
7740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Analog Error-Correcting Codes: Designs
and Analysis

Anxiao Jiang , Senior Member, IEEE

Abstract— A new type of analog error-correcting codes (Analog
ECCs) has been proposed by Roth recently. The codes can correct
errors of unlimited magnitudes even though the codeword is
affected not only by such errors, but also by ubiquitous noise of
limited magnitudes. The codes have the potential to accelerate
the widely used vector-matrix multiplication in machine learning
via their implementation in nanoscale analog circuits. Several
Analog ECCs, which mainly focus on correcting or detecting
a single unlimited-magnitude error, have been proposed. This
paper explores the analysis and constructions of Analog ECCs in
multiple ways. It presents a linear-programming based algorithm
that computes the m-heights of Analog ECCs efficiently, which
can be used to determine the error correction/detection capa-
bilities of the codes. It then presents a family of Analog ECCs
based on permutations, and proves that the time complexity for
determining the m-heights of such codes can be further reduced
substantially. The analysis forms a basis for the time-complexity
tradeoff between the searching of codes and the verification of
their performance. The paper then presents a number of newly
discovered codes based on such a search and verification process,
which achieve state-of-the-art performance.

Index Terms— Analog error-correcting codes, machine
learning, permutation, resistive memories, vector-matrix
multiplication.

I. INTRODUCTION

MACHINE learning algorithms have found wide appli-
cations in many fields of engineering. A new type

of Analog Error-Correcting Codes (Analog ECC), which has
important potential applications to machine learning, has been
proposed recently [1], [2]. Let C be a linear [n, k] Analog ECC
over R. Let c = (c0, c1, · · · , cn−1) ∈ Rn denote a generic
codeword in C. There are two types of additive errors that can
be added to a codeword by the channel: a type of limited-
magnitude errors (LMEs), and a type of unlimited-magnitude
errors (UMEs), defined as follows.

Let [n⟩ denote the integer set {0, 1, · · · , n− 1}. Let δ and
∆ be two positive real thresholds, where ∆ > δ > 0. An error
vector ε= (ε0, ε1, · · · , εn−1) ∈ Rn is called a limited-
magnitude error vector (i.e., LME vector) if εi ∈ [−δ, δ] for

Manuscript received 24 November 2023; revised 21 July 2024;
accepted 17 August 2024. Date of publication 3 September 2024; date of
current version 22 October 2024. This work was supported in part by NSF
under Grant CCF-2416361.

The author is with the Department of Computer Science and Engineer-
ing, Texas A&M University, College Station, TX 77845 USA (e-mail:
ajiang@cse.tamu.edu).

Communicated by V. Skachek, Associate Editor for Coding and Decoding.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2024.3454059.
Digital Object Identifier 10.1109/TIT.2024.3454059

all i ∈ [n⟩. Given a vector e = (e0, e1, · · · , en−1) ∈ Rn,
define its support with respective to ∆ as

Supp∆(e) = {i ∈ [n⟩ : |ei| > ∆}.

The above definition can be extended to ∆ = 0. Then by
this definition, the ordinary support of e is Supp0(e). And
the Hamming weight of e, denoted by wH(e), is |Supp0(e)|.
An error vector e = (e0, e1, · · · , en−1) ∈ Rn is called
an unlimited-magnitude error vector (i.e., UME vector) of
Hamming weight w if wH(e) = w. A noisy codeword y =
(y0, y1, · · · , yn−1) ∈ Rn is the sum of the codeword c ∈ C
and the two error vectors ε and e, namely, y = c+ε+e. The
code is designed such that significant UMEs will be corrected.

A strong motivation for the introduction of Analog ECC is
to support vector-matrix multiplication — a common operation
in machine learning algorithms including deep learning [1],
[2] — that is realized with a crossbar architecture. In the
following, we introduce its application to Analog In-Memory
Computing for deep neural networks (DNNs). DNNs have
achieved significant progress for AI in recent years, covering
computer vision, natural language processing, generative AI
and more areas. However, the cost for their training and infer-
ence, in both time and power consumption, is also increasing
substantially. A fundamental emerging technology, Analog In-
Memory Computing, promises to make DNNs much more
efficient in both speed and energy consumption [3], [4],
[5], [6]. By storing the real-valued parameters of DNNs in
nanoscale analog non-volatile memory (NVM) cells and using
them directly for computing, in-memory analog computing
may overcome the “von Neumann bottleneck” of conventional
computers. The new paradigm avoids the movement of mas-
sive amounts of data between GPUs and external memories,
which incurs massive energy consumption and accounts for
extensive latency [7] in current AI systems. There has been
good progress in the development of analog chips in recent
years, which realize DNNs for training [8] and/or infer-
ence [9] in analog circuits. They achieve software-comparable
AI performance (e.g., classification accuracy), can run with
substantially higher speed and power efficiency compared to
digital circuits (e.g., 35 times lower in power consumption [6]),
and promise more in the future.

The high efficiency of Analog In-Memory Computing
achieved for DNNs is largely due to the efficient imple-
mentation of Vector–Matrix Multiplications, which are widely
used in DNNs, in the crossbar architecture of NVM cells.
Vector–matrix multiplication is dominantly the most frequent

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0120-7930

JIANG: ANALOG ERROR-CORRECTING CODES: DESIGNS AND ANALYSIS 7741

operation in most DNNs, whether it is a dense network, con-
volutional network (CNN), recurrent network (RNN), graph
network or transformer model. The crossbar architecture is
illustrated in Fig. 1 (a). The crossbar array has L row con-
ductors, k column conductors, and Lk nanoscale nonvolatile
resistive memories (e.g., memristors [7], phase-change mem-
ories [3], [4], etc.) at the junctions. Let A = (ai,j)L×k be a
matrix of non-negative numbers. For i = 0, 1, · · · , L− 1 and
j = 0, 1, · · · , k−1, the resistor at the junction of the i-th row
and the j-th column is programmed to have conductance that
is proportional to ai,j . Let u = (u0, u1, · · · , uL−1) ∈ RL be
a vector. For i = 0, 1, · · · , L− 1, let the input voltage on the
i-th row be proportional to ui. Let (c0, c1, · · · , ck−1) = uA
be the multiplication of the vector u and the matrix A. Then
(c0, c1, · · · , ck−1) can be computed by reading the currents at
the columns, where for j = 0, 1, · · · , k − 1, the current on
the j-th column is proportional to cj . Note that if A contains
negative numbers [6], [10], we can write it as A = A+−A−,
where A+ and A− are both non-negative matrices, and use
two crossbar arrays to compute (c0, c1, · · · , ck−1) as uA+ −
uA−. In DNNs, the matrix A represents model parameters
(i.e., edge weights in the DNN), which remain constant during
inference. The vector u represents the input to a layer in
the DNN, which are variables since their values change for
different input samples. Compared to digital computing, which
needs Lk scalar multiplications and (L − 1)k additions to
compute uA, the crossbar can compute uA in a single
time step by exploiting Ohm’s law and Kirchhoff’s law, thus
significantly improving the speed and energy efficiency of
computing, potentially by multiple orders.

A challenge for analog in-memory computing, however,
is the reliability of computing against errors. Nonvolatile
memories are known to have many noise mechanisms, include
cell-programming noise, cell-level drifting, random noise,
read/write disturbs, stuck cells, short cells, etc. In general, the
errors can be partitioned into two types: (1) those that are
small but ubiquitous (i.e., appearing in nearly all cells), such
as programming noise, cell-level drifting, random noise, etc.,
and (2) those that are more isolated but can be much more
significant, such as stuck cells, short cells (e.g., due to faults
in the programming process [10]), memory/circuit defects, etc.
The two types of errors are modeled by LMEs and UMEs,
respectively. DNNs often naturally have some tolerance of
small ubiquitous noise [3], [4], [6], [10], [11]. However, they
are challenged by significant outlier errors, which need to be
detected and corrected.

Analog ECC has been proposed to address the above
challenge as follows [1]. Let C be a linear [n, k] Analog
ECC. We extend the L × k crossbar array for vector–matrix
multiplication to an L × n crossbar array, as illustrated in
Fig. 1 (b). Each row in the original matrix A = (ai,j)L×k is
extended to a codeword. That is, for i = 0, 1, · · · , L− 1, the
i-th row in the matrix, (ai,0, ai,1, · · · , ai,k−1), is encoded into
a codeword ci ≜ (ai,0, ai,1, · · · , ai,n−1), and the n− k extra
memory cells in the row are programmed so that their con-
ductance values are proportional to ai,k, ai,k+1, · · · , ai,n−1,
respectively. By the linearity of the code, no matter what
the input variables u0, u1, · · · , uL−1 are, the output vector

c ≜ (c0, c1, · · · , cn−1) =
∑L−1
i=0 uici is also a codeword in

C. Therefore, significant errors in c can be corrected by the
decoder of C. And note that the first k elements in c are simply
the desired output of the vector–matrix multiplication uA.
For more details on the design and experimental performance,
please refer to [1], [2], [10], and [12].

Analog ECCs consider LMEs as tolerable (as long as δ
is small), and focus on the detection and correction of the
UMEs, especially those UMEs whose magnitudes exceed the
threshold ∆. Given the above considerations, the decoding
objective of Analog ECC is set as follows. 1 The decoder for
a linear [n, k] Analog ECC C is a function

D : Rn → 2[n⟩

that returns a set of locations of UMEs. Let δ, ∆ ∈ R+ be
positive thresholds with δ < ∆ as mentioned earlier, and let t
be a nonnegative integer. We say that “the decoder D corrects
t UMEs (with respect to the threshold pair (δ,∆))” if for every
possible vector y = c+ε+e with c ∈ C being a codeword,
ε being an LME vector and e being an UME vector whose
Hamming weight wH(e) is at most t, the following condition
holds:

Supp∆(e) ⊆ D(y) ⊆ Supp0(e).

The above condition not only ensures that the decoder will
find all the locations of UMEs whose magnitudes are more
than ∆ (thus no “false negative”), but also ensures that all the
found locations, namely D(y), have UMEs (thus no “false pos-
itive”). 2 After the decoder locates the UMEs (which include as
a subset all those significant UMEs whose magnitudes exceed
∆), those UMEs can be removed by either re-computing the
corresponding entries in the codeword c (as in the case of the
vector-matrix multiplication application where c is the result
of such a multiplication [10], [12]), or by estimating the values
of those UMEs via an extended decoding algorithm [1].

In spite of the importance of Analog ECCs for machine
learning, the designs of such codes are still relatively limited.
Most existing codes focus on the detection or correction of
only one UME [1]. A main challenge in the designing of more
codes, including codes that correct more than one UME, lies in
the analysis of the error-correction capabilities of codes. Such
an analysis requires the computing of an important quantity
of the code named m-height [1], which is analogous to the
minimum distance of conventional ECCs over finite fields.

In this paper, we first propose a baseline algorithm that
computes the m-height of an Analog ECC. We then present a
more efficient algorithm based on linear programming, which
reduces the time complexity of computing the m-height by a
factor of (m−1)! · (n−m−1)! ·2n−m. We use the algorithm
to find the exact values of m-heights of existing Analog ECCs
for all m. (For many of those codes, only upper bounds
to their 1-height or 2-heights were known previously.) The

1The original decoding objectives include both error correction and detec-
tion. In this work, we focus on error correction alone. So the decoding
objective described here is simplified compared to [2].

2Note that given a pair of noiseless and noisy codewords (c,y), there can
be different pairs of error vectors (ε, e) that change c into y, and the decoding
objective needs to be realized for all such possible pairs of error vectors.

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

7742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Fig. 1. (a) A crossbar architecture for vector–matrix multiplication. (b) Using Analog ECC for the multiplication, where each row (ai,0, ai,1, · · · , ai,n−1)
in the array and the output vector (c0, c1, · · · , cn−1) are codewords of the code.

exact m-height values help us understand the error-correction
capabilities of the known codes better.

We then present a new family of Analog ECCs called
Analog Permutation Codes, where the columns in such a
code’s generator matrix are distinct permutations of the same
set of real numbers. We prove that for Analog Permutations
Codes, the time complexity of the m-height algorithm can be
further reduced by a factor of n. The gained efficiency can
help us search for more codes in the code space, and verify
their error-correction capabilities.

We then use genetic programming to search for new codes,
using randomly generated Analog ECCs and Analog Permu-
tation Codes as seeds. A number of new codes that achieve
state-of-the-art performance are discovered, whose m-heights
are summarized in Table III. The codes can be used to correct
one or more (up to 4) UMEs.

