ; , 𝐵 𝜙′ , 𝐵𝜆′) >
)

2𝛿3, ∀(𝐼′, , ′, 𝜈 ′) ∈ I3
𝑙

}
,

Σ3,.8,𝑀
𝐿 𝜙𝜆 :=

{
𝐴𝑙 ∈ R𝛽𝑙 :𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) =

)
2𝛿3, 𝑟2(𝐵𝐿′ , 𝐵 𝜙′) > 𝛿2, ∀(𝐼′, , ′) ∈ I2

𝑙

and 𝑟3(𝐵𝐿′ ; , 𝐵 𝜙′ , 𝐵𝜆′) >
)

2𝛿3, ∀(𝐼′, , ′, 𝜈 ′) ∈ I3
𝑙 } \ {(𝐼, , , 𝜈)}

}
.

Notice that (4.3) is a pairwise disjoint union.

Remark 4.1. The assumption 𝛿2 < 𝛿3 made at at the beginning of the section is necessary for the ternary
contribution to be visible. Indeed, if 𝛿2 ≥ 𝛿3, Remark 3.1 and (3.23) would imply that Σ3,.8,𝑀

𝐿 𝜙𝜆 = ∅ for
all (𝐼, , , 𝜈) ∈ I3

𝑇, and therefore, there would not be a ternary collisional term.

The hierarchy for ℎ < 𝑈 will come after integrating by parts the Liouville equation (3.58). Consider
1 ≤ ℎ ≤ 𝑈 − 1. The boundary and initial conditions can be easily recovered integrating Liouville’s
equation boundary and initial conditions, respectively; that is,

∫


𝑦 (.)𝑙 (𝑤, 𝑝 ′
.) = 𝑦 (.)𝑙 (𝑤, 𝑝.), (𝑤, 𝑝.) ∈ [0,∞) × ℓ2,.8D.,𝛿2 ,𝛿3 , ℎ ≥ 2,

𝑦 (.)𝑙 (𝑤, 𝑝∗
. ) = 𝑦 (.)𝑙 (𝑤, 𝑝.), (𝑤, 𝑝.) ∈ [0,∞) × ℓ3,.8D.,𝛿2 ,𝛿3 , ℎ ≥ 3,

𝑦 (.)𝑙 (0, 𝑝.) = 𝑦 (.)𝑙 ,0(𝑝.), 𝑝. ∈ D̊.,𝛿2 ,𝛿3 .

(4.4)

Notice that for ℎ = 2, there is no ternary boundary condition, while for ℎ = 1, there is no boundary
condition at all.

Consider now a smooth test function O. compactly supported in (0,∞) × D.,𝛿2 ,𝛿3 such that the
following hold:

◦ For any (𝐼, ,) ∈ I2
𝑙 with , ≤ ℎ, we have

O. (𝑤, P.𝑝 ′
𝑙 ) = O. (𝑤, P.𝑝𝑙 ) = O. (𝑤, 𝑝.), ∀(𝑤, 𝑝𝑙 ) ∈ (0,∞) × Σ.8,2𝐿, 𝜙 , (4.5)

◦ For any (𝐼, , , 𝜈) ∈ I3
𝑙 with , ≤ ℎ, we have

O. (𝑤, P.𝑝∗
𝑙 ) = O. (𝑤, P.𝑝𝑙 ) = O. (𝑤, 𝑝.), ∀(𝑤, 𝑝𝑙 ) ∈ (0,∞) × Σ.8,3𝐿, 𝜙 ,𝜆 , (4.6)

where P. : R2𝛽𝑙 ( R2𝛽. denotes the natural projection in space and velocities, given by P. (𝑝𝑙 ) = 𝑝. .
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Multiplying the Liouville equation by O. and integrating, we obtain its weak form

∫
(0,∞)×D# ,'2 ,'3

(
ℓ𝐸 𝑦𝑙 (𝑤, 𝑝𝑙 ) +

𝑙∑
𝐿=1

𝑛𝐿∇𝜇! 𝑦𝑙 (𝑤, 𝑝𝑙 )
)
O. (𝑤, 𝑝.) 𝑟𝐴𝑙 𝑟𝛽𝑙 𝑟𝑤 = 0. (4.7)

For the time derivative in (4.7), we use Fubini’s Theorem, integration by parts in time, the fact that 𝑦𝑙 is
supported in (0,∞) ×D𝑙 ,𝛿2 ,𝛿3 and the fact that O. is compactly supported in (0,∞) ×D.,𝛿2 ,𝛿3 to obtain
∫
(0,∞)×D# ,'2 ,'3

ℓ𝐸 𝑦𝑙 (𝑤, 𝑝𝑙 )O. (𝑤, 𝑝.) 𝑟𝐴𝑙 𝑟𝛽𝑙 𝑟𝑤 =
∫
(0,∞)×D&,'2 ,'3

ℓ𝐸 𝑦
(.)
𝑙 (𝑤, 𝑝.)O. (𝑤, 𝑝.) 𝑟𝐴. 𝑟𝛽. 𝑟𝑤.

(4.8)

For the material derivative term in (4.7), the Divergence Theorem implies that

∫
D# ,'2 ,'3

𝑙∑
𝐿=1

𝑛𝐿∇𝜇! 𝑦𝑙 (𝑤, 𝑝𝑙 )O. (𝑤, 𝑝.) 𝑟𝐴𝑙 𝑟𝛽𝑙 =
∫

D# ,'2 ,'3

div𝑀# [ 𝑦𝑙 (𝑤, 𝑝𝑙 )𝛽𝑙 ]O. (𝑤, 𝑝.) 𝑟𝐴𝑙 𝑟𝛽𝑙

= −
∫

D# ,'2 ,'3

𝛽𝑙 · ∇𝑀# O. (𝑤, 𝑝.) 𝑦𝑙 (𝑤, 𝑝𝑙 ) 𝑟𝐴𝑙 𝑟𝛽𝑙+ (4.9)
∫
Σ*×R"#

𝑢̂(𝐴𝑙 ) · 𝛽𝑙 𝑦𝑙 (𝑤, 𝑝𝑙 )O. (𝑤, 𝑝.) 𝑟𝛽𝑙 𝑟𝐸,

where Σ𝑀 is given by (4.3), 𝑢̂(𝐴𝑙 ) is the outwards normal vector on Σ𝑀 at 𝐴𝑙 ∈ Σ𝑀 and 𝑟𝐸 is the
surface measure on Σ𝑀 . Using the fact that 𝑦𝑙 is supported in D𝑙 ,𝛿2 ,𝛿3 , Divergence Theorem and the
fact that O. is compactly supported in (0,∞) × D.,𝛿2 ,𝛿3 , we obtain

∫
D# ,'2 ,'3

𝛽𝑙 · ∇𝑀# O. (𝑤, 𝑝.) 𝑦𝑙 (𝑤, 𝑝𝑙 ) 𝑟𝐴𝑙 𝑟𝛽𝑙 = −
∫

D&,'2 ,'3

.∑
𝐿=1

𝑛𝐿∇𝜇! 𝑦
(.)
𝑙 (𝑤, 𝑝.)O. (𝑤, 𝑝.) 𝑟𝐴. 𝑟𝛽. .

(4.10)

Combining (4.7)–(4.10), and recalling the space boundary decomposition (4.3), we obtain

∫
(0,∞)×D&,'2 ,'3

(
ℓ𝐸 𝑦

(.)
𝑙 (𝑤, 𝑝.) +

.∑
𝐿=1

𝑛𝐿∇𝜇! 𝑦
(.)
𝑙 (𝑤, 𝑝.)

)
O. (𝑤, 𝑝.) 𝑟𝐴. 𝑟𝛽. 𝑟𝑤

= −
∫
(0,∞)×Σ*×R"#

𝑢̂(𝐴𝑙 ) · 𝛽𝑙 𝑦𝑙 (𝑤, 𝑝𝑙 )O. (𝑤, 𝑝.) 𝑟𝛽𝑙 𝑟𝐸 𝑟𝑤,

=:
∫ ∞

0

∑
(𝐿, 𝜙)∈I2

#

>2
𝐿 𝜙 (𝑤) +

∑
(𝐿, 𝜙 ,𝜆)∈I3

#

>3
𝐿 𝜙𝜆 (𝑤) 𝑟𝑤, (4.11)

where for (𝐼, ,) ∈ I2
𝑙 , 𝑤 > 0, we denote

>2
𝐿 𝜙 (𝑤) = −

∫
Σ2,&+,*
!, $ ×R"#

𝑢̂2
𝐿 𝜙 (𝐴𝑙 ) · 𝛽𝑙 𝑦𝑙 (𝑤, 𝑝𝑙 )O. (𝑤, 𝑝.) 𝑟𝛽𝑙 𝑟𝐸2

𝐿 𝜙 , (4.12)

for (𝐼, , , 𝜈) ∈ I3
𝑙 , 𝑤 > 0, we denote

>3
𝐿 𝜙𝜆 (𝑤) = −

∫
Σ3,&+,*
!, $,% ×R"#

𝑢̂3
𝐿 𝜙𝜆 (𝐴𝑙 ) · 𝛽𝑙 𝑦𝑙 (𝑤, 𝑝𝑙 )O. (𝑤, 𝑝.) 𝑟𝛽𝑙 𝑟𝐸3

𝐿 𝜙𝜆 , (4.13)
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30 I. Ampatzoglou and N. Pavlović

and 𝑢̂2
𝐿 𝜙 (𝐴𝑙 ) is the outwards normal vector on Σ2,.8,𝑀

𝐿 𝜙 at 𝐴𝑙 ∈ Σ2,.8,𝑀
𝐿 𝜙 , 𝑟𝐸2

𝐿 𝜙 is the surface measure
on Σ2,.8,𝑀

𝐿 𝜙 , while 𝑢̂3
𝐿 𝜙𝜆 (𝐴𝑙 ) is the outwards normal vector on Σ3,.8,𝑀

𝐿 𝜙𝜆 at 𝐴𝑙 ∈ Σ3,.8,𝑀
𝐿 𝜙𝜆 and 𝑟𝐸3

𝐿 𝜙𝜆 is the
surface measure on Σ3,.8,𝑀

𝐿 𝜙𝜆 .
Following similar calculations to [18] which treats the binary case, and [5] which treats the ternary

case, we formally obtain the BBGKY hierarchy:

∫


ℓ𝐸 𝑦
(.)
𝑙 +

.∑
𝐿=1

𝑛𝐿∇𝜇! 𝑦
(.)
𝑙 = C𝑙.,.+1 𝑦

(.+1)
𝑙 + C𝑙.,.+2 𝑦

(.+2)
𝑙 , (𝑤, 𝑝.) ∈ (0,∞) × D̊.,𝛿2 ,𝛿3 ,

𝑦 (.)𝑙 (𝑤, 𝑝 ′
.) = 𝑦 (.)𝑙 (𝑤, 𝑝.), (𝑤, 𝑝.) ∈ [0,∞) × ℓ2,.8D.,𝛿2 ,𝛿3 , whenever ℎ ≥ 2,

𝑦 (.)𝑙 (𝑤, 𝑝∗
. ) = 𝑦 (.)𝑙 (𝑤, 𝑝.), (𝑤, 𝑝.) ∈ [0,∞) × ℓ3,.8D.,𝛿2 ,𝛿3 , whenever ℎ ≥ 3,

𝑦 (.)𝑙 (0, 𝑝.) = 𝑦 (.)𝑙 ,0 (𝑝.), 𝑝. ∈ D̊.,𝛿2 ,𝛿3 ,

(4.14)

where

C𝑙.,.+1 = C𝑙 ,+
.,.+1 − C𝑙 ,−

.,.+1, (4.15)

C𝑙.,.+2 = C𝑙 ,+
.,.+2 − C𝑙 ,−

.,.+2, (4.16)

and we use the following notation:
◦ Binary notation: For 1 ≤ ℎ ≤ 𝑈 − 1, we denote

C𝑙 ,+
.,.+1 𝑦

(.+1)
𝑙 (𝑤, 𝑝.) = Q2

𝑙 ,𝛿2 ,.

.∑
𝐿=1

∫
S"−1

1 ×R"
𝜇+2 (𝐿1, 𝑛.+1 − 𝑛𝐿) 𝑦 (.+1)

𝑙

(
𝑤, 𝑝 ′

.+1,𝛿2 ,𝐿

)
𝑟𝐿1 𝑟𝑛.+1, (4.17)

C𝑙 ,−
.,.+1 𝑦

(.+2)
𝑙 (𝑤, 𝑝.) = Q2

𝑙 ,𝛿2 ,.

.∑
𝐿=1

∫
S"−1

1 ×R"
𝜇+2 (𝐿1, 𝑛.+1 − 𝑛𝐿) 𝑦 (.+1)

𝑙

(
𝑤, 𝑝.+1,𝛿2 ,𝐿

)
𝑟𝐿1 𝑟𝑛.+1, (4.18)

where

𝜇2(𝐿1, 𝑛.+1 − 𝑛𝐿) = +𝐿1, 𝑛.+1 − 𝑛𝐿〉,
𝜇+2 = max{𝜇2, 0},
Q2
𝑙 ,𝛿2 ,.

= (𝑈 − ℎ)𝛿𝛽−1
2 ,

𝑝.+1,𝛿2 ,𝐿 = (𝐵1, ..., 𝐵𝐿 , ..., 𝐵. , 𝐵𝐿 − 𝛿2𝐿1, 𝑛1, ...𝑛𝐿−1, 𝑛𝐿 , 𝑛𝐿+1, ..., 𝑛. , 𝑛.+1),
𝑝 ′
.+1,𝛿2 ,𝐿

= (𝐵1, ..., 𝐵𝐿 , ..., 𝐵. , 𝐵𝐿 + 𝛿2𝐿1, 𝑛1, ...𝑛𝐿−1, 𝑛
′
𝐿 , 𝑛𝐿+1, ..., 𝑛. , 𝑛

′
.+1).

(4.19)

For ℎ ≥ 𝑈 , we trivially define C𝑙.,.+1 ≡ 0.
◦ Ternary notation: For 1 ≤ ℎ ≤ 𝑈 − 2, we denote

C𝑙 ,+
.,.+2 𝑦

(.+2)
𝑙 (𝑤, 𝑝.) = Q3

𝑙 ,𝛿3 ,.

.∑
𝐿=1

∫
S2"−1

1 ×R2"

𝜇+3 (𝐿1,𝐿2, 𝑛.+1 − 𝑛𝐿 , 𝑛.+2 − 𝑛𝐿)√
1 + +𝐿1,𝐿2〉

× 𝑦 (.+2)
𝑙

(
𝑤, 𝑝∗

.+2,𝛿3 ,𝐿

)
𝑟𝐿1 𝑟𝐿2 𝑟𝑛.+1 𝑟𝑛.+2,

(4.20)

C𝑙 ,−
.,.+2 𝑦

(.+2)
𝑙 (𝑤, 𝑝.) = Q3

𝑙 ,𝛿3 ,.

.∑
𝐿=1

∫
S2"−1

1 ×R2"

𝜇+3 (𝐿1,𝐿2, 𝑛.+1 − 𝑛𝐿 , 𝑛.+2 − 𝑛𝐿)√
1 + +𝐿1,𝐿2〉

× 𝑦 (.+2)
𝑙

(
𝑤, 𝑝.+2,𝛿3 ,𝐿

)
𝑟𝐿1 𝑟𝐿2 𝑟𝑛.+1 𝑟𝑛.+2,

(4.21)
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where

Q3
𝑙 ,𝛿3 ,.

= 2𝛽−2 (𝑈 − ℎ) (𝑈 − ℎ − 1)𝛿2𝛽−1
3 ,

𝜇3(𝐿1,𝐿2, 𝑛.+1 − 𝑛𝐿 , 𝑛.+2 − 𝑛𝐿) = +𝐿1, 𝑛.+1 − 𝑛𝐿〉 + +𝐿2, 𝑛.+2 − 𝑛𝐿〉,
𝜇+3 = max{𝜇3, 0},
𝑝.+2,𝛿3 ,𝐿 = (𝐵1, ..., 𝐵𝐿 , ..., 𝐵. , 𝐵𝐿 −

)
2𝛿3𝐿1, 𝐵𝐿 −

)
2𝛿3𝐿2, 𝑛1, ...𝑛𝐿−1, 𝑛𝐿 , 𝑛𝐿+1, ..., 𝑛. , 𝑛.+1, 𝑛.+2),

𝑝∗
.+2,𝛿3 ,𝐿

= (𝐵1, ..., 𝐵𝐿 , ..., 𝐵. , 𝐵𝐿 +
)

2𝛿3𝐿1, 𝐵𝐿 +
)

2𝛿3𝐿2, 𝑛1, ...𝑛𝐿−1, 𝑛
∗
𝐿 , 𝑛𝐿+1, ..., 𝑛. , 𝑛

∗
.+1, 𝑛

∗
.+2).

(4.22)

For ℎ ≥ 𝑈 − 1, we trivially define C𝑙.,.+2 ≡ 0.
Duhamel’s formula implies that the BBGKY hierarchy can be written in mild form as follows:

𝑦 (.)𝑙 (𝑤, 𝑝.) = 𝜁 𝐸. 𝑦 (.)𝑙 ,0(𝑝.) +
∫ 𝐸

0
𝜁 𝐸−𝛼.

(
C𝑙.,.+1 𝑦

(.+1)
𝑙 + C𝑙.,.+2 𝑦

(.+2)
𝑙

)
(𝑞, 𝑝.) 𝑟𝑞, ℎ ∈ N, (4.23)

where 𝜁 𝐸. is the s-particle (𝛿2, 𝛿3)-flow operator given in (3.56).

4.2. The Boltzmann hierarchy
We will now derive the Boltzmann hierarchy as the formal limit of the BBGKY hierarchy as 𝑈 ( ∞
and 𝛿2, 𝛿3 ( 0+ under the scaling

𝑈𝛿𝛽−1
2 ' 𝑈𝛿𝛽−1/2

3 ' 1. (4.24)

This scaling implies that 𝛿2,𝛿3 satisfy

𝛿𝛽−1
2 ' 𝛿𝛽−1/2

3 . (4.25)

Remark 4.2. Using the scaling (4.24), we obtain

𝛿2 ' 𝑈− 1
"−1

𝑙(∞−( 0, 𝛿3 ' 𝑈− 2
2"−1

𝑙(∞−( 0, (4.26)

and thus,

𝛿2
𝛿3

' 𝑈− 1
("−1) (2"−1)

𝑙(∞−( 0. (4.27)

Therefore, for N large enough, we have 𝛿2 << 𝛿3.

Remark 4.3. The scaling (4.24) guarantees that for a fixed ℎ ∈ N, we have

Q2
𝑙 ,𝛿2 ,.

= (𝑈 − ℎ)𝛿𝛽−1
2 −( 1, as 𝑈 ( ∞,

Q3
𝑙 ,𝛿3 ,.

= 2𝛽−2 (𝑈 − ℎ) (𝑈 − ℎ − 1)𝛿2𝛽−1
3 −( 1, as 𝑈 ( ∞.

Formally taking the limit under the scaling imposed, we may define the following collisional opera-
tors:

◦ Binary Boltzmann operator:

C∞
.,.+1 = C∞,+

.,.+1 − C∞,−
.,.+1, (4.28)
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where

C∞,+
.,.+1 𝑦

(.+1) (𝑤, 𝑝.) =
.∑
𝐿=1

∫
(S"−1

1 ×R")
𝜇+2 (𝐿1, 𝑛.+2 − 𝑛𝐿) 𝑦 (.+1)

(
𝑤, 𝑝 ′

.+1,𝐿

)
× 𝑟𝐿1 𝑟𝑛.+1, (4.29)

C∞,−
.,.+1 𝑦

(.+1) (𝑤, 𝑝.) =
.∑
𝐿=1

∫
(S"−1

1 ×R")
𝜇+2 (𝐿1, 𝑛.+2 − 𝑛𝐿) × 𝑦 (.+1) (𝑤, 𝑝.+1,𝐿

)
× 𝑟𝐿1 𝑟𝑛.+1, (4.30)

𝜇2 (𝐿1, 𝑛.+1 − 𝑛𝐿) = +𝐿1, 𝑛.+1 − 𝑛𝐿〉,
𝜇2 = max{0, 𝜇2},
𝑝.+1,𝐿 = (𝐵1, ..., 𝐵𝐿 , ..., 𝐵. , 𝐵𝐿 , 𝑛1, ...𝑛𝐿−1, 𝑛𝐿 , 𝑛𝐿+1, ..., 𝑛. , 𝑛.+1),
𝑝 ′
.+1,𝐿 = (𝐵1, ..., 𝐵𝐿 , ..., 𝐵. , 𝐵𝐿 , 𝑛1, ...𝑛𝐿−1, 𝑛

′
𝐿 , 𝑛𝐿+1, ..., 𝑛. , 𝑛

′
.+1).

(4.31)

◦ Ternary Boltzmann operator:

C∞
.,.+2 = C∞,+

.,.+2 − C∞,−
.,.+2, (4.32)

where

C∞,+
.,.+2 𝑦

(.+2) (𝑤, 𝑝.) =
.∑
𝐿=1

∫
(S2"−1

1 ×R2")

𝜇+3 (𝐿1,𝐿2, 𝑛.+1 − 𝑛𝐿 , 𝑛.+2 − 𝑛𝐿)√
1 + +𝐿1,𝐿2〉

𝑦 (.+2)
(
𝑤, 𝑝∗

.+2,𝐿

)

× 𝑟𝐿1 𝑟𝐿2 𝑟𝑛.+1 𝑟𝑛.+2,

(4.33)

C∞,−
.,.+2 𝑦

(.+2) (𝑤, 𝑝.) =
.∑
𝐿=1

∫
(S2"−1

1 ×R2")

𝜇+3 (𝐿1,𝐿2, 𝑛.+1 − 𝑛𝐿 , 𝑛.+2 − 𝑛𝐿)√
1 + +𝐿1,𝐿2〉

× 𝑦 (.+2) (𝑤, 𝑝.+2,𝐿
)

× 𝑟𝐿1 𝑟𝐿2 𝑟𝑛.+1 𝑟𝑛.+2,

(4.34)

𝜇3 (𝐿1,𝐿2, 𝑛.+1 − 𝑛𝐿 , 𝑛.+2 − 𝑛𝐿) = +𝐿1, 𝑛.+1 − 𝑛𝐿〉 + +𝐿2, 𝑛.+2 − 𝑛𝐿〉,
𝜇+3 = max{𝜇3, 0},
𝑝.+2,𝐿 = (𝐵1, ..., 𝐵𝐿 , ..., 𝐵. , 𝐵𝐿 , 𝐵𝐿 , 𝑛1, ...𝑛𝐿−1, 𝑛𝐿 , 𝑛𝐿+1, ..., 𝑛. , 𝑛.+1, 𝑛.+2),
𝑝∗
.+2,𝐿 = (𝐵1, ..., 𝐵𝐿 , ..., 𝐵. , 𝐵𝐿 , 𝐵𝐿 , 𝑛1, ...𝑛𝐿−1, 𝑛

∗
𝐿 , 𝑛𝐿+1, ..., 𝑛. , 𝑛

∗
.+1, 𝑛

∗
.+2).

(4.35)

Now we are ready to introduce the Boltzmann hierarchy. More precisely, given an initial probability
density 𝑦0, the Boltzmann hierarchy for ℎ ∈ N is given by

∫

ℓ𝐸 𝑦 (.) +

.∑
𝐿=1

𝑛𝐿∇𝜇! 𝑦 (.) = C∞
.,.+1 𝑦

(.+1) + C∞
.,.+2 𝑦

(.+2) , (𝑤, 𝑝.) ∈ (0,∞) × R2𝛽. ,

𝑦 (.) (0, 𝑝.) = 𝑦 (.)0 (𝑝.), ∀𝑝. ∈ R2𝛽. .

(4.36)

Duhamel’s formula implies that the Boltzmann hierarchy can be written in mild form as follows:

𝑦 (.) (𝑤, 𝑝.) = 𝐺𝐸. 𝑦 (.)0 (𝑝.) +
∫ 𝐸

0
𝐺𝐸−𝛼.

(
C∞
.,.+1 𝑦

(.+1) + C∞
.,.+2 𝑦

(.+2)
)
(𝑞, 𝑝.) 𝑟𝑞, ℎ ∈ N, (4.37)

where 𝐺𝐸. denotes the ℎ−particle free flow operator given in (3.57).

5. Local well-posedness
In this section, we show that the BBGKY hierarchy, the Boltzmann hierarchy and the binary-ternary
Boltzmann equation are well-posed for short times in Maxwellian weighted N∞-spaces. To obtain these
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results, we combine the continuity estimates on the binary and ternary collisional operators, obtained
in [18] and [5], respectively.

5.1. LWP for the BBGKY hierarchy
Consider (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24), with 𝑈 ≥ 3.

For R > 0, we define the Banach space

𝐴𝑙 ,@,. :=
{
<𝑙 ,. ∈ N∞ (D𝑇,𝛿2 ,𝛿3) and |<𝑙 ,. |𝑙 ,@,. < ∞

}
,

with norm |<𝑙 ,. |𝑙 ,@,. = sup𝐾& ∈R2"& |<𝑙 ,. (𝑝.) |S@A& (𝐾&) , where M. (𝑝.) is the kinetic energy of the
s-particles given by (3.50). For ℎ > 𝑈 , we trivially define 𝐴𝑙 ,@,. := {0}.

Remark 5.1. Given 𝑤 ∈ R and ℎ ∈ N, conservation of energy under the flow (3.53) implies that the
s-particle of (𝛿2, 𝛿3)-flow operator 𝜁 𝐸. : 𝐴𝑙 ,@,. ( 𝐴𝑙 ,@,. , given in (3.56) is an isometry; that is,

|𝜁 𝐸. <𝑙 ,. |𝑙 ,@,. = |<𝑙 ,. |𝑙 ,@,. , ∀<𝑙 ,. ∈ 𝐴𝑙 ,@,. .

Proof. Let <𝑙 ,. ∈ 𝐴𝑙 ,@,. and 𝑝. ∈ R2𝛽. . If 𝑝. ∉ D.,𝛿2 ,𝛿3 , the result is trivial since <𝑙 ,. is supported
in D.,𝛿2 ,𝛿3 . Assume 𝑝. ∈ D.,𝛿2 ,𝛿3 . Then Theorem 3.23 yields

S@A& (𝐾&) |𝜁 𝐸. <𝑙 ,. | = S@A& (𝐾&) | (<𝑙 ,. ◦ Ψ−𝐸
. ) (𝑝.) | = S@A& (Ψ−,

& 𝐾&) |<𝑙 ,. (Ψ−𝐸
. 𝑝.) | ≤ |<𝑙 ,. |𝑙 ,.,@ ,

and hence, |𝜁 𝐸. <𝑙 ,. |𝑙 ,.,@ ≤ |<𝑙 ,. |𝑙 ,.,@ . The other side of the inequality comes similarly using the fact
that 𝑝. = Ψ−𝐸

. (Ψ𝐸.𝑝.). "

Consider as well T ∈ R. We define the Banach space

𝐴𝑙 ,@,B :=
{
U𝑙 = (<𝑙 ,.).∈N : ‖U𝑙 ‖𝑙 ,@,B < ∞

}
,

with norm ‖U𝑙 ‖𝑙 ,@,B = sup.∈N SB. |<𝑙 ,. |𝑙 ,@,. = max.∈{1,...,𝑙 } SB. |<𝑙 ,. |𝑙 ,@,. .

Remark 5.2. Given 𝑤 ∈ R, Remark 5.1 implies that the map T 𝐸 : 𝐴𝑙 ,@,B ( 𝐴𝑙 ,@,B given by

T 𝐸U𝑙 :=
(
𝜁 𝐸. <𝑙 ,.

)
.∈N (5.1)

is an isometry; that is, ‖T 𝐸U𝑙 ‖𝑙 ,@,B = ‖U𝑙 ‖𝑙 ,@,B, for any U𝑙 ∈ 𝐴𝑙 ,@,B .

Finally, given 𝜁 > 0, R0 > 0, T0 ∈ R and β,µ : [0,𝜁] ( R decreasing functions of time with
β(0) = R0, β(𝜁) > 0, µ(0) = T0, we define the Banach space

X𝑙 ,β,µ := >0 ([0,𝜁], 𝐴𝑙 ,β (𝐸) ,µ(𝐸)
)
,

with norm | | |GN | | |𝑙 ,β,µ = sup𝐸 ∈ [0,C ] ‖GN (𝑤)‖𝑙 ,β (𝐸) ,µ(𝐸) . Similarly as in Proposition 6.2. from [2],
one can obtain the following bounds:

Proposition 5.3. Let𝜁 > 0, R0 > 0, T0 ∈ R andβ,µ : [0,𝜁] ( R decreasing functions with R0 = β(0),
β(𝜁) > 0 T0 = µ(0). Then for any U𝑙 =

(
<𝑙 ,.

)
.∈N ∈ 𝐴𝑙 ,@0 ,B0 , the following estimates hold:

1. | | |U𝑙 | | |𝑙 ,β,µ ≤ ‖U𝑙 ‖𝑙 ,@0 ,B0 .

2.
>>>>
>>>>
>>>>
∫ 𝐸

0
T 𝛼U𝑙 𝑟𝑞

>>>>
>>>>
>>>>𝑙 ,β,µ ≤ 𝜁 ‖U𝑙 ‖𝑙 ,@0 ,B0 .

From Proposition 5.3.1. in [18] and Lemma 5.1. in [5], we have the following continuity estimates
for the binary and ternary collisional operators, respectively:
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Lemma 5.4. Let 𝑅 ∈ N, R > 0. For any 𝑝𝑇 ∈ D𝑇,𝛿2 ,𝛿3 and 𝜈 ∈ {1, 2}, the following estimate holds:

>>>C𝑙𝑇,𝑇+𝜆<𝑙 ,𝑇+𝜆 (𝑝𝑇)
>>> ! R−𝜆𝛽/2

(
𝑅R−1/2 +

𝑇∑
𝐿=1

|𝑛𝐿 |
)
S−@A( (𝐾() |<𝑙 ,𝑇+𝜆 |𝑙 ,@,𝑇+𝜆 .

Let us now define mild solutions to the BBGKY hierarchy:

Definition 5.5. Consider 𝜁 > 0, R0 > 0, T0 ∈ R and the decreasing functions β,µ : [0,𝜁] ( R with
β(0) = R0, β(𝜁) > 0, µ(0) = T0. Consider also initial data U𝑙 ,0 =

(
<𝑙 ,.,0

)
∈ 𝐴𝑙 ,@0 ,B0 . A map

GN =
(
<𝑙 ,.

)
.∈N ∈ X𝑙 ,β,µ is a mild solution of the BBGKY hierarchy in [0,𝜁], with initial data

U𝑙 ,0, if it satisfies

GN (𝑤) = T 𝐸U𝑙 ,0 +
∫ 𝐸

0
T 𝐸−𝛼C𝑙GN (𝑞) 𝑟𝑞,

where, given R > 0, T ∈ R and U𝑙 = (<𝑙 ,.).∈N ∈ 𝐴𝑙 ,@,B, we write

C𝑙U𝑙 := (C2
𝑙 + C3

𝑙 )U𝑙 , C2
𝑙U𝑙 :=

(
C𝑙.,.+1<𝑙 ,.+1

)
.∈N

, C3
𝑙U𝑙 :=

(
C𝑙.,.+2<𝑙 ,.+2

)
.∈N

,

and T 𝐸 is given by (5.1).

Using Lemma 5.4, we obtain the following a-priori bounds:

Lemma 5.6. Let R0 > 0, T0 ∈ R, 𝜁 > 0 and 𝜋 ∈ (0, R0/𝜁). Consider the functions βD,µD : [0,𝜁] ( R
given by

βD (𝑤) = R0 − 𝜋𝑤, µD(𝑤) = T0 − 𝜋𝑤. (5.2)

Then for any F (𝑤) ⊆ [0, 𝑤] measurable, GN =
(
<𝑙 ,.

)
.∈N ∈ X𝑙 ,β- ,µ- and 𝜈 ∈ {1, 2}, the following

bounds hold: >>>>
>>>>
>>>>
∫

F (𝐸)
T 𝐸−𝛼C𝜆+1

𝑙 GN (𝑞) 𝑟𝑞
>>>>
>>>>
>>>>𝑙 ,β- ,µ- ≤ >𝜆+1 | | |GN | | |𝑙 ,β- ,µ- , (5.3)

>𝜆+1 = >𝜆+1(𝑟, R0, T0,𝜁 , 𝜋) = >𝛽𝜋−1S−𝜆µ- (C )β−𝜆𝛽/2
D (𝜁)

(
1 + β−1/2

D (𝜁)
)
. (5.4)

Proof. For the proof of (5.3) for 𝜈 = 1, see Lemma 5.3.1 from [18], and for the proof for 𝜈 = 2, see
Lemma 6.4 from [2]. "

Choosing 𝜋 = R0/2𝜁 , Lemma 5.6 implies well-posedness of the BBGKY hierarchy up to short time.
The proof follows similar steps to the proof of Theorem 6 from [18] and Theorem 6.4.1 from [2].

Theorem 5.7. Let R0 > 0 and T0 ∈ R. Then there is 𝜁 = 𝜁 (𝑟, R0, T0) > 0 such that for any initial
datum 𝐾𝑙 ,0 = ( 𝑦 (.)𝑙 ,0).∈N ∈ 𝐴𝑙 ,@0 ,B0 , there is unique mild solution FN = ( 𝑦 (.)𝑙 ).∈N ∈ X𝑙 ,β,µ to the
BBGKY hierarchy in [0,𝜁] for the functions β,µ : [0,𝜁] ( R given by

β(𝑤) = R0 −
R0
2𝜁 𝑤, µ(𝑤) = T0 −

R0
2𝜁 𝑤.

(5.5)

The solution FN satisfies the bound

| | |FN | | |𝑙 ,β,µ ≤ 2‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 . (5.6)
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Moreover, for any F (𝑤) ⊆ [0, 𝑤] measurable and 𝜈 ∈ {1, 2}, the following bound holds:
>>>>
>>>>
>>>>
∫

F (𝐸)
T 𝐸−𝛼>𝜆+1

𝑙 GN (𝑞) 𝑟𝑞
>>>>
>>>>
>>>>𝑙 ,β,µ ≤ 1

16 | | |U𝑙 | | |𝑙 ,β,µ, ∀U𝑙 ∈ X𝑙 ,β,µ. (5.7)

The time T is explicitly given by

𝜁 ' R0

(
S−B0−

.0
2 ( R0

2 )−𝛽/2 + S−2B0−@0 ( R0
2 )−𝛽

)−1 (
1 + ( R0

2 )−1/2
)−1

. (5.8)

5.2. LWP for the Boltzmann hierarchy
Similary to Subsection 5.1, here we establish a-priori bounds and local well-posedness for the Boltzmann
hierarchy. Without loss of generality, we will omit the proofs since they are identical to the BBGKY
hierarchy case. Given ℎ ∈ N and R > 0, we define the Banach space

𝐴∞,@,. :=
{
<. ∈ N∞ (R2𝛽.) : |<. |∞,@,. < ∞

}
,

with norm |<. |∞,@,. = sup𝐾& ∈R2"& |<. (𝑝.) |S@A& (𝐾&) , where M. (𝑝.) is the kinetic energy of the s-particles
given by (3.50).

Remark 5.8. Given 𝑤 ∈ R and ℎ ∈ N, conservation of energy under the free flow implies that the
s-particle free flow operator 𝐺𝐸. : 𝐴∞,@,. ( 𝐴∞,@,. , given in (3.57), is an isometry; that is,

|𝐺𝐸.<. |∞,@,. = |<. |∞,@,. , ∀<. ∈ 𝐴∞,@,. .

Consider as well T ∈ R. We define the Banach space

𝐴∞,@,B :=
{
U = (<.).∈N : ‖U‖∞,@,B < ∞

}
,

with norm ‖U‖∞,@,B = sup.∈N SB. |<. |∞,@,. .

