Error Correction and Detection
for Analog Al Computing in Edge Systems

Anxiao (Andrew) Jiang
ajiang@cse.tamu.edu
Texas A&M University
College Station, Texas, USA

Abstract

To realize the full potential of deep neural networks (DNNs) in
Al-empowered edge systems, DNNs need to be much more efficient.
Analog in-memory computing can potentially improve the speed
and energy efficiency of Al by multiple orders, and break the "mem-
ory wall" that is currently a major bottleneck for Al This work
explores the design of analog error-correcting codes (Analog ECCs).
The codes focus on the correction of errors in vector-matrix multi-
plications, which are a dominant part of computation in DNNs. The
codes consider small but ubiquitous noise in analog edge circuits
as tolerable, and focus on the correction of large errors. It presents
a linear-programming based algorithm that finds the error correc-
tion/detection capabilities of codes. It also presents a number of
newly discovered codes that achieve state-of-the-art performance.

Keywords
Analog Error-Correcting Code, In-Memory Computing

ACM Reference Format:

Anxiao (Andrew) Jiang. 2024. Error Correction and Detection for Analog
Al Computing in Edge Systems. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’24). ACM, New York, NY,
USA, 7 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

Machine learning algorithms have found wide applications in many
fields of engineering. A new type of Analog Error-Correcting Codes
(Analog ECC), which has important potential applications to ma-
chine learning, has been proposed recently [19] [20]. Let C be a
linear [n, k] Analog ECC over R. Let ¢ = (¢, ¢1, -+ ,cn—1) € R
denote a generic codeword in C. There are two types of additive
errors that can be added to a codeword by the channel: a type of
limited-magnitude errors (LMEs), and a type of unlimited-magnitude
errors (UMEs), defined as follows.

Let [n) denote the integer set {0,1,--- ,n — 1}. Let § and A be
two positive real thresholds, where A > § > 0. An error vector
&= (&g, €1, -+ ,€n—1) € R" is called a limited-magnitude error vector
(i.e., LME vector) if &; € [=6,8] for all i € [n). Given a vector

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD’24, October 27-31, 2024, Newark, NJ

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

e=(ep, €1, ,en—1) € R™, define its support with respective to A
as

Suppp(e) ={i € [n) : |ej| > A}

The above definition can be extended to A = 0. Then by this defini-
tion, the ordinary support of e is Supp,(e). And the Hamming
weight of e, denoted by wg(e), is |Supp,(e)|. An error vector
e = (ep,e1, -+ ,ep—1) € R" is called an unlimited-magnitude er-
ror vector (i.e., UME vector) of Hamming weight w if wgz(e) = w. A
noisy codeword y = (yo,y1, - - , yn—1) € R is the sum of the code-
word ¢ € C and the two error vectors ¢ and e, namely, y = c+e+e.
The code is designed such that significant UMEs will be corrected.

A strong motivation for the introduction of Analog ECC is to
support vector-matrix multiplication, a common operation in ma-
chine learning algorithms, including deep learning [19] [20]. In the
following, we introduce its application to Analog In-Memory Com-
puting for deep neural networks (DNNs) in edge systems. DNNs
have achieved significant progress for Al in recent years, covering
computer vision, natural language processing, generative Al and
more areas. However, the cost for their training and inference, in
both time and power consumption, is also increasing substantially.
A fundamental emerging technology, Analog In-Memory Comput-
ing, promises to make DNNs much more efficient in both speed and
energy consumption [8-10, 21]. By storing the real-valued parame-
ters of DNNs in nanoscale analog non-volatile memory (NVM) cells
and using them directly for computing, in-memory analog comput-
ing may overcome the “von Neumann bottleneck” of conventional
computers. The new paradigm avoids the movement of massive
amounts of data between GPUs and external memories, which
incurs massive energy consumption and accounts for extensive
latency [24] in current Al systems. There has been good progress
in the development of analog chips in recent years, which realize
DNNs for training [26] and/or inference [7] in analog circuits. They
achieve software-comparable Al performance (e.g., classification
accuracy), can run with substantially higher speed and power effi-
ciency compared to digital circuits (e.g., 35 times lower in power
consumption [10]), and promise more in the future.