The rest of the paper is organized as follows. In Section II,
a survey on existing Analog ECC constructions and their
performance is presented, and related works are reviewed.
In Section III, an efficient m-height algorithm is presented and
analyzed, and the algorithm is used to find the exact m-height
values of existing codes. In Section IV, Analog Permutation
Codes are analyzed, for which the m-height algorithm’s effi-
ciency is further improved. In Section V, new codes that
are discovered via genetic programming and achieve state-of-
the-art performance are presented. In Section VI, concluding
remarks are presented.

II. EXISTING CONSTRUCTIONS FOR ANALOG ECCS AND
RELATED WORKS

In this section, we summarize the known constructions
for Analog ECCs, with a focus on their error correction –
instead of error detection – capabilities. We first review an
important analytical tool called m-height and its relation to
the error-correction capability of an Analog ECC [1]. Let
x = (x0, x1, · · · , xn−1) ̸= (0, 0, · · · , 0) be a vector in Rn.
Let π : [n⟩ → [n⟩ be a permutation such that

|xπ(0)| ≥ |xπ(1)| ≥ · · · ≥ |xπ(n−1)|.

For any m ∈ [n⟩, the m-height of x is defined as

hm(x) =
∣∣∣∣ xπ(0)

xπ(m)

∣∣∣∣
if xπ(m) ̸= 0, and as hm(x) = ∞ if xπ(m) = 0. For the
all-zero vector 0 = (0, 0, · · · , 0), its m-height is defined as
hm(0) = 0 for all m. Then, the m-height of a linear [n, k]
code C over R is defined as

hm(C) = max
c∈C

hm(c).

The next important result was proven in [1].
Theorem 1: Let C be a linear [n, k] code over R. Given δ,

∆ ∈ R+ with δ < ∆ and a positive integer t, there exists a
decoder for C that corrects t UMEs if and only if

∆ ≥ 2(h2t(C) + 1)δ.

We now present the existing constructions for Analog ECCs.
Let us start with the Repetition Code [1]. Let C be the [n, 1]
repetition code over R, whose generator matrix is the all-one
vector 1 = (1, 1, · · · , 1). Its m-height is hm(C) = 1 for m ∈
[n⟩. So by Theorem 1, the code can correct ⌊(n−1)/2⌋ UMEs
as long as ∆ ≥ 4δ.

The next code to consider is the Cartesian power of rep-
etition code [1]. Let C be a linear [n = wk, k] code over R
that is the k-fold Cartesian power of the [w, 1] repetition code.
Its generator matrix is a k × n binary matrix where each row
has n/k = w 1s and each column has one 1, while all the
remaining elements are 0s. If we use Gn=wk,k to denote its
generator matrix, then it has the recursive form

Gwk,k =
(

1 1 · · · 1 0 0 · · · 0
0 Gw(k−1),k−1

)
.

Its m-height is hm(C) = 1 for m ∈ [w⟩, and hm(C) =∞ for
m ≥ w. So by Theorem 1, the code can correct ⌊(w − 1)/2⌋
UMEs as long as ∆ ≥ 4δ.

The third code to present has an upper bounded for its
1-height [1]. Although it is not for correcting any UME, it can
detect a single UME by the definition of error detection in [2].
Let H be a r × n binary matrix over {0, 1} with r < n that
satisfies two properties: (1) every column in H has exactly
one 1, and (2) each row of H has either ⌊n/r⌋ or ⌈n/r⌉ 1s.

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

JIANG: ANALOG ERROR-CORRECTING CODES: DESIGNS AND ANALYSIS 7743

Let C be a linear [n, k = n − r] code over R with H as its
parity-check matrix. Then its 1-height satisfies

h1(C) ≤ ⌈n/r⌉ − 1.

When n is a multiple of r, the code is the dual code of the
r-fold Cartesian power of the [n/r, 1] repetition code.

The fourth code to introduce has an upper bound for its
2-height [1], which is useful for correcting one UME. Let r
be a positive even integer, and let n be an integer such that
r ≤ n ≤ r(r−1). Let H be a r×n matrix over {−1, 0, 1} that
satisfies three properties: (1) all the columns in H are distinct,
(2) every column in H has exactly two nonzero entries, the first
of which being a 1, and (3) the number of nonzero entries in
each row of H is either ⌊2n/r⌋ and ⌈2n/r⌉. Note that such
a matrix H is guaranteed to exist [13]. For example, when
r = 4 and n = 12, H can be [1]:

1 1 1 1 0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 1 1 −1 0 0
1 −1 0 0 1 −1 0 0 0 0 1 1
0 0 1 −1 0 0 1 −1 0 0 1 −1


Let C be a linear [n, k ≥ n − r] code over R with H as its
parity-check matrix. Then its 2-height satisfies

h2(C) ≤ ⌈2n/r⌉ − 1.

So by Theorem 1, the code can correct one UME as long as
∆/δ ≥ 2⌈2n/r⌉.

The fifth code is an extension of the fourth code [1]. Recall
that the parity-check matrix H of the fourth code satisfies
three properties. Now let us generalize the second property
as follows: instead of requiring every column of H to have
Hamming weight 2, we now require it to have Hamming
weight b for some prescribed integer b ≥ 2. Let n =

(
r
b

)
·2b−1.

Then the 2-height of C satisfies

h2(C) ≤ ⌈bn/r⌉ − 1.

So by Theorem 1, the code can correct one UME as long as
∆/δ ≥ 2⌈bn/r⌉.

The sixth code to introduce has known finite 2-height
values, and therefore is suitable for correcting one UME [1].
Let n ≥ 3 be an integer, let α = π/n, and let ω = eiα with
i =
√
−1, namely, ω is the complex primitive 2n-th root of

unity. Let C be a linear [n, k = n−2] code over R defined by

C =
{

(c0, c1, · · · , cn−1) ∈ Rn :
∑
j∈[n⟩

cjω
j = 0

}
.

C is a negacyclic code because if (c0, c1, · · · , cn−2, cn−1) is a
codeword, then so is (−cn−1, c0, c1, · · · , cn−2). Its generator
polynomial is

g(x) = 1− 2 cos(α)x+ x2,

and its parity-check matrix can be H = (hj)j∈[n⟩ with

hj =
(

cos(jα)− cos((j + 1)α)
sin(jα)− sin((j + 1)α)

)
.

The 2-height of C satisfies

h2(C) =
1

2 sin2(π/(2n))
− 1.

So by Theorem 1, the code can correct one UME as long as
∆/δ ≥ 1/ sin2(π/(2n)).

There have been previous works that study the correc-
tion of analog noise in different settings. In [14], codes
based on chaotic dynamic systems were designed to repre-
sent an analog number x ∈ R by a sequence of numbers
Y = (y0, y1, · · · , yk−1), which are transmitted over a chan-
nel and received as a sequence of noisy numbers Z =
(z0, z1, · · · , zk−1), where zi = yi + wi for i ∈ [k⟩ and wi is
the additive noise. A decoding algorithm recovers the number
x approximately as x̂ from Z. Assuming that the message x
and the noise follow certain distributions (e.g., x is uniformly
distributed on the unit interval [0, 1] and wi’s are additive white
Gaussian noise), the objective is to minimize the expected
distortion E[(x− x̂)2].

The above scheme belongs to a broad field named joint
source-channel coding (JSCC), with its original study dat-
ing back to Shannon [15] and Kotelnikov [16]. In its
more general setting, a sequence of m real numbers X =
(x0, x1, · · · , xm−1) are encoded as a new sequence Y =
(y0, y1, · · · , yk−1) and transmitted through a noisy channel.
Bandwidth compression or expansion is achieved when m > k
or m < k, respectively. JSCC is particularly interesting in
communications when both the source data and the channel
noise have Gaussian distributions. Many solutions are based on
space-filling curves, including the well known Archimedean
spiral and its variations [15], [17]. It was further shown that
instead of parameterized spirals, a functional optimization
approach could be used for state-of-the-art performance [18].

Analog coding has also been studied in the area of coded
distributed computing. In this area, a commonly studied sce-
nario is that computation over a massive dataset is distributed
among a set of worker nodes, and as soon as a sufficiently
large subset of worker nodes submit their computation results
to a central server, the server can use them to obtain the
final result. A coding scheme can be applied to the data
and/or computation across the worker nodes, so that the
system has resiliency against straggler nodes that can prolong
computation, maintains security against malicious nodes that
may change the computation results in adversarial ways, and
keeps privacy of the dataset despite possible collusion among
some worker nodes [19]. In [20], it is shown that analog
coding can make the computation more scalable because it
avoids quantizing data into a finite field, and can achieve better
tradeoffs between privacy and accuracy. In [21], [22], [23],
[24], and [25], analog coding for coded distributed computing
schemes with numerical stability issues are studied. In the
above schemes, if their analog vector-matrix multiplications
are performed in analog circuits, Analog ECCs can help
correct significant computational errors and make the schemes
more robust.

Analog ECC considers both UMEs and LMEs, which makes
it bear some similarity with the line of research on analog
polynomial recovery in the presence of both outlier errors
and inlier errors. In [26], the robust polynomial curve fitting
problem is studied where, given the existence of an unknown
degree-d polynomial p and n ordered pairs (xi, yi) ∈ [−1, 1]×
[−1, 1] for i = 1, 2, · · · , n such that |p(xi) − yi| ≤ δ

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

7744 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

for all but ρ fraction of the pairs, the goal is to find a
degree-d polynomial q such that ||p − q||∞ is small. The
problem is further extended to trigonometric polynomials
in [27]. The topic, however, also has clear differences from
Analog ECC in its objective and formulations. Its analysis
is often probabilistic and needs certain assumptions (e.g.,
the sparsity of outlier errors in every region), while the
analysis of Analog ECCs usually focuses on their worst-case
performance.

Another related field is ECCs for nonvolatile memories
(NVMs). (Note that when vector-matrix multiplications – an
important application of Analog ECCs – are implemented in
nanoscale analog circuits, the numbers in the matrix are stored
in crossbar arrays of NVM cells [3], [4], [6], [10], [12].) Each
NVM cell has q discrete levels (e.g., q = 2, 4, 8, 16 or
32) and can store log2 q bits. ECCs have been designed to
correct bit errors [28], limited-magnitude errors [29], [30],
[31], errors with graded magnitude distributions [32] and
stuck-cell errors [33]. There are also ECCs that inherently
use features of NVMs, such as the asymmetric costs of
writing data and erasing data in NAND Flash Memories [34],
[35], [36], [37]. A variety of techniques have been used to
correct errors of different metrics. For instance, to correct
Hamming errors in the binary pages of NVMs (sometimes
with additional soft information on the sizes of errors), BCH
codes and LDPC codes are optimized for NVM channels [28].
To correct asymmetric limited-magnitude errors, a modular
method is used to map large-alphabet codes to small-alphabet
codes [29]. To correct errors measured by the L1-metric or
Lee-metric in q-ary NVM cells, codes based on multisets,
elementary symmetric functions and additive number theory
are designed [38], [39], [40], [41]. To correct inter-cell inter-
ference (ICI) errors, constrained coding techniques that enable
page separation are designed [42]. To correct errors measured
by the Kendall’s τ -distance in the rank modulation scheme
(RM), metric-embedding techniques are used to translate
the codes to Lee-metric codes [35], [43]. To correct errors
measured by the Ulam metric in RM, new code-interleaving
techniques are developed [44]. To correct errors measured by
the Infinity Norm in RM, code construction methods based
on the direct/semi-direct product of (subgroups of) symmetric
groups are used [45]. Such techniques can potentially be useful
for the designs of Analog ECCs, too.

Analog ECC differs from the JSCC paradigm in that it does
not depend on the probabilistic distributions of data and noise
(namely, it optimizes the worst-case performance), differs from
the ECC-for-NVM paradigm in that it focuses on analog
values (instead of discrete values) for both data and errors,
and differs from both paradigms in that it considers two types
of errors LME and UME (instead of only one). By tolerating
small LMEs and combatting large UMEs, it aims at making
machine learning algorithms (especially deep neural networks)
run more reliably in next-generation analog computers.

III. FINDING THE m-HEIGHT OF ANALOG ECC

The m-height of Analog ECC is analogous to the minimum
distance of conventional error-correcting codes (e.g., codes

over finite fields), as evidenced by Theorem 1. It is crucial
for finding the error-correction capability of a code.