Remark 5.9. Given 𝑤 ∈ R, Remark 5.8 implies that the map S 𝐸 : 𝐴∞,@,B ( 𝐴∞,@,B given by

S 𝐸U :=
(
𝐺𝐸.<.

)
.∈N, (5.9)

is an isometry; that is, ‖S 𝐸U‖∞,@,B = ‖U‖∞,@,B, for any U ∈ 𝐴∞,@,B .

Finally, given 𝜁 > 0, R0 > 0, T0 ∈ R and β,µ : [0,𝜁] ( R decreasing functions of time with
β(0) = R0, β(𝜁) > 0, µ(0) = T0, we define the Banach space

X∞,β,µ := >0 ([0,𝜁], 𝐴∞,β (𝐸) ,µ(𝐸)
)
,

with norm | | |G| | |∞,β,µ = sup𝐸 ∈ [0,C ] ‖G(𝑤)‖∞,β (𝐸) ,µ(𝐸) .

Proposition 5.10. Let 𝜁 > 0, R0 > 0, T0 ∈ R and β,µ : [0,𝜁] ( R decreasing functions with
R0 = β(0), β(𝜁) > 0 T0 = µ(0). Then for any U = (<.).∈N ∈ 𝐴∞,@0 ,B0 , the following estimates hold:

1. | | |U | | |∞,β,µ ≤ ‖U‖∞,@0 ,B0 .

2.
>>>>
>>>>
>>>>
∫ 𝐸

0
S 𝛼U 𝑟𝑞

>>>>
>>>>
>>>>∞,β,µ ≤ 𝜁 ‖U‖∞,@0 ,B0 .
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Similarly to Lemma 5.4, we obtain the following:

Lemma 5.11. Let 𝑅 ∈ N and R > 0. For any 𝑝𝑇 ∈ R2𝛽𝑇 and 𝜈 ∈ {1, 2}, the following continuity
estimate holds:

>>C∞
𝑇,𝑇+𝜆<𝑇+𝜆 (𝑝𝑇)

>> ! R−𝜆𝛽/2

(
𝑅R−1/2 +

𝑇∑
𝐿=1

|𝑛𝐿 |
)
S−@A( (𝐾() |<𝑇+𝜆 |∞,@,𝑇+𝜆 . (5.10)

Let us now define mild solutions to the Boltzmann hierarchy:

Definition 5.12. Consider 𝜁 > 0, R0 > 0, T0 ∈ R and the decreasing functions β,µ : [0,𝜁] ( R
with β(0) = R0, β(𝜁) > 0, µ(0) = T0. Consider also initial data U0 =

(
<.,0

)
∈ 𝐴∞,@0 ,B0 . A map

G = (<.).∈N ∈ X∞,β,µ is a mild solution of the Boltzmann hierarchy in [0,𝜁], with initial data U0, if
it satisfies

G(𝑤) = S 𝐸U0 +
∫ 𝐸

0
S 𝐸−𝛼C∞G(𝑞) 𝑟𝑞,

where, given R > 0, T ∈ R and Ũ = (<̃.).∈N ∈ 𝐴∞,@,B, we write

C∞U := (C2
∞ + C3

∞)U, C2
∞U :=

(
C∞
.,.+1<.+1

)
.∈N

, C3
∞U :=

(
C∞
.,.+2<.+2

)
.∈N

,

and S 𝐸 is given by (5.9).

Using Lemma 5.11, we obtain the following a-priori bounds:

Lemma 5.13. Let R0 > 0, T0 ∈ R,𝜁 > 0 and 𝜋 ∈ (0, R0/𝜁). Consider the functionsβD,µD : [0,𝜁] ( R
given by (5.2). Then for any F (𝑤) ⊆ [0, 𝑤] measurable, G = (<.).∈N ∈ X∞,β- ,µ- and 𝜈 ∈ {1, 2}, the
following bound holds:

>>>>
>>>>
>>>>
∫

F (𝐸)
S 𝐸−𝛼C𝜆+1

∞ G(𝑞) 𝑟𝑞
>>>>
>>>>
>>>>∞,β- ,µ- ≤ >𝜆+1 | | |G| | |∞,β- ,µ- , (5.11)

where the constant >𝜆+1 = >𝜆+1(𝑟, R0, T0,𝜁 , 𝜋) is given by (5.4).

Choosing 𝜋 = R0/2𝜁 , Lemma 5.13 directly implies well-posedness of the Boltzmann hierarchy up
to short time.

Theorem 5.14. Let R0 > 0 and T0 ∈ R. Then there is𝜁 = 𝜁 (𝑟, R0, T0) > 0 such that for any initial datum
𝐾0 = ( 𝑦 (.)0 ).∈N ∈ 𝐴∞,@0 ,B0 , there is unique mild solution F = ( 𝑦 (.) ).∈N ∈ X∞,β,µ to the Boltzmann
hierarchy in [0,𝜁] for the functions β,µ : [0,𝜁] ( R given by (5.5). The solution F satisfies the bound

| | |F | | |∞,β,µ ≤ 2‖𝐾0‖∞,@0 ,B0 . (5.12)

Moreover, for any F (𝑤) ⊆ [0, 𝑤] measurable and 𝜈 ∈ {1, 2}, the following bound holds:
>>>>
>>>>
>>>>
∫

F (𝐸)
S 𝐸−𝛼>𝜆+1

∞ G(𝑞) 𝑟𝑞
>>>>
>>>>
>>>>∞,β,µ ≤ 1

16 | | |U | | |∞,β,µ, ∀U ∈ X∞,β,µ, (5.13)

and the time T is explicitly given by (5.8).

5.3. LWP for the binary-ternary Boltzmann equation and propagation of chaos
Now, we show local well-posedness for the binary-ternary Boltzmann equation and that, for chaotic
initial data, their tensorized product produces the unique mild solution of the Boltzmann hierarchy.
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Therefore, uniqueness implies that the mild solution to the Boltzmann hierarchy remains factorized
under time evolution, and hence, chaos is propagated in time.

For R > 0, let us define the Banach space

𝐴@,B :=
{
< ∈ N∞ (R2𝛽) : |< |@,B < ∞

}
,

with norm |< |@,B = sup(𝜇,𝑊)∈R2" |<(𝐵, 𝑛) |SB+
.
2 |𝑊 |2 . Notice that for any 𝑤 ∈ [0,𝜁], the map 𝐺𝐸1 : 𝐴@,B (

𝐴@,B is an isometry.
Consider R0 > 0, T0 ∈ R, 𝜁 > 0 and β,µ : [0,𝜁] ( R decreasing functions of time with β(0) = R0,

β(𝜁) > 0 and µ(0) = T0. We define the Banach space

Xβ,µ := >0 ([0,𝜁], 𝐴β (𝐸) ,µ(𝐸)
)
,

with norm ‖g‖β,µ = sup𝐸 ∈ [0,C ] |g(𝑤) |β (𝐸) ,µ(𝐸) . One can see that the following estimate holds:

Remark 5.15. Let 𝜁 > 0, R0 > 0, T0 ∈ R and β,µ : [0,𝜁] ( R decreasing functions with R0 = β(0),
β(𝜁) > 0 T0 = µ(0). Then for any < ∈ 𝐴@0 ,B0 , the following estimate holds:

‖<‖β,µ ≤ |< |@0 ,B0 .

To prove LWP for the binary-ternary Boltzmann equation (1.16), we will need certain continuity
estimates on the binary and ternary collisional operators. The binary estimate we provide below is the
bilinear analogue of Proposition 5.3.2 in [18]. For the ternary operator, continuity estimates have been
derived in [2], Lemma 6.10. Combining these results, we derive continuity estimates for the binary-
ternary collisional operator 𝜌2 +𝜌3:

Lemma 5.16. Let R > 0, T ∈ R. Then for any <, ℎ ∈ 𝐴@,B and (𝐵, 𝑛) ∈ R2𝛽 , the following nonlinear
continuity estimate holds:

>>[𝜌2 (<, <) +𝜌3(<, <, <)] (𝐵, 𝑛) − [𝜌2 (ℎ, ℎ) +𝜌3(ℎ, ℎ, ℎ)] (𝐵, 𝑛)
>>

!
(
S−2BR−𝛽/2 + S−3BR−𝛽

) (
R−1/2 + |𝑛 |

)
S−

.
2 |𝑊 |2 (|< |@,B + |ℎ|@,B

)
(1 + |< |@,B + |ℎ|@,B) |< − ℎ|@,B .

We define mild solutions to the binary-ternary Boltzmann equation (1.16) as follows:

Definition 5.17. Consider 𝜁 > 0, R0 > 0, T0 ∈ R and β,µ : [0,𝜁] ( R decreasing functions of time,
with β(0) = R0, β(𝜁) > 0, µ(0) = T0. Consider also initial data <0 ∈ 𝐴@0 ,B0 . A map g ∈ Xβ,µ is a
mild solution to the binary-ternary Boltzmann equation (1.16) in [0,𝜁], with initial data <0 ∈ 𝐴@0 ,B0 , if
it satisfies

g(𝑤) = 𝐺𝐸1<0 +
∫ 𝐸

0
𝐺𝐸−𝛼1 [𝜌2 (g, g) +𝜌3 (g, g, g)] (𝑞) 𝑟𝑞, (5.14)

where 𝐺𝐸1 denotes the free flow of one particle given in (3.57).

A similar proof to Lemma 5.6 gives the following:

Lemma 5.18. Let R0 > 0, T0 ∈ R,𝜁 > 0 and 𝜋 ∈ (0, R0/𝜁). Consider the functionsβD,µD : [0,𝜁] ( R
given by (5.2). Then for any g,h ∈ Xβ- ,µ- , the following bounds hold:

????
∫ 𝐸

0
𝐺𝐸−𝛼1 [𝜌2 (g − h, g − h) +𝜌3 (g − h, g − h, g − h)] (𝑞) 𝑟𝑞

????
β- ,µ-

≤ >
(
|g |β- ,µ- + |h|β- ,µ-

) (
1 + |g |β- ,µ- + |h|β- ,µ-

)
|g − h|β- ,µ- ,

where > = > (𝑟, R0, T0,𝜁 , 𝜋) = >2 + >3 and >2,>3 are given by (5.4) for 𝜈 = 1, 2, respectively.
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Choosing 𝜋 = R0/2𝜁 , this estimate implies local well-posedness of the binary-ternary Boltzmann
equation up to short times. Let us write 𝜉Xβ,µ for the unit ball of Xβ,µ.

Theorem 5.19 (LWP for the binary-ternary Boltzmann equation). Let R0 > 0 and T0 ∈ R. Then there
is 𝜁 = 𝜁 (𝑟, R0, T0) > 0 such that for any initial data 𝑦0 ∈ 𝐴@0 ,B0 , with | 𝑦0 |@0 ,B0 ≤ 1/2, there is a unique
mild solution f ∈ 𝜉Xβ,µ to the binary-ternary Boltzmann equation in [0,𝜁] with initial data 𝑦0, where
β,µ : [0,𝜁] ( R are the functions given by (5.5). The solution f satisfies the bound

‖f ‖β,µ ≤ 4| 𝑦0 |@0 ,B0 . (5.15)

Moreover, for any g, h ∈ Xβ,µ, the following estimates hold:
????
∫ 𝐸

0
𝐺𝐸−𝛼1 [𝜌2 (g − h, g − h) +𝜌3 (g − h, g − h, g − h)] (𝑞) 𝑟𝑞

????
β,µ

≤ 1
8
(
‖g‖β,µ + ‖h‖β,µ

) (
1 + |g |β,µ + |h|β,µ

)
‖g − h‖β,µ. (5.16)

The time T is explicitly given by (5.8).

Proof. Choosing T as in (5.8), we obtain > (𝑟, R0, T0,𝜁 , R0/2𝜁) = 1/8. Thus, Lemma 5.18 implies
estimate (5.16). Therefore, for any < ∈ 𝜉Xβ,µ , using (5.16) for h = 0, we obtain

????
∫ 𝐸

0
𝐺𝐸−𝛼1 [𝜌2 (g, g) +𝜌3 (g, g, g)] (𝑞) 𝑟𝑞

????
β- ,µ-

≤ 1
8 (1 + ‖g‖β,µ)‖g‖2

β,µ ≤ 1
4 ‖g‖β,µ. (5.17)

Let us define the nonlinear operator L : Xβ,µ ( Xβ,µ by

Lg(𝑤) = 𝐺𝐸1 𝑦0 +
∫ 𝐸

0
𝐺𝐸−𝛼1 𝜌(g, g, g) (𝑞) 𝑟𝑞.

By triangle inequality, the fact that the free flow is isometric, Remark 5.15, bound (5.17) and the
assumption | 𝑦0 |@0 ,B0 ≤ 1/2, for any g ∈ 𝜉Xβ,µ and 𝑤 ∈ [0,𝜁], we have

|Lg |β (𝐸) ,µ(𝐸) ≤ |𝐺𝐸1 𝑦0 |β (𝐸) ,µ(𝐸) +
1
4 ‖g‖β,µ = | 𝑦0 |β (𝐸) ,µ(𝐸) +

1
4 ‖g‖β,µ ≤ | 𝑦0 |@0 ,B0 +

1
4 ‖g‖β,µ ≤ 1

2 + 1
4 =

3
4 .

Thus, L : 𝜉Xβ,µ ( 𝜉Xβ,µ . Moreover, for any g,h ∈ 𝜉Xβ,µ , using (5.16), we obtain

‖Lg − Lh‖β,µ ≤ 1
8
(
‖g‖β,µ + ‖h‖β,µ

) (
1 + ‖g‖β,µ + ‖h‖β,µ

)
‖g − h‖β,µ ≤ 3

4 ‖g − h‖β,µ.

(5.18)

Therefore, the operator L : 𝜉Xβ,µ ( 𝜉Xβ,µ is a contraction, so it has a unique fixed point f ∈ 𝜉Xβ,µ

which is clearly the unique mild solution of the binary-ternary Boltzmann equation in [0,𝜁] with initial
data 𝑦0.

To prove (5.15), we use the fact that f = Lf . Then for any 𝑤 ∈ [0,𝜁], triangle inequality, definition
of L, estimate (5.18) (for g = f and g = 0), free flow being isometric, and Remark 5.15 yield

|f |β (𝐸) ,µ(𝐸) = |Lf |β (𝐸) ,µ(𝐸) ≤ |L0|β (𝐸) ,µ(𝐸) + |Lf − L0|β (𝐸) ,µ(𝐸) ≤ |𝐺𝐸1 𝑦0 |β (𝐸) ,µ(𝐸) +
3
4 ‖f ‖β,µ

= | 𝑦0 |β (𝐸) ,µ(𝐸) +
3
4 ‖f ‖β,µ ≤ | 𝑦0 |@0 ,B0 +

3
4 ‖f ‖β,µ,

and thus, ‖f ‖β,µ ≤ | 𝑦0 |@0 ,B0 +
3
4 ‖f ‖β,µ, and (5.15) follows. "

0����	  �51�57/ ������� .������������:�21�0���5�21������

��71�/����1��7�1����7���

https://doi.org/10.1017/fms.2025.11


Forum of Mathematics, Sigma 39

We can now prove that chaos is propagated by the Boltzmann hierarchy.
Theorem 5.20 (Propagation of chaos). Let R0 > 0, T0 ∈ R, 𝜁 > 0 be the time given in (5.8), and
β,µ : [0,𝜁] ( R the functions defined by (5.5). Consider 𝑦0 ∈ 𝐴@0 ,B0 with | 𝑦0 |@0 ,B0 ≤ 1/2. Assume
f ∈ 𝜉Xβ,µ is the corresponding mild solution of the binary-ternary Boltzmann equation in [0,𝜁], with
initial data 𝑦0 given by Theorem 5.19. Then the following hold:
1. 𝐾0 = ( 𝑦 ⊗.0 ).∈N ∈ 𝐴∞,@0 ,B0 .
2. F = (f ⊗.).∈N ∈ X∞,β,µ.
3. F is the unique mild solution of the Boltzmann hierarchy in [0,𝜁], with initial data 𝐾0.
Proof. (i) is trivially verified by the bound on the initial data (5.15) and the definition of the norms. By
the same bound again, we may apply Theorem 5.19 to obtain the unique mild solution f ∈ 𝜉Xβ,µ of
the corresponding binary-ternary Boltzmann equation. Since ‖f ‖β,µ ≤ 1, the definition of the norms
directly implies (ii). It is also straightforward to verify that F is a mild solution of the Boltzmann
hierarchy in [0,𝜁], with initial data 𝐾0. Uniqueness of the mild solution to the Boltzmann hierarchy,
obtained by Theorem 5.14, implies that F is the unique mild solution. "

6. Convergence Statement
In this section, we define an appropriate notion of convergence – namely, convergence in observables
– and we state the main result of this paper. While our convergence result is valid for a general type of
Boltzmann initial data and approximation by BBGKY hierarchy initial data (see Definition 6.1), we also
provide a rate of convergence in the case of chaotic Boltzmann initial data and initial approximation by
conditioned BBGKY hierarchy initial data (introduced in Definition 6.4).

Throughout this section, we consider (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24). We will also use the phase
space D𝑇,𝛿2 ,𝛿3 of m-particles of radius 𝛿2 and of interaction zone 𝛿 given by (3.5) and the functional
spaces of Section 5.

6.1. Approximation of Boltzmann initial data
This subsection focuses on introducing relevant types of initial data. First, we define the general
notion of BBGKY hierarchy sequences approximating Boltzmann hierarchy initial data. Then we show
that chaotic initial data produced by tensorized probability densities are approximated by conditioned
BBGKY hierarchy sequences in the scaling (4.24).
Definition 6.1. Let R0 > 0, T0 ∈ R and U0 = (<.,0).∈N ∈ 𝐴∞,@0 ,B0 . A sequence U𝑙 ,0 = (<𝑙 ,.,0).∈N ∈
𝐴𝑙 ,@0 ,B0 is called a BBGKY hierarchy sequence approximating U0 if the following conditions hold:
1. sup

𝑙 ∈N
‖U𝑙 ,0‖𝑙 ,@0 ,B0 < ∞.

2. For any ℎ ∈ N, there holds lim
𝑙(∞

‖<𝑙 ,.,0 − <.,0‖E∞ (D&,'2 ,'3 ) = 0.

Remark 6.2. Every U0 = (<.,0).∈N ∈ 𝐴∞,@0 ,B0 has a BBGKY hierarchy approximating sequence. In-
deed, it is straightforward to verify that the sequenceU𝑙 ,0 = (<𝑙 ,.,0).∈N given by <𝑙 ,.,0 = 1D&,'2 ,'3

<.,0
satisfies the properties stated above in the scaling (4.24).

Especially meaningful initial data, corresponding to initial independence between particles, are given
below:
Remark 6.3. Let <0 ∈ 𝐴@0 ,B0+1 be a positive probability density, that is, <0 > 0 a.e. and∫
R2" <0 (𝐵, 𝑛) 𝑟𝐵 𝑟𝑛 = 1 and assume that ‖<0‖@0 ,B0+1 ≤ 1. Then one can easily see that the chaotic

configuration U0 = (<⊗.0 ).∈N ∈ 𝐴∞,@0 ,B0+1 ⊆ 𝐴∞,@0 ,B0 . This type of initial data, corresponding to ten-
sorized initial measures, will lead to the binary-ternary Boltzmann equation (1.16). In fact, we will see
that one can approximate tensorized initial data in the scaling (4.24) by conditioned BBGKY hierarchy
initial data which are defined below.
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Definition 6.4. Let <0 ∈ 𝐴@0 ,B0+1 be a positive probability density and denote U0 = (<⊗.0 ).∈N ∈
𝐴∞,@0 ,B0+1. We define the conditioned BBGKY hierarchy sequence U𝑙 ,0 = (< (.)𝑙 ,0).∈N of U0 as

< (.)𝑙 ,0 (𝐴. ,𝛽.) =

∫


Z−1
𝑙

∫
R2" (#−&)

1D# ,'2 ,'3
<⊗𝑙0 (𝐴. , 𝐵.+1, ..., 𝐵𝑙 ,𝛽. , 𝑛.+1, ..., 𝑛𝑙 )

𝑟𝐵.+1 𝑟𝑛.+1... 𝑟𝐵𝑙 𝑟𝑛𝑙 , 1 ≤ ℎ < 𝑈

Z−1
𝑙 1D# ,'2 ,'3

<⊗𝑙0 (𝑝𝑙 ), ℎ = 𝑈 ,
0, ℎ > 𝑈 .

(6.1)

where the normalization is preserved by the introduction of the partition function

Z𝑇 =
∫
R2"(

1D(,'2 ,'3
<⊗𝑇0 (𝐴𝑇,𝛽𝑇) 𝑟𝐴𝑇 𝑟𝛽𝑇, 𝑅 ∈ N.

Notice that since <0 is a.e. positive and integrates to 1, we have 0 < 𝑝𝑇 < 1 for all 𝑅 ∈ N.

In fact, for tensorized initial data, the conditioned BBGKY hierarchy sequence is an approximating
sequence (according to Definition 6.1). This will be important to obtain a rate of convergence to the
solution of the binary-ternary Boltzmann equation (1.16) (see Corollary 6.10 for more details). For the
binary Boltzmann equation, such a result was proved in, for example, [18], obtaining an . (𝛿2) rate of
convergence, where 𝛿2 is the radius of the hard spheres. In [5], a similar result with rate of convergence
. (𝛿1/2

3 ) was proved when merely ternary interactions of interaction zone 𝛿3 were taken into account.
We note that the slower convergence rate of the ternary model is due to the scaling 𝑈𝛿𝛽− 1

2 ' 1 which is
different that the Boltzmann-Grad scaling 𝑈𝛿𝛽−1

2 ' 1 of the hard spheres. In this paper, where binary and
ternary interactions coexist in the scaling (4.24), we are able to deduce the slower rate of convergence
. (𝛿1/2

3 ). The absence of 𝛿2 in the estimates is due to the fact 𝛿2 << 𝛿3.

Proposition 6.5. Let <0 ∈ 𝐴@0 ,B0+1 be a positive probability density with |<0 |@0 ,B0+1 ≤ 1 and U0 =
(<⊗.0 ).∈N ∈ 𝐴∞,@0 ,B0+1 ⊆ 𝐴∞,@0 ,B0 . Let U𝑙 ,0 = (< (.)𝑙 ,0).∈N be the conditioned BBGKY hierarchy
sequence of the tensorized initial data U0 given in Definition 6.4. Then U𝑙 ,0 is a BBGKY hierarchy
sequence approximating U0 (in the sense of Definition 6.1) in the scaling (4.24). In particular, for
all (𝑈 , 𝛿) in the scaling (4.24) with N large enough (or equivalently 𝛿 small enough), there holds the
estimate

‖< (.)𝑙 ,0 − <
⊗.
0 ‖E∞ (D&,'2 ,'3 ) ≤ >𝛽,.,@0 ,B0𝛿

1/2
3 ‖U0‖∞,@0 ,B0 . (6.2)

Proof. The proof comes by following a similar argument as in Section 6 of [5] to estimate first the
partition functions and then the rate of convergence. The only difference is that one has to incorporate
binary interactions in the phase space, which is achieved by decomposing the phase space as

1D# ,'2 ,'3
(𝑝𝑙 ) =1D&,'2 ,'3

(𝑝.)
∏

1≤𝐿≤.< 𝜙≤𝑙
1 |𝜇!−𝜇 $ |>𝛿2 (𝐵𝐿 , 𝐵 𝜙 )

∏
1≤𝐿< 𝜙≤.<𝜆≤𝑙

1 |𝜇!−𝜇 $ |2+|𝜇!−𝜇% |2>2𝛿 2
3
(𝐵𝐿 , 𝐵 𝜙 , 𝐵𝜆 )

∏
1≤𝐿≤.< 𝜙<𝜆≤𝑙

1 |𝜇!−𝜇 $ |2+|𝜇!−𝜇% |2>2𝛿 2
3
(𝐵𝐿 , 𝐵 𝜙 , 𝐵𝜆 )

∏
.+1≤𝐿< 𝜙<𝜆≤𝑙

1 |𝜇!−𝜇 $ |2+|𝜇!−𝜇% |2>2𝛿 2
3
(𝐵𝐿 , 𝐵 𝜙 , 𝐵𝜆 ),

and using scaling (4.24). "

6.2. Convergence in observables
Now, we define the convergence in observables. Given ℎ ∈ N, we use the space of test continuous and
compactly supported functions in velocities >8 (R𝛽.).
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Definition 6.6. Consider 𝜁 > 0, ℎ ∈ N and <. ∈ >0 ([0,𝜁], N∞ (
R2𝛽. ) ) . Given a test function O. ∈

>8 (R𝛽.), we define the s-observable functional as JF&<. (𝑤) (𝐴.) =
∫
R"&

O. (𝛽.)<. (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. .

Before giving the definition of convergence in observables, we start with some definitions on the
configurations we are using. Given 𝑅 ∈ N and 𝐸 > 0, we define the set of well-separated spatial
configurations

Δ𝑀𝑇(𝐸) = {𝐴𝑇 ∈ R𝛽𝑇 : |𝐵̃𝐿 − 𝐵̃ 𝜙 | > 𝐸, ∀1 ≤ 𝐼 < , ≤ 𝑅}, 𝑅 ≥ 2, Δ𝑀1 (𝐸) = R2𝛽 , (6.3)

and the set of well separated configurations

Δ𝑇 (𝐸) = Δ𝑀𝑇(𝐸) × R𝛽𝑇. (6.4)

Definition 6.7. Let 𝜁 > 0. For each 𝑈 ∈ N, consider GN = (<𝑙 ,.).∈N ∈ ∏∞
.=1 >

0 ([0,𝜁], N∞ (
R2𝛽. ) )

and G = (<.).∈N ∈ ∏∞
.=1 >

0 ([0,𝜁], N∞ (
R2𝛽. ) ) . We say that the sequence (GN )𝑙 ∈N converges in

observables to G, and write

GN
∼−( G,

if for any 𝐸 > 0, ℎ ∈ N, and O. ∈ >8 (R𝛽.), we have

lim
𝑙(∞

‖JF&<𝑙 ,. (𝑤) − JF&<. (𝑤)‖E∞ (Δ*
& (𝑈)) = 0, uniformly in [0,𝜁] .

6.3. Statement of the main result
We are now in the position to state our main result.

Theorem 6.8 (Convergence). Let R0 > 0, T0 ∈ R and T be given by (5.8). Consider the Boltzmann
hierarchy initial data 𝐾0 = ( 𝑦 (.)0 ).∈N ∈ 𝐴∞,@0 ,B0 , and let

(
𝐾𝑙 ,0

)
𝑙 ∈N be a BBGKY hierarchy sequence

approximating 𝐾0. Assume that
◦ For each N, FN ∈ X𝑙 ,β,µ is the mild solution of the BBGKY hierarchy (4.14) with initial data

𝐾𝑙 ,0 in [0,𝜁].
◦ F ∈ X∞,β,µ is the mild solution of the Boltzmann hierarchy (4.36) with initial data 𝐾0 in [0,𝜁].
◦ 𝐾0 satisfies the following uniform continuity condition: There exists> > 0 such that, for any W > 0,

there is X = X(W) > 0 such that for all ℎ ∈ N, and for all 𝑝. , 𝑝 ′
. ∈ R2𝛽. with |𝑝. − 𝑝 ′

. | < X, we have

| 𝑦 (.)0 (𝑝.) − 𝑦 (.)0 (𝑝 ′
.) | < >.−1W . (6.5)

Then FN
∼−( F .

Remark 6.9. To prove Theorem 6.8, it suffices to prove

‖J𝑙. (𝑤) − J∞. (𝑤)‖E∞ (Δ*
& (𝑈))

𝑙(∞−( 0, uniformly in [0,𝜁],

for any ℎ ∈ N, O. ∈ >8 (R𝛽.) and 𝐸 > 0, where

J𝑙. (𝑤) (𝐴.) := JF& 𝑦
(.)
𝑙 (𝑤) (𝐴.) =

∫
R"&

O. (𝛽.) 𝑦 (.)𝑙 (𝑤, 𝐴. ,𝛽.) 𝑟𝛽., (6.6)

J∞. (𝑤) (𝐴.) := JF& 𝑦 (.) (𝑤) (𝐴.) =
∫
R"&

O. (𝛽.) 𝑦 (.) (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. . (6.7)

The following Corollary of Theorem 6.8 justifies the derivation of the binary-ternary Boltzmann
equation from finitely many particle systems.
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Corollary 6.10. Let R0 > 0, T0 ∈ R, and T be given by (5.8). Let 𝑦0 ∈ 𝐴@0 ,B0+1 be a Hölder continuous
>0,𝜈 , 𝑀 ∈ (0, 1] probability density with | 𝑦0 |@0 ,B0+1 ≤ 1/2. Let us write 𝐾0 = ( 𝑦 ⊗.0 ).∈N ∈ 𝐴∞,@0 ,B0+1

and let 𝐾𝑙 ,0 = ( 𝑦 (.)𝑙 ,0).∈N be the conditioned BBGKY hierarchy sequence given in Definition 6.4
approximating the tensorized data 𝐾0. Then for any 𝐸 > 0, ℎ ∈ N and O. ∈ >8 (R𝛽.), we have the rate
of convergence

‖JF& 𝑦
(.)
𝑙 (𝑤) − JF& 𝑦 ⊗. (𝑤)‖E∞ (Δ*

& (𝑈)) = . (𝛿𝐼 ), uniformly in [0,𝜁], (6.8)

for any 0 < 𝑊 < min{1/2, 𝑀}, where FN = ( 𝑦 (.)𝑙 ).∈N ∈ X$ ,%,& is the mild solution of the BBGKY
hierarchy (4.14) in [0,𝜁] with initial data 𝐾𝑙 ,0 and f is the mild solution to the ternary Boltzmann
equation (1.16) in [0,𝜁], with initial data 𝑦0.

7. Reduction to term by term convergence
In this section, we reduce the proof of Theorem 6.8 to term by term convergence after truncating the
observables. After introducing the necessary combinatorial notation to take care of all the possible
collision sequences occurring, the idea of the truncation is essentially the same as in [18, 2], and it relies
on the local estimates developed in Section 5. For this reason, we illustrate the similarities by providing
the proof of the first estimate and omit the proofs of the rest of the estimates.

Throughout this section, we consider R0 > 0, T0 ∈ R, the functions β,µ : [0,𝜁] ( R defined
by (5.5), (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24) and initial data 𝐾𝑙 ,0 ∈ 𝐴𝑙 ,@0 ,B0 , 𝐾0 ∈ 𝐴∞,@0 ,B0 . Let FN =
( 𝑦 (.)𝑙 ).∈N ∈ X𝑙 ,β,µ, F = ( 𝑦 (.) ).∈N ∈ X∞,β,µ be the mild solutions of the corresponding BBGKY
and Boltzmann hierarchies, respectively, in [0,𝜁], given by Theorems 5.7 and Theorem 5.14. Let us
note that by (5.5), we obtain

β(𝜁) = R0
2 , µ(𝜁) = T0 −

R0
2 , (7.1)

and thus, β(𝜁),µ(𝜁) do not depend on T.
For convenience, we introduce the following notation. Given 𝜈 ∈ N and 𝑤 ≥ 0, we denote

T𝜆 (𝑤) :=
{
(𝑤1, ..., 𝑤𝜆 ) ∈ R𝜆 : 0 ≤ 𝑤𝜆 < ... ≤ 𝑤1 ≤ 𝑤

}
. (7.2)

Since the collisions happening can be either binary or ternary, we will introduce some additional notation
to keep track of the collision sequences. In particular, given 𝜈 ≥ 1, we denote

𝐺𝜆 := {𝐸 = (𝐸1, ...,𝐸𝜆 ) : 𝐸𝐿 ∈ {1, 2}, ∀𝐼 = 1, ..., 𝜈}. (7.3)

Notice that the cardinality of 𝐺𝜆 is given by

|𝐺𝜆 | = 2𝜆 , ∀𝜈 ≥ 1. (7.4)

Given 𝜈 ∈ N and 𝐸 ∈ 𝐺𝜆 , for any 1 ≤ 𝛼 ≤ 𝜈 , we write

𝐸̃𝜃 =
𝜃∑
𝐿=1

𝐸𝐿 . (7.5)

We also write 𝐸̃0 := 0. Notice that

𝜈 ≤ 𝐸̃𝜆 ≤ 2𝜈 , ∀𝜈 ∈ N. (7.6)
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7.1. Series expansion

Now, we make a series expansion for the mild solution FN = ( 𝑦 (.)𝑙 ).∈N of the BBGKY hierarchy with
respect to the initial data 𝐾𝑙 ,0. By Definition 5.5, for any ∈ N, we have Duhamel’s formula:

𝑦 (.)𝑙 (𝑤) = 𝜁 𝐸. 𝑦 (.)𝑙 ,0 +
∫ 𝐸

0
𝜁 𝐸−𝐸1.

[
C𝑙.,.+1 𝑦

(.+1)
𝑙 + C𝑙.,.+2 𝑦

(.+2)
𝑙

]
(𝑤1) 𝑟𝑤1.

Let 𝑢 ∈ N. Iterating n-times Duhamel’s formula, we obtain

𝑦 (.)𝑙 (𝑤) =
𝜂∑
𝜆=0

𝑦 (.,𝜆)𝑙 (𝑤) + H (.,𝜂+1)
𝑙 (𝑤), (7.7)

where we use the notation

𝑦 (.,𝜆)𝑙 (𝑤) :=
∑
𝑈∈𝐴%

𝑦 (.,𝜆 ,𝑈)𝑙 (𝑤), for 1 ≤ 𝜈 ≤ 𝑢, 𝑦 (.,0)𝑙 (𝑤) := 𝜁 𝐸. 𝑦
(.)
𝑙 ,0. (7.8)

𝑦 (.,𝜆 ,𝑈)𝑙 (𝑤) =
∫

T% (𝐸)
𝜁 𝐸−𝐸1. C𝑙.,.+𝑈̃1

𝜁 𝐸1−𝐸2
.+𝑈̃1

C𝑙.+𝑈̃1 ,.+𝑈̃2
𝜁 𝐸2−𝐸3
.+𝑈̃2

...𝜁 𝐸%−1−𝐸%
.+𝑈̃%−1

C𝑙.+𝑈̃%−1 ,.+𝑈̃%
𝜁 𝐸%
.+𝑈̃%

𝑦 (.+𝑈̃% )
𝑙 ,0 𝑟𝑤𝜆 ... 𝑟𝑤1,

(7.9)

H (.,𝜂+1)
𝑙 (𝑤) :=

∑
𝑈∈𝐴/+1

H (.,𝜂+1,𝑈)
𝑙 (𝑤), (7.10)

H (.,𝜂+1,𝑈)
𝑙 (𝑤) :=

∫
T/+1 (𝐸)

𝜁 𝐸−𝐸1. C𝑙.,.+𝑈̃1
𝜁 𝐸1−𝐸2
.+𝑈̃1

C𝑙.+𝑈̃1 ,.+𝑈̃2
𝜁 𝐸2−𝐸3
.+𝑈̃2

...

𝜁 𝐸/−1−𝐸/
.+𝑈̃/−1

C𝑙.+𝑈̃/−1 ,.+𝑈̃/
𝜁 𝐸/−𝐸/+1
.+𝑈̃/

C𝑙.+𝑈̃/ ,.+𝑈̃/+1
𝑦 (.+𝑈̃/+1)
𝑙 (𝑤𝜂+1) 𝑟𝑤𝜂+1 𝑟𝑤𝜂... 𝑟𝑤1.

(7.11)

One can make a similar series expansion for the Boltzmann hierarchy. By Definition 5.5, for any ∈ N,
we have Duhamel’s formula:

𝑦 (.) (𝑤) = 𝐺𝐸. 𝑦 (.)0 +
∫ 𝐸

0
𝐺𝐸−𝐸1.

[
C∞
.,.+1 𝑦

(.+1) + C∞
.,.+2 𝑦

(.+2)
]
(𝑤1) 𝑟𝑤1.