The high efficiency of Analog In-Memory Computing achieved
for DNNSs is largely due to the efficient implementation of Vector—
Matrix Multiplications, which are widely used in DNNs, in the
crossbar architecture of NVM cells. Vector-matrix multiplication is
dominantly the most frequent operation in most DNNs, whether it
is a dense network, convolutional network (CNN), recurrent net-
work (RNN), graph network or transformer model. The crossbar
architecture is illustrated in Fig. 1 (a). The crossbar array has L row
conductors, k column conductors, and Lk nanoscale nonvolatile
resistive memories (e.g., memristors [24], phase-change memo-
ries [8, 21], etc.) at the junctions. Let A = (a; j)xx be a matrix of

https://orcid.org/0002-0120-7930
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ICCAD’24, October 27-31, 2024, Newark, NJ

non-negative numbers. Fori =0,1,--- ,L—1and j =0,1,--- ,k—1,
the resistor at the junction of the i-th row and the j-th column is
programmed to have conductance that is proportional to a; ;. Let
u = (ug,u1, - ,uL_1) € RL be a vector. Fori = 0,1,---,L — 1,
let the input voltage on the i-th row be proportional to u;. Let
(co,€1,*+ ,Ck—1) = uA be the multiplication of the vector u and
the matrix A. Then (co,c1,- -, cx—1) can be computed by reading
the currents at the columns, where for j = 0,1, - - - , k—1, the current
on the j-th column is proportional to c¢;. Note that if A contains
negative numbers [10, 17], we can write it as A = AT — A~, where
A* and A~ are both non-negative matrices, and use two crossbar
arrays to compute (g, c1," -+ ,ck_1) as uAt —uA~. In DNNs, the
matrix A represents model parameters (i.e., edge weights in the
DNN), which remain constant during inference. The vector u rep-
resents the input to a layer in the DNN, which are variables since
their values change for different input samples. Compared to digital
computing, which needs Lk scalar multiplications and (L — 1)k
additions to compute uA, the crossbar can compute uA in a single
time step by exploiting Ohm’s law and Kirchhoff’s law, thus signif-
icantly improving the speed and energy efficiency of computing,
potentially by multiple orders.

A challenge for analog in-memory computing, however, is the
reliability of computing against errors. Nonvolatile memories are
known to have many noise mechanisms, include cell-programming
noise, cell-level drifting, random noise, read/write disturbs, stuck
cells, short cells, etc. In general, the errors can be partitioned into
two types: (1) those that are small but ubiquitous (i.e., appearing
in nearly all cells), such as programming noise, cell-level drifting,
random noise, etc., and (2) those that are more isolated but can
be much more significant, such as stuck cells, short cells (e.g., due
to faults in the programming process [17]), memory/circuit de-
fects, etc. The two types of errors are modeled by LMEs and UMEs,
respectively. DNNs often naturally have some tolerance of small
ubiquitous noise [8, 10, 12, 17, 21]. However, they are challenged by
significant outlier errors, which need to be detected and corrected.

Analog ECC has been proposed to address the above challenge
as follows [19]. Let C be a linear [n, k] Analog ECC. We extend
the L X k crossbar array for vector-matrix multiplication to an
L X n crossbar array, as illustrated in Fig. 1 (b). Each row in the
original matrix A = (aj,j)1 xk is extended to a codeword. That is, for
i=0,1,--+,L -1, the i-th row in the matrix, (aj0,ai,1," - ,a; k1),
is encoded into a codeword ¢; = (aj0,4i1," -, ain—1), and the n—k
extra memory cells in the row are programmed so that their conduc-
tance values are proportional to a; k., @; k41, * - *» @i,n—1, respectively.
By the linearity of the code, no matter what the input variables
ug, U1, - -+, up—1 are, the output vector ¢ = (cp,c1,---,cn-1) =
ZIL:?)l u;c; is also a codeword in C. Therefore, significant errors in
c can be corrected by the decoder of C. And note that the first k
elements in c are simply the desired output of the vector-matrix
multiplication uA. For more details on the design and experimental
performance, please refer to [17] [18] [19] [20].