The Minimum Distance Problem for linear error-correcting
codes over finite fields – namely, given a generator matrix
G ∈ Fk×nq , find the minimum distance d of the corresponding
code – is a fundamental computational problem in coding the-
ory [46]. However, the problem is computationally intractable.
In [47], Vardy proved that the minimum distance cannot be
computed exactly in deterministic polynomial time unless P =
NP. In [46], Dumer, Micciancio and Sudan proved that the
minimum distance is not approximable to within any constant
factor in random polynomial time (RP) unless NP = RP. They
also showed that the minimum distance is not approximable
to within an additive error that is linear in the block length
n of the code. It was further proven that under the stronger
assumption that NP is not contained in RQP (random quasi-
polynomial time), the minimum distance is not approximable
to within the factor 2log1−ϵ(n) for any ϵ > 0. The hardness
of the Minimum Distance Problem has also been shown for
error-correcting codes in more domains. For instance, for
quantum codes, Kapshikar and Kundu have proved that it is
NP-hard to find the minimum distance of stabilizer quantum
codes either exactly or approximately [48].

For Analog ECC, the corresponding m-Height Problem can
be defined as follows: given a generator matrix G ∈ Rk×n,
find the m-height of the corresponding Analog ECC, where
m ∈ [n⟩. Note that the m-Height Problem is more general
than finding the minimum distance d(C) of the Analog ECC
C. Let wH(c) denote the Hamming weight of a codeword c.
Then d(C) equals the minimum Hamming weight of a nonzero
codeword in C, namely, d(C) = minc∈C−{0} wH(c). Based on
the definition of m-height, we have

h0(C) ≤ h1(C) ≤ · · · ≤ hn−1(C).

Let hn(C) ≜ ∞. Then d(C) is the minimum index m ∈
[n + 1⟩ such that hm(C) = ∞. Namely, hm(C) = ∞ if
and only if m ≥ d(C). So when the m-height values are
found for all m ∈ [n⟩, the value of d(C) also becomes
known. Knowing the m-height values is also more important
for analyzing the error-correction capability of an Analog
ECC than simply knowing d(C), because the necessary and
sufficient condition for the code to be able to correct t UMEs
is ∆/δ ≥ 2(h2t(C)+1), which depends on the ratio ∆/δ. The
value of d(C) can tell us that the code can potentially correct
⌊ 12 (d(C) − 1)⌋ UMEs, however it cannot guarantee that any
⌊ 12 (d(C)−1)⌋ UMEs are correctable without knowing the ratio
∆/δ; that is, d(C) provides only a necessary but not sufficient
condition for the error correction capability.

In this section, we study how to find the m-height of an
Analog ECC given its generator matrix. We first present a
baseline algorithm, which solves the m-Height Problem by
solving n! · 2n linear-fractional programs. We then improve
the computational complexity substantially by presenting an
enhanced algorithm that discovers the m-height via solving
n(n − 1)

(
n−2
m−1

)
2m linear programs, which reduces the com-

plexity by a factor of (m−1)! · (n−m−1)! ·2n−m compared
to the baseline method.

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

JIANG: ANALOG ERROR-CORRECTING CODES: DESIGNS AND ANALYSIS 7745

A. A Baseline Algorithm for m-Height Problem

Consider a linear [n, k] code C over R. For any non-empty
subset of codewords C̃ ⊆ C, we define

hm(C̃) = max
c∈C̃

hm(c).

And we define hm(∅) = 0.
Let π : [n⟩ → [n⟩ denote a permutation on [n⟩, and let

Π denote the set of all the n! such permutations. Let s =
(s0, s1, · · · , sn−1) ∈ {1,−1}n be a binary vector of length n,
and let S = {1,−1}n denote the set of all the 2n such vectors.
Let sgn be the sign function:

sgn(x) =

{
1 if x ≥ 0
−1 if x < 0

Let Cπ,s denote the subset of codewords of C such that a
codeword c = (c0, c1, · · · , cn) ∈ C is in Cπ,s if c ̸= 0,
sgn(cπ(j)) = sj for j ∈ [n⟩, and

|cπ(j)| = sj · cπ(j) ≥ sj+1 · cπ(j+1) = |cπ(j+1)|

for j ∈ [n−1⟩. Since C−{0} =
⋃
π∈Π,s∈S Cπ,s and hm(0) =

0, we get

hm(C) = max
π∈Π,s∈S

hm(Cπ,s).

Lemma 1: Let C be a linear [n, k] code over R. Let G =
(gi,j)k×n ∈ Rk×n be the generator matrix of C. Let m ∈
[d(C)⟩−{0}, π ∈ Π and s = (s0, s1, · · · , sn−1) ∈ S. Let Fπ,s
denote the following linear-fractional program with k real-
valued variables u0, u1, · · · , uk−1:

maximize
s0 ·

∑
i∈[k⟩

(
uigi,π(0)

)
sm ·

∑
i∈[k⟩

(
uigi,π(m)

)
s.t. s0 ·

∑
i∈[k⟩

(
uigi,π(0)

)
> 0

sn−1 ·
∑

i∈[k⟩

(
uigi,π(n−1)

)
≥ 0

sj ·
∑

i∈[k⟩

(
uigi,π(j)

)
≥ sj+1 ·

∑
i∈[k⟩

(
uigi,π(j+1)

)
∀j ∈ [n− 1⟩

Let fπ,s be the optimal objective value of Fπ,s if Fπ,s is
feasible, and let fπ,s = 0 otherwise. Then

hm(C) = max
π∈Π,s∈S

fπ,s

Proof: A vector c = (c0, c1, · · · , cn−1) is a codeword in
C if and only if there is a vector u = (u0, u1, · · · , uk−1) ∈ Rk
such that c = uG. The constraints in Fπ,s provide the neces-
sary and sufficient condition for uG to be a codeword in Cπ,s,
and the objective function of Fπ,s is the m-height of uG. (The
condition s0·

∑
i∈[k⟩

(
uigi,π(0)

)
> 0 ensures that the codeword

is not an all-zero codeword. And since
∑
i∈[k⟩

(
uigi,π(m)

)
is the number in the codeword uG with the (m + 1)-th
highest absolute value, it cannot be 0 when m < d(C),
so the objective function of Fπ,s is well defined.) Therefore
fπ,s = hm(Cπ,s). Since hm(C) = maxπ∈Π,s∈S hm(Cπ,s),
we get hm(C) = maxπ∈Π,s∈S fπ,s. □

The lemma above considers hm(C) for m > 0 because
h0(C) ≡ 1 as long as C contains a nonzero codeword.
It indicates a baseline method for finding the m-height of an
Analog Code: solve n! · 2n linear-fractional programs Fπ,s,
and take the maximum of their corresponding values of fπ,s.
It turns the m-Height Problem to a computational problem.
But when n is large, the number of linear-fractional programs
to solve, n! · 2n, is still prohibitively high. In the following,
we present an improved method that makes the computation
substantially more efficient.

B. More Efficient Algorithm for m-Height Problem

Let m ∈ [n⟩ − {0}. Let Ψ = {−1, 1}m be the set of 2m

binary vectors of length m whose elements are either 1 or −1.
Let (a, b,X, ψ) be a tuple where a ∈ [n⟩, b ∈ [n⟩ − {a},

X ⊆ [n⟩−{a, b}, |X| = m−1, and ψ = (s0, s1, · · · , sm−1) ∈
Ψ. Let Γ denote the set of all the

n(n− 1)
(
n− 2
m− 1

)
2m

such tuples.
Given a tuple (a, b,X, ψ) ∈ Γ, let x1, x2, · · · , xm−1 denote

the m− 1 integers in X such that

x1 < x2 < · · · < xm−1.

Define Y ≜ [n⟩−X −{a, b}, and let xm+1, xm+2, · · · , xn−1

denote the n−m− 1 integers in Y such that

xm+1 < xm+2 < · · · < xn−1.

Let x0 = a and xm = b. Then x0, x1, · · · , xn−1 are the n
distinct integers in [n⟩. Let τ denote the permutation on [n⟩
such that τ(j) = xj for j ∈ [n⟩. We call τ the quasi-sorted
permutation given (a, b,X, ψ). Let Ca,b,X,ψ denote a subset
of nonzero codewords of C such that a nonzero codeword c =
(c0, c1, · · · , cn−1) ∈ C is in Ca,b,X,ψ if and only if it satisfies
the following properties:

1) For j = 1, 2, · · · ,m− 1, |cτ(0)| ≥ |cτ(j)| ≥ |cτ(m)|.
2) For j = m+ 1,m+ 2, · · · , n− 1, |cτ(m)| ≥ |cτ(j)|.
3) ∀ j ∈ [m⟩, sgn(cτ(j)) = sj . (Note that here sj is the

j-th element of ψ.)
For any nonzero codeword c = (c0, c1, · · · , cn−1) ∈ C,

there exists at least one tuple (a, b,X, ψ) ∈ Γ such that
c ∈ Ca,b,X,ψ . (To see that, let π ∈ Π be a permutation
such that |cπ(0)| ≥ |cπ(1)| ≥ · · · ≥ |cπ(n−1)|. Then we let
a = π(0), b = π(m), X = {π(1), π(2), · · · , π(m − 1)}.
Let x1, x2, · · · , xm−1 denote the m − 1 integers in X such
that x1 < x2 < · · · < xm−1, and let x0 = a. Then we let
ψ = (s0, s1, · · · , sm−1) where ∀ j ∈ [m⟩, sj = sgn(cxj). For
the above tuple (a, b,X, ψ), we have c ∈ Ca,b,X,ψ .) Therefore
we have C − {0} =

⋃
(a,b,X,ψ)∈Γ Ca,b,X,ψ . Since hm(0) = 0,

we get

hm(C) = max
(a,b,X,ψ)∈Γ

hm(Ca,b,X,ψ)

Theorem 2: Let C be a linear [n, k] code over R. Let
G = (gi,j)k×n ∈ Rk×n be a generator matrix of C where
no column is 0. Let d(C) be the minimum distance of C, and
let m ∈ {1, 2, · · · ,min{d(C), n − 1}}. Let (a, b,X, ψ) ∈ Γ,

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

7746 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

where ψ = (s0, s1, · · · , sm−1). Define Y ≜ [n⟩−X − {a, b},
and let τ be the quasi-sorted permutation given (a, b,X, ψ).
Let LPa,b,X,ψ denote the following linear program with k real-
valued variables u0, u1, · · · , uk−1:

maximize
∑

i∈[k⟩
(s0gi,a) · ui

s.t.
∑

i∈[k⟩
(sτ−1(j)gi,j − s0gi,a) · ui ≤ 0 for j ∈ X∑

i∈[k⟩
(−sτ−1(j)gi,j) · ui ≤ −1 for j ∈ X∑

i∈[k⟩
gi,b · ui = 1∑

i∈[k⟩
gi,j · ui ≤ 1 for j ∈ Y∑

i∈[k⟩
−gi,j · ui ≤ 1 for j ∈ Y

Let za,b,X,ψ be the optimal objective value of LPa,b,X,ψ if it
is bounded, let za,b,X,ψ =∞ if the optimal objective value of
LPa,b,X,ψ is unbounded, and let za,b,X,ψ = 0 if LPa,b,X,ψ is
infeasible. Then

hm(C) = max
(a,b,X,ψ)∈Γ

za,b,X,ψ

Proof: Note that hm(C) = ∞ if and only if m ≥
d(C). Let us first consider the case m < d(C). In this
case, given any tuple (a, b,X, ψ) ∈ Γ, let Za,b,X,ψ denote
the subset of codewords of Ca,b,X,ψ such that a codeword
c = (c0, c1, · · · , cn−1) ∈ Ca,b,X,ψ is in Za,b,X,ψ if and only if
cb = 1. Since Za,b,X,ψ ⊆ Ca,b,X,ψ , we have hm(Za,b,X,ψ) ≤
hm(Ca,b,X,ψ). Since hm(C) = max(a,b,X,ψ)∈Γ hm(Ca,b,X,ψ),
we get hm(C) ≥ max(a,b,X,ψ)∈Γ hm(Za,b,X,ψ).

On the other side, for any codeword c =
(c0, c1, · · · , cn−1) ∈ Ca,b,X,ψ , consider the vector
ĉ = (ĉ0, ĉ1, · · · , ĉn−1) ≜ (1/cb) · c. Since c ∈ Ca,b,X,ψ , there
exists a quasi-sorted permutation τ on [n⟩ such that for any
j ∈ {1, 2, · · · ,m − 1} and l ∈ {m + 1,m + 2, · · · , n − 1},
we have |cτ(0)| ≥ |cτ(j)| ≥ |cτ(m)| = |cb| ≥ |cτ(l)|. Therefore,
if we sort the n elements in c by their absolute values from
the highest to the lowest, cb will be the (m + 1)-th element.
Since c ̸= 0 and m + 1 ≤ d(C), as every nonzero codeword
has at least d(C) nonzero elements, we have cb ̸= 0, which
means the vector ĉ is well defined.