Iterating n-times Duhamel’s formula, we obtain

𝑦 (.) (𝑤) =
𝜂∑
𝜆=0

𝑦 (.,𝜆) (𝑤) + H (.,𝜂+1) (𝑤), (7.12)

where we use the notation

𝑦 (.,𝜆) (𝑤) :=
∑
𝑈∈𝐴%

𝑦 (.,𝜆 ,𝑈) (𝑤), for 1 ≤ 𝜈 ≤ 𝑢, 𝑦 (.,0) (𝑤) := 𝐺𝐸. 𝑦
(.)

0 . (7.13)

𝑦 (.,𝜆 ,𝑈) (𝑤) :=
∫

T% (𝐸)
𝐺𝐸−𝐸1. C∞

.,.+𝑈̃1
𝐺𝐸1−𝐸2
.+𝑈̃1

C∞
.+𝑈̃1 ,.+𝑈̃2

𝐺𝐸2−𝐸3
.+𝑈̃2

...𝐺𝐸%−1−𝐸%
.+𝑈̃%−1

C∞
.+𝑈̃%−1 ,.+𝑈̃%

𝐺𝐸%
.+𝑈̃%

𝑦 (.+𝑈̃% )
0 𝑟𝑤𝜆 ... 𝑟𝑤1,

(7.14)

H (.,𝜂+1) (𝑤) :=
∑

𝑈∈𝐴/+1

H (.,𝜂+1,𝑈) (𝑤), (7.15)
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H (.,𝜂+1,𝑈) (𝑤) :=
∫

T/+1 (𝐸)
𝐺𝐸−𝐸1. C∞

.,.+𝑈̃1
𝐺𝐸1−𝐸2
.+𝑈̃1

C∞
.+𝑈̃1 ,.+𝑈̃2

𝐺𝐸2−𝐸3
.+𝑈̃2

...

𝐺𝐸/−1−𝐸/
.+𝑈̃/−1

C∞
.+𝑈̃/−1 ,.+𝑈̃/

𝐺𝐸/−𝐸/+1
.+𝑈̃/

C∞
.+𝑈̃/ ,.+𝑈̃/+1

𝑦 (.+𝑈̃/+1) (𝑤𝜂+1) 𝑟𝑤𝜂+1 𝑟𝑤𝜂... 𝑟𝑤1.

(7.16)

Given O. ∈ >8 (R𝛽.) and 𝜈 ∈ N, let us denote

J𝑙.,𝜆 (𝑤) (𝐴.) :=
∫
R"&

O. (𝛽.) 𝑦 (.,𝜆)𝑙 (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. , (7.17)

J∞.,𝜆 (𝑤) (𝐴.) :=
∫
R"&

O. (𝛽.) 𝑦 (.,𝜆) (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. . (7.18)

We obtain the following estimates:

Lemma 7.1. For any ℎ, 𝑢 ∈ N and 𝑤 ∈ [0,𝜁], the following estimates hold:

‖J𝑙. (𝑤) −
𝜂∑
𝜆=0

J𝑙.,𝜆 (𝑤)‖E∞
*&

≤ >.,@0 ,B0 ‖O. ‖E∞
0&

4−𝜂‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 ,

‖J∞. (𝑤) −
𝜂∑
𝜆=0

J∞.,𝜆 (𝑤)‖E∞
*&

≤ >.,@0 ,B0 ‖O. ‖E∞
0&

4−𝜂‖𝐾0‖∞,@0 ,B0 ,

where the observables J𝑙. , J∞. are defined in (6.6)–(6.7).

Proof. Fix 𝑝. = (𝐴. ,𝛽.) ∈ R2𝛽. , 𝑤 ∈ [0,𝜁] and 𝐸 ∈ 𝐺𝜂+1. We repeatedly use estimate (5.7) of
Theorem 5.7, for 𝜈 = 1 if 𝐸𝐿 = 1 or for 𝜈 = 2 if 𝐸𝐿 = 2, to obtain

Sβ (𝐸)A& (𝐾&)+.µ(𝐸) |H (.,𝜂+1,𝑈)
𝑙 (𝑤, 𝐴. ,𝛽.) | ≤ 8−(𝜂+1) | | |FN | | |𝑙 ,β,µ,

so adding for all 𝐸 ∈ 𝐺𝜂+1, using (7.4), (5.6) and the definition of the norms, we take

|O. (𝛽.)H (.,𝜂+1)
𝑙 (𝑤, 𝐴. ,𝛽.) | ! 4−(𝜂+1)S−.µ(𝐸) ‖O. ‖E∞

0&
| | |FN | | |𝑙 ,β,µS

−β (𝐸)A& (𝐾&)

≤ 4−𝜂S−.µ(C ) ‖O. ‖E∞
0&
‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0S

−β (C )A& (𝐾&) .

Thus, integrating with respect to velocities and recalling (7.7), (7.17), (7.1), we obtain

|J𝑙. (𝑤) (𝐴.) −
𝜂∑
𝜆=0

J𝑙.,𝜆 (𝑤) (𝐴.) | ≤ >.,B0 ‖O. ‖E∞
0&

4−𝜂‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0

∫
R"&

S−β (C )A& (𝐾&) 𝑟𝛽.

≤ >.,@0 ,B0 ‖O. ‖E∞
0&

4−𝜂‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 .

For the Boltzmann hierarchy, we follow a similar argument using estimates (5.13) and (5.12) instead. "

7.2. High energy truncation
We will now truncate energies, so that we can focus on bounded energy domains. Let us fix ℎ, 𝑢 ∈ N
and H > 1. As usual, we denote 𝜉2𝛽

; to be the 2𝑟-ball of radius R centered at the origin.
We first define the truncated BBGKY hierarchy and Boltzmann hierarchy collisional operators. For

𝛼 ∈ N, we define

C𝑙 ,;
𝜃 ,𝜃+1<G+1 := C𝑙𝜃 ,𝜃+1 (<G+11[Aℓ+1≤;2 ] ), C𝑙 ,;

𝜃 ,𝜃+2<G+2 := C𝑙𝜃 ,𝜃+2(<G+21[Aℓ+2≤;2 ] ),
C∞,;
𝜃 ,𝜃+1<G+1 := C∞

𝜃 ,𝜃+1 (<G+11[Aℓ+1≤;2 ] ), C∞,;
𝜃 ,𝜃+2<G+2 := C∞

𝜃 ,𝜃+2 (<G+21[Aℓ+2≤;2 ] ).
(7.19)
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For the BBGKY hierarchy, we define

𝑦 (.,𝜆)𝑙 ,; (𝑤, 𝑝.) :=
∑
𝑈∈𝐴%

𝑦 (.,𝜆 ,𝑈)𝑙 ,; (𝑤, 𝑝.), for 1 ≤ 𝜈 ≤ 𝑢, 𝑦 (.,0)𝑙 ,; (𝑤, 𝑝.) := 𝜁 𝐸. ( 𝑦𝑙 ,01[A&≤;2 ] ) (𝑝.),

where given 𝜈 ≥ 1 and 𝐸 ∈ 𝐺𝜆 , we denote

𝑦 (.,𝜆 ,𝑈)𝑙 ,; (𝑤, 𝑝.) :=
∫

T% (𝐸)
𝜁 𝐸−𝐸1. C𝑙 ,;

.,.+𝑈̃1
𝜁 𝐸1−𝐸2
.+𝑈̃1

...C𝑙 ,;
.+𝑈̃%−1 ,.+𝑈̃%

𝜁 𝐸%
.+𝑈̃%

𝑦 (.+𝑈̃% )
𝑙 ,0 (𝑝.) 𝑟𝑤𝜆 ... 𝑟𝑤1.

For the Boltzmann hierarchy, we define

𝑦 (.,𝜆); (𝑤, 𝑝.) :=
∑
𝑈∈𝐴%

𝑦 (.,𝜆 ,𝑈); (𝑤, 𝑝.), for 1 ≤ 𝜈 ≤ 𝑢, 𝑦 (.,0); (𝑤, 𝑝.) := 𝐺𝐸. ( 𝑦01[A&≤;2 ] ) (𝑝.),

where given 𝜈 ≥ 1 and 𝐸 ∈ 𝐺𝜆 , we denote

𝑦 (.,𝜆 ,𝑈); (𝑤, 𝑝.) :=
∫

T% (𝐸)
𝐺𝐸−𝐸1. C∞,;

.,.+𝑈̃1
𝐺𝐸1−𝐸2
.+𝑈̃1

...C∞,;
.+𝑈̃%−1 ,.+𝑈̃%

𝐺𝐸%
.+𝑈̃%

𝑦 (.+𝑈̃% )
0 (𝑝.) 𝑟𝑤𝜆 ... 𝑟𝑤1.

Given O. ∈ >8 (R𝛽.) and 𝜈 ∈ N, let us denote

J𝑙.,𝜆 ,; (𝑤) (𝐴.) :=
∫
R"&

O. (𝛽.) 𝑦 (.,𝜆)𝑙 ,; (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. =
∫
?"&
2

O. (𝛽.) 𝑦 (.,𝜆)𝑙 ,; (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. , (7.20)

J∞.,𝜆 ,; (𝑤) (𝐴.) :=
∫
R"&

O. (𝛽.) 𝑦 (.,𝜆); (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. =
∫
?"&
2

O. (𝛽.) 𝑦 (.,𝜆); (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. . (7.21)

Recalling the observables J𝑙.,𝜆 , J∞.,𝜆 , defined in (7.17)–(7.18), we obtain the following estimates:

Lemma 7.2. For any ℎ, 𝑢 ∈ N, H > 1 and 𝑤 ∈ [0,𝜁], the following estimates hold:
𝜂∑
𝜆=0

‖J𝑙.,𝜆 ,; (𝑤) − J𝑙.,𝜆 (𝑤)‖E∞
*&

≤ >.,@0 ,B0 ,C ‖O. ‖E∞
0&
S−

.0
3 ;

2 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 ,

𝜂∑
𝜆=0

‖J∞.,𝜆 ,; (𝑤) − J∞.,𝜆 (𝑤)‖E∞
*&

≤ >.,@0 ,B0 ,C ‖O. ‖E∞
0&
S−

.0
3 ;

2 ‖𝐾0‖∞,@0 ,B0 .

Proof. For the proof, we use the same ideas as in Lemma 8.4. from [2], and we also use (7.4) to sum
over all possible collision sequences. "

7.3. Separation of collision times
We will now separate the time intervals we are integrating at, so that collisions occuring are separated
in time. For this purpose, consider a small time parameter I > 0.

For convenience, given 𝑤 ≥ 0 and 𝜈 ∈ N, we define

T𝜆 ,H (𝑤) := {(𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 (𝑤) : 0 ≤ 𝑤𝐿+1 ≤ 𝑤𝐿 − I, ∀𝐼 ∈ [0, 𝜈]}, (7.22)

where we denote 𝑤𝜆+1 = 0, 𝑤0 = 𝑤.
For the BBGKY hierarchy, we define

𝑦 (.,𝜆)𝑙 ,;,H (𝑤, 𝑝.) :=
∑
𝑈∈𝐴%

𝑦 (.,𝜆 ,𝑈)𝑙 ,;,H (𝑤, 𝑝.), for 1 ≤ 𝜈 ≤ 𝑢, 𝑦 (.,0)𝑙 ,;,H (𝑤, 𝑝.) := 𝜁 𝐸. ( 𝑦𝑙 ,01[A&≤;2 ] ) (𝑝.),
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where, given 𝜈 ≥ 1 and 𝐸 ∈ 𝐺𝜆 , we denote

𝑦 (.,𝜆 ,𝑈)𝑙 ,;,H (𝑤, 𝑝.) :=
∫

T%,3 (𝐸)
𝜁 𝐸−𝐸1. C𝑙 ,;

.,.+𝑈̃1
𝜁 𝐸1−𝐸2
.+𝑈̃1

...C𝑙 ,;
.+𝑈̃%−1 ,.+𝑈̃%

𝜁 𝐸%
.+𝑈̃%

𝑦 (.+𝑈̃% )
𝑙 ,0 (𝑝.) 𝑟𝑤𝜆 , ... 𝑟𝑤1.

In the same spirit, for the Boltzmann hierarchy, we define

𝑦 (.,𝜆)𝑙 ,;,H (𝑤, 𝑝.) :=
∑
𝑈∈𝐴%

𝑦 (.,𝜆 ,𝑈)𝑙 ,;,H (𝑤, 𝑝.), for 1 ≤ 𝜈 ≤ 𝑢, 𝑦 (.,0);,H (𝑤, 𝑝.) := 𝐺𝐸. ( 𝑦01[A&≤;2 ] ) (𝑝.),

where, given 𝜈 ≥ 1 and 𝐸 ∈ 𝐺𝜆 , we denote

𝑦 (.,𝜆 ,𝑈);,H (𝑤, 𝑝.) :=
∫

T%,3 (𝐸)
𝐺𝐸−𝐸1. C∞,;

.,.+𝑈̃1
𝐺𝐸1−𝐸2
.+𝑈̃1

...C∞,;
.+𝑈̃%−1 ,.+𝑈̃%

𝐺𝐸(
.+𝑈̃%

𝑦 (.+𝑈̃% )
0 (𝑝.) 𝑟𝑤𝜆 , ... 𝑟𝑤1.

Given O. ∈ >8 (R𝛽.) and 𝜈 ∈ N, we define

J𝑙.,𝜆 ,;,H (𝑤) (𝐴.) :=
∫
R"&

O. (𝛽.) 𝑦 (.,𝜆)𝑙 ,;,H (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. =
∫
?"&
2

O. (𝛽.) 𝑦 (.,𝜆)𝑙 ,;,H (𝑤, 𝐴. ,𝛽.) 𝑟𝛽., (7.23)

J∞.,𝜆 ,;,H (𝑤) (𝐴.) :=
∫
R"&

O. (𝛽.) 𝑦 (.,𝜆);,H (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. =
∫
?"&
2

O. (𝛽.) 𝑦 (.,𝜆);,H (𝑤, 𝐴. ,𝛽.) 𝑟𝛽. . (7.24)

Remark 7.3. For 0 ≤ 𝑤 ≤ I, we trivially obtain T𝜆 ,H (𝑤) = ∅. In this case, the functionals
J𝑙.,𝜆 ,;,H (𝑤), J∞.,𝜆 ,;,H (𝑤) are identically zero.

Recalling the observables J𝑙.,𝜆 ,;, J∞.,𝜆 ,; defined in (7.20)–(7.21), we obtain the following estimates:

Lemma 7.4. For any ℎ, 𝑢 ∈ N, H > 0, I > 0 and 𝑤 ∈ [0,𝜁], the following estimates hold:
𝜂∑
𝜆=0

‖J𝑙.,𝜆 ,;,H (𝑤) − J𝑙.,𝜆 ,; (𝑤)‖E∞
*&

≤ I‖O. ‖E∞
0&
>𝜂𝛽,.,@0 ,B0 ,C

‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 ,

𝜂∑
𝜆=0

‖J∞.,𝜆 ,;,H (𝑤) − J∞.,𝜆 ,; (𝑤)‖E∞
*&

≤ I‖O. ‖E∞
0&
>𝜂𝛽,.,@0 ,B0 ,C

‖𝐾0‖∞,@0 ,B0 .

Proof. For the proof, we follow similar ideas as in Lemma 8.7. from [2], and we also use bound (7.6)
to control the combinatorics occurring. "

Combining Lemma 7.1, Lemma 7.2 and Lemma 7.4, we obtain the following:

Proposition 7.5. For any ℎ, 𝑢 ∈ N, H > 1, I > 0 and 𝑤 ∈ [0,𝜁], the following estimates hold:

‖J𝑙. (𝑤) −
𝜂∑
𝜆=1

J𝑙.,𝜆 ,;,H (𝑤)‖E∞
*&

≤ >.,@0 ,B0 ,C ‖O. ‖E∞
0&

(
2−𝜂 + S−

.0
3 ;

2 + I>𝜂𝛽,.,@0 ,B0 ,C

)
‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 ,

‖J∞. (𝑤) −
𝜂∑
𝜆=1

J∞.,𝜆 ,;,H (𝑤)‖E∞
*&

≤ >.,@0 ,B0 ,C ‖O. ‖E∞
0&

(
2−𝜂 + S−

.0
3 ;

2 + I>𝜂𝛽,.,@0 ,B0 ,C

)
‖𝐾0‖∞,@0 ,B0 .

Proposition 7.5 implies that, given 0 ≤ 𝜈 ≤ 𝑢, H > 1, I > 0, the convergence proof reduces to
controlling the differences J𝑙.,𝜆 ,;,H (𝑤)− J∞.,𝜆 ,;,H (𝑤), where the observables J𝑙.,𝜆 ,;,H , J∞.,𝜆 ,;,H are given by
(7.23)–(7.24). However, this is not immediate since the backwards (𝛿2, 𝛿3)-flow and the backwards free
flow do not coincide in general. The goal is to eliminate some small measure set of initial data, negligible
in the limit, such that the backwards (𝛿2, 𝛿3)-flow and the backwards free flow are comparable.
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8. Geometric estimates
In this section, we present some geometric results which will be essential for estimating the measure
of the pathological sets leading to recollisions of the backwards (𝛿2, 𝛿3) flow (see Section 9). First, we
review some of the results we used in [5] which are useful here as well. We then present certain novel
results – namely, Lemma 8.3, Lemma 8.6, Lemma 8.7 and, most importantly, Lemma 8.8 – which
crucially rely on the following symmetric representation of the (2𝑟 − 1) sphere of radius 𝑊 > 0:

S2𝛽−1
𝐼 =

{
(𝐿1,𝐿2) ∈ 𝜉𝛽𝐼 × 𝜉𝛽𝐼 : 𝐿2 ∈ S𝛽−1)

𝐼2− |𝐶1 |2

}
=

{
(𝐿1,𝐿2) ∈ 𝜉𝛽𝐼 × 𝜉𝛽𝐼 : 𝐿1 ∈ S𝛽−1)

𝐼2− |𝐶2 |2

}
(8.1)

Representation (8.1) is very useful when one wants to estimate the intersection of S2𝛽−1
𝐼 with sets of the

form 𝐺 × R𝛽 or R𝛽 × 𝐺, where 𝐺 ⊆ R𝛽 is of small measure.

8.1. Cylinder-Sphere estimates
Here, we present certain estimates based on the intersection of a sphere with a given solid cylinder.
These estimates were used in [5] as well. Similar estimates can be found in [14, 18].
Lemma 8.1. Let 𝜂, 𝑊 > 0 and Y𝛽𝐽 ⊆ R𝛽 be a solid cylinder. Then the following estimate holds for the
(𝑟 − 1)-spherical measure:

∫
S"−1
4

1I "
)
𝑟𝐿 ! 𝑊𝛽−1 min

{
1,

( 𝜂
𝑊

) "−1
2

}
.

Proof. After re-scaling, we may clearly assume that 𝑊 = 1. Then, we refer to the work of R. Denlinger
[14], p.30, for the rest of the proof. "

Applying Lemma 8.1, we obtain the following geometric estimate, which will be crucially used in
Section 9.
Corollary 8.2. Given 0 < 𝜂 ≤ 1 ≤ H, the following estimate holds:

|𝜉𝛽; ∩ Y𝛽𝐽 |𝛽 ! H𝛽𝜂
"−1

2 .

Proof. The co-area formula and Lemma 8.1 imply

|𝜉𝛽; ∩ Y𝛽𝐽 |𝛽 =
∫ ;

0

∫
S"−1
4

1I "
)
𝑟𝐿 𝑟𝑊

!
∫ ;

0
𝑊𝛽−1 min

{
1, ( 𝜂

𝑊
) "−1

2
}
𝑟𝑊

≤
∫ 𝐽

0
𝑊𝛽−1 𝑟𝑊 + 𝜂 "−1

2

∫ ;

0
𝑊

"−1
2 𝑟𝑊

' 𝜂𝛽 + 𝜂 "−1
2 H

"+1
2 , since 𝑟 ≥ 2

! H𝛽𝜂
"−1

2 , since 0 < 𝜂 ≤ 1 ≤ H.

(8.2)

"

8.2. Estimates relying on the (2𝑟 − 1)-sphere representation
Here, we present certain geometric estimates relying on the representation (8.1). In particular, up to our
knowledge, Lemma 8.3, Lemma 8.6, Lemma 8.7 and, most importantly, Lemma 8.8 are novel results.
Lemma 8.4 is a special case of a result proved in [5].
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8.2.1. Truncation of impact directions
We first estimate the intersection of S2𝛽−1

1 with sets of the form 𝜉𝛽𝐽 × R𝛽 or R𝛽 × 𝜉𝛽𝐽 .

Lemma 8.3. Consider 𝜂 > 0. We define the sets

Z1 (𝜂) = 𝜉𝛽𝐽 × R𝛽 =
{
(𝐿1,𝐿2) ∈ R2𝛽 : |𝐿1 | ≤ 𝜂

}
, (8.3)

Z2 (𝜂) = R𝛽 × 𝜉𝛽𝐽 =
{
(𝐿1,𝐿2) ∈ R2𝛽 : |𝐿2 | ≤ 𝜂

}
. (8.4)

Then, the following holds:∫
S2"−1

1

1J1 (𝐽) 𝑟𝐿1 𝑟𝐿2 =
∫
S2"−1

1

1J2 (𝐽) 𝑟𝐿1 𝑟𝐿2 ! min{1, 𝜂𝛽}.

Proof. By symmetry, it suffices to estimate the first term. Using (8.3) and representation (8.1), we obtain∫
S2"−1

1

1J1 (𝐽) 𝑟𝐿1 𝑟𝐿2 =
∫
S2"−1

1

1?"
)×R" 𝑟𝐿1 𝑟𝐿2 !

∫
?"
)∩?"

1

∫
S"−1)

1−|51 |2

𝑟𝐿2 𝑟𝐿1 ! min{1, 𝜂𝛽}.

"

The following result is a special case of Lemma 8.4. from [5]. For the proof, see Lemma 9.5. in [2].

Lemma 8.4. Consider 𝜂 > 0. Let us define the strip

[2𝛽
𝐽 = {(𝐿1,𝐿2) ∈ R2𝛽 : |𝐿1 − 𝐿2 | ≤ 𝜂}. (8.5)

Then, the following estimate holds:∫
S2"−1

1

1K 2"
)
𝑟𝐿1 𝑟𝐿2 ! min

{
1, 𝜂

"−1
2

}
.

Proof. For the proof, see Lemma 9.5. in [2]. The main idea is to first use representation (8.1) and then
apply Lemma 8.1. "

8.2.2. Conic estimates
Now we establish estimates related to conic regions. We first present a well-known spherical cap estimate.

Lemma 8.5. Consider 0 ≤ \ ≤ 1 and 𝐽 ∈ R𝛽 \ {0}. Let us define

𝐺(\, 𝐽) =
{
𝐿 ∈ R𝛽 : |+𝐿, 𝐽〉 | ≥ \ |𝐿| |𝐽 |

}
. (8.6)

Then, for 𝜂 > 0, the following estimate holds:
∫
S"−1
4

1𝐴 (L,M) 𝑟𝐿 = 𝑊𝛽−1 |S𝛽−2
1 |

∫ 2 arccos L

0
sin𝛽−2 (]) 𝑟] ! 𝑊𝛽−1 arccos\.

Proof. After re-scaling, it suffices to prove the result for 𝑊 = 1. Notice that S𝛽−1
1 ∩ 𝐺(\, 𝐽) is a spherical

cap of angle 2 arccos\ and direction 𝐽 ≠ 0 on the unit sphere. Therefore, integrating in spherical
coordinates, we obtain

∫
S"−1

1

1𝐴 (L,M) 𝑟𝐿 = |S𝛽−2
1 |

∫ 2 arccos L

0
sin𝛽−2 ] 𝑟] ! arccos\.

"
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We apply Lemma 8.5 to obtain the following result:

Lemma 8.6. Consider 0 ≤ \ ≤ 1 and 𝐽 ∈ R𝛽 \ {0}. Let us define

𝑈 (\, 𝐽) =
{
(𝐿1,𝐿2) ∈ R2𝛽 : +𝐿1 − 𝐿2, 𝐽〉 ≥ \ |𝐿1 − 𝐿2 | |𝐽 |

}
. (8.7)

Then, we have the estimate ∫
S2"−1

1

1𝑙 (L,M) 𝑟𝐿1 𝑟𝐿2 ! arccos\.

Proof. Recalling (8.6)–(8.7), we have

𝑈 (\, 𝐽) = {(𝐿1,𝐿2) ∈ R2𝛽 : 𝐿1 − 𝐿2 ∈ 𝐺(\, 𝐽)}. (8.8)

Let us define the linear map 𝜁 : R2𝛽 ( R2𝛽 by

(^1, ^2) = 𝜁 (𝐿1,𝐿2) := (𝐿1 + 𝐿2,𝐿1 − 𝐿2).

Clearly,

|^1 |2 + |^2 |2 = |𝐿1 + 𝐿2 |2 + |𝐿1 − 𝐿2 |2 = 2|𝐿1 |2 + 2|𝐿2 |2 = 2, ∀(𝐿1,𝐿2) ∈ S2𝛽−1
1 ,

and hence, 𝜁 : S2𝛽−1
1 ( S2𝛽−1)

2
. Therefore, using (8.8) and changing variables under T, we have

∫
S2"−1

1

1𝑙 (L,M) (𝐿1,𝐿2) 𝑟𝐿1 𝑟𝐿2 =
∫
S2"−1

1

1𝐴 (L,M) (𝐿1 − 𝐿2) 𝑟𝐿1 𝑟𝐿2

'
∫
S2"−1

2

1𝐴 (L,M) (^2) 𝑟^1 𝑟^2

=
∫
?")

2

∫
S"−1)

2−|61 |2

1𝐴 (L,M) (^2) 𝑟^2 𝑟^1 (8.9)

! arccos\, (8.10)

where to obtain (8.9), we use the representation of the sphere (8.1), and to obtain (8.10), we use
Lemma 8.5. "

8.2.3. Annuli estimates
We present some estimates based on the intersection of the unit sphere with appropriate annuli.

Lemma 8.7. Let 0 < R < 1/2, and consider the sets

J1 =
{
(𝐿1,𝐿2) ∈ R2𝛽 :

>>1 − 2|𝐿1 |2
>> ≤ 2R

}
, (8.11)

J2 =
{
(𝐿1,𝐿2) ∈ R2𝛽 :

>>1 − 2|𝐿2 |2
>> ≤ 2R

}
. (8.12)

There hold the estimates ∫
S2"−1

1

1N1 𝑟𝐿1 𝑟𝐿2 =
∫
S2"−1

1

1N2 𝑟𝐿1 𝑟𝐿2 ! R.
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Proof. By symmetry, it suffices to prove the estimate for J1. Since 0 < R < 1/2, we may write

J1 =

{
(𝐿1,𝐿2) ∈ S2𝛽−1

1 :
√

1
2 − R ≤ |𝐿1 | ≤

√
1
2 + R

}
.

Using the representation (8.1) of the (2𝑟 − 1)-unit sphere, we obtain
∫
S2"−1

1

1N1 𝑟𝐿1 𝑟𝐿2 ≤
∫

√
1
2−@≤ |𝐶1 |≤

√
1
2+@

∫
S"−1)

1−|51 |2

𝑟𝐿2 𝑟𝐿1

!
(

1
2 + R

)𝛽/2
−

(
1
2 − R

)𝛽/2

𝛽≥2=

(√
1
2 + R −

√
1
2 − R

)
𝛽−1∑
𝜙=0

(
1
2 + R

) 𝜙/2 (1
2 − R

) "−1− $
2

=
2R√

1
2 + R +

√
1
2 − R

𝛽−1∑
𝜙=0

(
1
2 + R

) 𝜙/2 (1
2 − R

) "−1− $
2

≤ 2
)

2R
𝛽−1∑
𝜙=0

(
1
2 + R

) 𝜙/2 (1
2 − R

) "−1− $
2

! R,

since 0 < R < 1/2. The proof is complete. "

Lemma 8.8. Consider 0 < R < 1/4. Let us define the hemispheres

S1,2 = {(𝐿1,𝐿2) ∈ S2𝛽−1
1 : |𝐿1 | < |𝐿2 |}, (8.13)

S2,1 = {(𝐿1,𝐿2) ∈ S2𝛽−1
1 : |𝐿2 | < |𝐿1 |}, (8.14)

and the annuli

J1,2 = {(𝐿1,𝐿2) ∈ R2𝛽 :
>>|𝐿1 |2 + 2+𝐿1,𝐿2〉

>> ≤ R}, (8.15)

J2,1 = {(𝐿1,𝐿2) ∈ R2𝛽 :
>>|𝐿2 |2 + 2+𝐿1,𝐿2〉

>> ≤ R}. (8.16)

Then, there holds ∫
S1,2

1N1,2 𝑟𝐿1 𝑟𝐿2 =
∫

S2,1

1N2,1 𝑟𝐿1 𝑟𝐿2 ! R.

Proof. By symmetry, it suffices to prove
∫

S2,1

1N2,1 𝑟𝐿1 𝑟𝐿2 ! R. (8.17)

Recalling notation from (8.3)–(8.4), let us define

K@ = Z8
1 (2

√
R) ∩ Z8

2 (2
√
R) = {(𝐿1,𝐿2) ∈ R2𝛽 : |𝐿1 | > 2

√
R and |𝐿2 | > 2

√
R}.
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Clearly, K8@ = Z1 (2
)
R) ∪ Z2 (2

)
R). Writing Q := J2,1 ∩K@ , we have

∫
S2,1

1N2,1 𝑟𝐿1 𝑟𝐿2 ≤
∫

S2,1

1O+
.
𝑟𝐿1 𝑟𝐿2 +

∫
S2,1

1P 𝑟𝐿1 𝑟𝐿2 ! R𝛽/2 +
∫

S2,1

1P 𝑟𝐿1 𝑟𝐿2, (8.18)

where to obtain (8.18), we used Lemma 8.3. Notice that we may write

Q = {(𝐿1,𝐿2) ∈ R2𝛽 : |𝐿1 | > 2
√
R, |𝐿2 | > 2

√
R and

√
|𝐿1 |2 − R ≤ |𝐿1 + 𝐿2 | ≤

√
|𝐿1 |2 + R}.

(8.19)

By (8.18), the representation of the sphere (8.1) and (8.19), we have
∫

S2,1

1N2,1 𝐿1 𝑟𝐿2 ! R𝛽/2 +
∫

2
)
@< |𝐶1 |≤1

∫
S2,1,51

1P51
(𝐿2) 𝑟𝐿2 𝑟𝐿1, (8.20)

where given 2
)
R < |𝐿1 | ≤ 1, we denote

S2,1,𝐶1 = {𝐿2 ∈ S𝛽−1)
1− |𝐶1 |2

: |𝐿2 | < |𝐿1 |}, (8.21)

Q𝐶1 = {𝐿2 ∈ R𝛽 : (𝐿1,𝐿2) ∈ Q} (8.22)

= {𝐿2 ∈ R𝛽 : |𝐿2 | > 2
√
R and

√
|𝐿1 |2 − R ≤ |𝐿1 + 𝐿2 | ≤

√
|𝐿1 |2 + R}.

Since R < 1/4, it suffices to control the term:

J ′ =
∫

2
)
@< |𝐶1 |≤1

∫
S2,1,51

1P51
(𝐿2) 𝑟𝐿2 𝑟𝐿1. (8.23)

Now we shall prove that, in fact,

J ′ =
∫

2
)
@<
)

1− |𝐶1 |2< |𝐶1 |≤1

∫
S"−1)

1−|51 |2

1P51
(𝐿2) 𝑟𝐿2 𝑟𝐿1. (8.24)

Indeed, assume 𝐿1 does not satisfy

2
√
R <

√
1 − |𝐿1 |2 < |𝐿1 |. (8.25)

Since we are integrating in the region 2
)
R < |𝐿1 | ≤ 1, exactly one of the following holds:

|𝐿1 | ≤
√

1 − |𝐿1 |2, (8.26)

√
1 − |𝐿1 |2 ≤ 2

√
R. (8.27)

Recalling (8.21), condition (8.26) implies that S2,1,𝐶1 = ∅, while recalling (8.22), condition (8.27)
implies S2,1,𝐶1 ∩ Q𝐶1 = ∅. Therefore,

J ′ =
∫

2
)
@<
)

1− |𝐶1 |2< |𝐶1 |≤1

∫
S2,1,51

1P51
(𝐿2) 𝑟𝐿2 𝑟𝐿1,

and (8.24) follows from (8.21).
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Figure 5.

Fix any 𝐿1 satisfying (8.25). We first estimate the inner integral:∫
S"−1)

1−|51 |2

1P51
(𝐿2) 𝑟𝐿2. (8.28)

Notice that (8.25) also yields

|𝐿1 | −
√
|𝐿1 |2 − R =

R

|𝐿1 | +
√
|𝐿1 |2 − R

<
R

|𝐿1 |
≤ 1

2
√
R ≤ 1

4
√

1 − |𝐿1 |2. (8.29)

Condition (8.25) guarantees that the vector13 −𝐿1 lays outside of the sphere S𝛽−1)
1− |𝐶1 |2

, while con-
dition (8.29) guarantees that the sphere is not contained in the annulus Q𝐶1 . Therefore, the projec-
tion of S𝛽−1)

1− |𝐶1 |2
∩ Q𝐶1 on any plane containing the origin and the vector −𝐿1 can be visualized as

follows:
We conclude that

S𝛽−1)
1− |𝐶 |2

∩ Q𝐶1 = S
𝛽−1)

1− |𝐶1 |2
∩ (𝐺(cos ]1,−𝐿1) \ 𝐺(cos ]2,−𝐿1)), (8.30)

where recalling the notation introduced in (8.6),

S𝛽−1)
1− |𝐶1 |2

∩ 𝐺(cos ]1,−𝐿1), S𝛽−1)
1− |𝐶1 |2

∩ 𝐺(cos ]2,−𝐿1),

are the spherical shells on S𝛽−1)
1− |𝐶1 |2

, of direction −𝐿1 and angles 2]1, 2]2 respectively, where

]1 = IQ.>, ]2 = I𝜉.> .

13Understood as a point in R" .
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Therefore, by (8.30), we have
∫
S"−1)

1−|51 |2

1P51
(𝐿2) 𝑟𝐿2 =

∫
S"−1)

1−|51 |2

1𝐴 (cos Q1 ,−𝐶1)\𝐴 (cos Q2 ,−𝐶1) (𝐿2) 𝑟𝐿2

= (1 − |𝐿1 |2)
"−1

2 |S𝛽−2
1 |

∫ 2Q1

2Q2

sin𝛽−2 ] 𝑟] (8.31)

! ]1 − ]2, (8.32)

where to obtain (8.31), we use Lemma 8.5, and to obtain (8.32), we use the fact that 𝑟 ≥ 2.
Let us calculate \1 = cos ]1, \2 = cos ]2. By the cosine law on the triangle Q.>, we obtain

\1 = cos ]1 =
(.Q)2 + (.>)2 − (Q>)2

2(.Q) (.>) =
1 − |𝐿1 |2 − R

2|𝐿1 |
√

1 − |𝐿1 |2
, (8.33)

and by the cosine law on the triangle 𝜉.>, we obtain

\2 = cos ]2 =
(.𝜉)2 + (.>)2 − (>𝜉)2

2(.𝜉) (.>) =
1 − |𝐿1 |2 + R

2|𝐿1 |
√

1 − |𝐿1 |2
. (8.34)

Then, expression (8.33) implies

|\1 | ≤
√

1 − |𝐿1 |2
2|𝐿1 |

+ R

2|𝐿1 |
√

1 − |𝐿1 |2
<

5
8 , (8.35)

since by (8.25) we have |𝐿1 | >
√

1 − |𝐿1 |2 > 2
)
R. In the same spirit, expression (8.34) yields

|\2 | <
5
8 . (8.36)

The inverse cosine is smooth in (−1, 1), so it is Lipschitz in [− 5
8 ,

5
8 ]; thus, by (8.35)–(8.36) and (8.25),

we have

| arccos\1 − arccos\2 | ! |\1 − \2 | =
R

|𝐿1 |
√

1 − |𝐿1 |2
.