Analog ECCs consider LMEs as tolerable (as long as § is small),
and focus on the detection and correction of the UMEs, especially
those UMEs whose magnitudes exceed the threshold A. Given the
above considerations, the decoding objective of Analog ECC is set

Anxiao (Andrew) Jiang

as follows. ! The decoder for a linear [n, k] Analog ECC C is a
function

D:R" - 2[m

that returns a set of locations of UMEs. Let §, A € R* be positive
thresholds with § < A as mentioned earlier, and let ¢ be a nonneg-
ative integer. We say that “the decoder D corrects t UMEs (with
respect to the threshold pair (8, A))” if for every possible vector
y = c+e+e with ¢ € C being a codeword, € being an LME vector
and e being an UME vector whose Hamming weight wy(e) is at
most ¢, the following condition holds:

Supp, (e) € D(y) C Supp,(e).

The above condition not only ensures that the decoder will find all
the locations of UMEs whose magnitudes are more than A (thus no
“false negative”), but also ensures that all the found locations, namely
D(y), have UMEs (thus no “false positive”). 2 After the decoder
locates the UMEs (which include as a subset all those significant
UMEs whose magnitudes exceed A), those UMEs can be removed
by either re-computing the corresponding entries in the codeword ¢
(as in the case of the vector-matrix multiplication application where
c is the result of such a multiplication [17] [18]), or by estimating
the values of those UMEs via an extended decoding algorithm [19].

In spite of the importance of Analog ECCs for machine learning,
the designs of such codes are still relatively limited. Most existing
codes focus on the detection or correction of only one UME [19].
A main challenge in the designing of more codes, including codes
that correct more than one UME, lies in the analysis of the error-
correction capabilities of codes. Such an analysis requires the com-
puting of an important quantity of the code named m-height [19].

In this paper, we present an algorithm based on linear program-
ming for computing the m-height of an Analog ECC, which reduces
the time complexity by a factor of (m — 1)! - (n —m — 1)! . 2"~
compared to the baseline algorithm. It can be used to analyze not
only the error-correction — but also error-detection (as defined
in [19, 20]) — capabilities of analog codes. Assisted by the algo-
rithm, we use genetic programming to search for new codes. A
number of new codes that achieve state-of-the-art performance are
discovered, whose m-heights are summarized in Fig. 2. The codes
can be used to correct one or more (up to 4) UMEs.

2 Existing Constructions for Analog ECCs

In this section, we summarize the known constructions for Analog
ECCs, with a focus on their error correction — instead of error
detection - capabilities. We first review an important analytical tool
called m-height and its relation to the error-correction capability of
an Analog ECC [19]. Let x = (x0,x1, -+ ,Xp—1) # (0,0,---,0) be a
vector in R"™. Let & : [n) — [n) be a permutation such that

[z(o)| = IXp)l 2 2 Xz (nen) -

!'The original decoding objectives include both error correction and detection. In this
work, we focus on error correction alone. So the decoding objective described here is
simplified compared to [20].

2Note that given a pair of noiseless and noisy codewords (¢, y), there can be different
pairs of error vectors (&,) that change ¢ into y, and the decoding objective needs to
be realized for all such possible pairs of error vectors.