Let u ∈ Rk be the vector such that c = uG. Then
û ≜ (1/cb) · u is the vector such that ĉ = ûG. So ĉ ∈ C.
Since ĉ is just a scaled version of c – namely, ∀ j ∈ [n⟩,
ĉj = cj/cb – and c ∈ Ca,b,X,ψ , the codeword ĉ also
satisfies the first two properties of Ca,b,X,ψ , that is: (1) for
j = 1, 2, · · · ,m − 1, |ĉτ(0)| ≥ |ĉτ(j)| ≥ |ĉτ(m)|, and (2)
for j = m + 1,m + 2, · · · , n − 1, |ĉτ(m)| ≥ |ĉτ(j)|.
As to the third property of Ca,b,X,ψ , if cb > 0, we have
sgn(ĉτ(j)) = sgn(cτ(j)/cb) = sgn(cτ(j)) = sj for j ∈ [m⟩,
which leads to ĉ ∈ Ca,b,X,ψ; otherwise cb < 0, and we
have sgn(ĉτ(j)) = sgn(cτ(j)/cb) = −sgn(cτ(j)) = −sj for
j ∈ [m⟩, which leads to ĉ ∈ Ca,b,X,−ψ , where −ψ =
−(s0, s1, · · · , sm−1) = (−s0,−s1, · · · ,−sm−1). Therefore
ĉ ∈ Ca,b,X,ψ ∪ Ca,b,X,−ψ in any case. Since ĉb = cb/cb =
1, we get ĉ ∈ Za,b,X,ψ ∪ Za,b,X,−ψ . Since hm(c) =
|cτ(0)|/|cτ(m)| = |cτ(0)/cb|/|cτ(m)/cb| = |ĉτ(0)|/|ĉτ(m)| =

hm(ĉ), and c can be any codeword in Ca,b,X,ψ , we get

hm(Ca,b,X,ψ) ≤ max{hm(Za,b,X,ψ), hm(Za,b,X,−ψ)}.

Since hm(C) = max(a,b,X,ψ)∈Γ hm(Ca,b,X,ψ), we get hm(C)

≤max(a,b,X,ψ)∈Γ max{hm(Za,b,X,ψ), hm(Za,b,X,−ψ)}
= max{max(a,b,X,ψ)∈Γ hm(Za,b,X,ψ),

max(a,b,X,ψ)∈Γ hm(Za,b,X,−ψ)}
= max{max(a,b,X,ψ)∈Γ hm(Za,b,X,ψ),

max(a,b,X,ψ)∈Γ hm(Za,b,X,ψ)}
= max(a,b,X,ψ)∈Γ hm(Za,b,X,ψ)

Since we also have hm(C) ≥ max(a,b,X,ψ)∈Γ hm(Za,b,X,ψ),
we get

hm(C) = max
(a,b,X,ψ)∈Γ

hm(Za,b,X,ψ)

Let us now consider hm(Za,b,X,ψ), which equals

maxc=(c0,c1,··· ,cn−1)∈Za,b,X,ψ hm(c)

= maxc∈Za,b,X,ψ |cτ(0)/cτ(m)|
= maxc∈Za,b,X,ψ |cτ(0)/cb|
= maxc∈Za,b,X,ψ |cτ(0)/1|
= maxc∈Za,b,X,ψ |cτ(0)|

if Za,b,X,ψ ̸= ∅, and equals 0 otherwise. Let us first
consider the sub-case where Za,b,X,ψ ̸= ∅. Every code-
word c ∈ Za,b,X,ψ is equal to uG for some vector u =
(u0, u1, · · · , uk−1) ∈ Rk, and it needs to satisfy the three
properties of Ca,b,X,ψ plus the property that cτ(m) = 1 (since
τ(m) = b). Since G = (gi,j)k×n, ∀ j ∈ [n⟩, cτ(j) =∑
i∈[k⟩ uigi,τ(j). So the value of hm(Za,b,X,ψ), which equals

max
u∈Rk,uG∈Za,b,X,ψ

∣∣∣∣∣∣
∑
i∈[k⟩

uigi,τ(0)

∣∣∣∣∣∣ ,
is the optimal objective value of the following problem:

maximize |
∑

i∈[k⟩
uigi,τ(0)|

s.t. |
∑

i∈[k⟩
uigi,τ(0)| ≥ |

∑
i∈[k⟩

uigi,τ(j)|

for j = 1, 2, · · · ,m− 1

|
∑

i∈[k⟩
uigi,τ(j)| ≥ |

∑
i∈[k⟩

uigi,τ(m)|

for j = 1, 2, · · · ,m− 1∑
i∈[k⟩

uigi,τ(m) = 1

|
∑

i∈[k⟩
uigi,τ(m)| ≥ |

∑
i∈[k⟩

uigi,τ(j)|

for j = m+ 1,m+ 2, · · · , n− 1

sgn(
∑

i∈[k⟩
uigi,τ(j)) = sj

for j = 0, 1, · · · ,m− 1

Note that τ(0) = a, τ(m) = b, and |
∑
i∈[k⟩ uigi,τ(j)| =

sgn(
∑
i∈[k⟩ uigi,τ(j)) · (

∑
i∈[k⟩ uigi,τ(j)) for all j ∈ [n⟩.

So for j ∈ [m⟩, |
∑
i∈[k⟩ uigi,τ(j)| = sj

∑
i∈[k⟩ uigi,τ(j) =∑

i∈[k⟩(sjgi,τ(j)) · ui. The permutation τ imposes a one-to-
one mapping from {1, 2, · · · ,m − 1} to the m − 1 indices

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

JIANG: ANALOG ERROR-CORRECTING CODES: DESIGNS AND ANALYSIS 7747

in X , therefore each sjgi,τ(j) for j ∈ {1, 2, · · · ,m − 1}
can be expressed as sτ−1(j′)gi,j′ for j′ ≜ τ(j) ∈ X .
The permutation τ also imposes a one-to-one mapping from
{m + 1,m + 2, · · · , n − 1} to Y , therefore the condition
“|

∑
i∈[k⟩ uigi,τ(j)| ≤ |

∑
i∈[k⟩ uigi,τ(m)| = 1 for j =

m + 1,m + 2, · · · , n − 1” can be expressed as “−1 ≤∑
i∈[k⟩ uigi,j ≤ 1 for j ∈ Y ”. Consequently, it can be

seen that the above optimization problem is equivalent to
LPa,b,X,ψ , and therefore

hm(Za,b,X,ψ) = za,b,X,ψ

when Za,b,X,ψ ̸= ∅. When Za,b,X,ψ = ∅, we will
have hm(Za,b,X,ψ) = 0 by definition, and LPa,b,X,ψ
will be infeasible, which will mean za,b,X,ψ = 0.
So hm(Za,b,X,ψ) = za,b,X,ψ in any case. Since hm(C) =
max(a,b,X,ψ)∈Γ hm(Za,b,X,ψ), we get

hm(C) = max
(a,b,X,ψ)∈Γ

za,b,X,ψ

when m < d(C). So the theorem holds when m < d(C).
Now consider the case where m = d(C). In this case,

hm(C) = ∞, and there exists a nonzero codeword c =
(c0, c1, · · · , cn−1) ∈ C of Hamming weight d(C) and a
permutation π ∈ Π such that |cπ(0)| ≥ |cπ(1)| ≥ · · · ≥
|cπ(m−1)| > |cπ(m)| = |cπ(m+1)| = · · · = |cπ(n−1)| = 0.
Let u ∈ Rk be the length-k vector such that c = uG. Let
(i∗, b∗) ∈ {0, 1, · · · , k−1}×{π(m), π(m+1), · · · , π(n−1)}
be the pair of indexes such that

|gi∗,b∗ | = max
i∈{0,1,··· ,k−1},j∈{π(m),π(m+1),··· ,π(n−1)}

|gi,j |

Since no column of the generator matrix G = (gi,j)k×n
is an all-zero vector, we have gi∗,b∗ ̸= 0. Let ϵ ≥ 0 be
a non-negative real number, whose value will be discussed
below. Let uϵ ≜ (u0, · · · , ui∗−1, ui∗ + ϵ, ui∗+1, · · · , uk−1),
and let cϵ = (cϵ0, c

ϵ
1, · · · , cϵn−1) ≜ uϵG = uG +

(0, · · · , 0, ϵ, 0, · · · , 0)G = c + ϵ(gi∗,0, gi∗,1, · · · , gi∗,n−1) =
(c0 + ϵgi∗,0, c1 + ϵgi∗,1, · · · , cn−1 + ϵgi∗,n−1). Let v be the
greatest integer in [m⟩ such that |cπ(0)| = |cπ(1)| = · · · =
|cπ(v)|. There exists a sufficiently small number ϵ0 > 0 such
that whenever 0 ≤ ϵ ≤ ϵ0, all the following conditions are
satisfied:
• Condition 1: ∀ j ∈ [m⟩, |cϵπ(j)| > |c

ϵ
b∗ |. To satisfy this

condition, it is sufficient to have

ϵ0 < min
j∈[m⟩

|cπ(j)|
|gi∗,π(j)|+ |gi∗,b∗ |

,

because then for all j ∈ [m⟩, we have |cϵπ(j)| = |cπ(j) +
ϵgi∗,π(j)| ≥ |cπ(j)| − ϵ|gi∗,π(j)| = |cπ(j)| − ϵ(|gi∗,π(j)|+
|gi∗,b∗ |) + ϵ|gi∗,b∗ | > ϵ|gi∗,b∗ | = |0 + ϵgi∗,b∗ | = |cb∗ +
ϵgi∗,b∗ | = |cϵb∗ |.
Since ∀ j ∈ {m,m + 1, · · · , n − 1}, we have |gi∗,b∗ | ≥
|gi∗,π(j)| and cϵπ(j) = cπ(j) + ϵgi∗,π(j) = 0 + ϵgi∗,π(j) =
ϵgi∗,π(j), we get |cϵb∗ | = ϵ|gi∗,b∗ | ≥ ϵ|gi∗,π(j)| = |cϵπ(j)|.
So Condition 1 implies that

min
j∈[m⟩

|cϵπ(j)|> |c
ϵ
b∗ | ≥ max

j∈{m,m+1,··· ,n−1}−{π−1(b∗)}
|cϵπ(j)|

• Condition 2: ∀ j ∈ [m⟩, sgn(cϵπ(j)) = sgn(cπ(j)).
To satisfy this condition, it is sufficient to have

ϵ0 < min
j∈[m⟩,gi∗,π(j) ̸=0

|cπ(j)|
|gi∗,π(j)|

if {j ∈ [m⟩|gi∗,π(j) ̸= 0} ≠ ∅ (and no constraint for ϵ0
otherwise) because then for all j ∈ [m⟩, if sgn(cπ(j)) =
1, which means cπ(j) ≥ 0, we get cϵπ(j) = cπ(j) +
ϵgi∗,π(j) ≥ |cπ(j)| − ϵ|gi∗,π(j)| ≥ 0, so sgn(cϵπ(j)) =
1 = sgn(cπ(j)); otherwise sgn(cπ(j)) = −1, which means
cπ(j) < 0, we get cϵπ(j) = cπ(j) + ϵgi∗,π(j) ≤ −|cπ(j)|+
ϵ|gi∗,π(j)| < 0, so sgn(cϵπ(j)) = −1 = sgn(cπ(j)).
Condition 2 implies that ∀ j ∈ [m⟩,

|cϵπ(j)| = sgn(cπ(j)) · cϵπ(j)

• Condition 3: if v < m− 1, then

min
j∈[v+1⟩

|cϵπ(j)| > max
j∈[m⟩−[v+1⟩

|cϵπ(j)|.

To satisfy this condition, it is sufficient to have

ϵ0 <
|cπ(0)| − |cπ(v+1)|

maxj1∈[v+1⟩ |gi∗,j1 |+ maxj2∈[m⟩−[v+1⟩ |gi∗,j2 |

if {j ∈ [m⟩|gi∗,j ̸= 0} ≠ ∅ (and no constraint for ϵ0
otherwise) because then ∀ j1 ∈ [v + 1⟩ and j2 ∈ [m⟩ −
[v+1⟩, |cϵπ(j1)

|−|cϵπ(j2)
| = |cπ(j1)+ϵgi∗,π(j1)|−|cπ(j2)+

ϵgi∗,π(j2)| ≥ |cπ(j1)|−ϵ|gi∗,π(j1)|−|cπ(j2)|−ϵ|gi∗,π(j2)| =
(|cπ(j1)|−|cπ(j2)|)−ϵ(|gi∗,π(j1)|+|gi∗,π(j2)|) ≥ (|cπ(0)|−
|cπ(v+1)|)− ϵ(|gi∗,π(j1)|+ |gi∗,π(j2)|) > 0.