Therefore, (8.32) implies
∫
S"−1)

1−|51 |2

1P51
(𝐿2) 𝑟𝐿2 ! ]1 − ]2 = arccos\1 − arccos\2 !

R

|𝐿1 |
√

1 − |𝐿1 |2
. (8.37)

Using (8.37), and recalling (8.24), we have

J ′ =
∫

2
)
@<
)

1− |𝐶1 |2 |𝐶1 |<1

∫
S"−1)

1−|51 |2

1P51
(𝐿2) 𝑟𝐿2 𝑟𝐿1

! R
∫
?"

1

1
|𝐿1 |

√
1 − |𝐿1 |2

𝑟𝐿1

' R

∫ 1

0

𝑊𝛽−2
)

1 − 𝑊2
𝑟𝑊 (8.38)
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≤ R

∫ 1

0

1)
1 − 𝑊2

𝑟𝑊 (8.39)

=
L

2 R, (8.40)

where to obtain (8.38), we use integration in polar coordinates, and to obtain (8.39), we use the fact that
𝑟 ≥ 2. Using (8.20) and (8.40), we obtain

∫
S2,1

1N2,1 𝑟𝐿1 𝑟𝐿2 ! R𝛽/2 + R ! R,

since R < 1/4. The proof is complete. "

9. Good configurations and stability
9.1. Adjunction of new particles
In this section, we investigate stability of good configurations under adjunctions of collisional particles.
Subsection 9.2 investigates binary adjunctions, while Subsection 9.3 investigates ternary adjunctions.
To perform the measure estimates needed, we will strongly rely on the results of Section 8.

We start with some definitions on the configurations we are using. Consider 𝑅 ∈ N and ] > 0, and
recall from (6.3)-(6.4) the set of well-separated configurations

Δ𝑇 (]) = {𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ R2𝛽𝑇 : |𝐵̃𝐿 − 𝐵̃ 𝜙 | > ], ∀1 ≤ 𝐼 < , ≤ 𝑅}, 𝑅 ≥ 2, Δ1 (]) = R2𝛽 .

Roughly speaking, a good configuration is a configuration which remains well-separated under back-
wards time evolution. More precisely, given ] > 0, 𝑤0 > 0, we define the set of good configurations as

U𝑇 (], 𝑤0) =
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ R2𝛽𝑇 : 𝑝𝑇(𝑤) ∈ Δ𝑇(]), ∀𝑤 ≥ 𝑤0

}
, (9.1)

where 𝑝𝑇 (𝑤) denotes the backwards in time free flow of 𝑝𝑇 = (𝐴𝑇,𝛽𝑇), given by

𝑝𝑇(𝑤) = ((𝐴𝑇 (𝑤),𝛽𝑇(𝑤)) := (𝐴𝑇 − 𝑤𝛽𝑇,𝛽𝑇), 𝑤 ≥ 0. (9.2)

Notice that 𝑝𝑇 is the initial point of the trajectory (i.e., 𝑝𝑇(0) = 𝑝𝑇). In other words for𝑅 ≥ 2, we have

U𝑇(], 𝑤0) =
{
𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ R2𝛽𝑇 : |𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) | > ], ∀𝑤 ≥ 𝑤0, ∀𝐼 < , ∈ {1, ...,𝑅}

}
. (9.3)

From now on, we consider parameters H >> 1 and 0 < I, _, 𝛿0, \ << 1 satisfying

\ << 𝛿0 << _I, H\ << _𝛿0. (9.4)

For convenience, we choose the parameters in (9.4) in the very end of the paper; see (11.23), (11.24).
Throughout this section, we will write Y𝛽R for a cylinder of radius _ in R𝛽 .

The following Lemma is useful for the adjunction of particles to a given configuration. For the proof,
see Lemma 12.2.1 from [18] or Lemma 10.2. from [2].

Lemma 9.1. Consider parameters \, 𝛿0, H, _, I as in (9.4) and 𝛿3 << \. Let 𝜃̄1, 𝜃̄2 ∈ R𝛽 , with | 𝜃̄1− 𝜃̄2 | >
𝛿0 and 𝑛1 ∈ 𝜉𝛽;. Then there is a d-cylinder Y𝛽R ⊆ R𝛽 such that for any 𝜃1 ∈ 𝜉𝛽L ( 𝜃̄1), 𝜃2 ∈ 𝜉𝛽L ( 𝜃̄2) and
𝑛2 ∈ 𝜉𝛽; \ Y𝛽R , we have

1. (𝜃1, 𝜃2, 𝑛1, 𝑛2) ∈ U2 (
)

2𝛿3, 0),
2. (𝜃1, 𝜃2, 𝑛1, 𝑛2) ∈ U2 (𝛿0, I).
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9.2. Stability under binary adjunction
The main results of this subsection are stated in Proposition 9.2, which will be the inductive step of
adding a colliding particle, and Proposition 9.4, which presents the measure estimate of the bad set that
appears in this process. The proofs of the Propositions presented below are in part inspired by arguments
in [18] and [5] with a caveat that the new scenario needs to be addressed, in the case when the binary
collisional configuration formed runs to a ternary interaction under time evolution.

9.2.1. Binary adjunction
For convenience, given 𝑛 ∈ R𝛽 , let us denote

(
S𝛽−1

1 × 𝜉𝛽;
)+
(𝑛) =

{
(𝐿1, 𝑛1) ∈ S𝛽−1

1 × 𝜉𝛽; : 𝜇2(𝐿1, 𝑛1 − 𝑛) > 0
}
, (9.5)

where 𝜇2(𝐿)1, 𝑛1 − 𝑛) = +𝐿1, 𝑛1 − 𝑛〉. Recall from (9.2) that given 𝑅 ∈ N and 𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ R2𝛽𝑇,
we denote the backwards in time free flow as 𝑝𝑇 (𝑤) = (𝐴𝑇 − 𝑤𝛽𝑇,𝛽𝑇), 𝑤 ≥ 0. Recall also the notation
from (3.7)

D̊𝑇+1,𝛿2 ,𝛿3 =
{
𝑝𝑇+1 = (𝐴𝑇+1,𝛽𝑇+1) ∈ R2𝛽 (𝑇+1) : 𝑟2(𝐵𝐿 , 𝐵 𝜙 ) > 𝛿2, ∀(𝐼, ,) ∈ I2

𝑇+1,

and 𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) >
)

2𝛿3, ∀(𝐼, , , 𝜈) ∈ I3
𝑇+1

}
,

where I2
𝑇+1, I

3
𝑇+1 are given by (3.1)–(3.2), respectively.

Proposition 9.2. Consider parameters \, 𝛿0, H, _, I as in (9.4) and 𝛿2 << 𝛿3 << \. Let 𝑅 ∈ N,
𝑝̄𝑇 = ( 𝐴̄𝑇, 𝛽̄𝑇) ∈ U𝑇(𝛿0, 0), 𝛼 ∈ {1, ...,𝑅}, 𝛽̄𝑇 ∈ 𝜉𝛽𝑇; and 𝐴𝑇 ∈ 𝜉𝛽𝑇L/2( 𝐴̄𝑇). Then there is a subset
B2
𝜃 (𝑝̄𝑇) ⊆ (S𝛽−1

1 × 𝜉𝛽;)+(𝑛̄𝜃) such that

1. For any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝜃) \ B2

𝜃 (𝑝̄𝑇), one has

𝑝𝑇+1(𝑤) ∈ D̊𝑇+1,𝛿2 ,𝛿3 , ∀𝑤 ≥ 0, (9.6)

𝑝𝑇+1 ∈ U𝑇+1(𝛿0/2, I), (9.7)

𝑝̄𝑇+1 ∈ U𝑇+1 (𝛿0, I). (9.8)

where

𝑝𝑇+1 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇+1, 𝑛̄1, ..., 𝑛̄𝜃 , ..., 𝑛̄𝑇, 𝑛𝑇+1),
𝐵𝑇+1 = 𝐵𝜃 − 𝛿2𝐿1,

𝑝̄𝑇+1 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇, 𝑛̄1, ..., 𝑛̄𝜃 , ..., 𝑛̄𝑇, 𝑛𝑇+1),
(9.9)

2. For any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝜃) \ B2

𝜃 (𝑝̄𝑇), one has

𝑝 ′
𝑇+1(𝑤) ∈ D̊𝑇+1,𝛿2 ,𝛿3 , ∀𝑤 ≥ 0, (9.10)

𝑝 ′
𝑇+1 ∈ U𝑇+1(𝛿0/2, I), (9.11)

𝑝̄ ′
𝑇+1 ∈ U𝑇+1(𝛿0, I), (9.12)
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where

𝑝 ′
𝑇+1 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇+1, 𝑛̄1, ..., 𝑛̄

′
𝜃 , ..., 𝑛̄𝑇, 𝑛

′
𝑇+1),

𝐵𝑇+1 = 𝐵𝜃 + 𝛿2𝐿1,

𝑝̄ ′
𝑇+1 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇, 𝑛̄1, ..., 𝑛̄

′
𝜃 , ..., 𝑛̄𝑇, 𝑛

′
𝑇+1),

(𝑛̄′𝜃 , 𝑛′𝑇+1) = 𝜁𝐶1 (𝑛̄𝜃 , 𝑛𝑇+1).

(9.13)

Proof. By symmetry, we may assume that 𝛼 = 𝑅. For convenience, let us define the set

F𝑇+1 = {(𝐼, ,) ∈ {1, ...,𝑅 + 1} × {1, ...,𝑅 + 1} : 𝐼 < min{ , ,𝑅}}.

Proof of (i): Here, we use notation from (9.9). We start by formulating the following claim, which will
imply (9.6).

Lemma 9.3. Under the assumptions of Proposition 9.2, there is a subset B2,0,−
𝑇 (𝑝̄𝑇) ⊆ S𝛽−1

1 × 𝜉𝛽; such
that for any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1

1 × 𝜉𝛽;)+(𝑛̄𝑇) \ B2,0,−
𝑇 (𝑝̄𝑇), there holds

𝑟2
(
𝐵𝐿 (𝑤), 𝐵 𝜙 (𝑤)

)
>
)

2𝛿3, ∀𝑤 ≥ 0, ∀(𝐼, ,) ∈ F𝑇+1, (9.14)

𝑟2(𝐵𝑇 (𝑤), 𝐵𝑇+1 (𝑤)) > 𝛿2, ∀𝑤 ≥ 0. (9.15)

Notice that (9.14)–(9.15) trivially imply (9.6), since 𝛿2 << 𝛿3.

Proof of Lemma 9.3
Step 1: The proof of (9.14): We distinguish the following cases:
◦ , ≤ 𝑅: Since 𝑝̄𝑇 ∈ U𝑇(𝛿0, 0) and , ≤ 𝑅, we have |𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) | > 𝛿0, for all 𝑤 ≥ 0. Therefore,

triangle inequality implies that

|𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) | = |𝐵𝐿 − 𝐵 𝜙 − 𝑤 (𝑛̄𝐿 − 𝑛̄ 𝜙 ) | ≥ |𝐵𝐿 − 𝐵 𝜙 − 𝑤 (𝑛̄𝐿 − 𝑛̄ 𝜙 ) | − \ ≥ 𝛿0 − \ >
𝛿0
2 >

)
2𝛿3, (9.16)

since 𝛿3 << \ << 𝛿0.
◦ , = 𝑅+1: Since (𝐼,𝑅+1) ∈ F𝑇+1, we have 𝐼 ≤ 𝑅−1. Since 𝑝̄𝑇 ∈ U𝑇 (𝛿0, 0) and 𝐴𝑇 ∈ 𝜉𝛽𝑇L/2( 𝐴̄𝑇),

we conclude

|𝐵𝐿 − 𝐵𝑇 | > 𝛿0, |𝐵𝐿 − 𝐵𝐿 | ≤
\

2 < \, |𝐵𝑇+1 − 𝐵𝑇 | ≤ |𝐵𝑇 − 𝐵𝑇 | + 𝛿2 |𝐿1 | ≤
\

2 + 𝛿2 < \,

since 𝛿2 << \. Applying part (i) of Lemma 9.1 for 𝜃̄1 = 𝐵𝐿 , 𝜃̄2 = 𝐵𝑇, 𝜃1 = 𝐵𝐿 , 𝜃2 = 𝐵𝑇+1, we may find
a cylinder Y𝛽,𝐿R such that for any 𝑛𝑇+1 ∈ 𝜉𝛽; \ Y𝛽,𝐿R , we have |𝐵𝐿 (𝑤) − 𝐵𝑇+1 (𝑤) | >

)
2𝛿3, for all 𝑤 ≥ 0.

Hence, the inequality in (9.14) holds for any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝑇) \𝛽 𝐿𝑇+1, where

𝛽 𝐿𝑇+1 = S𝛽−1
1 × Y𝛽,𝐿R . (9.17)

We conclude that (9.14) holds for any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;) \

⋃𝑇−1
𝐿=1 𝛽 𝐿𝑇+1.

Step 2: The proof of (9.15): We recall notation from (9.9). Considering 𝑤 ≥ 0 and (𝐿1, 𝑛𝑇+1) ∈
(S𝛽−1

1 × 𝜉𝛽;)+(𝑛̄𝑇). Using the fact that (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝑇), we obtain

|𝐵𝑇 (𝑤) − 𝐵𝑇+1 (𝑤) |2 = |𝛿2𝐿1 − 𝑤 (𝑛̄𝑇 − 𝑛𝑇+1) |2 ≥ 𝛿2
2 |𝐿1 |2 + 2𝛿2𝑤𝜇2(𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇) > 𝛿2

2 . (9.18)

Therefore, (9.15) holds for any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝑇).
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Defining

B2,0,−
𝑇 (𝑝̄𝑇) =

𝑇−1⋃
𝐿=1

𝛽 𝐿𝑇+1, (9.19)

the claim of Lemma 9.3 follows.
Now we go back to the proof of part (i) of Proposition 9.2. We will find a set B2,H,−

𝑇 (𝑝̄𝑇) ⊆ S𝛽−1
1 ×𝜉𝛽;

such that (9.7) holds for any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;) \ B2,H,−

𝑇 (𝑝̄𝑇).
Let us fix 𝐼, , ∈ {1, ...,𝑅 + 1} with 𝐼 < , . We distinguish the following cases:
◦ , ≤ 𝑅: We use the same argument as in (9.16), to obtain |𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) | > 𝛿0

2 , for all 𝑤 ≥ 0.
◦ (𝐼, ,) ∈ F𝑇+1, , = 𝑅 + 1: Since (𝐼,𝑅 + 1) ∈ F𝑇+1, we have 𝐼 ≤ 𝑅 − 1. Applying a similar argument

to the corresponding case in the proof of (9.14), using part (ii) of Lemma 9.1 instead, we obtain that the
inequality |𝐵𝐿 (𝑤) − 𝐵𝑇+1(𝑤) | > 𝛿0, for all 𝑤 ≥ I, holds for any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1

1 × 𝜉𝛽;) \ 𝛽 𝐿𝑇+1, where
𝛽 𝐿𝑇+1 is given by (9.17). Notice that the lower bound is in fact 𝛿0.

◦ 𝐼 = 𝑅, , = 𝑅 + 1: Triangle inequality and the fact that 𝛿2 << 𝛿0 << _I imply that for any 𝑤 ≥ I
and (𝐿1, 𝑛𝑇+1) ∈ S𝛽−1

1 × 𝜉𝛽; with |𝑛𝑇+1 − 𝑛̄𝑇 | > _, we have

|𝐵𝑇 (𝑤) − 𝐵𝑇+1 (𝑤) | = |𝛿2𝐿1 − 𝑤 (𝑛̄𝑇 − 𝑛𝑇+1) | ≥ |𝑛̄𝑇 − 𝑛𝑇+1 |I − 𝛿2 > _I − 𝛿2 > 𝛿0.

Therefore, the inequality |𝐵𝑇 (𝑤) − 𝐵𝑇+1 (𝑤) | > 𝛿0, for all 𝑤 ≥ I, holds for any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;) \

𝛽𝑇,𝑇+1, where

𝛽𝑇,𝑇+1 = S𝛽−1
1 × 𝜉𝛽R (𝑛̄𝑇). (9.20)

Notice that the lower bound is 𝛿0 again.
Defining

B2,H,−
𝑇 (𝑝̄𝑇) = B2,0,−

𝑇 (𝑝̄𝑇) ∪𝛽𝑇,𝑇+1, (9.21)

we conclude that (9.7) holds for any (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;) \ B2,H,−

𝑇 (𝑝̄𝑇).
Let us note that the only case which prevents us from having 𝑝𝑇+1 ∈ U𝑇+1(𝛿0, I) is the case

1 ≤ 𝐼 < , ≤ 𝑅, where we obtain a lower bound of 𝛿0/2. In all other cases, we can obtain lower bound 𝛿0.
More precisely, for (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1

1 × 𝜉𝛽;) \ B2,H,−
𝑇 (𝑝̄𝑇), the inequality |𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) | > 𝛿0, for

all 𝑤 ≥ I, holds for all 1 ≤ 𝐼 < , ≤ 𝑅 + 1 except the case 1 ≤ 𝐼 < , ≤ 𝑅. However, in this case, for any
1 ≤ 𝐼 < , ≤ 𝑅, we have |𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) | > 𝛿0, for all 𝑤 > 0, since 𝑝̄𝑇 ∈ U𝑇(𝛿0, 0). Therefore, (9.8) holds
for (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1

1 × 𝜉𝛽;) \ B2,H,−
𝑇 (𝑝̄𝑇).

We conclude that the set

B2,−
𝑇 (𝑝̄𝑇) = (S𝛽−1

1 × 𝜉𝛽;)+(𝑛̄𝑇) ∩
(
B2,0,−
𝑇

(
𝑝̄𝑇

)
∪ B2,H,−

𝑇

(
𝑝̄𝑇

) )
(9.22)

is the set we need for the precollisional case.
Proof of (ii): Here, we use the notation from (9.13). The proof follows the steps of the precollisional

case, but we replace the velocities (𝑛̄𝑇, 𝑛𝑇+1) by the transformed velocities (𝑛̄′𝑇, 𝑛′𝑇+1) and then pull-
back. It is worth mentioning that the m-th particle needs special treatment since its velocity is transformed
to 𝑛̄′𝑇. Following similar arguments to the precollisional case, we conclude that the appropriate set for
the postcollisional case is given by

B2,+
𝑇 (𝑝̄𝑇) := (S𝛽−1

1 × 𝜉𝛽;)+(𝑛̄𝑇) ∩
[
𝛽𝑇,𝑇+1 ∪

𝑇−1⋃
𝐿=1

(
𝛽 𝐿

′
𝑇 ∪𝛽 𝐿′𝑇+1

)]
, (9.23)
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where

𝛽 𝐿
′
𝑇 =

{
(𝐿1, 𝑛𝑇+1) ∈ S𝛽−1

1 × 𝜉𝛽; : 𝑛̄′𝑇 ∈ Y𝛽,𝐿R
}
, (9.24)

𝛽 𝐿
′
𝑇+1 =

{
(𝐿1, 𝑛𝑇+1) ∈ S𝛽−1

1 × 𝜉𝛽; : 𝑛′𝑇+1 ∈ Y𝛽,𝐿R
}
, (9.25)

𝛽𝑇,𝑇+1 = S𝛽−1
1 × 𝜉𝛽R (𝑛̄𝑇). (9.26)

The set

B2
𝑇(𝑝̄𝑇) = B2,−

𝑇 (𝑝̄𝑇) ∪ B2,+
𝑇 (𝑝̄𝑇) (9.27)

is the one we need to conclude the proof. "

9.2.2. Measure estimate for binary adjunction
We now estimate the measure of the pathological set B2

𝜃 (𝑝̄𝑇) appearing in Proposition 9.2. To control
postcollisional configurations, we will strongly rely on the binary transition map introduced in the
Appendix (see Proposition 12.2).

Proposition 9.4. Consider parameters \, 𝛿0, H, _, I as in (9.4) and 𝛿2 << 𝛿3 << \. Let 𝑅 ∈ N,
𝑝̄𝑇 ∈ U𝑇 (𝛿0, 0), 𝛼 ∈ {1, ...,𝑅} and B2

𝜃 (𝑝̄𝑇) the set given in the statement of Proposition 9.2. Then the
following measure estimate holds:

>>B2
𝜃 (𝑝̄𝑇)

>> ! 𝑅H𝛽_ "−1
2"+2 ,

where | · | denotes the product measure on S𝛽−1
1 × 𝜉𝛽;.

Proof. Without loss of generality, we may assume that 𝛼 = 𝑅. By (9.27), it suffices to estimate the
measure of B2,−

𝑇 (𝑝̄𝑇) and B2,+
𝑇 (𝑝̄𝑇).

Estimate of B2,−
𝑇 (𝑝̄𝑇): Recalling (9.5), (9.22), (9.21), (9.19), we have

B2,−
𝑇 (𝑝̄𝑇) = (S𝛽−1

1 × 𝜉𝛽;)+(𝑛̄𝑇) ∩
[
𝛽𝑇,𝑇+1 ∪

𝑇−1⋃
𝐿=1

𝛽 𝐿𝑇+1

]
, (9.28)

where 𝛽𝑇,𝑇+1 is given by (9.20) and 𝛽 𝐿𝑇+1 are given by (9.17). By sub-additivity, it suffices to estimate
the measure of each term in (9.28).
◦ Estimate of the term corresponding to 𝛽𝑇,𝑇+1: By (9.20), we have 𝛽𝑇,𝑇+1 = S𝛽−1

1 × 𝜉𝛽R (𝑛̄𝑇), and
therefore,

| (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝑇) ∩𝛽𝑇,𝑇+1 | ≤ |S𝛽−1

1 × (𝜉𝛽; ∩ 𝜉𝛽R (𝑛̄𝑇)) | ≤ |S𝛽−1
1 |S"−1

1
|𝜉𝛽R (𝑛̄𝑇) |𝛽 ! _𝛽 . (9.29)

◦ Estimate of the term corresponding to 𝛽 𝐿𝑇+1: By (9.17), we have 𝛽 𝐿𝑇+1 = S𝛽−1
1 × Y𝛽,𝐿R ; therefore, by

Corollary 8.2, we obtain

| (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝑇) ×𝛽 𝐿𝑇+1 | ≤ |S𝛽−1

1 × (𝜉𝛽; ∩ Y𝛽,𝐿R ) | ' |S𝛽−1
1 |S"−1

1
|𝜉𝛽; ∩ Y𝛽,𝐿R |𝛽 ! H𝛽_

"−1
2 . (9.30)

Using (9.28)–(9.30), subadditivity, and the fact that _ << 1, 𝑅 ≥ 1, we obtain

|B2,−
𝑇 (𝑝̄𝑇) | ! 𝑅H𝛽_

"−1
2 . (9.31)
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Estimate of B2,+
𝑇 (𝑝̄𝑇): Recalling (9.23), we have

B2,+
𝑇 (𝑝̄𝑇) = (S𝛽−1

1 × 𝜉𝛽;)+(𝑛̄𝑇) ∩
[
𝛽𝑇,𝑇+1 ∪

𝑇−1⋃
𝐿=1

(
𝛽 𝐿

′
𝑇 ∪𝛽 𝐿′𝑇+1

)]
, (9.32)

where 𝛽𝑇,𝑇+1 is given by (9.20) and 𝛽 𝐿′𝑇, 𝛽 𝐿′𝑇+1 are given by (9.24)–(9.25). By subadditivity, it suffices
to estimate the measure of each term in (9.32). The term corresponding to 𝛽𝑇,𝑇+1 has already been
estimated in (9.29). We have

| (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝑇) ∩𝛽𝑇,𝑇+1 | ! _𝛽 . (9.33)

To estimate the measure of the remaining terms, we will strongly rely on the properties of the binary
transition map defined in Proposition 12.2. We first introduce some notation. Given 0 < 𝑊 ≤ 2H, let us
define the r-sphere, centered at 𝑛̄𝑇:

𝐺𝛽−1
𝐼 (𝑛̄𝑇) =

{
𝑛𝑇+1 ∈ R𝛽 : |𝑛̄𝑇 − 𝑛𝑇+1 | = 𝑊

}
.

Also, given 𝑛𝑇+1 ∈ R𝛽 , we define the set

S+
𝑊̄( ,𝑊(+1 =

{
𝐿1 ∈ S𝛽−1

1 : 𝜇2(𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇) > 0
}
=

{
𝐿1 ∈ S𝛽−1

1 : (𝐿1, 𝑛𝑇+1) ∈ (S𝛽−1
1 × 𝜉𝛽;)+(𝑛̄𝑇)

}
.

(9.34)

Since 𝑛̄𝑇 ∈ 𝜉𝛽;, triangle inequality implies 𝜉𝛽; ⊆ 𝜉𝛽2; (𝑛̄𝑇). Under this notation, Fubini’s Theorem, the
co-area formula, and relations (9.32)–(9.33) yield

|B2+
𝑇 (𝑝̄𝑇) | =

∫
(S"−1

1 ×?"
2)+ ( 𝑊̄()

1B2+
( (𝐾̄() 𝑟𝐿1 𝑟𝑛𝑇+1

=
∫
?"
2

∫
S+
7̄( ,7(+1

1B2+
( (𝐾̄() 𝑟𝐿1 𝑟𝑛𝑇+1

! _𝛽 +
∫ 2;

0

∫
𝐴"−1
4 ( 𝑊̄()

∫
S+
7̄( ,7(+1

1⋃(−1
!=1 (, !′

(∪, !′
(+1)

(𝐿1) 𝑟𝐿1 𝑟𝑛𝑇+1 𝑟𝑊 .

(9.35)

Let us estimate the integral
∫

S+
7̄( ,7(+1

1⋃(−1
!=1 (, !,′

( ∪, !,′
(+1)

(𝐿1) 𝑟𝐿1,

for fixed 0 < 𝑊 ≤ 2H and 𝑛𝑇+1 ∈ 𝐺𝛽−1
𝐼 (𝑛̄𝑇). We introduce a parameter 0 < R << 1, which will be

chosen later in terms of _, and decompose S+
𝑊̄( ,𝑊(+1

as follows:

S+
𝑊̄( ,𝑊(+1 = S1,+

𝑊̄( ,𝑊(+1
∪ S2,+

𝑊̄( ,𝑊(+1
, (9.36)

where

S1,+
𝑊̄( ,𝑊(+1

=
{
𝐿1 ∈ S+

𝑊̄( ,𝑊(+1 : 𝜇2 (𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇) > R |𝑛𝑇+1 − 𝑛̄𝑇 |
}
, (9.37)

and

S2,+
𝑊̄( ,𝑊(+1

=
{
𝐿1 ∈ S+

𝑊̄( ,𝑊(+1 : 𝜇2 (𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇) ≤ R |𝑛𝑇+1 − 𝑛̄𝑇 |
}
. (9.38)
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Notice that S2,+
𝑊̄( ,𝑊(+1

is the union of two unit (𝑟 − 1)-spherical caps of angle L/2 − arccos R. Thus,
integrating in spherical coordinates, we may estimate its measure as follows:

∫
S"−1

1

1S2,+
7̄( ,7(+1

(𝐿1) 𝑟𝐿1 !
∫ >/2

arccos @
sin𝛽−2 (]) 𝑟] ≤ L

2 − arccos R = arcsin R.

Thus,
∫

S2,+
7̄( ,7(+1

1⋃(−1
!=1 (, !′

(∪, !′
(+1)

(𝐿1) 𝑟𝐿1 ! arcsin R. (9.39)

We now wish to estimate
∫

S1,+
7̄( ,7(+1

1⋃(−1
!=1 (, !′

(∪, !′
(+1)

(𝐿1) 𝑟𝐿1. (9.40)

We will use the binary transition map J𝑊̄( ,𝑇(+1 : S+
𝑊̄( ,𝑊(+1

( S𝛽−1
1 , which is given by

𝐽1 := J𝑊̄( ,𝑊(+1 (𝐿1) = 𝑊−1(𝑛̄′𝑇 − 𝑛′𝑇+1), (9.41)

to change variables in the above integral. For details on the transition map, see Proposition 12.2 in the
Appendix. By Proposition 12.2, for 𝐿1 ∈ S+

𝑊̄( ,𝑊(+1
, the Jacobian matrix of the transition map is

Jac(J𝑊̄( ,𝑊(+1 ) (𝐿1) ' 𝑊−𝛽𝜇𝛽2 (𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇) > 0.

Therefore, for 𝐿1 ∈ S1+
𝑊̄( ,𝑊(+1

, we have

Jac−1(J𝑊̄( ,𝑊(+1 ) (𝐿1) ' 𝑊𝛽𝜇−𝛽2 (𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇) ≤ 𝑊𝛽R−𝛽 |𝑛𝑇+1 − 𝑛̄𝑇 |−𝛽 ! R−𝛽 , (9.42)

since |𝑛𝑇+1 − 𝑛̄𝑇 | = 𝑊 .
For convenience, we express 𝑛̄′𝑇, 𝑛′𝑇+1 in terms of the precollisional velocities 𝑛̄𝑇, 𝑛𝑇+1 and 𝐽1 given

by (9.41). Since |𝑛𝑇+1 − 𝑛̄𝑇 | = 𝑊 , expressions (2.1) yield

𝑛̄′𝑇 =
𝑛̄𝑇 + 𝑛𝑇+1

2 + 𝑊2 𝐽1, (9.43)

𝑛′𝑇+1 =
𝑛̄𝑇 + 𝑛𝑇+1

2 − 𝑊

2 𝐽1. (9.44)

We are now in the position to estimate the integral in (9.40). We first estimate for the term corresponding
to 𝛽 𝐿′𝑇: Recalling (9.24), we have 𝛽 𝐿′𝑇 =

{
(𝐿1, 𝑛𝑇+1) ∈ S𝛽−1

1 × 𝜉𝛽; : 𝑛̄′𝑇 ∈ Y𝛽,𝐿R
}
. By (9.43),

𝑛̄′𝑇 ∈ Y𝛽,𝐿R ⇔ 𝐽1 = J𝑊̄( ,𝑊(+1 (𝐿1) ∈ Ỹ𝛽,𝐿2R/𝐼 , (9.45)

where Ỹ𝛽,𝐿2R/𝐼 is a cylinder of radius 2_/𝑊 . Therefore, we obtain

∫
S1,+
7̄( ,7(+1

1, !′
(
(𝐿1) 𝑟𝐿1 =

∫
S1,+
7̄( ,7(+1

1𝑊̄′(∈I ",!
28

(𝐿1) 𝑟𝐿1

=
∫

S1,+
7̄( ,7(+1

(1Ĩ ",!
28/4

◦ J𝑊̄( ,𝑊(+1 ) (𝐿1) 𝑟𝐿1 (9.46)
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! R−𝛽
∫
S"−1

1

1Ĩ ",!
28/4

(𝐽) 𝑟𝐽 (9.47)

! R−𝛽 min
{
1,

(_
𝑊

) "−1
2

}
, (9.48)

where to obtain (9.46), we use (9.45), to obtain (9.47), we use part (iv) of Proposition 12.2 and estimate
(9.42), and to obtain (9.48), we use Lemma 8.1.

Hence, for fixed 𝑛𝑇+1 ∈ 𝐺𝛽−1
𝐼 (𝑛̄𝑇), we have

∫
S1,+
7̄( ,7(+1

1
, !,′
(
(𝐿1) 𝑟𝐿1 ! R−𝛽 min

{
1,

(_
𝑊

) "−1
2

}
. (9.49)

Recalling also 𝛽 𝐿′𝑇+1 from (9.25), we obtain in an analogous way the estimate
∫

S1,+
7̄( ,7(+1

1, !′
(+1

(𝐿1) 𝑟𝐿1 ! R−𝛽 min
{
1,

(_
𝑊

) "−1
2

}
. (9.50)

Combining (9.49)–(9.50) and adding for 𝐼 = 1, ...,𝑅 − 1, we obtain
∫

S1,+
7̄( ,7(+1

1⋃(−1
!=1 (, !,′

( ∪, !,′
(+1)

(𝐿1) 𝑟𝐿1 ! 𝑅R−𝛽 min
{
1,

(_
𝑊

) "−1
2

}
. (9.51)

Therefore, recalling (9.36) and using estimates (9.39), (9.51), we obtain the estimate
∫

S+
7̄( ,7(+1

1⋃(−1
!=1 (, !′

(∪, !′
(+1)

(𝐿1) 𝑟𝐿1 ! arcsin R + 𝑅R−𝛽 min
{
1,

(_
𝑊

) "−1
2

}
. (9.52)

Hence, (9.35) yields

|B2+
𝑇 (𝑝̄𝑇) | ! _𝛽 +

∫ 2;

0

∫
𝐴"−1
4 ( 𝑊̄()

arcsin R + 𝑅R−𝛽 min
{
1,

(_
𝑊

) "−1
2

}
𝑟𝑛𝑇+1 𝑟𝑊

! _𝛽 +
∫ 2;

0
𝑊𝛽−1

(
arcsin R + 𝑅R−𝛽 min

{
1,

(_
𝑊

) "−1
2

})
𝑟𝑊

! _𝛽 + 𝑅H𝛽
(
arcsin R + R−𝛽_ "−1

2
)

! 𝑅H𝛽
(
R + R−𝛽_ "−1

2
)
,

(9.53)

after using an estimate similar to (8.2) and the fact that _ << 1, 𝑅 ≥ 1, R << 1. Choosing R = _
"−1
2"+2 ,

we obtain

|B2+
𝑇 (𝑝̄𝑇) | ! 𝑅H𝛽_

"−1
2"+2 . (9.54)

Combining (9.27), (9.31), (9.54), and the fact _ << 1, we obtain the required estimate. "

9.3. Stability under ternary adjunction
Now, we prove Proposition 9.6 and Proposition 9.7 which will be the inductive step for controlling
ternary adjunction of particles. To derive Proposition 9.6 and Proposition 9.7, in addition to results from
[5], we develop new algebraic and geometric techniques, thanks to which we can treat the newly formed
ternary collisional configuration runs to a binary collision under time evolution.
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9.3.1. Ternary adjunction
For convenience, given 𝑛 ∈ R𝛽 , let us denote

(
S2𝛽−1

1 × 𝜉2𝛽
;

)+
(𝑛) =

{
(𝐿1,𝐿2, 𝑛1, 𝑛2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; : 𝜇3(𝐿1,𝐿2, 𝑛1 − 𝑛, 𝑛2 − 𝑛) > 0

}
, (9.55)

where 𝜇3 is the ternary cross-section given in (2.9).
Recall from (9.2) that given 𝑅 ∈ N and 𝑝𝑇 = (𝐴𝑇,𝛽𝑇) ∈ R2𝛽𝑇, we denote the backwards in time

free flow as 𝑝𝑇 (𝑤) = (𝐴𝑇 − 𝑤𝛽𝑇,𝛽𝑇), 𝑤 ≥ 0.
Proposition 9.5. Consider parameters \, 𝛿0, H, _, I as in (9.4) and 𝛿3 << \. Let 𝑅 ∈ N, 𝑝̄𝑇 =
( 𝐴̄𝑇, 𝛽̄𝑇) ∈ U𝑇(𝛿0, 0), 𝛼 ∈ {1, ...,𝑅}, and 𝐴𝑇 ∈ 𝜉𝛽𝑇L/2( 𝐴̄𝑇). Let us denote

F𝜃
𝑇+2 = {(𝐼, ,) ∈ {1, ...,𝑅 + 2} × {1, ...,𝑅 + 2} : 𝐼 ≠ 𝛼, 𝐼 ≤ min{ , ,𝑅}}.