Error Correction and Detection
for Analog Al Computing in Edge Systems

ICCAD’24, October 27-31, 2024, Newark, NJ

(@ ™ a& %\% ao,kfﬁq (b)

i

o,

‘lo,k-?/}‘

z
kd

Uy - U
“1,1:%/%
’

“1})%
»

s 5

“1,1:1%/%

=

A1 jer1 ayp-1

X
oty N

>

a -

2 :

WYy

s 5

KX

U1
a- l',:%f},,
>

. o (1

2 e
N N B B R

aL:l\'g/%b aL—'\'/‘%'/éﬂ
’ ’

=
a 1:22

”2,/:%/% “21?/2 @ kil
a -'\3/%

B
S s s

ar 1';372‘

e o (g Cy,

b ‘11_71?:%1/%

Cry1e @

(A

O IO I IO

% a o Cpg

Figure 1: (a) A crossbar architecture for vector-matrix multiplication. (b) Using Analog ECC for the multiplication, where each
row (a0, ai1," -, ain—1) in the array and the output vector (co,c1,: -, cp—1) are codewords of the code.

For any m € [n), the m-height of x is defined as
Xr(0)

X (m)

hm(x) =

if X;(m) # 0, and as hy(x) = o0 if x;(p) = 0 . For the all-zero
vector 0 = (0,0, - - - ,0), its m-height is defined as hy,(0) = 0 for all
m. Then, the m-height of a linear [n, k] code C over R is defined as

him(C) = max hpy(c).
ceC
The next important result was proven in [19].

THEOREM 2.1. LetC be a linear [n, k] code overR. Given 5, A € R*
with § < A and a positive integer t, there exists a decoder for C that
corrects t UMEs if and only if

A > 2(h3 (C) +1)8.

We now present the existing constructions for Analog ECCs.
Let us start with the Repetition Code [19]. Let C be the [n, 1] rep-
etition code over R, whose generator matrix is the all-one vector
1=(L1,---,1). Its m-height is hp,(C) = 1 for m € [n). So by
Theorem 2.1, the code can correct | (n — 1)/2] UMEs as long as
A > 46.

The next code to consider is the Cartesian power of repetition
code [19]. Let C be a linear [n = wk, k] code over R that is the
k-fold Cartesian power of the [w, 1] repetition code. Its generator
matrix is a k X n binary matrix where each row has n/k = w 1s
and each column has one 1, while all the remaining elements are
0s. If we use Gy,—,k k to denote its generator matrix, then it has the
recursive form

11 -~ 1] 00 -0
Gk 0 ‘ Gu(k-1),k—1

Its m-height is h;;, (C) = 1 for m € [w), and hy, (C) = co form > w.
So by Theorem 2.1, the code can correct | (w — 1) /2] UMEs as long
as A > 46.

The third code to present has an upper bounded for its 1-height [19].
Although it is not for correcting any UME, it can detect a single
UME by the definition of error detection in [20]. Let Hbe ar xn
binary matrix over {0, 1} with r < n that satisfies two properties:
(1) every column in H has exactly one 1, and (2) each row of H

has either |n/r] or [n/r] 1s. Let C be a linear [n,k = n —r] code
over R with H as its parity-check matrix. Then its 1-height satisfies
hi1(C) < [n/r] — 1. When n is a multiple of r, the code is the dual
code of the r-fold Cartesian power of the [n/r, 1] repetition code.

The fourth code to introduce has an upper bound for its 2-
height [19], which is useful for correcting one UME. Let r be a posi-
tive even integer, and let n be an integer such thatr < n < r(r—1).
Let H be a r X n matrix over {—1, 0, 1} that satisfies three properties:
(1) all the columns in H are distinct, (2) every column in H has
exactly two nonzero entries, the first of which being a 1, and (3)
the number of nonzero entries in each row of H is either | 2n/r|
and [2n/r]. Note that such a matrix H is guaranteed to exist [13].
For example, when r = 4 and n = 12, H can be [19]:

11 1 1 0 O O O 1 1 0 O
0 0 O 1 1 1 1 1 -1 0 O
1 -1 0 0 1 -1.0 O O 0 1 1
o o0 1 -1 0o 0 1 -1 0 0 1 -1

Let C be alinear [n, k > n—r] code over R with H as its parity-check
matrix. Then its 2-height satisfies

ho(C) < [2n/r] — 1.