Let us consider ϵ ∈ [0, ϵ0] in the following. Let a∗ be the
integer in {π(0), π(1), · · · , π(v)} such that

sgn(ca∗)gi∗,a∗ = max
j∈[v+1⟩

sgn(cπ(j))gi∗,π(j).

Let

X∗ = {π(0), π(1), · · · , π(m− 1)} − {a∗}.

Let x1, x2, · · · , xm−1 denote the m − 1 integers in X∗ such
that x1 < x2 < · · · < xm−1. Let

s0 = sgn(ca∗), and sj = sgn(cxj) for j = 1, 2, · · · ,m− 1

and let

ψ∗ = (s0, s1, · · · , sm−1).

We shall prove the following claim:

cϵ ∈ Ca∗,b∗,X∗,ψ∗ for all ϵ ∈ [0, ϵ0].

To prove the above claim, first, ∀ j ∈ [v + 1⟩, we have
|cϵa∗ | = sgn(cϵa∗) · cϵa∗ = sgn(ca∗) · cϵa∗ (by Condition 2) =
sgn(ca∗) · (ca∗ + ϵgi∗,a∗) = sgn(ca∗)ca∗ + ϵ · sgn(ca∗)gi∗,a∗ ≥
|ca∗ |+ ϵ · sgn(cπ(j))gi∗,π(j) = |cπ(j)|+ ϵ · sgn(cπ(j))gi∗,π(j) =
sgn(cπ(j))cπ(j) + ϵ · sgn(cπ(j))gi∗,π(j) = sgn(cπ(j))(cπ(j) +
ϵ · gi∗,π(j)) = sgn(cπ(j)) · cϵπ(j) = sgn(cϵπ(j)) ·
cϵπ(j) (by Condition 2) = |cϵπ(j)|. Combining the above prop-
erty with Condition 3, we see that ∀ j ∈ [m⟩, |cϵa∗ | ≥ |cϵπ(j)|.
Further combining it with Condition 1, we see that ∀ j1 ∈

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

7748 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

{1, 2, · · · ,m−1} and j2 ∈ {m,m+1, · · · , n−1}−{π−1(b∗)},
we get the property

|cϵa∗ | ≥ |cϵπ(j1)
| > |cϵb∗ | ≥ |cϵπ(j2)

|.

Second, by Condition 2, we get the property sgn(cϵa∗) =
sgn(ca∗) = s0 and for j = 1, 2, · · · ,m − 1, sgn(cϵxj) =
sgn(cxj) = sj . By combining the above two properties,
we prove the above claim.

Now consider ϵ ∈ (0, ϵ0] in the following, and let

dϵ = (dϵ0, d
ϵ
1, · · · , dϵn−1) ≜

1
ϵgi∗,b∗

· cϵ.

Since dϵ is just a scaled version of cϵ and dϵb∗ =
cϵb∗/(ϵgi∗,b∗) = (cb∗ + ϵgi∗,b∗)/(ϵgi∗,b∗) = (0 +
ϵgi∗,b∗)/(ϵgi∗,b∗) = 1, with the same analysis as before, we get
dϵ ∈ Za∗,b∗,X∗,ψ∗ if gi∗,b∗ > 0, and dϵ ∈ Za∗,b∗,X∗,−ψ∗ if
gi∗,b∗ < 0.

Let ûϵ = 1
ϵgi∗,b∗

·uϵ be the vector such that dϵ = ûϵG. Then
ûϵ is a feasible solution to the linear program LPa∗,b∗,X∗,ψ∗

if gi∗,b∗ > 0, and is a feasible solution to the linear program
LPa∗,b∗,X∗,−ψ∗ if gi∗,b∗ < 0.

Consider the limit limϵ→0 hm(dϵ). It equals limϵ→0 |dϵa∗ | =
limϵ→0 |cϵa∗ |/|ϵgi∗,b∗ | = limϵ→0 |ca∗ + ϵgi∗,a∗ |/|ϵgi∗,b∗ | →
∞. So when ϵ approaches 0, the objective value of
LPa∗,b∗,X∗,ψ∗ or LPa∗,b∗,X∗,−ψ∗ that corresponds to the
solution ûϵ approaches ∞. So either za∗,b∗,X∗,ψ∗ = ∞ or
za∗,b∗,X∗,−ψ∗ =∞. Since here m = d(C), we have hm(C) =
∞ = max(a,b,X,ψ)∈Γ za,b,X,ψ . □

The above theorem naturally leads to an algorithm that
computes all the m-height of a code C, for m = 0, 1, · · · , n−1,
and also discovers the minimum distance d(C):

1) h0(C) = 1.
2) For m = 1, 2, 3 · · · , compute hm(C) =

maxa,b,X,ψ∈Γ za,b,X,ψ by solving the linear programs
LPa,b,X,ψ for all (a, b,X, ψ) ∈ Γ. Stop as soon as we
meet the first value m∗ such that hm∗(C) =∞. We get
d(C) = m∗.

3) For m = m∗ + 1,m∗ + 2, · · · , n− 1, hm(C) =∞.
The above algorithm solves n(n − 1)

(
n−2
m−1

)
2m linear pro-

grams of k variables to compute an hm(C). That is much more
efficient than the baseline algorithm, which needs to solve
n! · 2n linear-fractional programs of k variables. The number
of (linear or linear-fractional) programs to solve is reduced by
a factor of

n! · 2n

n(n− 1)
(
n−2
m−1

)
2m

= (m− 1)! · (n−m− 1)! · 2n−m.

C. Finding Exact m-Heights of Analog ECCs

The efficient m-height algorithm presented above can be
used to find the exact m-heights of Analog ECCs. For some
of the known codes reviewed in Section II, only upper bounds
to their m-heights are known, where m is 1 or 2. For example,
for the third code surveyed in Section II, which is a one-
error-detecting code, it has an upper bound to its 1-height:
h1(C) ≤ ⌈n/r⌉ − 1, where r = n − k is the redundancy
of the [n, k] code. By using the m-height algorithm, we find
that for all n ≤ 50 and k < n, codes built following the

TABLE I
m-HEIGHTS OF [n, k = n− 4] ONE-ERROR-CORRECTING

CODES

TABLE II
m-HEIGHTS OF [n, k = n− 2] ONE-ERROR-CORRECTING

CODES

code construction have h1(C) = ⌈n/r⌉− 1, namely, the upper
bound is tight. Furthermore, we find that hm(C) = ∞ when
m > 1 for those codes.

For the fourth code surveyed in Section II, which is a one-
error-correcting code, it has an upper bound to its 2-height:
h2(C) ≤ ⌈2n/r⌉−1. By using the m-height algorithm, we can
find its specific m-height values. Some sample results are
shown in Table I, based on codes built following the code
construction. (Note that the code construction in [1] is not
explicit. So the codes built here may not be the only ones.) It
can be seen that the upper bound for 2-height is often tight,
but sometimes the actual 2-height can be lower (as for the
[7, 3] code and the [11, 7] code). The m-height algorithm also
discovers the m-heights of the codes for m ̸= 2 as well.

For the sixth code surveyed in Section II, which is a one-
error-correcting code, it has a known formula for its 2-height:
h2(C) = 1

2 sin2(π/(2n))
− 1. Using the m-height algorithm,

we can find its m-heights for m ̸= 2 as well. Some sample
results are shown in Table II.

IV. ANALOG PERMUTATION CODE

The design of Analog ECCs is still a largely open problem.
As can be seen from the survey in Section II, existing codes
are mainly limited to detecting or correcting one UME (except
for repetition codes). So it is important to explore various
approaches for designing new codes. One fundamental method
of code design is through computer search, where good codes
are identified from many randomly sampled codes (possibly
with guidance on their code constructions). To analyze the
error-correction capabilities of the codes, their m-heights

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

JIANG: ANALOG ERROR-CORRECTING CODES: DESIGNS AND ANALYSIS 7749

need to be computed. It is therefore important to make the
computing of m-heights as efficient as possible, so that more
codes can be sampled and analyzed. One way to reduce the
complexity of the m-height algorithm is to construct codes
with special structures. In this section, we explore one such
code structure, where the columns of the generator matrix are
distinct permutations of the same set of real numbers. Let us
call such codes Analog Permutation Codes. The complexity of
the m-height algorithm for [n, k] Analog Permutation Codes
can be reduced by a factor of n.

A. Construction and m-Height of Analog Permutation Code

Consider linear [n, k] Analog ECCs over R, where n = k!.
Let π : [k⟩ → [k⟩ denote a permutation on [k⟩. Let Π
denote the set of all k! such permutations. Let us label those
k! permutations by π0, π1, · · · , πk!−1, namely, Π = {πi|i ∈
[k!⟩}. For convenience, let π0 be the identity permutation,
namely, π0(i) = i for all i ∈ [k⟩.

Similarly, let λ : [n⟩ → [n⟩ denote a permutation on [n⟩.
(Note that n = k!.) Let Λ denote the set of all n! such permuta-
tions. Let us label those n! permutations by λ0, λ1, · · · , λn!−1,
namely, Λ = {λi|i ∈ [n!⟩}. For convenience, let λ0 be the
identity permutation, namely, λ0(i) = i for all i ∈ [n⟩.

Let g = (g0, g1, · · · , gk−1)T ∈ Rk be a column vector of
length k. Given a permutation π ∈ Π, let

gπ ≜ (gπ(0), gπ(1), · · · , gπ(k−1))T ∈ Rk

be a column vector that permutes the entries in g by the
permutation π. Define a k × n matrix G as

G = (gπ0 ,gπ1 , · · · ,gπn−1).

An Analog ECC with G as its generator matrix is called an
Analog Permutation Code.
∀ π ∈ Π, let us use (π(0), π(1), · · · , π(k−1)) to denote the

value of the permutation π. (For example, π = (2, 0, 1) repre-
sents a permutation π where π(0) = 2, π(1) = 0 and π(2) =
1. Note that this notation is different from the cyclic form of
permutations.) Similarly, we use (λ(0), λ(1), · · · , λ(n−1)) to
denote the value of a permutation λ ∈ Λ.

Example 1: Let k = 3 and n = k! = 6. Let π0 = (0, 1, 2),
π1 = (0, 2, 1), π2 = (1, 0, 2), π3 = (1, 2, 0), π4 = (2, 0, 1),
π5 = (2, 1, 0). Then the k × n generator matrix G is

G =

 g0 g0 g1 g1 g2 g2
g1 g2 g0 g2 g0 g1
g2 g1 g2 g0 g1 g0


□

In this section, we shall prove the following result on the
m-height algorithm for Analog Permutation Codes.

Theorem 3: Let C be a linear [n, k] Analog Permutation
Code over R. Let G be its generator matrix where no column
is 0. Let d(C) be the minimum distance of C, and let m ∈
{1, 2, · · · ,min{d(C), n − 1}}. Let za,b,X,ψ be as defined in
Theorem 2. Then

hm(C) = max
(0,b,X,ψ)∈Γ

z0,b,X,ψ

Compared to Theorem 2, the theorem above improves
the time complexity of the m-height algorithm by a factor
of n. Instead of solving linear programs for all the tuples
(a, b,X, ψ) ∈ Γ, here we fix a to 0, and consider only
those tuples (0, b,X, ψ). To prove the theorem, let us start
by analyzing properties of Analog Permutation Codes.