Then there is a subset B̃3
𝜃 (𝑝̄𝑇) ⊆ (S2𝛽−1

1 × 𝜉2𝛽
; )+(𝑛̄𝑇) such that

1. For any (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; )+(𝑛̄𝑇) \ B̃3
𝜃 (𝑝̄𝑇), one has

𝑟2(𝐵𝐿 (𝑤), 𝐵 𝜙 (𝑤)) >
)

2𝛿3, ∀(𝐼, ,) ∈ F𝜃
𝑇+2, ∀𝑤 ≥ 0,

𝑟3(𝐵𝜃 (𝑤); 𝐵𝑇+1(𝑤), 𝐵𝑇+2 (𝑤)) >
)

2𝛿3, ∀𝑤 ≥ 0,
𝑝𝑇+2 ∈ U𝑇+2(𝛿0/2, I),
𝑝̄𝑇+2 ∈ U𝑇+2(𝛿0, I),

(9.56)

where

𝑝𝑇+2 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇+1, 𝐵𝑇+2, 𝑛̄1, ..., 𝑛̄𝜃 , ..., 𝑛̄𝑇, 𝑛𝑇+1, 𝑛𝑇+2),
𝐵𝑇+𝐿 = 𝐵𝜃 +

)
2𝛿3𝐿𝐿 , ∀𝐼 ∈ {1, 2},

𝑝̄𝑇+2 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇, 𝐵𝑇, 𝑛̄1, ..., 𝑛̄𝜃 , ..., 𝑛̄𝑇, 𝑛𝑇+1, 𝑛𝑇+2).

2. For any (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; )+(𝑛̄𝜃) \ B̃3
𝜃 (𝑝̄𝑇), one has

𝑟2(𝐵𝐿 (𝑤), 𝐵 𝜙 (𝑤)) >
)

2𝛿3, ∀(𝐼, ,) ∈ F𝜃
𝑇+2, ∀𝑤 ≥ 0,

𝑟3(𝐵𝜃 (𝑤); 𝐵𝑇+1(𝑤), 𝐵𝑇+2 (𝑤)) >
)

2𝛿3, ∀𝑤 ≥ 0,
𝑝∗
𝑇+2 ∈ U𝑇+2(𝛿0/2, I),
𝑝̄∗
𝑇+2 ∈ U𝑇+2(𝛿0, I),

(9.57)

where

𝑝∗
𝑇+2 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇+1, 𝐵𝑇+2, 𝑛̄1, ..., 𝑛̄

∗
𝜃 , ..., 𝑛̄𝑇, 𝑛

∗
𝑇+1, 𝑛

∗
𝑇+2),

𝐵𝑇+𝐿 = 𝐵𝜃 +
)

2𝛿3𝐿𝐿 , ∀𝐼 ∈ {1, 2},
𝑝̄∗
𝑇+2 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇, 𝐵𝑇, 𝑛̄1, ..., 𝑛̄

∗
𝜃 , ..., 𝑛̄𝑇, 𝑛

∗
𝑇+1, 𝑛

∗
𝑇+2),

(𝑛̄∗𝜃 , 𝑛∗𝑇+1, 𝑛
∗
𝑇+2) = 𝜁𝐶1 ,𝐶2 (𝑛̄𝜃 , 𝑛𝑇+1, 𝑛𝑇+2).

There also holds the measure estimate

|B̃3
𝜃 (𝑝̄𝑇) | ! 𝑅H2𝛽_

"−1
4"+2 , (9.58)

where | · | denotes the product measure on S2𝛽−1
1 × 𝜉2𝛽

; .
Proof. This Proposition follows from the statement and the proof of Proposition 9.2 and the statement
of Proposition 9.4 from [5]. "
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We rely on Proposition 9.5 to derive Proposition 9.6 and Proposition 9.7. Recall the notation from
(3.7)

D̊𝑇+2,𝛿2 ,𝛿3 =
{
𝑝𝑇+2 = (𝐴𝑇+2,𝛽𝑇+2) ∈ R2𝛽 (𝑇+2) : 𝑟2(𝐵𝐿 , 𝐵 𝜙 ) > 𝛿2, ∀(𝐼, ,) ∈ I2

𝑇+2,

and 𝑟3(𝐵𝐿; 𝐵 𝜙 , 𝐵𝜆 ) >
)

2𝛿3, ∀(𝐼, , , 𝜈) ∈ I3
𝑇+2

}
,

where I2
𝑇+2, I

3
𝑇+2 are given by (3.1)–(3.2), respectively.

Proposition 9.6. Consider parameters \, 𝛿0, H, _, I as in (9.4) and 𝛿2 << _2𝛿3 << \. Let 𝑅 ∈ N,
𝑝̄𝑇 = ( 𝐴̄𝑇, 𝛽̄𝑇) ∈ U𝑇 (𝛿0, 0), 𝛼 ∈ {1, ...,𝑅} and 𝐴𝑇 ∈ 𝜉𝛽𝑇L/2( 𝐴̄𝑇). Then there is a subset B3

𝜃 (𝑝̄𝑇) ⊆
(S2𝛽−1

1 × 𝜉2𝛽
; )+(𝑛̄𝜃) such that

1. For any (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; )+(𝑛̄𝜃) \ B3
𝜃 (𝑝̄𝑇), one has

𝑝𝑇+2(𝑤) ∈ D̊𝑇+2,𝛿2 ,𝛿3 , ∀𝑤 ≥ 0, (9.59)

𝑝𝑇+2 ∈ U𝑇+2(𝛿0/2, I) (9.60)

𝑝̄𝑇+2 ∈ U𝑇+2(𝛿0, I), (9.61)

where

𝑝𝑇+2 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇+1, 𝐵𝑇+2, 𝑛̄1, ..., 𝑛̄𝜃 , ..., 𝑛̄𝑇, 𝑛𝑇+1, 𝑛𝑇+2),
𝐵𝑇+𝐿 = 𝐵𝜃 −

)
2𝛿3𝐿𝐿 , ∀𝐼 ∈ {1, 2},

𝑝̄𝑇+2 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇, 𝐵𝑇, 𝑛̄1, ..., 𝑛̄𝜃 , ..., 𝑛̄𝑇, 𝑛𝑇+1, 𝑛𝑇+2).
(9.62)

2. For any (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; )+(𝑛̄𝜃) \ B3
𝜃 (𝑝̄𝑇), one has

𝑝∗
𝑇+2(𝑤) ∈ D̊𝑇+2,𝛿2 ,𝛿3 , ∀𝑤 ≥ 0, (9.63)

𝑝∗
𝑇+2 ∈ U𝑇+2(𝛿0/2, I), (9.64)

𝑝̄∗
𝑇+2 ∈ U𝑇+2(𝛿0, I), (9.65)

where

𝑝∗
𝑇+2 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇+1, 𝐵𝑇+2, 𝑛̄1, ..., 𝑛̄

∗
𝜃 , ..., 𝑛̄𝑇, 𝑛

∗
𝑇+1, 𝑛

∗
𝑇+2),

𝐵𝑇+𝐿 = 𝐵𝜃 +
)

2𝛿3𝐿𝐿 , ∀𝐼 ∈ {1, 2},
𝑝̄∗
𝑇+2 = (𝐵1, ..., 𝐵𝜃 , ..., 𝐵𝑇, 𝐵𝑇, 𝐵𝑇, 𝑛̄1, ..., 𝑛̄

∗
𝜃 , ..., 𝑛̄𝑇, 𝑛

∗
𝑇+1, 𝑛

∗
𝑇+2),

(𝑛̄∗𝜃 , 𝑛∗𝑇+1, 𝑛
∗
𝑇+2) = 𝜁𝐶1 ,𝐶2 (𝑛̄𝜃 , 𝑛𝑇+1, 𝑛𝑇+2).

(9.66)

Proof. By symmetry, we may assume that 𝛼 = 𝑅. Recall the set B̃3
𝑇(𝑝̄𝑇) from Proposition 9.5 satisfying

(9.56)–(9.57).
We will construct a set A𝑇(𝑝̄𝑇) ⊆ (S2𝛽−1

1 × 𝜉2𝛽
; )+(𝑛̄𝑇), such that for any (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈

(S2𝛽−1
1 × 𝜉2𝛽

; )+(𝑛̄𝑇) \ A𝑇(𝑝̄𝑇).
◦ Using notation from (9.62) for the precollisional case, we have

|𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) | > 𝛿2, ∀𝑤 ≥ 0, ∀𝐼, , ∈ {𝑅,𝑅 + 1,𝑅 + 2} with 𝐼 < , . (9.67)

◦ Using notation from (9.66) for the postcollisional case, we have

|𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) | > 𝛿2, ∀𝑤 ≥ 0, ∀𝐼, , ∈ {𝑅,𝑅 + 1,𝑅 + 2} with 𝐼 < , . (9.68)
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Then thanks to Proposition 9.5 and (9.67)–(9.68), the set

B3
𝑇(𝑝̄𝑇) := B̃3

𝑇(𝑝̄𝑇) ∪ A𝑇(𝑝̄𝑇)

will satisfy (9.59)–(9.61), (9.63)–(9.65). Let us introduce the following notation:

𝑀 := 𝛿2
𝛿3

<< _2, since 𝛿2 << _2𝛿3, by assumption, (9.69)

and

𝑀′ =
(
1 − 𝑀

2

)1/2
< 1. (9.70)

Construction of the set satisfying (9.67): Here, we use notation from (9.62). We distinguish the
following cases:

◦ Case (𝐼, ,) = (𝑅,𝑅 + 1): Consider 𝑤 ≥ 0. We have

|𝐵𝐿 (𝑤) − 𝐵 𝜙 (𝑤) |2 = |𝐵𝑇 (𝑤) − 𝐵𝑇+1 (𝑤) |2

= |
)

2𝛿3𝐿1 + (𝑛𝑇+1 − 𝑛̄𝑇)𝑤 |2

= 2𝛿2
3 |𝐿1 |2 + 2

)
2𝛿3+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇〉𝑤 + |𝑛𝑇+1 − 𝑛̄𝑇 |2𝑤2.

(9.71)

We define the sets

Ω1 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉2𝛽

; : |𝐿1 | ≤
)
𝑀}, (9.72)

Q𝑇,𝑇+1 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉2𝛽

; : |+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇〉 | ≥ 𝑀′ |𝐿1 | |𝑛𝑇+1 − 𝑛̄𝑇 |}. (9.73)

Consider the second degree polynomial in t:

`(𝑤) = (2 − 𝑀)𝛿2
3 |𝐿1 |2 + 2

)
2𝛿3+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇〉𝑤 + |𝑛𝑇+1 − 𝑛̄𝑇 |2𝑤2. (9.74)

Let (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ (Ω1 ∪ Q𝑇,𝑇+1). The polynomial P has discriminant

Δ = 8𝛿2
3 |+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇〉 |2 − 4(2 − 𝑀)𝛿2

3 |𝐿1 |2 |𝑛𝑇+1 − 𝑛̄𝑇 |2

= 8𝛿2
3 |+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇〉 |2 − 8𝑀′2𝛿2

3 |𝐿1 |2 |𝑛𝑇+1 − 𝑛̄𝑇 |2

= 8𝛿2
3

(
|+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇〉 |2 − 𝑀′2 |𝐿1 |2 |𝑛𝑇+1 − 𝑛̄𝑇 |2

)
< 0

since (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∉ Q𝑇,𝑇+1. Since 𝑀 << 1, we obtain `(𝑤) > 0, for all 𝑤 ≥ 0, or in other words,

2𝛿2
3 |𝐿1 |2 + 2

)
2𝛿3+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇〉𝑤 + |𝑛𝑇+1 − 𝑛̄𝑇 |2𝑤2 > 𝑀𝛿2

3 |𝐿1 |2. (9.75)

Since (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∉ Ω1, expressions (9.71), (9.75) yield

|𝐵𝑇 (𝑤) − 𝐵𝑇+1(𝑤) |2 > 𝑀𝛿2
3 |𝐿1 |2 > 𝑀2𝛿2

3 = 𝛿2
2 . (9.76)

Therefore, for any (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ (Ω1 ∪ Q𝑇,𝑇+1), we have

|𝐵𝑇 (𝑤) − 𝐵𝑇+1(𝑤) | > 𝛿2, ∀𝑤 ≥ 0.

0����	  �51�57/ ������� .������������:�21�0���5�21������

��71�/����1��7�1����7���

https://doi.org/10.1017/fms.2025.11


Forum of Mathematics, Sigma 65

◦ Case (𝐼, ,) = (𝑅,𝑅 + 2): We follow a similar argument using the sets

Ω2 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉2𝛽

; : |𝐿2 | ≤
)
𝑀}, (9.77)

Q𝑇,𝑇+2 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉2𝛽

; : |+𝐿2, 𝑛𝑇+2 − 𝑛̄𝑇〉 | ≥ 𝑀′ |𝐿2 | |𝑛𝑇+2 − 𝑛̄𝑇 |} (9.78)

to conclude that for all (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ (Ω2 ∪ Q𝑇,𝑇+2), we have

|𝐵𝑇+2 (𝑤) − 𝐵𝑇(𝑤) | > 𝛿2, ∀𝑤 ≥ 0.

◦ Case (𝐼, ,) = (𝑅 + 1,𝑅 + 2): We follow a similar argument using the sets

Ω1,2 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉2𝛽

; : |𝐿1 − 𝐿2 | ≤
)
𝑀}, (9.79)

𝜉𝑇+1,𝑇+2 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉2𝛽

; :
|+𝐿1 − 𝐿2, 𝑛𝑇+1 − 𝑛𝑇+2〉 | ≥ 𝑀′ |𝐿1 − 𝐿2 | |𝑛𝑇+1 − 𝑛𝑇+2 |} (9.80)

to conclude that for all (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ (Ω1,2 ∪ 𝜉𝑇+1,𝑇+2), we have

|𝐵𝑇+1 (𝑤) − 𝐵𝑇+2(𝑤) | > 𝛿2, ∀𝑤 ≥ 0.

Defining

A−
𝑇(𝑝̄𝑇) = Ω1 ∪Ω2 ∪Ω1,2 ∪ Q𝑇,𝑇+1 ∪ Q𝑇,𝑇+2 ∪ 𝜉𝑇+1,𝑇+2, (9.81)

we obtain that (9.67) holds for (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ A−
𝑇 (𝑝̄𝑇).

Construction of the set satisfying (9.68): Here, we use notation from (9.66). We distinguish the
following cases:

◦ Case (𝐼, ,) = (𝑅,𝑅 + 1): We follow a similar argument to the precollisional case, using the set Ω1,
defined in (9.72), and the set

Q∗
𝑇,𝑇+1 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; :

>>+𝐿1, 𝑛
∗
𝑇+1 − 𝑛̄∗𝑇〉

>> ≥ 𝑀′ |𝐿1 | |𝑛∗𝑇+1 − 𝑛̄∗𝑇 |} (9.82)

to conclude that for all (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ (Ω2 ∪ Q∗
𝑇,𝑇+1), we have

|𝐵𝑇+1 (𝑤) − 𝐵𝑇(𝑤) | > 𝛿2, ∀𝑤 ≥ 0.

◦ Case (𝐼, ,) = (𝑅,𝑅 + 2): We follow a similar argument to the precollisional case, using the set Ω2,
defined in (9.77), and the set

Q∗
𝑇,𝑇+2 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; :

>>+𝐿2, 𝑛
∗
𝑇+2 − 𝑛̄∗𝑇〉

>> ≥ 𝑀′ |𝐿2 | |𝑛∗𝑇+2 − 𝑛̄∗𝑇 |} (9.83)

to conclude that for all (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ (Ω2 ∪ Q∗
𝑇,𝑇+2), we have

|𝐵𝑇+2 (𝑤) − 𝐵𝑇(𝑤) | > 𝛿2, ∀𝑤 ≥ 0.

◦ Case (𝐼, ,) = (𝑅 + 1,𝑅 + 2): We follow a similar argument to the precollisional case, using the set
Ω1,2, defined in (9.79), and the set

𝜉∗
𝑇+1,𝑇+2 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; : (9.84)

>>+𝐿1 − 𝐿2, 𝑛
∗
𝑇+1 − 𝑛∗𝑇+2〉

>> ≥ 𝑀′ |𝐿1 − 𝐿2 | |𝑛∗𝑇+1 − 𝑛∗𝑇+2 |} (9.85)
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to conclude that for all (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ (Ω2 ∪ 𝜉∗
𝑇+1,𝑇+2), we have

|𝐵𝑇+1 (𝑤) − 𝐵𝑇+2(𝑤) | > 𝛿2, ∀𝑤 ≥ 0.

Defining

A+
𝑇(𝑝̄𝑇) = Ω1 ∪Ω2 ∪Ω1,2 ∪ Q∗

𝑇,𝑇+1 ∪ Q∗
𝑇,𝑇+2 ∪ 𝜉∗

𝑇+1,𝑇+2, (9.86)

we obtain that (9.68) holds for (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; ) \ A+
𝑇(𝑝̄𝑇).

Defining

A𝑇(𝑝̄𝑇) = (S2𝛽−1
1 × 𝜉2𝛽

; )+(𝑛̄𝑇) ∩
(
A−
𝑇(𝑝̄𝑇) ∪ A+

𝑇(𝑝̄𝑇)
)
, (9.87)

(9.67)–(9.68) hold for any (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ (S2𝛽−1
1 × 𝜉2𝛽

; )+(𝑛̄𝑇) \ A𝑇(𝑝̄𝑇).
The set

B3
𝑇(𝑝̄𝑇) = B̃3

𝑇(𝑝̄𝑇) ∪ A𝑇(𝑝̄𝑇) (9.88)

satisfies (9.59)–(9.61), (9.63)–(9.65); thus, it is the set we need to conclude the proof. "

9.3.2. Measure estimate for ternary adjunction
We now provide the corresponding measure estimate for the set B3

𝜃 (𝑝̄𝑇) appearing in Proposition 9.6.
To estimate the measure of this set, we will strongly rely on the results of Section 8.

Proposition 9.7. Consider parameters \, 𝛿0, H, _, I as in (9.4) and 𝛿2 << _2𝛿3 << \. Let 𝑅 ∈ N,
𝑝̄𝑇 ∈ U𝑇(𝛿0, 0), 𝛼 ∈ {1, ...,𝑅} and B3

𝜃 (𝑝̄𝑇) be the set appearing in the statement of Proposition 9.6.
Then the following measure estimate holds:

>>B3
𝜃 (𝑝̄𝑇)

>> ! 𝑅H2𝛽_
"−1
4"+2 ,

where | · | denotes the product measure on S2𝛽−1
1 × 𝜉2𝛽

; .

Proof. By symmetry, we may assume 𝛼 = 𝑅. Recall that

B3
𝑇(𝑝̄𝑇) = B̃3

𝑇 (𝑝̄𝑇) ∪ A𝑇(𝑝̄𝑇), (9.89)

where B̃3
𝑇 (𝑝̄𝑇) is given by Proposition 9.5 and A𝑇(𝑝̄𝑇) is given by (9.87). Estimate (9.58) yields

|B̃3
𝑇 (𝑝̄𝑇) | ! 𝑅H2𝛽_

"−1
4"+2 , (9.90)

so it suffices to estimate the measure of A𝑇(𝑝̄𝑇). By (9.87), it suffices to estimate the measure of
A−
𝑇(𝑝̄𝑇) and A+

𝑇(𝑝̄𝑇) which are given by (9.81), (9.86), respectively.
Let us recall the notation from (9.69)–(9.70):

𝑀 =
𝛿2
𝛿3

<< _2, 𝑀′ =

√
1 − 𝑀

2 .

Estimate of A−
𝑇(𝑝̄𝑇): Recall from (9.81) that

A−
𝑇(𝑝̄𝑇) = Ω1 ∪Ω2 ∪Ω1,2 ∪ Q𝑇,𝑇+1 ∪ Q𝑇,𝑇+2 ∪ 𝜉𝑇+1,𝑇+2, (9.91)

where Ω1, Q𝑇,𝑇+1 are given by (9.72)–(9.73), Ω2, Q𝑇,𝑇+2 by (9.77)–(9.78) and Ω1,2, 𝜉𝑇+1,𝑇+2 are given
by (9.79)–(9.80).
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◦ Estimate for Ω1,Ω2: Without loss of generality, it suffices to estimate the measure of Ω1. Recalling
notation from (8.3), Fubini’s Theorem and Lemma 8.3 yield

|Ω1 | =
∫
?2"
2

∫
S2"−1

1

1J1 (
)
𝜈) 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2 ! H2𝛽𝑀𝛽/2, (9.92)

A symmetric argument yields

|Ω2 | ! H2𝛽𝑀𝛽/2. (9.93)

◦ Estimate for Ω1,2: Recalling notation from (8.5), (9.79) yields

Ω1,2 = (S2𝛽−1
1 ∩[2𝛽)

𝜈) × 𝜉
2𝛽
; .

Therefore, Fubini’s Theorem and Lemma 8.4 imply

|Ω1,2 | =
∫
?2"
2

∫
S2"−1

1

1K 2")
9
𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2 ! H2𝛽𝑀

"−1
4 . (9.94)

◦ Estimate for Q𝑇,𝑇+1: Recalling notation from (8.6), the set Q𝑇,𝑇+1, which was defined in (9.73), can
be written as

Q𝑇,𝑇+1 =
{
(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; : 𝐿1 ∈ 𝐺(𝑀′, 𝑛𝑇+1 − 𝑛̄𝑇)

}
.

Therefore, the representation of the (2𝑟 − 1)- unit sphere (8.1) and Lemma 8.5 yield

|Q𝑇,𝑇+1 | ≤
∫
?2"
2

∫
?"

1

∫
S"−1)

1−|52 |2

1𝐴 (𝜈′,𝑊(+1−𝑊̄() 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2

! H2𝛽 arccos 𝑀′

= H2𝛽 arccos
√

1 − 𝑀

2 . (9.95)

◦ Estimate for Q𝑇,𝑇+2: We follow a similar argument as in the previous case to obtain

|Q𝑇,𝑇+2 | ! H2𝛽 arccos
√

1 − 𝑀

2 . (9.96)

◦ Estimate for 𝜉𝑇+1,𝑇+2: Recalling notation from (8.7), (9.80) yields

𝜉𝑇+1,𝑇+2 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉2𝛽

; : (𝐿1,𝐿2) ∈ 𝑈 (𝑀′, 𝑛𝑇+1 − 𝑛𝑇+2)}.

Therefore, using Lemma 8.6, we obtain

|𝜉𝑇+1,𝑇+2 | =
∫
?2"
2

∫
S2"−1

1

1𝑙 (𝜈′,𝑊(+1−𝑊(+2) (𝐿1,𝐿2) 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2

! H2𝛽 arccos 𝑀′

= H2𝛽 arccos
√

1 − 𝑀

2 . (9.97)

0����	  �51�57/ ������� .������������:�21�0���5�21������

��71�/����1��7�1����7���

https://doi.org/10.1017/fms.2025.11


68 I. Ampatzoglou and N. Pavlović

Using (9.91) and estimates (9.92)–(9.97), we obtain

|A−
𝑇 (𝑝̄𝑇) | ! H2𝛽

(
𝑀𝛽/2 + 𝑀 "−1

4 + arccos
√

1 − 𝑀

2

)
. (9.98)

Estimate of A+
𝑇(𝑝̄𝑇): Recall from (9.86) that

A+
𝑇(𝑝̄𝑇) = Ω1 ∪Ω2 ∪Ω1,2 ∪ Q∗

𝑇,𝑇+1 ∪ Q∗
𝑇,𝑇+2 ∪ 𝜉∗

𝑇+1,𝑇+2, (9.99)

where Ω1, Ω2, Ω1,2, Q∗
𝑇,𝑇+1, Q∗

𝑇,𝑇+2, 𝜉∗
𝑇+1,𝑇+2 are given by (9.72), (9.77), (9.79), (9.82)–(9.85),

respectively. We already have estimates for Ω1, Ω2, Ω1,2 from (9.92)–(9.94); hence, it suffices to derive
estimates for Q∗

𝑇,𝑇+1, Q∗
𝑇,𝑇+2, 𝜉∗

𝑇+1,𝑇+2.
For the rest of the proof, we consider a parameter 0 < R << 1 which will be chosen later in terms of

_, see (9.149).
◦ Estimate for Q∗

𝑇,𝑇+1: Recall from (9.82) the set

Q∗
𝑇,𝑇+1 =

{
(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; : |+𝐿1, 𝑛

∗
𝑇+1 − 𝑛̄∗𝑇〉 | ≥ 𝑀′ |𝐿1 | |𝑛∗𝑇+1 − 𝑛̄∗𝑇 |

}
. (9.100)

But for any (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉2𝛽

; , the ternary collisional law (2.8) implies

𝑛∗𝑇+1 − 𝑛̄∗𝑇 = 𝑛𝑇+1 − 𝑛̄𝑇 − 2𝜙𝐶1 ,𝐶2 , 𝑊̄( ,𝑊(+1 ,𝑊(+2𝐿1 − 𝜙𝐶1 ,𝐶2 , 𝑊̄( ,𝑊(+1 ,𝑊(+2𝐿2,

where

𝜙𝐶1 ,𝐶2 , 𝑊̄( ,𝑊(+1 ,𝑊(+2 =
+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇〉 + +𝐿2, 𝑛𝑇+2 − 𝑛̄𝑇〉

1 + +𝐿1,𝐿2〉
. (9.101)

For convenience, we denote

𝜙 := 𝜙𝐶1 ,𝐶2 , 𝑊̄( ,𝑊(+1 ,𝑊(+2 .

Therefore, by (9.100), we may write

Q∗
𝑇,𝑇+1 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; :

|+𝐿1, 𝑛𝑇+1 − 𝑛̄𝑇 − 2𝜙𝐿1 − 𝜙𝐿2〉 | ≥ 𝑀′ |𝐿1 | |𝑛𝑇+1 − 𝑛̄𝑇 − 2𝜙𝐿1 − 𝜙𝐿2 |}.

By Fubini’s Theorem, we have

|Q∗
𝑇,𝑇+1 | ≤

∫
S2"−1

1 ×?"
2

∫
?"
2

1,(,(+1
51 ,52 ,7(+2

(𝑛𝑇+1) 𝑟𝑛𝑇+1 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+2, (9.102)

where given (𝐿1,𝐿2, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉𝛽;, we write

𝛽𝑇,𝑇+1
𝐶1 ,𝐶2 ,𝑊(+2 =

{
𝑛𝑇+1 ∈ 𝜉𝛽; : (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ Q∗

𝑇,𝑇+1
}
. (9.103)

Recall from (8.11) the set

J1 =
{
(𝐿1,𝐿2) ∈ R2𝛽 >>1 − 2|𝐿1 |2

>> ≤ 2R
}
. (9.104)

Using (9.102), we obtain

|Q∗
𝑇,𝑇+1 | = J̃1 + J̃ ′1, (9.105)
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where

J̃1 =
∫
(S2"−1

1 ∩N1)×?"
2

∫
?"
2

1,(,(+1
51 ,52 ,7(+2

(𝑛𝑇+1) 𝑟𝑛𝑇+1 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+2, (9.106)

J̃ ′1 =
∫
(S2"−1

1 \N1)×?"
2

∫
?"
2

1,(,(+1
51 ,52 ,7(+2

(𝑛𝑇+1) 𝑟𝑛𝑇+1 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+2. (9.107)

We treat each of the terms in (9.105) separately.
Estimate for J̃1: By (9.106), Fubini’s Theorem and Lemma 8.7, we obtain

J̃1 ! H2𝛽
∫
S2"−1

1

1N1 𝑟𝐿1 𝑟𝐿2 ! H2𝛽R. (9.108)

Estimate for J̃ ′1: Let us fix (𝐿1,𝐿2, 𝑛𝑇+2) ∈ (S2𝛽−1
1 \ J1)×𝜉𝛽;. We define the smooth map 𝐾1

𝐶1 ,𝐶2 ,𝑊(+2 :
𝜉𝛽; ( R𝛽 , by

𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1) := 𝑛∗𝑇+1 − 𝑛̄∗𝑇 = 𝑛𝑇+1 − 𝑛̄𝑇 − 2𝜙𝐿1 − 𝜙𝐿2, (9.109)

where c is given by (9.101).
We are showing that we may change variables under 𝐾1

𝐶1 ,𝐶2 ,𝑊(+2 , as long as (𝐿1,𝐿2, 𝑛𝑇+1) ∈
(S2𝛽−1

1 \ J1) × 𝜉𝛽; (i.e., we are showing that 𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 has nonzero Jacobian and is injective). In,

particular we will see that the Jacobian is bounded from below by R.
We first show the Jacobian has a lower bound R. Differentiating with respect to 𝑛𝑇+1, we obtain

ℓ𝐾1
𝐶1 ,𝐶2 ,𝑊(+2

ℓ𝑛𝑇+1
= J𝛽 + (−2𝐿1 − 𝐿2)∇C𝑊(+1𝜙.

Recalling (9.101), we have

∇C𝑊(+1𝜙 =
1

1 + +𝐿1,𝐿2〉
𝐿C1 .

Using Lemma 12.1 from the Appendix, we get

Jac 𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1) = det

(
J𝛽 +

1
1 + +𝐿1,𝐿2〉

(−2𝐿1 − 𝐿2)𝐿C1
)

= 1 + −2|𝐿1 |2 − +𝐿1,𝐿2〉
1 + +𝐿1,𝐿2〉

=
1 − 2|𝐿1 |2

1 + +𝐿1,𝐿2〉
.

Since (𝐿1,𝐿2) ∉ J1, we have
>>1 − 2|𝐿1 |2

>> > 2R, and hence,

>>Jac 𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1)

>> =
>>1 − 2|𝐿1 |2

>>
1 + +𝐿1,𝐿2〉

>
2R

1 + +𝐿1,𝐿2〉
≥ 4R

3 > R, (9.110)

since 1
2 ≤ 1 + +𝐿1,𝐿2〉 ≤

3
2 , by (2.10). Thus,

>>Jac 𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1)

>>−1 < R−1, ∀𝑛𝑇+1 ∈ 𝜉𝛽; . (9.111)
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We now show that 𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 is injective. For this purpose, consider 𝑛𝑇+1, a𝑇+1 ∈ 𝜉𝛽; such that

𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1) = 𝐾1

𝐶1 ,𝐶2 ,𝑊(+2 (a𝑇+1)

⇔ 𝑛𝑇+1 − a𝑇+1 =
+𝑛𝑇+1 − a𝑇+1,𝐿1〉

1 + +𝐿1,𝐿2〉
(2𝐿1 + 𝐿2), (9.112)

thanks to (9.101). Therefore, there is 𝜋 ∈ R such that

𝑛𝑇+1 − a𝑇+1 = 𝜋(2𝐿1 + 𝐿2), (9.113)

so replacing 𝑛𝑇+1 − a𝑇+1 in (9.112) with the right-hand side of (9.113), we obtain

𝜋(1 − 2|𝐿1 |2) = 0,

which yields 𝜋 = 0, since we have assumed (𝐿1,𝐿2) ∉ J1. Therefore, 𝑛𝑇+1 = a𝑇+1, thus 𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 is

injective.
Since (𝐿1,𝐿2, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉𝛽; and 𝑛̄𝑇 ∈ 𝜉𝛽;, Cauchy-Schwartz inequality yields that, for any
𝑛𝑇+1 ∈ 𝜉𝛽;, we have

|𝐾𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1) | ≤ |𝑛𝑇+1 | + |𝑛̄𝑇 | +
|𝐿1 | ( |𝑛𝑇+1 | + |𝑛̄𝑇 |) + |𝐿2 | ( |𝑛̄𝑇 | + |𝑛𝑇+2 |)

1 + +𝐿1,𝐿2〉
(2|𝐿1 | + |𝐿2 |) ≤ 26H,

by the fact that (𝐿1,𝐿2, 𝑛𝑇+2) ∈ S2𝛽−1
1 × 𝜉𝛽; and (2.10). Therefore,

𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 [𝜉

𝛽
;] ⊆ 𝜉𝛽26; . (9.114)

Additionally, recalling (9.103), (9.100) and (9.109), we have

𝛽𝑇,𝑇+1
𝐶1 ,𝐶2 ,𝑊(+2 = {𝑛𝑇+1 ∈ 𝜉𝛽; : +𝐿1, 𝐾𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1)〉 ≥ R |𝐿1 | |𝐾𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1) |},

and thus,

𝑛𝑇+1 ∈ 𝛽𝑇,𝑇+1
𝐶1 ,𝐶2 ,𝑊(+2 ⇔ 𝐾1

𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1) ∈ K𝐶1 , (9.115)

where

K𝐶1 =
{
𝐽 ∈ R𝛽 : +𝐿1, 𝐽〉 ≥ 𝑀′ |𝐿1 | |𝐽 |

}
. (9.116)

Hence,

1,(,(+1
51 ,52 ,7(+2

(𝑛𝑇+1) = 1O51
(𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1)), ∀𝑛𝑇+1 ∈ 𝜉𝛽; . (9.117)

Therefore, performing the substitution 𝐽 := 𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1), and using (9.111), we obtain

∫
?"
2

1,(,(+1
51 ,52 ,7(+2

(𝑛𝑇+1) 𝑟𝑛𝑇+1 =
∫
?"
2

1O51
(𝐾1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1)) 𝑟𝑛𝑇+1 ≤ R−1

∫
?"

262

1O51
(𝐽) 𝑟𝐽.

Recalling notation from (8.6) and (9.116), we have

1O51
(𝐽) = 1𝐴 (𝜈′,M) (𝐿1), ∀𝐿1 ∈ 𝜉𝛽1 , ∀𝐽 ∈ 𝜉𝛽26; . (9.118)
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Therefore, using (9.107), (9.118), Fubini’s Theorem and (9.118), we obtain

J ′1 ≤ R−1
∫
(S2"−1

1 \N1)×?"
2

∫
?"

262

1O51
(𝐽) 𝑟𝐽 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+2

≤ R−1
∫
?"

262×?
"
2

∫
?"

1

∫
S"−1)

1−|52 |2

1𝐴 (𝜈′,M) (𝐶1) 𝑟𝐿1 𝑟𝐿2 𝑟𝐽 𝑟𝑛𝑇+2

! H2𝛽R−1 arccos 𝑀′ (9.119)

= H2𝛽R−1 arccos
√

1 − 𝑀

2 , (9.120)

where to obtain (9.119), we use Lemma 8.5. Combining (9.105), (9.108), (9.120), we obtain

|Q∗
𝑇,𝑇+1 | ≤ H2𝛽

(
R + R−1 arccos

√
1 − 𝑀

2

)
. (9.121)

◦ Estimate for Q∗
𝑇,𝑇+2: The argument is entirely symmetric, using the set

𝛽𝑇,𝑇+2
𝐶1 ,𝐶2 ,𝑊(+1 =

{
𝑛𝑇+2 ∈ 𝜉𝛽; : (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ Q∗

𝑇,𝑇+2
}
,

for fixed (𝐿1,𝐿2, 𝑛𝑇+1) ∈ S2𝛽−1
1 × 𝜉𝛽; and the map

𝐾2
𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2) = 𝑛𝑇+2 − 𝑛̄𝑇 − 𝜙𝐿1 − 2𝜙𝐿2.

We obtain the estimate

|Q∗
𝑇,𝑇+2 | ! H2𝛽

(
R + R−1 arccos

√
1 − 𝑀

2

)
. (9.122)

◦ Estimate for 𝜉∗
𝑇+1,𝑇+2: The estimate for 𝜉∗

𝑇+1,𝑇+2 is in the same spirit as the previous estimates;
however, we will need to distinguish cases depending on the size of the impact directions. The reason
for that is that we rely on Lemma 8.8 from Section 8 which provides estimates on hemispheres of the
(2𝑟 − 1)-unit sphere.

Recall from (9.85) the set

𝜉∗
𝑇+1,𝑇+2 = {(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; : (9.123)

|+𝐿1 − 𝐿2, 𝑛
∗
𝑇+1 − 𝑛∗𝑇+2〉 | ≥ 𝑀′ |𝐿1 − 𝐿2 | |𝑛∗𝑇+1 − 𝑛∗𝑇+2 |}.

The ternary collisional law (2.8) yields 𝑛∗𝑇+1 − 𝑛∗𝑇+2 = 𝑛𝑇+1 − 𝑛𝑇+2 − 𝜙(𝐿1 − 𝐿2), where c is given by
(9.101). Thus, we may write

𝜉∗
𝑇+1,𝑇+2 ={(𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ S2𝛽−1

1 × 𝜉2𝛽
; :

|+𝐿2 − 𝐿1, 𝑛𝑇+2 − 𝑛𝑇+1 − 𝜙(𝐿2 − 𝐿1)〉 | ≥ 𝑀′ |𝐿2 − 𝐿1 | |𝑛𝑇+2 − 𝑛𝑇+1 − 𝜙(𝐿2 − 𝐿1) |}.