B. Properties of Analog Permutation Code

Given an information vector u = (u0, u1, · · · , uk−1) ∈ Rk
and the generator matrix G, let c = (c0, c1, · · · , cn−1) =
uG = (ugπ0 ,ugπ1 , · · · ,ugπn−1) be the corresponding code-
word. Given any i ∈ [k!⟩, define uπi as

uπi ≜ (uπi(0), uπi(1), · · · , uπi(k−1)),

which permutes the k numbers of the vector u by the permu-
tation πi ∈ Π. Given any j ∈ [n!⟩, define Gλj as

Gλj ≜ (gπλj(0) , gπλj(1) , · · · , gπλj(n−1)),

which permutes the n columns of the generator matrix G by
the permutation λj ∈ Λ. Given any j ∈ [n!⟩, define cλj as

cλj ≜ (cλj(0), cλj(1), · · · , cλj(n−1)),

which permutes the n numbers of the codeword c by the
permutation λj ∈ Λ. We have cλj = uGλj for j ∈ [n!⟩.
∀ i ∈ [k!⟩, j ∈ [n!⟩ and p ∈ [n⟩, let fi,j(p) be the integer

in [n⟩ such that

uπigπλj(p) ≡ ugπfi,j(p) . (1)

Since uπigπλj(p) =
∑
z∈[k⟩ uπi(z)gπλj(p)(z) =∑

z∈[k⟩ uzgπλj(p)(π
−1
i (z)), we see that fi,j(p) is the integer in

[n⟩ such that

πfi,j(p) = πλj(p) ◦ π
−1
i (2)

where “◦” is the “composite” operation between two functions
(namely, for any two functions h1 and h2, their composite
h1 ◦ h2 is a function such that (h1 ◦ h2)(x) = h1(h2(x)) for
all x), and π−1

i is the inverse function of πi.
Lemma 2: ∀ i ∈ [k!⟩ and j ∈ [n!⟩, the function fi,j , which

maps p to fi,j(p) for all p ∈ [n⟩, is a permutation on [n⟩.
Proof: Since πλj(p)◦π

−1
i is a permutation on [k⟩, πfi,j(p)

is a permutation on [k⟩. So fi,j(p) ∈ [k!⟩ = [n⟩. ∀ p ̸= q ∈
[n⟩, λj(p) ̸= λj(q) as λj is a permutation, so πλj(p) ̸= πλj(q)
and therefore πλj(p)◦π

−1
i ̸= πλj(q)◦π

−1
i . So whenever p ̸= q,

πfi,j(p) ̸= πfi,j(q) and therefore fi,j(p) ̸= fi,j(q). So fi,j is a
permutation on [n⟩. □
∀ j ∈ [n!⟩, let Sj be a set of n = k! permutations on [n⟩:

Sj ≜ {fi,j | i ∈ [k!⟩}.

Example 2: Let us continue with Example 1. Let j = 0.
Since λ0 is the identity permutation, πλj(p) = πp. Now let us
find fi,0 for i = 0, 1, · · · , k! − 1 = 5. Let us show how to
compute fi,0 for i = 3. The other fi,j’s can be computed in
a similar way.

When i = 3, we have π3 = (1, 2, 0), therefore
π−1

3 = (2, 0, 1). When p = 0, since uπigπλj(p) =

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

7750 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

uπ3gπ0 = (uπ3(0), uπ3(1), uπ3(2)) · (gπ0(0), gπ0(1), gπ0(2))
T =

(u1, u2, u0) · (g0, g1, g2)T = (u0, u1, u2) · (g2, g0, g1)T =
ugπ4 , we get fi,j(p) = f3,0(0) = 4. (Another way to compute
f3,0(0) is that since πfi,j(p) = πλj(p) ◦π

−1
i , we get πf3,0(0) =

πλ0(0) ◦π
−1
3 = π0 ◦π−1

3 = (0, 1, 2)◦ (2, 0, 1) = (2, 0, 1) = π4,
therefore f3,0(0) = 4.) In the same way, we get f3,0(1) = 2,
f3,0(2) = 5, f3,0(3) = 0, f3,0(4) = 3, f3,0(5) = 1. So the
permutation f3,0 = (4, 2, 5, 0, 3, 1).

In the same way, we get f0,0 = (0, 1, 2, 3, 4, 5), f1,0 =
(1, 0, 3, 2, 5, 4), f2,0 = (2, 4, 0, 5, 1, 3), f4,0 = (3, 5, 1, 4, 0, 2),
f5,0 = (5, 3, 4, 1, 2, 0). And S0 = {f0,0, f1,0, · · · , f5,0}. □

Lemma 3: The n permutations in the set S0 are all different.
That is, ∀ i ̸= j ∈ [n⟩, fi,0 ̸= fj,0.

Proof: Consider fi,0(0) and fj,0(0). Since πfi,0(0) =
πλ0(0) · π

−1
i = π0 · π−1

i = π−1
i and similarly πfj,0(0) = π−1

j ,
we get πfi,0(0) ̸= πfj,0(0) and therefore fi,0(0) ̸= fj,0(0).
Since two functions are equal only if they have the same value
for every input, we get fi,0 ̸= fj,0. □

It is worthwhile to note that fi,j , as a permutation on [n⟩:

fi,j =
(

0 1 · · · n− 1
fi,j(0) fi,j(1) · · · fi,j(n− 1)

)
can be equivalently seen as a permutation on
{π0, π1, · · · , πn−1}:

fi,j =
(

π0 π1 · · · πn−1

πfi,j(0) πfi,j(1) · · · πfi,j(n−1)

)
.

We shall call the above the equivalent view of fi,j . Since
πfi,j(p) = πλj(p) ◦ π

−1
i by Equation 2, the equivalent view

of fi,j can also be expressed as:(
π0 π1 · · · πn−1

πλj(0) ◦ π
−1
i πλj(1) ◦ π

−1
i · · · πλj(n−1) ◦ π−1

i

)
.

Lemma 4: ⟨S0, ◦⟩ is a permutation group.
Proof: The “composite” operation ◦ is known to be

associative. Let us now show that S0 is closed under the
operation ◦. Consider any two permutations fi,0 ∈ S0 and
fj,0 ∈ S0 and their equivalent views. ∀ p ∈ [n⟩, since
πfj,0(p) = πλ0(p) ◦ π

−1
j = πp ◦ π−1

j , the permutation fj,0
maps πp to πp ◦ π−1

j . Similarly, since πfi,0(q) = πq ◦ π−1
i

for all q ∈ [n⟩, the permutation fi,0 maps πq to πq ◦ π−1
i

for all πq ∈ Π. So the permutation fi,0 ◦ fj,0 maps πp to
(πp ◦ π−1

j) ◦ π−1
i = πp ◦ (π−1

j ◦ π−1
i) = πp ◦ (πi ◦ πj)−1.

Define πϖ(i,j) ≜ πi ◦ πj ∈ Π. Then fi,0 ◦ fj,0 maps πp to
πp ◦ π−1

ϖ(i,j) for all p ∈ [n⟩. So fi,0 ◦ fj,0 = fϖ(i,j),0 ∈ S0.
Therefore S0 is closed under the operation ◦.

Let us show that f0,0 ∈ S0 is an identity element, namely,
for any fi,0 ∈ S0, fi,0 ◦ f0,0 = f0,0 ◦ fi,0 = fi,0. By the
analysis above, f0,0 maps πp to πp ◦π−1

0 = πp for all p ∈ [n⟩.
So f0,0 is the identity permutation (0, 1, · · · .n − 1). So f0,0
is clearly an identity element in S0.

Let us now show that every permutation fi,0 ∈ S0 has an
inverse. For all i ∈ [n⟩, let φ(i) ∈ [n⟩ be the integer such that
πφ(i) = π−1

i . By the above analysis, ∀ p ∈ [n⟩, fi,0 ◦ fφ(i),0

maps πp to πp ◦ (π−1
φ(i) ◦ π

−1
i) = πp ◦ (πi ◦ π−1

i) = πp, and
fφ(i),0 ◦fi,0 maps πp to πp ◦ (π−1

i ◦π
−1
φ(i)) = πp ◦ (π−1

i ◦πi) =
πp. So fi,0 ◦fφ(i),0 = fφ(i),0 ◦fi,0 = (0, 1, · · · , n−1) = f0,0.

So fi,0 ∈ S0 has an inverse fφ(i),0 ∈ S0. Therefore ⟨S0, ◦⟩ is
a permutation group. □

The group S0 is a subgroup of the symmetric group of [n⟩,
Sym([n⟩), which contains all the n! permutations on [n⟩. There
are (n− 1)! distinct right cosets of S0 in Sym([n⟩).

Lemma 5: ∀ i ∈ [k!⟩ and j ∈ [n!⟩, fi,j = fi,0 ◦ f0,j . Also,
∀ j ∈ [n!⟩, Sj is a right coset of S0, and Sj = S0 ◦ f0,j .

Proof: ∀ i ∈ [k!⟩, fi,0 is in S0, and by its equivalent view,
the permutation fi,0 maps πp to πp ◦ π−1

i for all p ∈ [n⟩. f0,j
is in Sym([n⟩), and since πf0,j(q) = πλj(q) ◦ π

−1
0 = πλj(q),

it maps πq to πλj(q) for all q ∈ [n⟩. So for all p ∈ [n⟩, the
permutation fi,0 ◦ f0,j maps πp to πλj(p) ◦ π

−1
i = πfi,j(p).

So fi,0 ◦ f0,j = fi,j , and that leads to the conclusion. □
Let C be a linear [n, k] Analog Permutation Code, whose

generator matrix is G. Given a permutation λ ∈ Λ on [n⟩,
we define Cλ as the following subset of codewords:

Cλ ≜{(c0, c1, · · · , cn−1) ∈ C :
|cλ(0)| ≥ |cλ(1)| ≥ · · · ≥ |cλ(n−1)|}.

As before, the m-height of Cλ is defined as

hm(Cλ) = max
c∈Cλ

hm(c)

if Cλ ̸= ∅, and hm(Cλ) = 0 otherwise.
Lemma 6: ∀ j ∈ [n!⟩, p ∈ [k!⟩, q ∈ [k!⟩ and m ∈ [n⟩,

hm(Cfp,j) = hm(Cfq,j).

Proof: Let us first assume that Cfp,j ̸= ∅. In this case,
let c = (c0, c1, · · · , cn−1) be a codeword in Cfp,j such that
hm(c) = hm(Cfp,j). Let u = (u0, u1, · · · , uk) ∈ Rk be the
vector such that c = uG, where G = (gπ0 ,gπ1 , · · · ,gπn−1)
is the generator matrix.

Define v = (v0, v1, · · · , vn−1) as v = uπpGλj , where
Gλj = (gπλj(0) ,gπλj(1) , · · · ,gπλj(n−1)) permutes the columns
of G by λj . (Note that v may not be a codeword.) Then
∀ i ∈ [n⟩, vi = uπpgπλj(i) . By Equation 1, vi =
ugπfp,j(i) . Since ci = ugπi , vi = cfp,j(i). So v =
(cfp,j(0), cfp,j(1), · · · , cfp,j(n−1)), which permutes the num-
bers in c by the permutation fp,j . Since c ∈ Cfp,j , |cfp,j(0)| ≥
|cfp,j(1)| ≥ · · · ≥ |cfp,j(n−1)|. So |v0| ≥ |v1| ≥ · · · ≥ |vn−1|.
So hm(c) = |v0|/|vm| if vm ̸= 0, hm(c) =∞ if vm = 0 and
v0 ̸= 0, and hm(c) = 0 otherwise (as in this case c = 0).

Define a = (a0, a1, · · · , ak−1) ∈ Rk as a = uπp◦π−1
q

.
Define a codeword b = (b0, b1, · · · , bn−1) as b = aG. Since
aπq = (aπq(0), aπq(1), · · · , aπq(n−1)) and ai = uπp◦π−1

q (i) for
all i, we get aπq(i) = uπp◦π−1

q ◦πq(i) = uπp(i), and therefore
aπq = (uπp(0), uπp(1), · · · , uπp(n−1)) = uπp . So aπqGλj =
uπpGλj = v. So ∀ i ∈ [n⟩, vi = aπqgπλj(i) = agπfq,j(i) .
Therefore v = (agπfq,j(0) ,agπfq,j(1) , · · · ,agπfq,j(n−1)). Since
b = aG = (agπ0 ,agπ1 , · · · ,agπn−1), v permutes the
n numbers in the codeword b by the permutation fq,j .
Since |v0| ≥ |v1| ≥ · · · ≥ |vn−1|, we get |agπfq,j(0) | ≥
|agπfq,j(1) | ≥ · · · ≥ |agπfq,j(n−1) |, therefore |bfq,j(0)| ≥
|bfq,j(1)| ≥ · · · ≥ |bfq,j(n−1)|, which means b ∈ Cfq,j .
Furthermore, hm(b) = hm(c) because both b and c are
permutations of v. So hm(Cfp,j) = hm(c) = hm(b) ≤
maxb′∈Cfq,j hm(b′) = hm(Cfq,j). In the same way, we can

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

JIANG: ANALOG ERROR-CORRECTING CODES: DESIGNS AND ANALYSIS 7751

prove hm(Cfq,j) ≤ hm(Cfp,j). So hm(Cfp,j) = hm(Cfq,j)
when Cfp,j ̸= ∅.