Recall from (8.13)–(8.14), the sets

S1,2 =
{
(𝐿1,𝐿2) ∈ S2𝛽−1

1 : |𝐿1 | < |𝐿2 |
}
, S2,1 =

{
(𝐿1,𝐿2) ∈ S2𝛽−1

1 : |𝐿2 | < |𝐿1 |
}
.

We also recall from (8.15)–(8.16) the sets

J1,2 = {(𝐿1,𝐿2) ∈ R2𝛽 >>|𝐿1 |2 + 2+𝐿1,𝐿2〉
>> ≤ R}, J2,1 = {(𝐿1,𝐿2) ∈ R2𝛽 >>|𝐿2 |2 + 2+𝐿1,𝐿2〉

>> ≤ R}.
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We clearly have

|𝜉∗
𝑇+1,𝑇+2 | =

∫
S2"−1

1 ×?2"
2

1?∗
(+1,(+2

𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2

=
∫

S1,2×?2"
2

1?∗
(+1,(+2

𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2 +
∫

S2,1×?2"
2

1?∗
(+1,(+2

𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2

= J̃1,2 + J̃ ′1,2 + J̃2,1 + J̃ ′2,1, (9.124)

where

J̃1,2 =
∫
(S1,2∩N1,2)×?2"

2

1?∗
(+1,(+2

𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2, (9.125)

J̃ ′1,2 =
∫
(S1,2\N1,2)×?2"

2

1?∗
(+1,(+2

𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2, (9.126)

J̃2,1 =
∫
(S2,1∩N2,1)×?2"

2

1?∗
(+1,(+2

𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2, (9.127)

J ′2,1 =
∫
(S2,1\N2,1)×?2"

2

1?∗
(+1,(+2

𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1 𝑟𝑛𝑇+2. (9.128)

We treat each of the terms in (9.124) separately.
Estimate for J̃1,2: By (9.125), Fubini’s Theorem and Lemma 8.8, we obtain

J̃1,2 ! H2𝛽
∫

S1,2

1N1,2 𝑟𝐿1 𝑟𝐿2 ! H2𝛽R. (9.129)

Estimate for J̃2,1: Similarly, we obtain

J̃2,1 ! H2𝛽R. (9.130)

Estimate for J ′1,2: From (9.126), we obtain

J ′1,2 ≤
∫

S1,2\N1,2

∫
?"
2

∫
?"
2

1,(+1,(+2
51 ,52 ,7(+1

(𝑛𝑇+2) 𝑟𝑛𝑇+2 𝑟𝑛𝑇+1 𝑟𝐿1 𝑟𝐿2, (9.131)

where given (𝐿1,𝐿2, 𝑛𝑇+1) ∈ (S1,2 \ J1,2) × 𝜉𝛽;, we denote

𝛽𝑇+1,𝑇+2
𝐶1 ,𝐶2 ,𝑊(+1 =

{
𝑛𝑇+2 ∈ 𝜉𝛽; : (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ 𝜉∗

𝑇+1,𝑇+2
}
. (9.132)

Let us fix (𝐿1,𝐿2, 𝑛𝑇+1) ∈ (S1,2 \ J1,2) × 𝜉𝛽;. We define the map 𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 : 𝜉𝛽; ( R𝛽 by

𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2) = 𝑛𝑇+2 − 𝑛𝑇+1 − 𝜙(𝐿2 − 𝐿1),

where c is given by (9.101).
In a similar way as in the estimate of of |Q∗

𝑇,𝑇+1 |, for any (𝐿1,𝐿2) ∉ J1,2, we have

>>Jac 𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2)

>> =
>>|𝐿1 |2 + 2+𝐿1,𝐿2〉

>>
1 + +𝐿1,𝐿2〉

>
R

1 + +𝐿1,𝐿2〉
≥ 2R

3 . (9.133)
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Thus,

>>Jac 𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2)

>>−1 ≤ 3R−1

2 , ∀𝑛𝑇+2 ∈ 𝜉𝛽; . (9.134)

Similarly to the estimate for |Q∗
𝑇,𝑇+1 |, we show also that 𝐾1,2

𝐶1 ,𝐶2 ,𝑊(+1 is injective.
Since (𝐿1,𝐿2, 𝑛𝑇+1) ∈ S2𝛽−1

1 × 𝜉𝛽; and 𝑛̄𝑇 ∈ 𝜉𝛽;, Cauchy-Schwartz inequality yields that, for any
𝑛𝑇+2 ∈ 𝜉𝛽;, we have

|𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2) | ≤ |𝑛𝑇+2 | + |𝑛𝑇+1 | +

|𝐿1 | ( |𝑛𝑇+1 | + |𝑛̄𝑇 |) + |𝐿2 | ( |𝑛𝑇+2 | + |𝑛̄𝑇 |)
1 + +𝐿1,𝐿2〉

(|𝐿2 | + |𝐿1 |) ≤ 18H,

since 1
2 ≤ 1 + +𝐿1,𝐿2〉 ≤ 3

2 . Therefore,

𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 [𝜉

𝛽
;] ⊆ 𝜉𝛽18; . (9.135)

Additionally,

𝑛𝑇+2 ∈ 𝛽𝑇+1,𝑇+2
𝐶1 ,𝐶2 ,𝑊(+1 ⇔ 𝐾1,2

𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2) ∈ K𝐶1 ,𝐶2 ,

where

K𝐶1 ,𝐶2 =
{
𝐽 ∈ R𝛽 : +𝐿2 − 𝐿1, 𝐽〉 ≥ 𝑀′ |𝐿2 − 𝐿1 | |𝐽 |

}
. (9.136)

Hence,

1,(+1,(+2
51 ,52 ,7(+1

(𝑛𝑇+2) = 1O51 ,52
(𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2)), ∀𝑛𝑇+2 ∈ 𝜉𝛽; . (9.137)

Therefore, performing the substitution 𝐽 := 𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2), and using (9.134), we obtain

∫
?"
2

1,(+1,(+2
51 ,52 ,7(+1

(𝑛𝑇+2) 𝑟𝑛𝑇+2 =
∫
?"
2

1O51 ,52
(𝐾1,2
𝐶1 ,𝐶2 ,𝑊(+1 (𝑛𝑇+2)) 𝑟𝑛𝑇+2 ≤ R−1

∫
?"

182

1O51 ,52
(𝐽) 𝑟𝐽.

(9.138)

Recalling the set 𝑈 (𝑀′, 𝐽) =
{
(𝐿1,𝐿2) ∈ R2𝛽 : +𝐿1 − 𝐿2, 𝐽〉 ≥ 𝑀′ |𝐿1 − 𝐿2 | |𝐽 |

}
, from (8.7) and (9.136),

we have

1O51 ,52
(𝐽) = 1𝑙 (𝜈′,M) (𝐿1,𝐿2), ∀(𝐿1,𝐿2) ∈ S2𝛽−1

1 , ∀𝐽 ∈ 𝜉𝛽18; . (9.139)

Therefore, using (9.131), (9.138), Fubini’s Theorem and (9.139), we obtain

J ′1,2 ≤ R−1
∫
(S1,2\N1,2)×?"

2

∫
?"

182

1O51 ,52
(𝐽) 𝑟𝐽 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝑇+1

≤ R−1
∫
?"
2×?"

182

∫
S2"−1

1

1𝑙 (𝜈′,M) (𝐿1,𝐿2) 𝑟𝐿1 𝑟𝐿2 𝑟𝐽 𝑟𝑛𝑇+1

! H2𝛽R−1 arccos 𝑀′ (9.140)

= H2𝛽R−1 arccos
√

1 − 𝑀

2 ,
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where to obtain (9.140), we use Lemma 8.6. Therefore,

J ′12 ≤ H2𝛽R−1 arccos
√

1 − 𝑀

2 . (9.141)

Estimate for J ′2,1: The argument is entirely symmetric, using the set

𝛽𝑇+1,𝑇+2
𝐶1 ,𝐶2 ,𝑊(+2 =

{
𝑛𝑇+1 ∈ 𝜉𝛽; : (𝐿1,𝐿2, 𝑛𝑇+1, 𝑛𝑇+2) ∈ 𝜉∗

𝑇+1,𝑇+2
}
.

for given (𝐿1,𝐿2, 𝑛𝑇+2) ∈ (S2,1\ J2,1)×𝜉𝛽; and the map 𝐾2,1
𝐶1 ,𝐶2 ,𝑊(+2 (𝑛𝑇+1) = 𝑛𝑇+1−𝑛𝑇+2−𝜙(𝐿1−𝐿2).

We obtain

J ′21 ≤ H2𝛽R−1 arccos
√

1 − 𝑀

2 . (9.142)

Recalling (9.124) and using (9.129)–(9.130), (9.141)–(9.142), we obtain

|𝜉∗
𝑇+1,𝑇+2 | ! H2𝛽

(
R + R−1 arccos

√
1 − 𝑀

2

)
. (9.143)

Recalling (9.99) and using (9.92)–(9.94), (9.121), (9.122), (9.143), we obtain

|A+
𝑇 (𝑝̄𝑇) | ! H2𝛽

(
𝑀𝛽/2 + 𝑀 "−1

4 + R + R−1 arccos
√

1 − 𝑀

2

)
. (9.144)

Recalling (9.87), using (9.98), (9.144) and using the fact that 𝑀 << 1, we obtain

|A𝑇 (𝑝̄𝑇) | ! H2𝛽
(
𝑀

"−1
4 + R + R−1 arccos

√
1 − 𝑀

2

)
. (9.145)

Choice of R: Let us now choose R in terms of _. Recalling that 𝛿2 << _2𝛿3 and (9.69), we have

𝑀
"−1

4 << _
"−1

2 . (9.146)

Moreover, since _ << 1, we may assume

_)
2
≤ sin _ ≤ _. (9.147)

Since 𝑀 << _2, (9.147) implies

𝑀 << 2 sin2 _ ⇒ arccos
√

1 − 𝑀

2 < _. (9.148)

Choosing

R = _1/2 << 1, (9.149)

estimates (9.145)–(9.146), (9.148) imply

|A𝑇 (𝑝̄𝑇) | ! H2𝛽
(
_

"−1
2 + _1/2

)
! H2𝛽_

"−1
4"+2 , (9.150)

since _ << 1 and 𝑟 ≥ 2. The claim comes from (9.89)–(9.90) and (9.150). "
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10. Elimination of recollisions
In this section, we reduce the convergence proof to comparing truncated elementary observables. We
first restrict to good configurations and provide the corresponding measure estimate. This is happening
in Proposition 10.2. We then inductively apply Proposition 9.2 and Proposition 9.4 or Proposition 9.6
and Proposition 9.7 (depending on whether the adjunction is binary or ternary) to reduce the convergence
proof to truncated elementary observables. The convergence proof, completed in Section 11, will then
follow naturally, since the backwards (𝛿2, 𝛿3)-flow and the backwards free flow will be comparable out
of a small measure set. Throughout this section, ℎ ∈ N will be fixed, (𝑈 , 𝛿2, 𝛿3) are given in the scaling
(4.24) with N large enough such that 𝛿2 << 𝛿3, and the parameters 𝑢, H, 𝛿0, \, _, I satisfy (9.4).

10.1. Restriction to good configurations
Inductively using Lemma 9.1, we are able to reduce the convergence proof to good configurations, up
to a small measure set. The measure of the complement will be negligible in the limit.

For convenience, given 𝑅 ∈ N, let us define the set

U𝑇(𝛿3, 𝛿0, I) := U𝑇(𝛿3, 0) ∩ U𝑇(𝛿0, I). (10.1)

For ℎ ∈ N, we also recall from (6.3) the set Δ𝑀. (𝛿0) of well-separated spatial configurations.

Lemma 10.1. Let ℎ ∈ N. Let ℎ ∈ N, \, 𝛿0, H, _, I be parameters as in (9.4) and 𝛿2 << 𝛿3 << \. Then
for any 𝐴. ∈ Δ𝑀. (𝛿0), there is a subset of velocities M. (𝐴.) ⊆ 𝜉𝛽.; of measure

|M. (𝐴.) |𝛽. ≤ >𝛽,.H𝛽._
"−1

2 , (10.2)

such that

𝑝. ∈ U. (𝛿3, 𝛿0, I), ∀𝛽. ∈ 𝜉𝛽.; \ M. (𝐴.). (10.3)

Proof. We use Proposition 10.1. from [5] for 𝛿 = 𝛿3. "

For ℎ ∈ N and 𝐴. ∈ Δ𝑀. (𝛿0), let us denote M8
. (𝐴.) = 𝜉𝛽.; \M. (𝐴.). Consider 1 ≤ 𝜈 ≤ 𝑢 and let us

recall the observables J𝑙.,𝜆 ,;,H , J∞.,𝜆 ,;,H defined in (7.23)–(7.24). We restrict the domain of integration
to velocities giving good configurations.

In particular, we define

J̃𝑙.,𝜆 ,;,H (𝑤) (𝐴.) =
∫

M+
& (𝑀&)

O. (𝛽.) 𝑦 (.,𝜆)𝑙 ,;,H (𝐴. ,𝛽.) 𝑟𝛽. , (10.4)

J̃∞.,𝜆 ,;,H (𝑤) (𝐴.) =
∫

M+
& (𝑀&)

O. (𝛽.) 𝑦 (.,𝜆);,H (𝐴. ,𝛽.) 𝑟𝛽. . (10.5)

Let us apply Proposition 10.1 to restrict to initially good configurations. To keep track of all the
possible adjuctions, we recall recall the notation from (7.3)–(7.5): given 𝜈 ∈ N, we write

𝐺𝜆 = {𝐸 = (𝐸1, ...,𝐸𝜆 ) : 𝐸𝐿 ∈ {1, 2}},
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and given 𝐸 ∈ 𝐺𝜆 , we write

𝐸̃𝜃 =
𝜃∑
𝐿=1

𝐸𝐿 , 1 ≤ 𝛼 ≤ 𝜈 , 𝐸̃0 = 0.

Proposition 10.2. Let ℎ, 𝑢 ∈ N, \, 𝛿0, H, _, I be parameters as in (9.4), (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24)
with 𝛿2 << 𝛿3 << \, and 𝑤 ∈ [0,𝜁]. Then, the following estimates hold:

𝜂∑
𝜆=1

‖J𝑙.,𝜆 ,;,H (𝑤) − J̃𝑙.,𝜆 ,;,H (𝑤)‖E∞(Δ*
& (𝛿0)) ≤ >𝛽,.,B0 ,C H

𝛽._
"−1

2 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 ,

𝜂∑
𝜆=1

‖J∞.,𝜆 ,;,H (𝑤) − J̃∞.,𝜆 ,;,H (𝑤)‖E∞(Δ*
& (𝛿0)) ≤ >𝛽,.,B0 ,C H

𝛽._
"−1

2 ‖𝐾0‖∞,@0 ,B0 .

Proof. We present the proof for the BBGKY hierarchy case only. The proof for the Boltzmann hierarchy
case is similar. Let us fix 𝐴. ∈ Δ𝑀. (𝛿0).

We first assume that 𝜈 ∈ {1, ..., 𝑢}. Triangle inequality, an inductive application of estimate (5.7),
estimate (5.6) and part (𝐼𝐼) of Proposition 5.3 yield

|J𝑙.,𝜆 ,;,H (𝑤) (𝐴.)−J̃𝑙.,𝜆 ,;,H (𝑤) (𝐴.) | ≤
∑
𝑈∈𝐴%

∫
M& (𝑀&)

|O. (𝛽.) 𝑦 (.,𝜆 ,𝑈)𝑙 ,;,H (𝑤, 𝐴. ,𝛽.) | 𝑟𝛽.

≤ 2𝜁 ‖O. ‖E∞
0&
S−.µ(C )

(
1
8

) 𝜆−1
‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0

∫
M& (𝑀&)

S−β (C )A& (𝐾&) 𝑟𝛽. (10.6)

≤ 2𝜁 ‖O. ‖E∞
0&
S−.µ(C )

(
1
8

) 𝜆−1
|M. (𝐴.) |𝛽. ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 , (10.7)

where to obtain (10.6), we use (7.4).
For 𝜈 = 0, part (𝐼) of Proposition 5.3 and Remark 5.1 similarly yield

|J𝑙.,0,;,H (𝑤) (𝐴.) − J̃𝑙.,0,;,H (𝑤) (𝐴.) | ≤ ‖O. ‖E∞
0&
S−.µ(C ) |M. (𝐴.) |𝛽. ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 . (10.8)

The claim comes after using (10.7)–(10.8), adding over 𝜈 = 0, ..., 𝑢, and using the measure estimate
of Proposition 10.1. "

Remark 10.3. Given ℎ ∈ N and 𝐴. ∈ Δ𝑀. (𝛿0), the definition of M. (𝐴.) implies that

J̃𝑙.,0,;,H (𝑤) (𝐴.) = J̃∞.,0,;,H (𝑤) (𝐴.).

Therefore, by Proposition 10.2, convergence reduces to controlling the differences J̃𝑙.,𝜆 ,;,H (𝑤) −
J̃∞.,𝜆 ,;,H (𝑤), for 𝜈 = 1, ..., 𝑢, in the scaled limit.

10.2. Reduction to elementary observables
Here, given ℎ ∈ N and 1 ≤ 𝜈 ≤ 𝑢, we express the observables J̃𝑙.,𝜆 ,;,H (𝑤), J̃∞.,𝜆 ,;,H (𝑤), defined in (10.4)–
(10.5), as a superposition of elementary observables.

For this purpose, given 𝛼 ∈ N, and recalling (7.19), (4.15), we decompose the BBGKY hierarchy
binary truncated collisional operator as

C𝑙 ,;
𝜃 ,𝜃+1 =

𝜃∑
𝐿=1

C𝑙 ,;,+,𝐿
𝜃 ,𝜃+1 −

𝜃∑
𝐿=1

C𝑙 ,;,−,𝐿
𝜃 ,𝜃+1 ,
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where

C𝑙 ,;,+,𝐿
𝜃 ,𝜃+1 <𝜃+1 (𝑝𝜃) = Q2

𝑙 ,𝛿2 ,𝜃

∫
S"−1

1 ×?"
2

𝜇+2 (𝐿1, 𝑛𝜃+1 − 𝑛𝐿)<𝜃+1(𝑝 𝐿
′
𝜃+1,𝛿2

) 𝑟𝐿1 𝑟𝑛𝜃+1,

C𝑙 ,;,−,𝐿
𝜃 ,𝜃+1 <𝜃+1 (𝑝𝜃) = Q2

𝑙 ,𝛿2 ,𝜃

∫
S"−1

1 ×?"
2

𝜇+2 (𝐿1, 𝑛𝜃+1 − 𝑛𝐿)<𝜃+1(𝑝 𝐿𝜃+1,𝛿2
) 𝑟𝐿1 𝑟𝑛𝜃+1,

and the ternary truncated collisional operator as

C𝑙 ,;
𝜃 ,𝜃+2 =

𝜃∑
𝐿=1

C𝑙 ,;,+,𝐿
𝜃 ,𝜃+2 −

𝜃∑
𝐿=1

C𝑙 ,;,−,𝐿
𝜃 ,𝜃+2 ,

where

C𝑙 ,;,+,𝐿
𝜃 ,𝜃+2 <𝜃+2 (𝑝𝜃 ) = Q3

𝑙 ,𝛿3 ,𝜃

∫
S2"−1

1 ×?2"
2

𝜇+3 (𝐿1,𝐿2, 𝑛𝜃+1 − 𝑛𝐿 , 𝑛𝜃+2 − 𝑛𝐿)√
1 + +𝐿1,𝐿2〉

<𝜃+2 (𝑝 𝐿∗𝜃+2,𝛿3
) 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝜃+1 𝑟𝑛𝜃+2,

C𝑙 ,;,−,𝐿
𝜃 ,𝜃+2 <𝜃+2 (𝑝𝜃 ) = Q3

𝑙 ,𝛿3 ,𝜃

∫
S2"−1

1 ×?2"
2

𝜇+3 (𝐿1,𝐿2, 𝑛𝜃+1 − 𝑛𝐿 , 𝑛𝜃+2 − 𝑛𝐿)√
1 + +𝐿1,𝐿2〉

<𝜃+2 (𝑝 𝐿𝜃+2,𝛿3
) 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝜃+1 𝑟𝑛𝜃+2.

In order to expand the observable J̃𝑙.,𝜆 ,;,H (𝑤) to elementary observables, we need to take into account
all the possible particle adjuctions occurring by adding one or two particles to the system in each step.
More precisely, given 𝐸 ∈ 𝐺𝜆 , and 𝐼 ∈ {1, ..., 𝜈}, we are adding 𝐸𝐿 ∈ {1, 2} particle(s) to the existing
ℎ + 𝐸̃𝐿−1 particles in either precollisional or postcollisional way. In order to keep track of this process,
given 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 , we introduce the notation

M.,𝜆 ,𝑈 =
{
Z = (𝑅1, ...,𝑅𝜆 ) ∈ N𝜆 : 𝑅𝐿 ∈ {1, ..., ℎ + 𝐸̃𝐿−1}, ∀𝐼 ∈ {1, ..., 𝜈}

}
, (10.9)

J.,𝜆 ,𝑈 =
{
b = ( ,1, ..., ,𝜆 ) ∈ N𝜆 : ,𝐿 ∈ {−1, 1}, ∀𝐼 ∈ {1, ..., 𝜈}

}
. (10.10)

U.,𝜆 ,𝑈 = J.,𝜆 ,𝑈 × M.,𝜆 ,𝑈 . (10.11)

Under this notation, the BBGKY hierarchy observable functional J̃𝑙.,𝜆 ,;,H (𝑤) can be expressed, for
1 ≤ 𝜈 ≤ 𝑢, as a superposition of elementary observables

J̃𝑙.,𝜆 ,;,H (𝑤) (𝐴.) =
∑
𝑈∈𝐴%

∑
(S ,J )∈U&,%,:

(
𝜆∏
𝐿=1

,𝐿

)
J̃𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.), (10.12)

where the elementary observables are defined by

J̃𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.) =
∫

M+
& (𝑀&)

O. (𝛽.)
∫

T%,3 (𝐸)
𝜁 𝐸−𝐸1. C𝑙 ,;, 𝜙1 ,𝑇1

.,.+𝑈̃1
𝜁 𝐸1−𝐸2
.+𝑈̃1

...

...𝜁 𝐸%−1−𝐸%
.+𝑈̃%−1

C𝑙 ,;, 𝜙% ,𝑇%

.+𝑈̃%−1 ,.+𝑈̃%
𝜁 𝐸(
.+𝑈̃%

𝑦 (.+𝑈̃% )
0 (𝑝.) 𝑟𝑤𝜆 ... 𝑟𝑤1𝑟𝛽. .

(10.13)

Similarly, given 𝛼 ∈ N, and recalling (4.31), (4.35), we decompose the Boltzmann hierarchy binary
and ternary collisional operators as

C∞,;
𝜃 ,𝜃+1 =

𝜃∑
𝐿=1

C∞,;,+,𝐿
𝜃 ,𝜃+1 −

𝜃∑
𝐿=1

C∞,;,−,𝐿
𝜃 ,𝜃+1 ,
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where

C∞,;,+,𝐿
𝜃 ,𝜃+1 <𝜃+1 (𝑝𝜃) =

∫
S"−1

1 ×?"
2

𝜇+2 (𝐿1, 𝑛𝜃+1 − 𝑛𝐿)<𝜃+1(𝑝 𝐿
′
𝜃+1) 𝑟𝐿1 𝑟𝑛𝜃+1,

C∞,;,−,𝐿
𝜃 ,𝜃+1 <𝜃+1 (𝑝𝜃) =

∫
S"−1

1 ×?"
2

𝜇+2 (𝐿1, 𝑛𝜃+1 − 𝑛𝐿)<𝜃+1(𝑝 𝐿𝜃+1) 𝑟𝐿1 𝑟𝑛𝜃+1,

C∞,;
𝜃 ,𝜃+2 =

𝜃∑
𝐿=1

C∞,;,+,𝐿
𝜃 ,𝜃+2 −

𝜃∑
𝐿=1

C∞,;,−,𝐿
𝜃 ,𝜃+2 ,

where

C∞,;,+,𝐿
𝜃 ,𝜃+2 <𝜃+2 (𝑝𝜃) =

∫
S2"−1

1 ×?2"
2

𝜇+3 (𝐿1,𝐿2, 𝑛𝜃+1 − 𝑛𝐿 , 𝑛𝜃+2 − 𝑛𝐿)√
1 + +𝐿1,𝐿2〉

<𝜃+2 (𝑝 𝐿∗𝜃+2) 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝜃+1 𝑟𝑛𝜃+2,

C∞,;,−,𝐿
𝜃 ,𝜃+2 <𝜃+2 (𝑝𝜃) =

∫
S2"−1

1 ×?2"
2

𝜇+3 (𝐿1,𝐿2, 𝑛𝜃+1 − 𝑛𝐿 , 𝑛𝜃+2 − 𝑛𝐿)√
1 + +𝐿1,𝐿2〉

<𝜃+2 (𝑝 𝐿𝜃+2) 𝑟𝐿1 𝑟𝐿2 𝑟𝑛𝜃+1 𝑟𝑛𝜃+2.

Under this notation, the Boltzmann hierarchy observable functional J̃∞.,𝜆 ,;,H (𝑤) can be expressed, for
1 ≤ 𝜈 ≤ 𝑢, as a superposition of elementary observables

J̃∞.,𝜆 ,;,H (𝑤) (𝐴.) =
∑
𝑈∈𝐴%

∑
(S ,J )∈U&,%,:

(
𝜆∏
𝐿=1

,𝐿

)
J̃∞.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.), (10.14)

where the elementary observables are defined by

J̃∞.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.) =
∫

M+
& (𝑀&)

O. (𝛽.)
∫

T%,3 (𝐸)
𝐺𝐸−𝐸1. C∞,;, 𝜙1 ,𝑇1

.,.+𝑈̃1
𝐺𝐸1−𝐸2
.+𝑈̃1

...

...𝐺𝐸%−1−𝐸%
.+𝑈̃%−1

C∞,;, 𝜙% ,𝑇%

.+𝑈̃%−1 ,.+𝑈̃%
𝐺𝐸(
.+𝑈̃%

𝑦 (.+𝑈̃% )
0 (𝑝.) 𝑟𝑤𝜆 ... 𝑟𝑤1𝑟𝛽. .

(10.15)

10.3. Boltzmann hierarchy pseudo-trajectories
We introduce the following notation which we will be constantly using from now on. Let ℎ ∈ N,
𝑝. = (𝐴. ,𝛽.) ∈ R2𝛽. , 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 and 𝑤 ∈ [0,𝜁]. Let us recall from (7.2) the set

T𝜆 (𝑤) =
{
(𝑤1, ..., 𝑤𝜆 ) ∈ R𝜆 : 0 = 𝑤𝜆+1 < 𝑤𝜆 < ... < 𝑤1 < 𝑤0 = 𝑤

}
, 𝑤0 = 𝑤, 𝑤𝜆+1 = 0.

Consider (𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 (𝑤), b = ( ,1, ..., ,𝜆 ), Z = (𝑅1, ...,𝑅𝜆 ), (b,Z) ∈ U.,𝜆 ,𝑈 . For each 𝐼 = 1, ..., 𝜈 ,
we distignuish two possible situations:

If 𝐸𝐿 = 1, we consider (𝐿.+𝑈̃! , 𝑛.+𝑈̃! ) ∈ S𝛽−1
1 × 𝜉𝛽; . (10.16)

If 𝐸𝐿 = 2, we consider (𝐿.+𝑈̃!−1,𝐿.+𝑈̃! , 𝑛.+𝑈̃!−1, 𝑛.+𝑈̃! ) ∈ S2𝛽−1
1 × 𝜉2𝛽

; . (10.17)

For convenience, for each 𝐼 = 1, ..., 𝜈 , we will write (ω𝑈! ,𝐿 , v𝑈! ,𝐿) ∈ S𝛽𝑈!−1
1 ×𝜉𝛽𝑈!

; where (ω𝑈! ,𝐿 , v𝑈! ,𝐿)
is of the form (10.16) if 𝐸𝐿 = 1 and of the form (10.17) if 𝐸𝐿 = 2.

We inductively define the Boltzmann hierarchy pseudo-trajectory of 𝑝. . Roughly speaking, the
Boltzmann hierarchy pseudo-trajectory forms the configurations on which particles are adjusted during
backwards in time evolution.

Intuitively, assume we are given a configuration 𝑝. = (𝐴. ,𝛽.) ∈ R2𝛽. at time 𝑤0 = 𝑤. 𝑝. evolves under
backwards free flow until the time 𝑤1 when the configuration (ω𝑈,1, v𝑈,1) is added, neglecting positions,
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to the 𝑅1-particle, the adjunction being precollisional if ,1 = −1 and postcollisional if ,1 = 1. We then
form an (ℎ+ 𝐸̃1)-configuration and continue this process inductively until time 𝑤𝜆+1 = 0. More precisely,
we inductively construct the Boltzmann hierarchy pseudo-trajectory of 𝑝. = (𝐴. ,𝛽.) ∈ R2𝛽. as follows:

Time 𝑤0 = 𝑤: We initially define 𝑝∞
. (𝑤−0 ) =

(
𝐵∞1 (𝑤−0 ), ..., 𝐵∞. (𝑤−0 ), 𝑛∞1 (𝑤−0 ), ..., 𝑛∞. (𝑤−0 )

)
:= 𝑝. .

Time 𝑤𝐿 , 𝐼 ∈ {1, ..., 𝜈}: Consider 𝐼 ∈ {1, ..., 𝜈} and assume we know

𝑝∞
.+𝑈̃!−1

(𝑤−𝐿−1) =
(
𝐵∞1 (𝑤−𝐿−1), ..., 𝐵∞.+𝑈̃!−1

(𝑤−𝐿−1), 𝑛∞1 (𝑤−𝐿−1), ..., 𝑛∞.+𝑈̃!−1
(𝑤−𝐿−1)

)
.

We define 𝑝∞
.+𝑈̃!−1

(𝑤+𝐿 ) =
(
𝐵∞1 (𝑤+𝐿 ), ..., 𝐵∞.+𝑈̃!−1

(𝑤+𝐿 ), 𝑛∞1 (𝑤+𝐿 ), ..., 𝑛∞.+𝑈̃!−1
(𝑤+𝐿 )

)
as:

𝑝∞
.+𝑈̃!−1

(𝑤+𝐿 ) :=
(
𝐴∞
.+𝑈̃!−1

(
𝑤−𝐿−1

)
− (𝑤𝐿−1 − 𝑤𝐿)𝛽∞

.+𝑈̃!−1

(
𝑤−𝐿−1

)
,𝛽∞
.+𝑈̃!−1

(
𝑤−𝐿−1

) )
.

We also define 𝑝∞
.+𝑈̃!

(𝑤−𝐿 ) =
(
𝐵∞1 (𝑤−𝐿 ), ..., 𝐵∞.+𝑈̃!

(𝑤−𝐿 ), 𝑛∞1 (𝑤−𝐿 ), ..., 𝑛∞.+𝑈̃!
(𝑤−𝐿 )

)
as:

(
𝐵∞𝜙 (𝑤−𝐿 ), 𝑛∞𝜙 (𝑤−𝐿 )

)
:= (𝐵∞𝜙 (𝑤+𝐿 ), 𝑛∞𝜙 (𝑤+𝐿 )), ∀ , ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿}.

For the rest of the particles, we distiguish the following cases, depending on 𝐸𝐿:

◦ 𝐸𝐿 = 1: If ,𝐿 = −1:
(
𝐵∞𝑇!

(𝑤−𝐿 ), 𝑛∞𝑇!
(𝑤−𝐿 )

)
:=

(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛∞𝑇!
(𝑤+𝐿 )

)
,(

𝐵∞.+𝑈̃!
(𝑤−𝐿 ), 𝑛∞.+𝑈̃!

(𝑤−𝐿 )
)

:=
(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛.+𝑈̃!

)
,

while if ,𝐿 = 1:
(
𝐵∞𝑇!

(𝑤−𝐿 ), 𝑛∞𝑇!
(𝑤−𝐿 )

)
:=

(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛∞
′

𝑇!
(𝑤+𝐿 )

)
,(

𝐵∞.+𝑈̃!
(𝑤−𝐿 ), 𝑛∞.+𝑈̃!

(𝑤−𝐿 )
)

:=
(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛′.+𝑈̃!

)
,

where (𝑛∞′
𝑇!
(𝑤−𝐿 ), 𝑛′.+𝑈̃!

) = 𝜁𝐶&+:̃!

(
𝑛∞𝑇!

(𝑤+𝐿 ), 𝑛.+𝑈̃!

)
.

◦ 𝐸𝐿 = 2: If ,𝐿 = −1:
(
𝐵∞𝑇!

(𝑤−𝐿 ), 𝑛∞𝑇!
(𝑤−𝐿 )

)
:=

(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛∞𝑇!
(𝑤+𝐿 )

)
,(

𝐵∞.+𝑈̃!−1 (𝑤
−
𝐿 ), 𝑛∞.+𝑈̃!−1 (𝑤

−
𝐿 )

)
:=

(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛.+𝑈̃!−1
)
,(

𝐵∞.+𝑈̃!
(𝑤−𝐿 ), 𝑛∞.+𝑈̃!

(𝑤−𝐿 )
)

:=
(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛.+𝑈̃!

)
,

while if ,𝐿 = 1:
(
𝐵∞𝑇!

(𝑤−𝐿 ), 𝑛∞𝑇!
(𝑤−𝐿 )

)
:=

(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛∞∗
𝑇!

(𝑤+𝐿 )
)
,(

𝐵∞.+𝑈̃!−1(𝑤
−
𝐿 ), 𝑛∞.+𝑈̃!−1(𝑤

−
𝐿 )

)
:=

(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛∗.+𝑈̃!−1

)
,(

𝐵∞.+𝑈̃!
(𝑤−𝐿 ), 𝑛∞.+𝑈̃!

(𝑤−𝐿 )
)

:=
(
𝐵∞𝑇!

(𝑤+𝐿 ), 𝑛∗.+𝑈̃!

)
,

where (𝑛∞∗
𝑇!

(𝑤−𝐿 ), 𝑛∗.+𝑈̃!−1, 𝑛
∗
.+𝑈̃!

) = 𝜁𝐶&+:̃!−1 ,𝐶&+:̃!

(
𝑛∞𝑇!

(𝑤+𝐿 ), 𝑛.+𝑈̃!−1, 𝑛.+𝑈̃!

)
.

Time 𝑤𝜆+1 = 0: We finally obtain

𝑝∞
.+𝑈̃%

(0+) = 𝑝∞
.+𝑈̃%

(𝑤+𝜆+1) =
(
𝐴∞
.+𝑈̃%

(
𝑤−𝜆

)
− 𝑤𝜆𝛽∞

.+𝑈̃%

(
𝑤−𝜆

)
,𝛽∞
.+𝑈̃%

(
𝑤−𝜆

) )
.

0����	  �51�57/ ������� .������������:�21�0���5�21������

��71�/����1��7�1����7���

https://doi.org/10.1017/fms.2025.11


80 I. Ampatzoglou and N. Pavlović

The process is illustrated in the following diagram (to be read from right to left):

𝑝∞. (𝑤−0 )𝑝∞. (𝑤+1 )

(ω𝑈1 ,1, v𝑈1 ,1),
( ,1,𝑅1)

𝑝∞
.+𝑈̃1

(𝑤−1 )...𝑝∞
.+𝑈̃!−1

(𝑤+𝐿 )

(ω𝑈! ,𝐿 , v𝑈! ,𝐿),
( ,𝐿 ,𝑅𝐿)

𝑝∞
.+𝑈̃!