When Cfp,j = ∅, by the above analysis, it is easy to see
Cfq,j = ∅, too. In this case, hm(Cfp,j) = hm(Cfq,j) = 0. □

Lemma 7: ∀ j ∈ [n!⟩, fλj(0),j(0) = 0.
Proof: By its equivalent view, the permutation fλj(0),j

maps π0 to πfλj(0),j(0) = πλj(0) ◦ π
−1
λj(0)

= π0. (The first
equality is due to Equation 2.) So fλj(0),j maps 0 to 0 by its
original definition, namely, fλj(0),j(0) = 0. □

Theorem 4: Let j0, j1, · · · , j(n−1)!−1 be any (n − 1)!
integers in [n!⟩ such that Sj0 , Sj1 , · · · , Sj(n−1)!−1 are (n−1)!
distinct right cosets of S0. Then ∀ m ∈ [n⟩,

hm(C) = max
i∈[(n−1)!⟩

hm(Cfλji (0),ji).

Proof: Since C =
⋃
λ∈Λ Cλ, we get

hm(C) = maxλ∈Λ hm(Cλ). Since Sj0 , Sj1 , · · · ,
Sj(n−1)!−1 form a partition of Λ, we get hm(C) =
maxi∈[(n−1)!⟩maxλ∈Sji hm(Cλ). Since Sji = {fp,ji |p ∈
[k!⟩}, we get hm(C) = maxi∈[(n−1)!⟩maxp∈[k!⟩ hm(Cfp,ji).
By Lemma 6, hm(Cfp,ji) = hm(Cfλji (0),ji), so we get
hm(C) = maxi∈[(n−1)!⟩ hm(Cfλji (0),ji). □

The result below connects the properties of Analog Permu-
tations Codes shown above with the concepts used to compute
the m-heights of analog codes in Section III.

Corollary 1: Let C be a linear [n = k!, k] Analog Permu-
tation Code. Then

hm(C) = max
(0,b,X,ψ)∈Γ

hm(C0,b,X,ψ).

Proof: Consider any codeword c = (c0, c1, · · · , cn−1) ∈
Cfλj(0),j − {0} for any j ∈ [n!⟩. By definition, |cfλj(0),j(0)| ≥
|cfλj(0),j(1)| ≥ · · · ≥ |cfλj(0),j(n−1)|. Since fλj(0),j(0) = 0 by
Lemma 7, we get |c0| ≥ |cfλj(0),j(1)| ≥ · · · ≥ |cfλj(0),j(n−1)|.
So there exists a tuple (0, b,X, ψ) such that c ∈ C0,b,X,ψ .
hm(C) = maxi∈[(n−1)!⟩ hm(Cfλji (0),ji) by Theorem 4.

So hm(C) = maxi∈[(n−1)!⟩maxc∈Cfλji (0),ji
hm(c).

By the analysis above, Cfλji (0),ji − {0} ⊆⋃
(0,b,X,ψ)∈Γ C0,b,X,ψ for every ji. So hm(C − {0}) ≤

hm(
⋃

(0,b,X,ψ)∈Γ C0,b,X,ψ). Since hm(0) = 0, we get
hm(C) ≤ max(0,b,X,ψ)∈Γ hm(C0,b,X,ψ). Since C0,b,X,ψ ⊆ C,
we get hm(C) = max(0,b,X,ψ)∈Γ hm(C0,b,X,ψ). □

C. m-Height Algorithm for Analog Permutation Code

We now prove Theorem 3, which reduces the complexity
of computing the m-height of an [n, k] Analog Permutation
Code by a factor of n compared to Theorem 2.

Proof of Theorem 3: There are two cases to consider: m <
d(C) and m = d(C). In the case of m < d(C), the proof is
essentially the same as that of Theorem 3. (We just need to
replace (a, b,X, ψ) by (0, b,X, ψ) in the proof. Recall that by
Corollary 1, hm(C) = max(0,b,X,ψ)∈Γ hm(C0,b,X,ψ) instead of
max(a,b,X,ψ)∈Γ hm(Ca,b,X,ψ).) So we skip the details here.

Let us now consider the case m = d(C). In this case, the
proof of Theorem 2 shows that there exists a vector u =
(u0, u1, · · · , uk−1) ∈ Rk, an integer i∗ ∈ [k⟩, and a positive
constant ϵ0 such that:

Algorithm 1 A Genetic Programming Algorithm for Con-
structing Analog ECCs

Input : Integers k, n, m, N , Nc, Np, Nt in Z+ with
n > k, 1 ≤ m ≤ n− k, N < Nc; a small
number δ ∈ R+

Output: A set of N generator matrices of Analog
ECCs

1 Initialization: let S be a set of Nc randomly generated
k × n generator matrices, where for each generator
matrix, its independent numbers follow the N (0, 1)
Gaussian distribution. (If the generator matrix is for a
permutation code or a punctured permutation code, only
the k numbers in a column are independent; otherwise,
all the nk numbers in the matrix are independent.);

2 Compute the m-height of each code whose generator
matrix is in S;

3 S ← the N generator matrices in S whose m-heights are
the smallest;

4 for i← 1 to Np do
5 Let Snew be an empty set;
6 for j ← 1 to Nt do
7 Mutation step: Uniformly randomly select a

generator matrix G from S;
8 Let P be a randomly generated k × n matrix

whose nk numbers follow the N (0, 1) Gaussian
distribution;

9 σ ← δ;
10 Gnew ← G+ σP ;
11 while m-height of Gnew < m-height of G do
12 Snew ← Snew ∪ {Gnew};
13 G← Gnew;
14 σ ← 2σ;
15 Gnew ← G+ σP ;

16 Crossover step: Uniformly randomly select two
generator matrices G1 and G2 from S;

17 Let G3 be a k × n matrix half of whose columns
are randomly chosen from G1 and the other half
from G2;

18 if m-height of G3 is less than the m-heights of
both G1 and G2 then

19 Snew ← Snew ∪ {G3};

20 S ← S ∪ Snew;
21 S ← the N generator matrices in S whose m-heights

are the smallest;

22 return S

• Property: Let uϵ = (uϵ0, u
ϵ
1, · · · , uϵk−1) ≜

(u0, · · · , ui∗−1, ui∗ + ϵ, ui∗+1, · · · , uk−1), and let
cϵ = (cϵ0, c

ϵ
1, · · · , cϵn−1) ≜ uϵG. When ϵ ∈ [0, ϵ0], there

exists a tuple (a∗, b∗, X∗, ψ∗) with |X∗| = m − 1 such
that

cϵ ∈ Ca∗,b∗,X∗,ψ∗ for all ϵ ∈ (0, ϵ0].

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

7752 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Let ā ∈ [n⟩ be the integer such that πā = π−1
a∗ . Now

consider the vector uϵπā = (uϵπā(0), u
ϵ
πā(1)

, · · · , uϵπā(k−1)) and
its corresponding codeword c̄ϵ = (c̄ϵ0, c̄

ϵ
1, · · · , c̄ϵn−1) ≜ uϵπāG.

Note that since λ0 is the identity permutation, G = Gλ0 .
So c̄ϵ = uϵπāGλ0 = uϵπā(gπλ0(0) , gπλ0(1) , · · · , gπλ0(n−1)).
So ∀ p ∈ [n⟩, we have

c̄ϵp = uϵπāgπλ0(p) = uϵgπfā,0(p) = cϵfā,0(p).

(The second equality is due to Equation 1.) Since fā,0 is a
permutation on [n⟩, the n numbers in the codeword c̄ϵ form
a permutation of the n numbers in the codeword cϵ.

Since πfā,0(p) = πλ0(p)◦π
−1
ā = πp◦π−1

ā due to Equation 2,
by letting p = 0, we get πfā,0(0) = π0 ◦ π−1

ā = π−1
ā . (The

second equality is because π0 is the identity permutation.)
Since πā = π−1

a∗ , we get πfā,0(0) = πa∗ . So fā,0(0) = a∗.
Since c̄ϵp = cϵfā,0(p) for all p ∈ [n⟩, we get c̄ϵ0 = cϵfā,0(0) = cϵa∗ .

Let b̄ ∈ [n⟩ be the integer such that fā,0(b̄) = b∗. Then
c̄ϵ
b̄

= cϵ
fā,0(b̄)

= cϵb∗ . Let X̄ ≜ {p ∈ [n⟩ | fā,0(p) ∈ X∗}.
Since c̄ϵ is a permutation of the n numbers in cϵ – where
c̄ϵ0 is mapped to cϵa∗ , c̄ϵ

b̄
is mapped to cϵb∗ , and {c̄ϵp|p ∈ X̄}

are mapped to {cϵp|p ∈ X∗} – and since cϵ ∈ Ca∗,b∗,X∗,ψ∗
with |X∗| = m− 1, it is not hard to see (by the definition of
Ca,b,X,ψ) that there exists a vector ψ̄ ∈ {−1, 1}m such that

c̄ϵ ∈ C0,b̄,X̄,ψ̄ for all ϵ ∈ (0, ϵ0].

The rest of the proof is similar to that of Theorem 2. We just
need to define dϵ as 1

ϵgi∗,b∗
· c̄ϵ instead of 1

ϵgi∗,b∗
· cϵ, define

ûϵ as 1
ϵgi∗,b∗

· uϵπā instead of 1
ϵgi∗,b∗

· uϵ, and then replace
(a∗, b∗, X∗, ψ∗) by (0, b̄, X̄, ψ̄). In the end, we see that either
z0,b̄,X̄,ψ̄ = ∞ or z0,b̄,X̄,−ψ̄ = ∞. Since here m = d(C),
we have hm(C) =∞ = max(0,b,X,ψ)∈Γ z0,b,X,ψ . □

V. ANALOG ECCS FOR ONE OR MORE ERRORS

The algorithms for computing the m-heights of Analog
ECCs enable us to construct new codes through computer
search and optimization. We search for new codes based
on Genetic Programming [49]: first, a number of codes are
randomly generated (e.g., using Gaussian distributions to ran-
domly generate the generator matrices), their m-heights are
computed, and the set of codes with the smallest m-heights are
used as the initial population of genetic programming; then,
evolutionary operations including mutations (e.g., small per-
turbations to generator matrices) and crossover (e.g., random
combination of two generator matrices) are used to generate
new codes, their m-heights are computed, and the set of codes
with the smallest m-heights are selected as the new population
for the next round of evolutionary operations.

In the above process, when n = k!, permutation codes
are heavily used for generating the initial population because
their m-heights are much faster to compute, which enables
the search of more codes for a good initial population. When
n < k!, we can still let the columns of a generator matrix be
permutations of the same set of numbers, and call such codes
Punctured Permutation Codes. Although the latter codes need
to use the m-height algorithm for general codes, experimen-
tal results show that they often have good error-correction

TABLE III
THE m-HEIGHTS OF DIFFERENT LINEAR [n, k] ANALOG ECCS

performance. The details of the code-search algorithm are
presented in Algorithm 1.

We present some constructed codes below. The codes can
correct one or more errors (i.e., UMEs), and to the best of
our knowledge, their error-correction performance (measured
by their m-heights) is the best known performance by now.

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

JIANG: ANALOG ERROR-CORRECTING CODES: DESIGNS AND ANALYSIS 7753

Fig. 2. Generator matrices of some new Analog ECCs in Table III, from n = 5, k = 2, m = 2 to n = 8, k = 3, m = 2.

Fig. 3. Generator matrices of some new Analog ECCs in Table III, from n = 8, k = 3, m = 3 to n = 9, k = 3, m = 6.

A summary of the codes is shown in Table III. The table lists
the m-heights of different linear [n, k] Analog ECCs. Here the
columns labelled by “known” refer to known codes from [1],
and the columns labelled by “new” refer to the new codes
presented here. 3 Notice that when m ≥ 4, codes with finite

3Only m-heights of finite values are shown in the table. And for those cells
in the table where m > n−k, we cross them out by a horizontal line because
by the Singleton bound, the minimum distance of the code d(C) ≤ n−k+1,
so hm(C) = ∞ when m > n− k for any code C.

m-heights can correct two or more UMEs; and the smaller
the m-height is, the smaller the ratio ∆/δ (where ∆ and δ are
the two threshold values for UMEs and LMEs as described
earlier) needs to be. Many of the new codes here can correct
two or more errors. Some of them have finite m-heights for m
as large as 8 (e.g., the [10, 2] code in the table), which means
they can correct up to 4 UMEs.

Some codes in Table III have m-height equal to 1 for some
m values. They are either the Repetition Code or the Cartesian

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

7754 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Fig. 4. Generator matrices of some new Analog ECCs in Table III, from n = 9, k = 4, m = 2 to n = 10, k = 3, m = 4.

Fig. 5. Generator matrices of some new Analog ECCs in Table III, from n = 10, k = 3, m = 5 to n = 10, k = 5, m = 5.

Power of Repetition Code presented in [1], or their simple
extension: for an [n, k] code, repeat each of the k information
numbers either ⌈n/k⌉ or ⌊n/k⌋ times in the codeword. We call
such codes Generalized Repetition Codes.

The generator matrices of the new codes in Table III are
shown in Fig. 2 through Fig. 6, except those of Generalized
Repetition Codes due to their simplicity. Each Gmn,k in the
figures refers to the generator matrix of the new [n, k] code
whose m-height is shown in Table III. (The matrix G6,7

10,2 in
Fig. 4 is the generator matrix of the [10, 2] code for both
m = 6 and m = 7.)

It is worthwhile to note that extending an [n, k] Analog ECC
to an [n+ 1, k] code by adding a coordinate does not always
decrease the m-height [1]. (Sometimes it increases it.) That
makes the code design problem different from conventional
ECCs, where the error-correction capability is determined by
the minimum distance d(C) (instead of hm(C)), and therefore
extending a code can only increase that capability. We also
note that some of the new codes in Table III are Analog
Permutation Codes or Punctured Permutation Codes, including
the codes with generator matrices G3

6,3 and G2
7,4 in Fig. 2,

G2
9,4, G3

9,4, G4
9,4 and G2

9,6 in Fig. 4, G4
10,4 and G2

10,5 in Fig. 5,

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

JIANG: ANALOG ERROR-CORRECTING CODES: DESIGNS AND ANALYSIS 7755

Fig. 6. Generator matrices of some new Analog ECCs in Table III, from n = 10, k = 6, m = 3 to n = 10, k = 7, m = 3.

and G3
10,6 and G2

10,7 in Fig. 6. The new codes in Table III,
with their relatively small m-heights for multiple values of m
– and therefore the corresponding error correction capabilities
– that were not known before, can form a basis for the search
and construction of more codes in the future.

VI. CONCLUSION

Analog ECCs consider small ubiquitous noise as tolerable,
and focus on correcting errors of larger magnitudes that
can significantly affect the performance of machine learning
algorithms. One application is the implementation of deep
neural networks in nanoscale analog circuits (a realization
of in-memory computing), where Analog ECCs can make
the widely used vector-matrix multiplication operations more
reliable. In this paper, algorithms are presented for computing
the m-heights of Analog ECCs, which are directly related
to the codes’ error-correction capabilities. Codes with spe-
cial structures that can further reduce the complexity of the
m-height algorithm, namely Analog Permutation Codes, are
also presented. The algorithms are used to find the exact
m-heights of known codes, and for finding more codes that
correct one or more errors. A list of new codes with the best
known performance are summarized.

The study on Analog ECCs can be extended in multiple
ways. One important extension is to consider quantization
errors in analog systems, study their effect on error correction,
and optimize Analog ECCs accordingly. Another important
topic is to design efficient decoding algorithms that are easily
implementable in analog circuits, and adapt the codes to
the specific requirements of the analog system. Those topics
remain as our future research directions.

REFERENCES

[1] R. M. Roth, “Analog error-correcting codes,” IEEE Trans. Inf. Theory,
vol. 66, no. 7, pp. 4075–4088, Jul. 2020.

[2] R. M. Roth, “Fault-tolerant neuromorphic computing on nanoscale
crossbar architectures,” in Proc. IEEE Inf. Theory Workshop (ITW),
Nov. 2022, pp. 202–207.

[3] M. Le Gallo et al., “A 64-core mixed-signal in-memory compute chip
based on phase-change memory for deep neural network inference,”
Nature Electron., vol. 6, no. 9, pp. 680–693, Aug. 2023.

[4] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, Jul. 2020.

[5] W. Wang et al., “A memristive deep belief neural network based
on silicon synapses,” Nature Electron., vol. 5, no. 12, pp. 870–880,
Dec. 2022.

[6] W. Zhang et al., “Edge learning using a fully integrated neuro-inspired
memristor chip,” Science, vol. 381, no. 6663, pp. 1205–1211, Sep. 2023.

[7] H.-S.-P. Wong and S. Salahuddin, “Memory leads the way to better com-
puting,” Nature Nanotechnol., vol. 10, no. 3, pp. 191–194, Mar. 2015.

[8] P. Yao et al., “Fully hardware-implemented memristor convolutional
neural network,” Nature, vol. 577, no. 7792, pp. 641–646, Jan. 2020.

[9] C.-X. Xue et al., “A CMOS-integrated compute-in-memory macro
based on resistive random-access memory for AI edge devices,” Nature
Electron., vol. 4, no. 1, pp. 81–90, Dec. 2020.

[10] C. Li, R. M. Roth, C. Graves, X. Sheng, and J. P. Strachan, “Analog error
correcting codes for defect tolerant matrix multiplication in crossbars,”
in IEDM Tech. Dig., Dec. 2020, pp. 36.6.1–36.6.4.

[11] K. Huang, P. H. Siegel, and A. Jiang, “Functional error correction for
robust neural networks,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1,
pp. 267–276, May 2020.

[12] R. M. Roth, “Fault-tolerant dot-product engines,” IEEE Trans. Inf.
Theory, vol. 65, no. 4, pp. 2046–2057, Apr. 2019.

[13] G. O. H. Katona and Á. Seress, “Greedy construction of nearly regular
graphs,” Eur. J. Combinatorics, vol. 14, no. 3, pp. 213–229, May 1993.

[14] B. Chen and G. W. Wornell, “Analog error-correcting codes based on
chaotic dynamical systems,” IEEE Trans. Commun., vol. 46, no. 7,
pp. 881–890, Jul. 1998.

[15] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE,
vol. 37, no. 1, pp. 10–21, Jan. 1949.

[16] V. A. Kotelnikov, The Theory of Optimum Noise Immunity. New York,
NY, USA: McGraw-Hill, 1959.

[17] Y. Hu, J. Garcia-Frias, and M. Lamarca, “Analog joint source-channel
coding using non-linear curves and MMSE decoding,” IEEE Trans.
Commun., vol. 59, no. 11, pp. 3016–3026, Nov. 2011.

[18] E. Akyol, K. B. Viswanatha, K. Rose, and T. A. Ramstad, “On zero-
delay source-channel coding,” IEEE Trans. Inf. Theory, vol. 60, no. 12,
pp. 7473–7489, Dec. 2014.

[19] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in Proc. 22nd Int. Conf. Artif. Intell.
Statist., vol. 89, 2019, pp. 1215–1225.

[20] M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Analog Lagrange
coded computing,” IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 1,
pp. 283–295, Mar. 2021.

[21] N. Charalambides, H. Mahdavifar, and A. O. Hero, “Numerically stable
binary gradient coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2020, pp. 2622–2627.

[22] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplica-
tion: A convolutional coding approach,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2019, pp. 3022–3026.

[23] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019,
pp. 3017–3021.

[24] M. V. Jamali, M. Soleymani, and H. Mahdavifar, “Coded distributed
computing: Performance limits and code designs,” in Proc. IEEE Inf.
Theory Workshop (ITW), Aug. 2019, pp. 1–5.

[25] A. Ramamoorthy and L. Tang, “Numerically stable coded matrix com-
putations via circulant and rotation matrix embeddings,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 1712–1717.

[26] S. Arora and S. Khot, “Fitting algebraic curves to noisy data,” J. Comput.
Syst. Sci., vol. 67, no. 2, pp. 325–340, Sep. 2003.

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

7756 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

[27] V. Guruswami and D. Zuckerman, “Robust Fourier and polynomial curve
fitting,” in Proc. IEEE 57th Annu. Symp. Found. Comput. Sci. (FOCS),
Oct. 2016, pp. 751–759.

[28] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error
characterization, mitigation, and recovery in flash-memory-based solid-
state drives,” Proc. IEEE, vol. 105, no. 9, pp. 1666–1704, Sep. 2017.

[29] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1582–1595,
Apr. 2010.

[30] N. Elarief and B. Bose, “Optimal, systematic, q-ary codes correcting all
asymmetric and symmetric errors of limited magnitude,” IEEE Trans.
Inf. Theory, vol. 56, no. 3, pp. 979–983, Mar. 2010.

[31] T. Kløve, B. Bose, and N. Elarief, “Systematic single limited magnitude
asymmetric error correcting codes,” in Proc. IEEE Inf. Theory Workshop
Inf. Theory (ITW, Cairo), Jan. 2010, p. 1.

[32] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “On codes that
correct asymmetric errors with graded magnitude distribution,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2011, pp. 1056–1060.

[33] A. V. Kuzntsov and A. J. H. Vinck, “On the general defective channel
with informed encoder and capacities of some constrained memories,”
IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 1866–1871, Jun. 1994.

[34] A. A. Jiang, Y. Li, E. E. Gad, M. Langberg, and J. Bruck, “Joint rewriting
and error correction in write-once memories,” in Proc. IEEE Int. Symp.
Inf. Theory, Jul. 2013, pp. 1067–1071.

[35] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56,
no. 5, pp. 2112–2120, May 2010.

[36] H. Zhou, A. Jiang, and J. Bruck, “Error-correcting schemes with
dynamic thresholds in nonvolatile memories,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2011, pp. 2109–2113.

[37] H. Zhou, M. Schwartz, A. A. Jiang, and J. Bruck, “Systematic error-
correcting codes for rank modulation,” IEEE Trans. Inf. Theory, vol. 61,
no. 1, pp. 17–32, Jan. 2015.

[38] L. G. Tallini and B. Bose, “On L1-distance error control codes,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2011, pp. 1061–1065.

[39] L. G. Tallini and B. Bose, “On symmetric L1 distance error con-
trol codes and elementary symmetric functions,” in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2012, pp. 741–745.

[40] G. Kabatiansky and S. Kruglik, “On codes correcting constant number
of errors in L1 metric,” in Proc. Inf. Technol. Syst. Conf. (ITaS), 2015.

[41] V. Davydov, “New class of codes, correcting errors in the lee metric,”
in Proc. 16th Int. Symp. Problems Redundancy Inf. Control Syst.
(REDUNDANCY), Oct. 2019, pp. 117–120.

[42] A. Hareedy, S. Zheng, P. Siegel, and R. Calderbank, “Efficient con-
strained codes that enable page separation in modern flash memories,”
IEEE Trans. Commun., vol. 71, no. 12, pp. 6834–6848, Dec. 2023.

[43] A. Barg and A. Mazumdar, “Codes in permutations and error correc-
tion for rank modulation,” IEEE Trans. Inf. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[44] F. Farnoud, V. Skachek, and O. Milenkovic, “Error-correction in flash
memories via codes in the Ulam metric,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3003–3020, May 2013.

[45] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[46] I. Dumer, D. Micciancio, and M. Sudan, “Hardness of approximating the
minimum distance of a linear code,” IEEE Trans. Inf. Theory, vol. 49,
no. 1, pp. 22–37, Jan. 2003.

[47] A. Vardy, “The intractability of computing the minimum distance of a
code,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp. 1757–1766, Jun. 1997.

[48] U. Kapshikar and S. Kundu, “On the hardness of the minimum distance
problem of quantum codes,” IEEE Trans. Inf. Theory, vol. 69, no. 10,
pp. 6293–6302, Oct. 2023.

[49] W. Banzhaf, R. S. Olson, W. Tozier, and R. Riolo, Genetic Programming
Theory and Practice XV. Cham, Switzerland: Springer, 2018.

Anxiao (Andrew) Jiang (Senior Member, IEEE) received the B.Sc. degree
in electronic engineering from Tsinghua University, Beijing, China, in 1999,
and the M.Sc. and Ph.D. degrees in electrical engineering from California
Institute of Technology, Pasadena, CA, USA, in 2000 and 2004, respectively.
He is currently a Professor with the Department of Computer Science and
Engineering, Texas A&M University, College Station, TX, USA. His research
interests include coding theory, data storage, and deep learning. He was a
recipient of the NSF CAREER Award in 2008 for his research on information
theory for flash memories, the 2009 IEEE Communications Society Data
Storage Technical Committee (DSTC) Best Paper Award in signal processing
and coding for data storage, the 2020 Non-Volatile Memories Workshop
(NVMW) Persistent Impact Prize in information theory and coding, and
the Best Paper Award at INFORMS Conference on Quality, Statistics and
Reliability (ICQSR) in 2024.

Authorized licensed use limited to: Anxiao Jiang. Downloaded on June 05,2025 at 03:45:52 UTC from IEEE Xplore. Restrictions apply.