(𝑤−𝐿 )...𝑝∞
.+𝑈̃%

(𝑤+𝜆+1)
,0 − ,1,1 − ,2,!−1 − ,!,! − ,!+1,% − ,%+1

We give the following definition:
Definition 10.4. Let ℎ ∈ N, 𝑝. = (𝐴. ,𝛽.) ∈ R2𝛽. , (𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 (𝑤), b = ( ,1, ..., ,𝜆 ), Z =
(𝑅1, ...,𝑅𝜆 ), (b,Z) ∈ U.,𝜆 , and for each 𝐼 = 1, ..., 𝜈 , 𝐸 ∈ 𝐺𝜆 , we consider (ω𝑈! ,𝐿 , v𝑈! ,𝐿) ∈
S𝛽𝑈!−1

1 × 𝜉𝛽𝑈!
; . The sequence {𝑝∞

.+𝑈̃!−1
(𝑤+𝐿 )}𝐿=0,...,𝜆+1 constructed above is called the Boltzmann hi-

erarchy pseudo-trajectory of 𝑝. .

10.4. Reduction to truncated elementary observables
We will now use the Boltzmann hierarchy pseudo-trajectory to define the BBGKY hierarchy and Boltz-
mann hierarchy truncated observables. The convergence proof will then be reduced to the convergence
of the corresponding truncated elementary observables.

Given 𝛼 ∈ N, recall the notation from (10.1):

U𝜃 (𝛿3, 𝛿0, I) = U𝜃 (𝛿3, 0) ∩ U𝜃 (𝛿0, I).

Given 𝑤 ∈ [0,𝜁], we also recall from (7.22) the set T𝜆 ,H (𝑤) of separated collision times:

T𝜆 ,H (𝑤) := {(𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 (𝑤) : 0 ≤ 𝑤𝐿+1 ≤ 𝑤𝐿 − I, ∀𝐼 ∈ [0, 𝜈]}, 𝑤𝜆+1 = 0, 𝑤0 = 𝑤.

Consider 𝑤 ∈ [0,𝜁], 𝐴. ∈ Δ𝑀. (𝛿0), 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 and (b,Z) ∈ U.,𝜆 ,𝑈 and (𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 ,H .
By Proposition 10.1, for any𝛽. ∈ M8

. (𝐴.), we have 𝑝. = (𝐴. ,𝛽.) ∈ U. (𝛿3, 𝛿0, I), which in turn implies
𝑝∞
. (𝑤+1 ) ∈ U. (𝛿0, 0) since 𝑤0 − 𝑤1 > I. Now we observe that either (9.8), (9.12) from Proposition 9.2 (if

the adjunction is binary), or (9.61), (9.65) from Proposition 9.6 (if the adjunction is ternary) yield that
there is a set B𝑇1

(
𝑝∞
.

(
𝑤+1

) )
⊆ S𝛽𝑈1−1

1 × 𝜉𝛽𝑈1
; such that

𝑝∞
.+𝑈̃1

(𝑤+2 ) ∈ U.+𝑈̃1 (𝛿0, 0), ∀(ω𝑈1 ,1, v𝑈1 ,1) ∈ B8𝑇1

(
𝑝∞
.

(
𝑤+1

) )
,

B8𝑇1

(
𝑝∞
.

(
𝑤+1

) )
:= (S𝛽𝑈!−1

1 × 𝜉𝛽𝑈!
; )+

(
𝑛∞𝑇1

(
𝑤+1

) )
\ B𝑇1

(
𝑝∞
.

(
𝑤+1

) )
.

Clearly, this process can be iterated. In particular, given 𝐼 ∈ {2, ..., 𝜈}, we have

𝑝∞
.+𝑈̃!−1

(𝑤+𝐿 ) ∈ U.+𝑈̃!−1 (𝛿0, 0),

so there exists a set B𝑇!

(
𝑝∞
.+𝑈̃!−1

(
𝑤+𝐿

) )
⊆ S𝛽𝑈!−1

1 × 𝜉𝛽𝑈!
; such that

𝑝∞
.+𝑈̃!

(𝑤+𝐿+1) ∈ U.+𝑈̃! (𝛿0, 0), ∀(ω𝑈! ,𝐿 , v𝑈! ,𝐿) ∈ B8𝑇!

(
𝑝∞
.+𝑈̃!−1

(
𝑤+𝐿

) )
, (10.18)

where

B8𝑇!

(
𝑝∞
.

(
𝑤+𝐿

) )
:= (S𝛽𝑈!−1

1 × 𝜉𝛽𝑈!
; )+

(
𝑛∞𝑇!

(
𝑤+𝐿

) )
\ B𝑇!

(
𝑝∞
.+𝑈̃!

(
𝑤+𝐿

) )
.

We finally obtain 𝑝∞
.+𝑈̃%

(0+) ∈ U.+𝑈̃%
(𝛿0, 0).
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Let us now define the truncated elementary observables. Heuristically we will truncate the domains
of adjusted particles in the definition of the observables J̃𝑙.,𝜆 ,;,H , J̃∞.,𝜆 ,;,H , defined in (10.4)–(10.5).

More precisely, consider 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 , (b,Z) ∈ U.,𝜆 ,𝑈 and 𝑤 ∈ [0,𝜁]. For 𝐴. ∈ Δ𝑀. (𝛿0),
Proposition 10.1 implies there is a set of velocities M. (𝐴.) ⊆ 𝜉2𝛽

; such that 𝑝. = (𝐴. ,𝛽.) ∈
U. (𝛿3, 𝛿0, I), ∀𝛽. ∈ M8

. (𝐴.). Following the reasoning above, we define the BBGKY hierarchy
truncated observables as

b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.) =
∫

M+
& (𝑀&)

O. (𝛽.)
∫

T%,3 (𝐸)
𝜁 𝐸−𝐸1. C̃𝑙 ,;, 𝜙1 ,𝑇1

.,.+𝑈̃1
𝜁 𝐸1−𝐸2
.+𝑈̃1

...

...C̃𝑙 ,;, 𝜙% ,𝑇%

.+𝑈̃%−1 ,.+𝑈̃%
𝜁 𝐸(
.+𝑈̃%

𝑦 (.+𝑈̃% )
0 (𝑝.) 𝑟𝑤𝜆 , ... 𝑟𝑤1𝑟𝛽. ,

(10.19)

where for each 𝐼 = 1, ..., 𝜈 , we denote

C̃𝑙 ,;, 𝜙! ,𝑇!

.+𝑈̃!−1 ,.+𝑈̃!
<𝑙 ,.+𝑈̃! = C𝑙 ,;, 𝜙! ,𝑇!

.+𝑈̃!−1 ,.+𝑈̃!

[
<𝑙 ,.+𝑈̃!1(ω:! ,! ,v:! ,!)∈B+

(!

(
𝐾∞
&+:̃!−1

(𝐸+! )
)
]
.

In the same spirit, for 𝐴. ∈ Δ𝑀. (𝛿0), we define the Boltzmann hierarchy truncated elementary
observables as

b∞.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.) =
∫

M+
& (𝑀&)

O. (𝛽.)
∫

T%,3 (𝐸)
𝐺𝐸−𝐸1. C̃∞,;, 𝜙1 ,𝑇1

.,.+𝑈̃1
𝐺𝐸1−𝐸2
. 𝑈̃1

...

...C̃∞,;, 𝜙% ,𝑇%

.+𝑈̃%−1 ,.+𝑈̃%
𝐺𝐸(
.+𝑈̃%

𝑦 (.+𝑈̃% )
0 (𝑝.) 𝑟𝑤𝜆 , ... 𝑟𝑤1𝑟𝛽. ,

(10.20)

where for each 𝐼 = 1, ..., 𝜈 , we denote

C̃∞,;, 𝜙! ,𝑇!

.+𝑈̃!−1 ,.+𝑈̃!
<.+𝑈̃! = C∞,;, 𝜙! ,𝑇!

.+𝑈̃!−1 ,.+𝑈̃!

[
<.+𝑈̃!1(ω:! ,! ,v:! ,!)∈B+

(!

(
𝐾∞
&+:̃!−1

(𝐸+! )
)
]
.

Recalling the observables J̃𝑙.,𝜆 ,;,H,𝑈 , J̃∞.,𝜆 ,;,H,𝑈 from (10.13), (10.15) and using Proposition 9.4 or
Proposition 9.7, we obtain the following:

Proposition 10.5. Let ℎ, 𝑢 ∈ N, \, 𝛿0, H, _, I be parameters as in (9.4), (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24)
with 𝛿2 << 𝛿3 << \ and 𝑤 ∈ [0,𝜁]. Then the following estimates hold:

𝜂∑
𝜆=1

∑
𝑈∈𝐴%

∑
(S ,J )∈U&,%,:

‖ J̃𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& ( 𝛿0)) ≤

≤ >𝜂𝛽,.,B0 ,C
‖O. ‖E∞

0&
H𝛽 (.+3𝜂)_

"−1
4"+2 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 ,

𝜂∑
𝜆=1

∑
𝑈∈𝐴%

∑
(S ,J )∈U&,%,:

‖ J̃∞.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − b∞.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& ( 𝛿0)) ≤

≤ >𝜂𝛽,.,B0 ,C
‖O. ‖E∞

0&
H𝛽 (.+3𝜂)_

"−1
4"+2 ‖𝐾0‖∞,@0 ,B0 .

Proof. As usual, it suffices to prove the estimate for the BBGKY hierarchy case, and the Boltzmann
hierarchy case follows similarly. Fix 𝜈 ∈ {1, ..., 𝑢}, 𝐸 ∈ 𝐺𝜆 and (b,Z) ∈ U.,𝜆 ,𝑈 . We first estimate the
difference:

J̃𝑙.,𝜆 ,;,H (𝑤, b,Z) (𝐴.) − b𝑙.,𝜆 ,;,H (𝑤, b,Z) (𝐴.). (10.21)
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Cauchy-Schwartz inequality and triangle inequality imply

|+𝐿1, 𝑛1 − 𝑛〉 | ≤ 2H, ∀𝐿1 ∈ S𝛽−1
1 , ∀𝑛, 𝑛1 ∈ 𝜉𝛽;, (10.22)

>>𝜇3 (𝐿1,𝐿2, 𝑛1 − 𝑛, 𝑛2 − 𝑛)
>> ≤ 4H, ∀(𝐿1,𝐿2) ∈ S2𝛽−1

1 , ∀𝑛, 𝑛1, 𝑛2 ∈ 𝜉𝛽;, (10.23)

so ∫
S"−1

1 ×?"
2

|+𝐿1, 𝑛1 − 𝑛〉 | 𝑟𝐿1 𝑟𝑛1 ≤ >𝛽H𝛽+1 ≤ >𝛽H3𝛽 , ∀𝑛 ∈ 𝜉𝛽;, (10.24)
∫
S2"−1

1 ×?2"
2

|𝜇3 (𝐿1,𝐿2, 𝑛1 − 𝑛, 𝑛2 − 𝑛2) | 𝑟𝐿1 𝑟𝐿2 𝑟𝑛1 𝑟𝑛2 ≤ >𝛽H2𝛽+1 ≤ >𝛽H3𝛽 , ∀𝑛 ∈ 𝜉𝛽;, (10.25)

since H >> 1. But in order to estimate the difference (10.21), we integrate at least once over
B𝑇!

(
𝑝∞
.+2𝐿−2

(
𝑤+𝐿

) )
for some 𝐼 ∈ {1, ..., 𝜈}. For convenience, given 𝑛 ∈ R𝛽 , let us write

𝜇𝑈! (ω𝑈! ,𝐿 , v𝑈! ,𝐿 , 𝑛) :=
{
𝜇2(𝐿.+𝑈̃! , 𝑛.+𝑈̃! − 𝑛), if 𝐸𝐿 = 1,
𝜇3(𝐿.+𝑈̃!−1,𝐿.+𝑈̃! , 𝑛.+𝑈̃!−1 − 𝑛, 𝑛.+𝑈̃! − 𝑛), if 𝐸𝐿 = 2.

(10.26)

Under this notation, (10.22)–(10.23) together with Proposition 9.4 or Proposition 9.7, depending on
whether the adunction is binary or ternary, yield the estimate

∫
B(!

(
𝐾∞
&+:̃!−1

(𝐸+! )
) |𝜇𝑈! (ω𝑈! ,𝐿 , v𝑈! ,𝐿 , 𝑛) | 𝑟ω𝑈! ,𝐿v𝑈! ,𝐿 ≤ >𝛽 (ℎ + 𝐸̃𝐿−1)H𝛽𝑈!+1_

"−1
2":!+2

≤ >𝛽 (ℎ + 2𝜈)H3𝛽_
"−1
4"+2 , ∀𝑛 ∈ 𝜉𝛽;,

(10.27)

since H >> 1 and _ << 1.
Moreover, we have the elementary inequalities

‖ 𝑦 (.+𝑈̃% )
𝑙 ,0 ‖E∞ ≤ S−(.+𝑈̃% )B0 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 ≤ S−(.+𝜆)B0 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 , (10.28)

∫
C%,3 (𝐸)

𝑟𝑤1... 𝑟𝑤𝜆 ≤
∫ 𝐸

0

∫ 𝐸1

0
...

∫ 𝐸%−1

0
𝑟𝑤1... 𝑟𝑤𝜆 =

𝑤𝜆

𝜈! ≤ 𝜁 𝜆

𝜈! . (10.29)

Therefore, (10.24)–(10.29) imply
>>J̃𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.) − b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.)

>>
≤ ‖O. ‖E∞

0&
S−(.+𝜆)B0 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0>𝛽H

𝛽.>𝜆−1
𝛽 H3𝛽 (𝜆−1) (ℎ + 2𝜈)>𝛽H3𝛽_

"−1
4"+2

𝜁 𝜆

𝜈!

≤ >𝜆𝛽,.,B0 ,C
‖O. ‖E∞

0&

(ℎ + 2𝜈)
𝜈! H𝛽 (.+3𝜆)_

"−1
4"+2 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 .

Adding for all (b,Z) ∈ U.,𝜆 ,𝑈 , we have 2𝜆 ℎ(ℎ+ 𝐸̃1)...(ℎ+ 𝐸̃𝜆−1) ≤ 2𝜆 (ℎ+2𝜈)𝜆 contributions, and thus,
∑

(S ,J )∈U&,%,:

‖ J̃𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& ( 𝛿0))

≤ >𝜆𝛽,.,B0 ,C
‖O. ‖E∞

0&
H𝛽 (.+3𝜆) (ℎ + 2𝜈)𝜆+1

𝜈! _
"−1
4"+2 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0

≤ >𝜆𝛽,.,B0 ,C
‖O. ‖E∞

0&
H𝛽 (.+3𝜆)_

"−1
4"+2 ‖𝐾𝑙 ,0‖𝑙 ,@0 ,B0 ,
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since

(ℎ + 2𝜈)𝜆+1

𝜈! ≤ 2𝜆+1 (ℎ + 𝜈) (ℎ + 𝜈)𝜆
𝜈! ≤ 2𝜆+1(ℎ + 𝜈)S.+𝜆 ≤ >𝜆. .

Summing over 𝐸 ∈ 𝐺𝜆 , 𝜈 = 1, ..., 𝑢, we get the required estimate. "

In the next section, in order to conclude the convergence proof, we will estimate the differences of
the corresponding BBGKY hierarchy and Boltzmann hierarchy truncated elementary observables in the
scaled limit.

11. Convergence proof
Recall from Subsection 10.4 that given ℎ ∈ N, 𝑤 ∈ [0,𝜁], and parameters satisfying (9.4), we have
reduced the convergence proof to controlling the differences:

b𝑙.,𝜆 ,;,H (𝑤, b,Z) − b∞.,𝜆 ,;,H (𝑤, b,Z)

for given 1 ≤ 𝜈 ≤ 𝑢 and (b,Z) ∈ U.,𝜆 , where b𝑙.,𝜆 ,;,H (𝑤, b,Z), b∞.,𝜆 ,;,H (𝑤, b,Z) are given by (10.19),
(10.20). This will be the aim of this section.

Throughout this section, ℎ ∈ N, O. ∈ >8 (R𝛽.) will be fixed, (𝑈 , 𝛿2, 𝛿3) are in the scaling (4.24),
R0 > 0, T0 ∈ R,𝜁 > 0 are given by the statements of Theorem 5.7 and Theorem 5.14, and the parameters
𝑢, I, H, _, 𝛿0, \ satisfy (9.4).

11.1. BBGKY hierarchy pseudo-trajectories and proximity to the Boltzmann hierarchy
pseudo-trajectories

In the same spirit as in Subsection 10.3, we may define the BBGKY hierarchy pseudo-trajectory.
Consider ℎ ∈ N, (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24), 𝜈 ∈ N and 𝑤 ∈ [0,𝜁]. Let us recall from (7.2) the set

T𝜆 (𝑤) =
{
(𝑤1, ..., 𝑤𝜆 ) ∈ R𝜆 : 0 = 𝑤𝜆+1 < 𝑤𝜆 < ... < 𝑤1 < 𝑤0 = 𝑤

}
,

where we use the convention 𝑤0 = 𝑤 and 𝑤𝜆+1 = 0. Consider (𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 (𝑤), 𝐸 ∈ 𝐺𝜆 , b = ( ,1, ..., ,𝜆 ),
Z = (𝑅1, ...,𝑅𝜆 ), (b,Z) ∈ U.,𝜆 ,𝑈 , and for each 𝐼 = 1, ..., 𝜈 , we consider (ω𝑈! ,𝐿 , v𝑈! ,𝐿) ∈ S𝛽𝑈!−1

1 ×𝜉𝛽𝑈!
; .

The process followed is similar to the construction of the Boltzmann hierarchy pseudo-trajectory.
The only difference is that we take into account the diameter 𝛿2 or the interaction zone 𝛿3 of the adjusted
particles in each step.

More precisely, we inductively construct the BBGKY hierarchy pseudo-trajectory of 𝑝. = (𝐴. ,𝛽.) ∈
R2𝛽. as follows:

Time 𝑤0 = 𝑤: We initially define 𝑝𝑙. (𝑤−0 ) =
(
𝐵𝑙1 (𝑤−0 ), ..., 𝐵𝑙. (𝑤−0 ), 𝑛𝑙1 (𝑤−0 ), ..., 𝑛𝑙. (𝑤−0 )

)
:= 𝑝. .

Time 𝑤𝐿 , 𝐼 ∈ {1, ..., 𝜈}: Consider 𝐼 ∈ {1, ..., 𝜈} and assume we know

𝑝𝑙.+𝑈̃!−1
(𝑤−𝐿−1) =

(
𝐵𝑙1 (𝑤−𝐿−1), ..., 𝐵𝑙.+𝑈̃!−1

(𝑤−𝐿−1), 𝑛𝑙1 (𝑤−𝐿−1), ..., 𝑛𝑙.+𝑈̃!−1
(𝑤−𝐿−1)

)
.

We define 𝑝𝑙
.+𝑈̃!−1

(𝑤+𝐿 ) =
(
𝐵𝑙1 (𝑤+𝐿 ), ..., 𝐵𝑙.+𝑈̃!−1

(𝑤+𝐿 ), 𝑛𝑙1 (𝑤+𝐿 ), ..., 𝑛𝑙.+𝑈̃!−1
(𝑤+𝐿 )

)
as

𝑝𝑙.+𝑈̃!−1
(𝑤+𝐿 ) :=

(
𝐴𝑙.+𝑈̃!−1

(
𝑤−𝐿−1

)
− (𝑤𝐿−1 − 𝑤𝐿)𝛽𝑙.+𝑈̃!−1

(
𝑤−𝐿−1

)
,𝛽𝑙.+𝑈̃!−1

(
𝑤−𝐿−1

) )
.

We also define 𝑝𝑙
.+𝑈̃!

(𝑤−𝐿 ) =
(
𝐵𝑙1 (𝑤−𝐿 ), ..., 𝐵𝑙.+𝑈̃!

(𝑤−𝐿 ), 𝑛𝑙1 (𝑤−𝐿 ), ..., 𝑛𝑙.+𝑈̃!
(𝑤−𝐿 )

)
as

(
𝐵𝑙𝜙 (𝑤−𝐿 ), 𝑛𝑙𝜙 (𝑤−𝐿 )

)
:= (𝐵𝑙𝜙 (𝑤+𝐿 ), 𝑛𝑙𝜙 (𝑤+𝐿 )) ∀ , ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
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For the rest of the particles, we distiguish the following cases, depending on 𝐸𝐿:

◦ 𝐸𝐿 = 1: If ,𝐿 = −1:
(
𝐵𝑙𝑇!

(𝑤−𝐿 ), 𝑛𝑙𝑇!
(𝑤−𝐿 )

)
:=

(
𝐵𝑙𝑇!

(𝑤+𝐿 ), 𝑛𝑙𝑇!
(𝑤+𝐿 )

)
,(

𝐵𝑙.+𝑈̃!
(𝑤−𝐿 ), 𝑛𝑙.+𝑈̃!

(𝑤−𝐿 )
)

:=
(
𝐵𝑙𝑇!

(𝑤+𝐿 ) − 𝛿2𝐿.+𝑈̃! , 𝑛.+𝑈̃!

)
,

while if ,𝐿 = 1:
(
𝐵𝑙𝑇!

(𝑤−𝐿 ), 𝑛𝑙𝑇!
(𝑤−𝐿 )

)
:=

(
𝐵𝑙𝑇!

(𝑤+𝐿 ), 𝑛𝑙
′

𝑇!
(𝑤+𝐿 )

)
,(

𝐵𝑙.+𝑈̃!
(𝑤−𝐿 ), 𝑛𝑙.+𝑈̃!

(𝑤−𝐿 )
)

:=
(
𝐵𝑙𝑇!

(𝑤+𝐿 ) + 𝛿2𝐿.+𝑈̃! , 𝑛
′
.+𝑈̃!

)
,

where (𝑛𝑙 ′
𝑇!

(𝑤−𝐿 ), 𝑛′.+𝑈̃!
) = 𝜁𝐶&+:̃!

(
𝑛𝑙𝑇!

(𝑤+𝐿 ), 𝑛.+𝑈̃!

)
.

◦ 𝐸𝐿 = 2: If ,𝐿 = −1:
(
𝐵𝑙𝑇!

(𝑤−𝐿 ), 𝑛𝑙𝑇!
(𝑤−𝐿 )

)
:=

(
𝐵𝑙𝑇!

(𝑤+𝐿 ), 𝑛𝑙𝑇!
(𝑤+𝐿 )

)
,(

𝐵𝑙.+𝑈̃!−1 (𝑤
−
𝐿 ), 𝑛𝑙.+𝑈̃!−1 (𝑤

−
𝐿 )

)
:=

(
𝐵𝑙𝑇!

(𝑤+𝐿 ) −
)

2𝛿3𝐿.+𝑈̃!−1, 𝑛.+𝑈̃!−1

)
,(

𝐵𝑙.+𝑈̃!
(𝑤−𝐿 ), 𝑛𝑙.+𝑈̃!

(𝑤−𝐿 )
)

:=
(
𝐵𝑙𝑇!

(𝑤+𝐿 ) −
)

2𝛿3𝐿.+𝑈̃! , 𝑛.+𝑈̃!

)
,

while if ,𝐿 = 1:
(
𝐵𝑙𝑇!

(𝑤−𝐿 ), 𝑛𝑙𝑇!
(𝑤−𝐿 )

)
:=

(
𝐵𝑙𝑇!

(𝑤+𝐿 ), 𝑛𝑙 ∗
𝑇!

(𝑤+𝐿 )
)
,(

𝐵𝑙.+𝑈̃!−1(𝑤
−
𝐿 ), 𝑛𝑙.+𝑈̃!−1(𝑤

−
𝐿 )

)
:=

(
𝐵𝑙𝑇!

(𝑤+𝐿 ) +
)

2𝛿3𝐿.+𝑈̃!−1, 𝑛
∗
.+𝑈̃!−1

)
,(

𝐵𝑙.+𝑈̃!
(𝑤−𝐿 ), 𝑛𝑙.+𝑈̃!

(𝑤−𝐿 )
)

:=
(
𝐵𝑙𝑇!

(𝑤+𝐿 ) +
)

2𝛿3𝐿.+𝑈̃! , 𝑛
∗
.+𝑈̃!

)
,

where (𝑛𝑙 ∗
𝑇!

(𝑤−𝐿 ), 𝑛∗.+𝑈̃!−1, 𝑛
∗
.+𝑈̃!

) = 𝜁𝐶&+:̃!−1 ,𝐶&+:̃!

(
𝑛𝑙𝑇!

(𝑤+𝐿 ), 𝑛.+𝑈̃!−1, 𝑛.+𝑈̃!

)
.

Time 𝑤𝜆+1 = 0: We finally obtain

𝑝𝑙.+𝑈̃%
(0+) = 𝑝𝑙.+𝑈̃%

(𝑤+𝜆+1) =
(
𝐴𝑙.+𝑈̃%

(
𝑤−𝜆

)
− 𝑤𝜆𝛽𝑙.+𝑈̃%

(
𝑤−𝜆

)
,𝛽𝑙.+𝑈̃%

(
𝑤−𝜆

) )
.

We give the following definition:

Definition 11.1. Let ℎ ∈ N, 𝑝. = (𝐴. ,𝛽.) ∈ R2𝛽. , (𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 (𝑤), b = ( ,1, ..., ,𝜆 ), Z =
(𝑅1, ...,𝑅𝜆 ), (b,Z) ∈ U.,𝜆 , and for each 𝐼 = 1, ..., 𝜈 , 𝐸 ∈ 𝐺𝜆 , we consider (ω𝑈! ,𝐿 , v𝑈! ,𝐿) ∈
S𝛽𝑈!−1

1 × 𝜉𝛽𝑈!
; . The sequence {𝑝𝑙

.+𝑈̃!−1
(𝑤+𝐿 )}𝐿=0,...,𝜆+1 constructed above is called the BBGKY hierarchy

pseudo-trajectory of 𝑝. .

We now state the following elementary proximity result of the corresponding BBGKY hierarchy and
Boltzmann hierarchy pseudo-trajectories.

Lemma 11.2. Let ℎ ∈ N, 𝑝. = (𝐴. ,𝛽.) ∈ R2𝛽. , 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 , (b,Z) ∈ U.,𝜆 ,𝑈 , 𝑤 ∈ [0,𝜁]
and (𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 (𝑤). For each 𝐼 = 1, ..., 𝜈 , consider (ω𝑈! ,𝐿 , v𝑈! ,𝐿) ∈ S𝛽𝑈!−1

1 × R𝛽𝑈! . Then for all
𝐼 = 1, ..., 𝜈 and 𝛼 = 1, ..., ℎ + 𝐸̃𝐿−1, we have

|𝐵𝑙𝜃 (𝑤+𝐿 ) − 𝐵∞𝜃 (𝑤+𝐿 ) | ≤
)

2𝛿3(𝐼 − 1), 𝑛𝑙𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿 ). (11.1)
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Moreover, if ℎ < 𝑢, then for each 𝐼 ∈ {1, ..., 𝜈}, there holds
>>>𝐴𝑙.+𝑈̃!−1

(𝑤+𝐿 ) − 𝐴∞
.+𝑈̃!−1

(𝑤+𝐿 )
>>> ≤ 𝑢3/2𝛿3. (11.2)

Proof. We first prove (11.1) by induction on 𝐼 ∈ {1, ..., 𝜈}. For 𝐼 = 1, the result is trivial since the pseudo-
trajectories initially coincide by construction. Assume the conclusion holds for 𝐼 ∈ {1, ..., 𝜈 − 1}; that
is, for all 𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1}, there holds

|𝐵𝑙𝜃 (𝑤+𝐿 ) − 𝐵∞𝜃 (𝑤+𝐿 ) | ≤
)

2𝛿3(𝐼 − 1) and 𝑛𝑙𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿 ). (11.3)

We prove the conclusion holds for (𝐼 + 1) ∈ {2, ..., 𝜈}. We need to take different cases for ,𝐿 ∈ {−1, 1}
and 𝐸𝐿 ∈ {1, 2}.

◦ 𝐸𝐿 = 1, ,𝐿 = −1: For the Boltzmann pseudo-trajectory, we get

𝐵∞𝜃 (𝑤+𝐿+1) = 𝐵∞𝜃 (𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∞𝜃 (𝑤+𝐿 ), 𝑛∞𝜃 (𝑤+𝐿+1) = 𝑛∞𝜃 (𝑤+𝐿 ), ∀𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
𝐵∞𝑇!

(𝑤+𝐿+1) = 𝐵∞𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∞𝜃 (𝑤+𝐿 ), 𝑛∞𝑇!

(𝑤+𝐿+1) = 𝑛∞𝑇!
(𝑤+𝐿 ),

𝐵∞.+𝑈̃!
(𝑤+𝐿+1) = 𝐵∞𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛.+𝑈̃! , 𝑛∞.+𝑈̃!
(𝑤+𝐿+1) = 𝑛.+𝑈̃! ,

while for the BBGKY hierarchy pseudo-trajectory, we get

𝐵𝑙𝜃 (𝑤+𝐿+1) = 𝐵𝑙𝜃 (𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛𝑙𝜃 (𝑤+𝐿 ), 𝑛𝑙𝜃 (𝑤+𝐿+1) = 𝑛𝑙𝜃 (𝑤−𝐿 ), ∀𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
𝐵𝑙𝑇!

(𝑤+𝐿+1) = 𝐵𝑙𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛𝑙𝑇!

(𝑤+𝐿 ), 𝑛𝑙𝑇!
(𝑤+𝐿+1) = 𝑛𝑙𝑇!

(𝑤−𝐿 ),
𝐵𝑙.+𝑈̃!

(𝑤+𝐿+1) = 𝐵𝑙𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛.+𝑈̃! − 𝛿2𝐿.+𝑈̃! , 𝑛𝑙.+𝑈̃!

(𝑤+𝐿+1) = 𝑛.+𝑈̃! .

So, for any 𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1}, the induction assumption (11.3) implies

𝑛𝑙𝜃 (𝑤+𝐿+1) = 𝑛𝑙𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿+1),
|𝐵𝑙𝜃 (𝑤+𝐿+1) − 𝐵∞𝜃 (𝑤+𝐿+1) | = |𝐵𝑙𝜃 (𝑤+𝐿 ) − 𝐵∞𝜃 (𝑤+𝐿 ) | ≤

)
2𝛿3 (𝐼 − 1).

Moreover, since 𝛿2 << 𝛿3, for 𝛼 = ℎ + 𝐸̃𝐿 , we get

𝑛𝑙.+𝑈̃!
(𝑤+𝐿+1) = 𝑛.+𝑈̃! = 𝑛

∞
.+𝑈̃!

(𝑤+𝐿+1),

|𝐵𝑙.+𝑈̃!
(𝑤+𝐿+1) − 𝐵∞.+𝑈̃!

(𝑤+𝐿+1) | ≤ |𝐵𝑙𝑇!
(𝑤+𝐿 ) − 𝐵∞𝑇!

(𝑤+𝐿 ) | + 𝛿2 |𝐿.+𝑈̃! | ≤
)

2𝛿3 (𝐼 − 1) + 𝛿2 <
)

2𝛿3𝐼.

◦ 𝐸𝐿 = 1, ,𝐿 = 1: For the Boltzmann hierarchy pseudo-trajectory, we get

𝐵∞𝜃 (𝑤+𝐿+1) = 𝐵∞𝜃 (𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∞𝜃 (𝑤+𝐿 ), 𝑛∞𝜃 (𝑤+𝐿+1) = 𝑛∞𝜃 (𝑤+𝐿 ), ∀𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
𝐵∞𝑇!

(𝑤+𝐿+1) = 𝐵∞𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∞

′
𝑇!
(𝑤+𝐿 ), 𝑛∞𝑇!

(𝑤+𝐿+1) = 𝑛∞
′

𝑇!
(𝑤+𝐿 ),

𝐵∞.+𝑈̃!
(𝑤+𝐿+1) = 𝐵∞𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛′.+𝑈̃!
, 𝑛∞.+𝑈̃!

(𝑤+𝐿+1) = 𝑛′.+𝑈̃!
.

and for the BBGKY hierarchy pseudo-trajectory, we obtain

𝐵𝑙𝜃 (𝑤+𝐿+1) = 𝐵𝑙𝜃 (𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛𝑙𝜃 (𝑤+𝐿 ), 𝑛𝑙𝜃 (𝑤+𝐿+1) = 𝑛𝑙𝜃 (𝑤+𝐿 ), ∀𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
𝐵𝑙𝑇!

(𝑤+𝐿+1) = 𝐵𝑙𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛𝑙

′
𝑇!

(𝑤+𝐿 ), 𝑛𝑙𝑇!
(𝑤+𝐿+1) = 𝑛𝑙

′
𝑇!

(𝑤+𝐿 ),
𝐵𝑙.+𝑈̃!

(𝑤+𝐿+1) = 𝐵𝑙𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛′.+𝑈̃!

+ 𝛿2𝐿.+𝑈̃! , 𝑛𝑙.+𝑈̃!
(𝑤+𝐿+1) = 𝑛′.+𝑈̃!

.
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For 𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿}, the induction assumption (11.3) yields

𝑛𝑙𝜃 (𝑤+𝐿+1) = 𝑛𝑙𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿+1),
|𝐵𝑙𝜃 (𝑤+𝐿+1) − 𝐵∞𝜃 (𝑤+𝐿+1) | = |𝐵𝑙𝜃 (𝑤+𝐿 ) − 𝐵∞𝜃 (𝑤+𝐿 ) | ≤

)
2𝛿3 (𝐼 − 1),

and for 𝛼 = 𝑅𝐿 , it yields

𝑛𝑙𝑇!
(𝑤+𝐿+1) = 𝑛𝑙

′
𝑇!

(𝑤+𝐿 ) = 𝑛∞
′

𝑇!
(𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿+1),

|𝐵𝑙𝑇!
(𝑤+𝐿+1) − 𝐵∞𝑇!

(𝑤+𝐿+1) | = |𝐵𝑙𝑇!
(𝑤+𝐿 ) − 𝐵∞𝑇!

(𝑤+𝐿 ) | ≤
)

2𝛿3 (𝐼 − 1).

Moreover, since 𝛿2 << 𝛿3, for 𝛼 = ℎ + 𝐸̃𝐿 , we obtain

𝑛𝑙.+𝑈̃!
(𝑤+𝐿+1) = 𝑛′.+𝑈̃!

= 𝑛∞.+𝑈̃!
(𝑤+𝐿+1),

|𝐵𝑙.+𝑈̃!
(𝑤+𝐿+1) − 𝐵∞.+𝑈̃!

(𝑤+𝐿+1) | ≤ |𝐵𝑙𝑇!
(𝑤+𝐿 ) − 𝐵∞𝑇!

(𝑤+𝐿 ) | + 𝛿2 |𝐿.+𝑈̃! | ≤
)

2𝛿3 (𝐼 − 1) + 𝛿2 <
)

2𝛿3𝐼.

◦ 𝐸𝐿 = 2, ,𝐿 = −1: For the Boltzmann hierarchy pseudo-trajectory, we get

𝐵∞𝜃 (𝑤+𝐿+1) = 𝐵∞𝜃 (𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∞𝜃 (𝑤+𝐿 ), 𝑛∞𝜃 (𝑤+𝐿+1) = 𝑛∞𝜃 (𝑤+𝐿 ), ∀𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
𝐵∞𝑇!

(𝑤+𝐿+1) = 𝐵∞𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∞𝑇!

(𝑤+𝐿 ), 𝑛∞𝑇!
(𝑤+𝐿+1) = 𝑛∞𝑇!

(𝑤+𝐿 ),
𝐵∞.+𝑈̃!−1(𝑤

+
𝐿+1) = 𝐵∞𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛 𝑈̃!−1, 𝑛∞𝜃 (𝑤+𝐿+1) = 𝑛.+𝑈̃!−1,

𝐵∞.+𝑈̃!
(𝑤+𝐿+1) = 𝐵∞𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛.+𝑈̃! , 𝑛∞.+𝑈̃!
(𝑤+𝐿+1) = 𝑛.+𝑈̃! ,

while for the BBGKY hierarchy pseudo-trajectory, we get

𝐵𝑙𝜃 (𝑤+𝐿+1) = 𝐵𝑙𝜃 (𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛𝑙𝜃 (𝑤+𝐿 ), 𝑛𝑙𝜃 (𝑤+𝐿+1) = 𝑛𝑙𝜃 (𝑤−𝐿 ), ∀𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
𝐵𝑙𝑇!

(𝑤+𝐿+1) = 𝐵𝑙𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛𝑙𝑇!

(𝑤+𝐿 ), 𝑛𝑙𝑇!
(𝑤+𝐿+1) = 𝑛𝑙𝑇!

(𝑤−𝐿 ),
𝐵𝑙.+𝑈̃!−1(𝑤

+
𝐿+1) = 𝐵𝑙𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛.+𝑈̃!−1 −
)

2𝛿3𝐿.+𝑈̃!−1, 𝑛𝑙.+𝑈̃!−1(𝑤
+
𝐿+1) = 𝑛.+𝑈̃!−1,

𝐵𝑙.+𝑈̃!
(𝑤+𝐿+1) = 𝐵𝑙𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛.+𝑈̃! −
)

2𝛿3𝐿.+𝑈̃! , 𝑛𝑙.+𝑈̃!
(𝑤+𝐿+1) = 𝑛.+𝑈̃! .

So, for any 𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1}, the induction assumption (11.3) implies

𝑛𝑙𝜃 (𝑤+𝐿+1) = 𝑛𝑙𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿+1),
|𝐵𝑙𝜃 (𝑤+𝐿+1) − 𝐵∞𝜃 (𝑤+𝐿+1) | = |𝐵𝑙𝜃 (𝑤+𝐿 ) − 𝐵∞𝜃 (𝑤+𝐿 ) | ≤

)
2𝛿3 (𝐼 − 1),

Moreover, for 𝛼 = ℎ + 𝐸̃𝐿 − 1, we get

𝑛𝑙.+𝑈̃!−1(𝑤
+
𝐿+1) = 𝑛.+𝑈̃!−1 = 𝑛∞.+𝑈̃!−1(𝑤

+
𝐿+1),

|𝐵𝑙.+𝑈̃!−1(𝑤
+
𝐿+1) − 𝐵∞.+𝑈̃!−1(𝑤

+
𝐿+1) | ≤ |𝐵𝑙𝑇!

(𝑤+𝐿 ) − 𝐵∞𝑇!
(𝑤+𝐿 ) | +

)
2𝛿3 |𝐿.+𝑈̃!−1 | ≤

)
2𝛿3 (𝐼 − 1) +

)
2𝛿3 =

)
2𝛿3𝐼.

and for 𝛼 = ℎ + 𝐸̃𝐿 , we get

𝑛𝑙.+𝑈̃!
(𝑤+𝐿+1) = 𝑛.+𝑈̃! = 𝑛

∞
.+𝑈̃!

(𝑤+𝐿+1),

|𝐵𝑙.+𝑈̃!
(𝑤+𝐿+1) − 𝐵∞.+𝑈̃!

(𝑤+𝐿+1) | ≤ |𝐵𝑙𝑇!
(𝑤+𝐿 ) − 𝐵∞𝑇!

(𝑤+𝐿 ) | +
)

2𝛿3 |𝐿.+𝑈̃! | ≤
)

2𝛿3 (𝐼 − 1) +
)

2𝛿3 =
)

2𝛿3𝐼.
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◦ 𝐸𝐿 = 2, ,𝐿 = 1 : For the Boltzmann hierarchy pseudo-trajectory, we get

𝐵∞𝜃 (𝑤+𝐿+1) = 𝐵∞𝜃 (𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∞𝜃 (𝑤+𝐿 ), 𝑛∞𝜃 (𝑤+𝐿+1) = 𝑛∞𝜃 (𝑤+𝐿 ), ∀𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
𝐵∞𝑇!

(𝑤+𝐿+1) = 𝐵∞𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∞∗

𝑇!
(𝑤+𝐿 ), 𝑛∞𝑇!

(𝑤+𝐿+1) = 𝑛∞∗
𝑇!

(𝑤+𝐿 ),
𝐵∞.+𝑈̃!−1(𝑤

+
𝐿+1) = 𝐵∞𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∗.+𝑈̃!−1,

𝑛∞.+𝑈̃!−1 (𝑤
+
𝐿+1) = 𝑛∗.+𝑈̃!−1,

𝐵∞.+𝑈̃!
(𝑤+𝐿+1) = 𝐵∞𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∗.+𝑈̃!
, 𝑛∞.+𝑈̃!

(𝑤+𝐿+1) = 𝑛∗.+𝑈̃!
,

and for the BBGKY hierarchy pseudo-trajectory, we obtain

𝐵𝑙𝜃 (𝑤+𝐿+1) = 𝐵𝑙𝜃 (𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛𝑙𝜃 (𝑤+𝐿 ), 𝑛𝑙𝜃 (𝑤+𝐿+1) = 𝑛𝑙𝜃 (𝑤+𝐿 ), ∀𝛼 ∈ {1, ..., ℎ + 𝐸̃𝐿−1} \ {𝑅𝐿},
𝐵𝑙𝑇!

(𝑤+𝐿+1) = 𝐵𝑙𝑇!
(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛𝑙 ∗

𝑇!
(𝑤+𝐿 ), 𝑛𝑙𝑇!

(𝑤+𝐿+1) = 𝑛𝑙 ∗
𝑇!

(𝑤+𝐿 ),
𝐵𝑙.+𝑈̃!−1(𝑤

+
𝐿+1) = 𝐵𝑙𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∗.+𝑈̃!−1 +
)

2𝛿3𝐿.+𝑈̃!−1,

𝑛𝑙.+𝑈̃!−1(𝑤
+
𝐿+1) = 𝑛∗.+𝑈̃!−1,

𝐵𝑙.+𝑈̃!
(𝑤+𝐿+1) = 𝐵𝑙𝑇!

(𝑤+𝐿 ) − (𝑤𝐿 − 𝑤𝐿+1)𝑛∗.+𝑈̃!
+
)

2𝛿3𝐿.+𝑈̃! ,

𝑛∞.+𝑈̃!
(𝑤+𝐿+1) = 𝑛∗.+𝑈̃!

.

For 𝛼 ∈ {1, ..., 𝐸̃𝐿−1} \ {𝑅𝐿}, the induction assumption (11.3) yields

𝑛𝑙𝜃 (𝑤+𝐿+1) = 𝑛𝑙𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿+1),
|𝐵𝑙𝜃 (𝑤+𝐿+1) − 𝐵∞𝜃 (𝑤+𝐿+1) | = |𝐵𝑙𝜃 (𝑤+𝐿 ) − 𝐵∞𝜃 (𝑤+𝐿 ) | ≤

)
2𝛿3 (𝐼 − 1).

Thus, for 𝛼 = 𝑅𝐿 ,

𝑛𝑙𝑇!
(𝑤+𝐿+1) = 𝑛𝑙 ∗

𝑇!
(𝑤+𝐿 ) = 𝑛∞∗

𝑇!
(𝑤+𝐿 ) = 𝑛∞𝜃 (𝑤+𝐿+1),

|𝐵𝑙𝑇!
(𝑤+𝐿+1) − 𝐵∞𝑇!

(𝑤+𝐿+1) | = |𝐵𝑙𝑇!
(𝑤+𝐿 ) − 𝐵∞𝑇!

(𝑤+𝐿 ) | ≤
)

2𝛿3 (𝐼 − 1),

for 𝛼 = ℎ + 𝐸̃𝐿 − 1,

𝑛𝑙.+𝑈̃!−1(𝑤
+
𝐿+1) = 𝑛∗.+𝑈̃!−1 = 𝑛∞.+𝑈̃!−1(𝑤

+
𝐿+1),

|𝐵𝑙.+𝑈̃!−1(𝑤
+
𝐿+1) − 𝐵∞.+𝑈̃!−1(𝑤

+
𝐿+1) | ≤ |𝐵𝑙𝑇!

(𝑤+𝐿 ) − 𝐵∞𝑇!
(𝑤+𝐿 ) | +

)
2𝛿3 |𝐿.+𝑈̃!−1 | ≤

)
2𝛿3 (𝐼 − 1) +

)
2𝛿3 =

)
2𝛿3𝐼,

and for 𝛼 = ℎ + 𝐸̃𝐿 ,

𝑛𝑙.+𝑈̃!
(𝑤+𝐿+1) = 𝑛∗.+𝑈̃!

= 𝑛∞.+𝑈̃!
(𝑤+𝐿+1),

|𝐵𝑙.+𝑈̃!
(𝑤+𝐿+1) − 𝐵∞𝑇!

(𝑤+𝐿+1) | ≤ |𝐵𝑙𝑇!
(𝑤+𝐿 ) − 𝐵∞.+𝑈̃!

(𝑤+𝐿 ) | +
)

2𝛿3 |𝐿.+𝑈̃! | ≤
)

2𝛿3 (𝐼 − 1) +
)

2𝛿3 =
)

2𝛿3𝐼.

Combining all cases, (11.1) is proved by induction.
To prove (11.2), it suffices to add for 𝛼 = 1, ..., ℎ + 𝐸̃𝐿−1, and use the facts 1 ≤ 𝐼 ≤ 𝜈 − 1, 𝐸̃𝐿−1 < 𝐸̃𝐿 ≤

𝐸̃𝜆−1 < 2𝜈 ≤ 2𝑢, from (7.6), and the assumption ℎ < 𝑢. "

11.2. Reformulation in terms of pseudo-trajectories
We will now re-write the BBGKY hierarchy and Boltzmann hierarchy truncated elementary observables
in terms of pseudo-trajectories.

Let ℎ ∈ N and assume ℎ < 𝑢. For the Boltzmann hierarchy case, there is always free flow between
the collision times. Therefore, recalling (10.20) and (10.26), for 𝐴. ∈ Δ𝑀. (𝛿0), 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 ,
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(b,Z) ∈ U.,𝜆 ,𝑈 , 𝑤 ∈ [0,𝜁] and (𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 ,H (𝑤), the Boltzmann hierarchy truncated elementary
observable can be equivalently written as

b∞.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.) =
∫

M+
& (𝑀&)

O. (𝛽.)
∫

T%,3 (𝐸)

∫
B+
(1 (𝐾∞

& (𝐸+1 ))
...

∫
B+
(%

(
𝐾∞
&+:̃%−1

(𝐸+% )
)

×
𝜆∏
𝐿=1

𝜇+𝑈!

(
ω𝑈! ,𝐿 , v𝑈! ,𝐿 , 𝑛

∞
𝑇!

(
𝑤+𝐿

) )
𝑦 (.+𝑈̃% )
0

(
𝑝∞
.+𝑈̃%

(
0+

) ) 𝜆∏
𝐿=1

(
𝑟ω𝑈! ,𝐿 𝑟v𝑈! ,𝐿

)
𝑟𝑤𝜆 ... 𝑟𝑤1 𝑟𝛽. .

(11.4)

Now we shall see that due to Lemma 11.2, it is possible to make a similar expansion for the BBGKY
hierarchy truncated elementary observables as well.

More precisely, fix 𝐴. ∈ Δ𝑀. (𝛿0), 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 , (b,Z) ∈ U.,𝜆 ,𝑈 , 𝑤 ∈ [0,𝜁] and
(𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 ,H (𝑤). Consider (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24) such that 𝛿2 << _2𝛿3 and 𝑢3/2𝛿3 << \. By
Lemma 10.1, given𝛽. ∈ M8

. (𝐴.), we have 𝑝. ∈ U. (𝛿3, 𝛿0, I). By the definition of the setU. (𝛿3, 𝛿0, I),
see (10.1), and the fact that 𝛿2 << 𝛿3, we have

𝑝. ∈ U. (𝛿3, 𝛿0, I) ⇒ 𝑝. (𝑞) ∈ D̊.,𝛿2 ,𝛿3 , ∀𝑞 ≥ 0,

and thus,

Ψ𝛼−𝐸0. 𝑝𝑙.
(
𝑤−0

)
= Φ𝛼−𝐸0

. 𝑝𝑙.
(
𝑤−0

)
, ∀𝑞 ∈ [𝑤1, 𝑤0], (11.5)

where Ψ. , given in (3.56), denotes the s-particle (𝛿2, 𝛿3)-interaction zone flow and Φ., given in (3.57),
denotes the s-particle free flow respectively. We also have

𝑝. = (𝐴. ,𝛽.) ∈ U. (𝛿3, 𝛿0, I) ⇒ 𝑝∞
. (𝑤+1 ) ∈ U. (𝛿0, 0).

For all 𝐼 ∈ {1, ..., 𝜈}, inductive application of Proposition 9.2 or Proposition 9.6, depending on whether
the adjunction is binary or ternary, implies that

𝑝∞
.+𝑈̃!

(𝑤+𝐿+1) ∈ U.+𝑈̃! (𝛿0, 0), ∀(ω𝑈! ,𝐿 , v𝑈! ,𝐿) ∈ B8𝑇!
(𝑝∞
.+𝑈̃!−1

(𝑤+𝐿 )). (11.6)

Since we have assumed 𝑢3/2𝛿3 << \ and ℎ < 𝑢, (11.2) from Lemma 11.2 implies

>>>𝐴𝑙.+𝑈̃!−1
(𝑤+𝐿 ) − 𝐴∞

.+𝑈̃!−1
(𝑤+𝐿 )

>>> ≤ \

2 , ∀𝐼 = 1, ..., 𝜈 . (11.7)

Then, (9.6), (9.10) from Proposition 9.2, or (9.59), (9.63) from Proposition 9.6, depending on whether
the adjunction is binary or ternary, yield that for any 𝐼 = 1, ..., 𝜈 , we have

Ψ𝛼−𝐸!
.+𝑈̃!

𝑝𝑙.+𝑈̃!

(
𝑤−𝐿

)
= Φ𝛼−𝐸!

.+𝑈̃!
𝑝𝑙.+𝑈̃!

(
𝑤−𝐿

)
, ∀𝑞 ∈ [𝑤𝐿+1, 𝑤𝐿],

where Ψ.+𝑈̃! and Φ.+𝑈̃! denote the (ℎ + 𝐸̃𝐿)-particle (𝛿2, 𝛿3)-flow and the (ℎ + 𝐸̃𝐿)-particle free flow,
given in (3.56) and (3.57), respectively. In other words, the backwards (𝛿2, 𝛿3)-flow coincides with the
free flow in [𝑤𝐿+1, 𝑤𝐿]. Finally, Lemma 11.2 also implies that

𝑛𝑙𝑇!
(𝑤+𝐿 ) = 𝑛∞𝑇!

(𝑤+𝐿 ), ∀𝐼 = 1, ..., 𝜈 .
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Therefore, for 𝐴. ∈ Δ𝑀. (𝛿0), and (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24) with 𝑢𝛿3/2
3 << \ and 𝛿2 << _2𝛿3, the

BBGKY hierarchy truncated elementary observable can be equivalently written as

b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.) = A',#
$ ,(2 ,(3

∫
M+

& (𝑀&)
O. (𝛽.)

∫
T%,3 (𝐸)

∫
B+
(1 (𝐾∞

& (𝐸+1 ))
...

∫
B+
(%

(
𝐾∞
&+:̃%−1

(𝐸+% )
)

×
𝜆∏
𝐿=1

𝜇+𝑈!

(
ω𝑈! ,𝐿 , v𝑈! ,𝐿 , 𝑛

∞
𝑇!

(
𝑤+𝐿

) )
𝑦 (.+𝑈̃% )
𝑙 ,0

(
𝑝𝑙.+𝑈̃%

(
0+

) )

×
𝜆∏
𝐿=1

(
𝑟ω𝑈! ,𝐿 𝑟v𝑈! ,𝐿

)
𝑟𝑤𝜆 ... 𝑟𝑤1 𝑟𝛽.,

(11.8)

where, recalling (4.19), (4.22), we denote

A',# ,)
$ ,(2 ,(3

=
∏

𝐿∈{1,...,𝜆 }:𝑈!=1
Q2
𝑙 ,𝛿2 ,.+𝑈̃!−1

∏
𝐿∈{1,...,𝜆 }:𝑈!=2

Q3
𝑙 ,𝛿3 ,.+𝑈̃!−1

. (11.9)

Remark 11.3. Notice that for fixed ℎ ∈ N and 𝜈 ≥ 1 and 𝐸 ∈ 𝐺𝜆 , the scaling (4.24) implies

1 − A',# ,)
$ ,(2 ,(3

!
𝜈 (ℎ + 2𝜈)

𝑈
' 𝜈 (ℎ + 2𝜈)𝛿𝛽−1

2 ' 𝜈 (ℎ + 2𝜈)𝛿𝛽−1/2
3 . (11.10)

In particular, A',# ,)
$ ,(2 ,(3

↗ 1 as 𝑈 ( ∞ and 𝛿2, 𝛿3 ( 0+ in the scaling (4.24).
Let us approximate the BBGKY hierarchy truncated elementary observables by Boltzmann hierarchy

truncated elementary observables defining some auxiliary functionals. Let ℎ ∈ N and 𝐴. ∈ Δ𝑀. (𝛿0). For
1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 and (b,Z) ∈ U.,𝜆 ,𝑈 , we define

b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) (𝐴.) =
∫

M+
& (𝑀&)

O. (𝛽.)
∫

T%,3 (𝐸)

∫
B+
(1 (𝐾∞

& (𝐸+1 ))
...

∫
B+
(%

(
𝐾∞
&+:̃%−1

(𝐸+% )
)

×
𝜆∏
𝐿=1

𝜇+𝑈!

(
ω𝑈! ,𝐿 , v𝑈! ,𝐿 , 𝑛

∞
𝑇!

(
𝑤+𝐿

) )
𝑦 (.+𝑈̃% )
0

(
𝑝𝑙.+𝑈̃%

(
0+

) ) 𝜆∏
𝐿=1

(
𝑟ω𝑈! ,𝐿 𝑟v𝑈! ,𝐿

)
𝑟𝑤𝜆 ... 𝑟𝑤1 𝑟𝛽. .

(11.11)

We conclude that the auxiliary functionals approximate the BBGKY hierarchy truncated elementary
observables b𝑙.,𝜆 ,;,H , defined in (11.8)
Proposition 11.4. Let ℎ, 𝑢 ∈ N, with ℎ < 𝑢, \, 𝛿0, H, _, I be parameters as in (9.4), and 𝑤 ∈ [0,𝜁]. Then
for any W > 0, there is 𝑈1 = 𝑈1 (W , 𝑢, \, _, 𝛿0) ∈ N, such that for all (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24) with
𝑈 > 𝑈1, there holds
𝜂∑
𝜆=1

∑
𝑈∈𝐴%

∑
(S ,J ) ∈U&,%

‖b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞(Δ*
& (𝛿0)) ≤ >

𝜂
𝛽,.,B0 ,C

‖O. ‖E∞
0&
H𝛽 (.+3𝜂) W2.

(11.12)

In the case of tensorized initial data and approximation by conditioned BBGKY initial data (see
Proposition 6.5), the estimate can be improved to

𝜂∑
𝜆=1

∑
𝑈∈𝐴%

∑
(S ,J )∈U&,%,:

‖b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& (𝛿0))

≤ >𝜂𝛽,.,@0 ,B0 ,C
‖O. ‖E∞

0&
H𝛽 (.+3𝜂)𝛿1/2

3 , (11.13)

for all (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24) with N large enough.
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Proof. Fix 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 and (b,Z) ∈ U.,𝜆 ,𝑈 . Consider (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24).
Remark 4.2 guarantees that we can consider N large enough such that 𝛿2 << _2𝛿3 and 𝑢3/2𝛿3 << \.
Triangle inequality and the inclusion Δ𝑀. (𝛿0) ⊆ Δ𝑀. (𝛿0/2) yield

‖b𝑙.,𝜆 ,;,H.𝑈 (𝑤, b,Z) − b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞(Δ*
& (𝛿0))

≤ ‖b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − A',# ,)
$ ,(2 ,(3

b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& ( 𝛿0/2)) (11.14)

+ (1 − A',# ,)
$ ,(2 ,(3

)‖ b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞(Δ*
& (𝛿0)) .

We estimate each of the terms in (11.14) separately. For the first term, let us fix (𝑤1, ..., 𝑤𝜆 ) ∈ T𝜆 ,H (𝑤).
Applying (10.18) for 𝐼 = 𝜈 − 1, we obtain

𝑝∞
.+𝑈̃%−1

(𝑤+𝜆 ) ∈ U.+𝑈̃%−1 (𝛿0, 0).

Since ℎ < 𝑢 and 𝑢3/2𝛿3 << \, (11.2), applied for 𝐼 = 𝜈 , implies

|𝐴𝑙.+𝑈̃%−1
(𝑤+𝜆 ) − 𝐴∞

.+𝑈̃%−1
(𝑤+𝜆 ) | ≤

\

2 .

Therefore, (9.7), (9.11) from Proposition 9.2, or (9.60), (9.64) from Proposition 9.6, depending on
whether the adjunction is binary or ternary, imply

𝑝𝑙.+𝑈̃%
(0+) ∈ U.+𝑈̃%

(𝛿0/2, 0) ⊆ Δ.+𝑈̃%
(𝛿0/2). (11.15)

Thus, (10.24)–(10.25), (10.29), (11.8)–(11.11) and crucially (11.15) imply

‖b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − A',# ,)
$ ,(2 ,(3

b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& (𝛿0/2))

≤
>𝜆𝛽,.,C
𝜈! ‖O. ‖E∞

0&
H𝛽 (.+3𝜆) ‖ 𝑦 (.+𝑈̃% )

𝑙 ,0 − 𝑦 (.+𝑈̃% )
0 ‖E∞ (Δ&+:̃%

(𝛿0/2))

≤
>𝜆𝛽,.,C
𝜈! ‖O. ‖E∞

0&
H𝛽 (.+3𝜆) ‖ 𝑦 (.+𝑈̃% )

𝑙 ,0 − 𝑦 (.+𝑈̃% )
0 ‖E∞ (D&+:̃%

,𝛿2 ,𝛿3) , (11.16)

as long as 𝛿3 < 𝛿0/2
)

2 (i.e., N large enough) so that Δ.+𝑈̃%
(𝛿0/2) ⊆ D.+𝑈̃% ,𝛿2 , .

For the second term, by (10.28), we have ‖ 𝑦 (.+𝑈̃% )
0 ‖E∞ ≤ S−(.+𝜆)B0 ‖𝐾0‖∞,@0 ,B0 . Therefore, using

(10.24)– (10.25) and (10.29), we obtain

‖ b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& ( 𝛿0)) ≤

>𝜆𝛽,.,B0 ,C

𝜈! ‖O. ‖E∞
0&
H𝛽 (.+3𝜆) ‖𝐾0‖∞,@0 ,B0 .

(11.17)

Adding over all (b,Z) ∈ U.,𝜆 ,𝑈 , 𝐸 ∈ 𝐺𝜆 , 𝜈 = 1, ..., 𝑢, using (11.16)–(11.17) and the scaling estimate
(11.10), we obtain

𝜂∑
𝜆=1

∑
𝑈∈𝐴%

∑
(S ,J )∈U&,%,:

‖b𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ& ( 𝛿0)) ≤ >𝜂𝛽,.,B0 ,C
‖O. ‖E∞

0&
H𝛽 (.+3𝜂)

×
(

sup
𝜆∈{1,...,𝜂}

sup
𝑈∈𝐴%

‖ 𝑦 (.+𝑈̃% )
𝑙 ,0 − 𝑦 (.+𝑈̃% )

0 ‖E∞ (D&+:̃% ,'2 ,'3 ) +
‖𝐾0‖∞,@0 ,B0

𝑈

)
.

Since n is fixed, (11.12) follows from convergence in the level of initial data.
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In the case of tensorized initial data and approximation by conditioned BBGKY initial data, the
estimate can be improved to (11.13) using (6.2) and the fact that 𝑈𝛿𝛽−1/2

3 ' 1. "

By the proximity Lemma 11.2 and the uniform continuity assumption on the initial data, we also
obtain the following estimate:

Proposition 11.5. Let ℎ, 𝑢 ∈ N with ℎ < 𝑢, \, 𝛿0, H, _, I be parameters as in (9.4) and 𝑤 ∈ [0,𝜁]. Then
for any W > 0, there is 𝑈2 = 𝑈2 (W , 𝑢) ∈ N, such that for all (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24) with 𝑈 > 𝑈2,
there holds

𝜂∑
𝜆=1

∑
𝑈∈𝐴%

∑
(S ,J ) ∈U&,%,:

‖ b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − b∞.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& ( 𝛿0)) ≤ >

𝜂
𝛽,.,B0 ,C

‖O. ‖E∞
0&
H𝛽 (.+3𝜂) W2.

(11.18)

In the case of Hölder continuous >0,𝜈 , 𝑀 ∈ (0, 1] tensorized initial data (see Remark 6.3), the estimate
can be improved to

𝜂∑
𝜆=1

∑
𝑈∈𝐴%

∑
(S ,J ) ∈U&,%,:

‖ b̂𝑙.,𝜆 ,;,H,𝑈 (𝑤, b,Z) − b∞.,𝜆 ,;,H,𝑈 (𝑤, b,Z)‖E∞ (Δ*
& ( 𝛿0)) ≤ >

𝜂
𝛽,.,B0 ,C

‖O. ‖E∞
0&
H𝛽 (.+3𝜂)𝛿𝜈 ,

(11.19)

for all (𝑈 , 𝛿2, 𝛿3) in the scaling (4.24).

Proof. Let W > 0. Fix 1 ≤ 𝜈 ≤ 𝑢, 𝐸 ∈ 𝐺𝜆 and (b,Z) ∈ U.,𝜆 ,𝑈 . Since ℎ < 𝑢, Lemma 11.2 yields

|𝑝𝑙.+𝑈̃%
(0+) − 𝑝∞

.+𝑈̃%
(0+) | ≤

)
6𝑢3/2𝛿3, ∀𝑝. ∈ R2𝛽. . (11.20)

Thus, the continuity assumption (6.5) on 𝐾0, (11.20), the scaling (4.24), and (4.26) from Remark 4.2
imply that there exists 𝑈2 = 𝑈2 (W , 𝑢) ∈ N, such that for all 𝑈 > 𝑈2, we have

| 𝑦 (.+𝑈̃% )
0 (𝑝𝑙.+𝑈̃%

(0+)) − 𝑦 (.+𝑈̃% )
0 (𝑝∞

.+𝑈̃%
(0+)) | ≤ >.+𝑈̃%−1W2 ≤ >.+2𝜆−1W2, ∀𝑝. ∈ R2𝛽. . (11.21)

In the same spirit as in the proof of Proposition 11.4, using (11.21), (10.24)–(10.25), (10.29), and
summing over (b,Z) ∈ U.,𝜆 ,𝑈 , 𝐸 ∈ 𝐺𝜆 , 𝜈 = 1, ..., 𝑢, we obtain the result.

In the case of tensorized >0,𝜈 data, one can easily see by induction that for any 𝑝.+𝑈̃%
, 𝑝 ′
.+𝑈̃%

∈
R2𝛽 (.+𝑈̃% ) , we have

| 𝑦 ⊗ (.+𝑈̃% )
0 (𝑝.+𝑈̃%

) − 𝑦 ⊗ (.+𝑈̃% )
0 (𝑝 ′

.+𝑈̃%
) | ≤ ‖ 𝑦0‖.+𝑈̃%−1

E∞ [ 𝑦0]T0,9
√

2𝑟 (ℎ + 𝐸̃𝜆 ) |𝑝.+𝑈̃%
− 𝑝 ′

.+𝑈̃%
|𝜈

≤ >.+𝑈̃%−1 |𝑝.+𝑈̃%
− 𝑝 ′

.+𝑈̃%
|𝜈 .

Thus, by (11.20), we have

| 𝑦 (.+𝑈̃% )
0 (𝑝𝑙.+𝑈̃%

(0+)) − 𝑦 (.+𝑈̃% )
0 (𝑝∞

.+𝑈̃%
(0+)) | ≤ >.+𝑈̃%−1𝛿𝜈 ,

and the estimate (11.19) follows in a similar manner as estimate (11.18). "
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11.3. Proof of Theorem 6.8
We are now in the position to prove Theorem 6.8. Fix ] > 0, ℎ ∈ N, O. ∈ >8 (R𝛽.) and 𝑤 ∈ [0,𝜁].
Consider 𝑢 ∈ N with ℎ < 𝑢, and parameters \, 𝛿0, H, _, I satisfying (9.4). Let W > 0 small enough.
Triangle inequality, Propositions 7.5, 10.2, 10.5, Remark 10.3, estimates (11.12), (11.18) and part (i) of
Definition 6.1, yield that there is 𝑈∗(W) ∈ N such that for all 𝑈 > 𝑈∗, we have

‖J𝑙. (𝑤) − J∞. (𝑤)‖E∞(Δ*
& (𝛿0)) ≤ >

(
2−𝜂 + S−

.0
3 ;

2 + I>𝜂
)
+ >𝜂H4𝛽𝜂_

"−1
4"+2 + >𝜂H4𝛽𝜂W2, (11.22)

where > > 1 is an appropriate constant.
We now choose parameters satisfying (9.4), depending only on W , such that the right-hand side of

(11.22) becomes less than W .
Choice of parameters: For W sufficiently small, we choose 𝑢 ∈ N and the parameters I, _, H, 𝛿0, \ in

the following order:

max
{
ℎ, log2(>W−1)

}
<< 𝑢, I << W>−(𝜂+1) ,

max
{
1,
)

3R−1/2
0 ln1/2(>W−1)

}
<< H << W−1/4𝛽𝜂>−1/4𝛽 ,

_ << W
8"+4
"−1 , 𝛿0 << min{], _I}, \ << 𝛿0 min{1, H−1_}.

(11.23)

Relations (11.23) imply the parameters chosen satisfy (9.4) and depend only on W . Then, (11.22)–(11.23)
imply that we may find 𝑈0 (W) ∈ N, such that for all (𝑈 , 𝛿) in the scaling (4.24) with 𝑈 > 𝑈0, there holds

‖J𝑙. (𝑤) − J∞. (𝑤)‖E∞(Δ*
& (Q))

𝛿0<Q≤ ‖J𝑙. (𝑤) − J∞. (𝑤)‖E∞(Δ*
& (𝛿0)) < W ,

and Theorem 6.8 is proved.

Proof of Corollary 6.10
By Theorem 5.20, we have that F = ( 𝑦 ⊗.).∈N, where f is the mild solution of the ternary Boltzmann

equation. Therefore, in the same spirit as before (using estimates (11.13), (11.19) instead of (11.12),
(11.18)), for N large enough, we have

‖JF& 𝑦
(.)
𝑙 (𝑤) − JF& 𝑦 ⊗. (𝑤)‖E∞ (Δ*

& (𝛿0)) ≤ >
(
2−𝜂 + S−

.0
3 ;

2 + I>𝜂
)
+ >𝜂H4𝛽𝜂_

"−1
4"+2 + >𝜂H4𝛽𝜂𝛿𝜈∗ ,

(11.24)

where 𝑀∗ = min{1/2, 𝑀} ∈ (0, 1
2 ] and 𝑀 is the Hölder regularity of 𝑦0. Consider 0 < 𝑊 < 𝑀∗.

Choice of parameters: For N large enough (or equivalently for 𝛿 small enough), we choose 𝑢 ∈ N
and the parameters I, _, H, 𝛿0, \ in the following order:

max
{
ℎ, log2 (>𝛿𝜈∗)

}
<< 𝑢, I << 𝛿𝜈∗>−(𝜂+1) ,

max
{
1,
)

3R−1/2
0 ln1/2(>𝛿−𝜈∗ )

}
<< H << 𝛿

4−9∗
4"/ >−1/4𝛽 ,

_ << 𝛿
4"+2)
"−1 𝜈∗ , 𝛿0 << min{], _I}, \ << 𝛿0 min{1, H−1_}.

(11.25)

Then by (11.24), for N large enough, we take

‖JF& 𝑦
(.)
𝑙 (𝑤) − JF& 𝑦 ⊗. (𝑤)‖E∞ (Δ*

& (Q))
𝛿0<Q≤ ‖JF& 𝑦

(.)
𝑙 (𝑤) − JF& 𝑦 ⊗. (𝑤)‖E∞ (Δ*

& (𝛿0)) < 𝛿
𝐼 ,

and Corollary 6.10 is proved.
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12. Appendix
In this appendix, we present some auxiliary results which are used throughout the paper.

12.1. Calculation of Jacobians
We first present an elementary Linear Algebra result, which will be useful throughout the manuscript
for the calculation of Jacobians. For a proof, see Lemma A.1 from [2].

Lemma 12.1. Let 𝑢 ∈ N, 𝜋 ≠ 0 and 𝑃, ^ ∈ R𝜂. Then

det(𝜋J𝜂 + 𝑃^C ) = 𝜋𝜂 (1 + 𝜋−1+𝑃, ^〉),

where J𝜂 is the 𝑢 × 𝑢 identity matrix.

12.2. The binary transition map
Here, we introduce the binary transition map, which will enable us to control binary postcollisional
configurations. Recall from (2.2) the binary cross-section

𝜇2(𝐿1, 𝐽1) = +𝐿, 𝑛1〉, (𝐿1, 𝐽1) ∈ S𝛽−1
1 × R𝛽 .

Given 𝑛1, 𝑛2 ∈ R𝛽 , we define the domain14 Ω :=
{
𝐿1 ∈ R𝛽 : |𝐿1 | ≤ 2, and 𝜇2 (𝐿1, 𝑛2 − 𝑛1) > 0

}
, and

the set S+
𝑊1 ,𝑊2 = {𝐿1 ∈ S𝛽−1

1 : 𝜇2(𝐿1, 𝑛2 − 𝑛1) > 0} ⊆ Ω. We also define the smooth map Ψ : R𝛽 ( R
by Ψ(𝐿1) := |𝐿1 |2. Notice that the unit (𝑟 − 1)-sphere is given by level sets of Ψ i.e. S𝛽−1

1 = [Ψ = 1] .

Proposition 12.2. Consider 𝑛1, 𝑛2 ∈ R𝛽 and 𝑊 > 0 such that |𝑛1 − 𝑛2 | = 𝑊 . We define the binary
transition map J𝑊1 ,𝑊2 : Ω ( R𝛽 as follows:15

J𝑊1 ,𝑊2 (𝐿1) := 𝑊−1 (𝑛′1 − 𝑛′2), 𝐿 ∈ Ω. (12.1)

The map J𝑊1 ,𝑊2 has the following properties:

1. J𝑊1 ,𝑊2 is smooth in Ω with bounded derivative uniformly in r; that is,

‖𝑒J𝑊1 ,𝑊2 (𝐿1)‖∞ ≤ >𝛽 , ∀𝐿1 ∈ Ω, (12.2)

where ‖ · ‖∞ denotes the maximum element matrix norm of 𝑒J𝑊1 ,𝑊2 ,𝑊3 (𝐿1).
2. The Jacobian of J𝑊1 ,𝑊2 is given by

Jac(J𝑊1 ,𝑊2) (𝐿1) ' 𝑊−𝛽𝜇𝛽2 (𝐿1, 𝑛2 − 𝑛1) > 0, ∀𝐿1 ∈ Ω. (12.3)

3. The map J𝑊1 ,𝑊2 : S+
𝑊1 ,𝑊2 ( S𝛽−1

1 \ {𝑊−1(𝑛1 − 𝑛2)} is bijective. Moreover, there holds

S+
𝑊1 ,𝑊2 = [Ψ ◦ J𝑊1 ,𝑊2 = 1] . (12.4)

4. For any measurable < : R𝛽 ( [0 +∞], there holds the change of variables estimate∫
S+
71 ,72

(< ◦ J𝑊1 ,𝑊2 (𝐿1) | Jac J𝑊1 ,𝑊2 (𝐿1) | 𝑟𝐿1 !
∫
S"−1

1

<(𝐽1) 𝑟𝐽1. (12.5)

Proof. The proof is the binary analogue of the proof of Proposition 8.5. in [5]. "

14We trivially extend the binary cross-section for any 𝐶 ∈ R" .
15We trivially extend the binary collisional operator for any 𝐶 ∈ Ω.
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