So by Theorem 2.1, the code can correct one UME as long as A/§ >
2[2n/r].

The fifth code is an extension of the fourth code [19]. Recall
that the parity-check matrix H of the fourth code satisfies three
properties. Now let us generalize the second property as follows:
instead of requiring every column of H to have Hamming weight 2,
we now require it to have Hamming weight b for some prescribed
integer b > 2. Let n = (}) - 2671, Then the 2-height of C satisfies

ha(C) < [bn/r] - 1.

So by Theorem 2.1, the code can correct one UME as long as A/§ >
2[bn/r].

The sixth code to introduce has known finite 2-height values,
and therefore is suitable for correcting one UME [19]. Let n > 3
be an integer, let @ = 7/n, and let w = el with i = V=1, namely,
w is the complex primitive 2n-th root of unity. Let C be a linear

ICCAD’24, October 27-31, 2024, Newark, NJ

[n, k = n — 2] code over R defined by
C= {(00,01,"- .cn-1) €R" : Z cjw = 0}.

jeln)
C is a negacyclic code because if (co, c1,- - -, cp—2,cn—1) is a code-
word, then so is (—cp—1, o, €1, -+ , Cn—2). Its generator polynomial

is
g(x) =1 - 2cos(a)x +x2,

and its parity-check matrix can be H = (h;) je[,) with

cos(ja) — cos((j + 1))

J7=\ sin(ja) —sin((+ Da) |-

The 2-height of C satisfies
1
— -1
2sin(r/(2n))
So by Theorem 2.1, the code can correct one UME as long as A/§ >
1/sin®(/(2n)).

There have been previous works that study the correction of
analog noise in different settings, including in the joint source-
channel coding (JSCC) paradigm [1, 11, 15, 22] for communications.
There have also been works on ECCs for nonvolatile memories
(NVMs), where codes for two or more discrete levels are studied. [3,
4,6, 14,16, 25]. Analog ECC differs from the JSCC paradigm in that it
does not depend on the probabilistic distributions of data and noise
(namely, it optimizes the worst-case performance), differs from the
ECC-for-NVM paradigm in that it focuses on analog values (instead
of discrete values) for both data and errors, and differs from both
paradigms in that it considers two types of errors LME and UME
(instead of only one). By tolerating small LMEs and combatting large
UMEs, it aims at making machine learning algorithms (especially
deep neural networks) run more reliably in next-generation analog
computers in edge systems.

h2(C) =

3 Finding the m-Height of Analog ECC

The m-height of Analog ECC is analogous to the minimum distance
of conventional ECCs (e.g., codes over finite fields), as evidenced
by Theorem 2.1. It is crucial for finding the error-correction capa-
bility of a code. It is known to be NP-hard to find the minimum
distance of conventional linear ECCs [5, 23]. For Analog ECC, the
corresponding m-Height Problem can be defined as follows: given
a generator matrix G € kan,ﬁnd the m-height of the corresponding
Analog ECC, where m € [n). Note that the m-Height Problem is
more general than finding the minimum distance d(C) of the Ana-
log ECC C. Let wi(c) denote the Hamming weight of a codeword
c. Then d(C) equals the minimum Hamming weight of a nonzero
codeword in C, namely, d(C) = mincec_ (o) Wh(c). Based on the
definition of m-height, we have

ho(C) < hi1(C) < -+ < hp—1(C).

Let h,(C) £ oo. Then d(C) is the minimum index m € [n + 1)
such that hp, (C) = oo. Namely, h;,(C) = oo if and only if m >
d(C). So when the m-height values are found for all m € [n),
the value of d(C) also becomes known. Knowing the m-height
values is also more important for analyzing the error-correction
capability of an Analog ECC than simply knowing d(C), because
the necessary and sufficient condition for the code to be able to

Anxiao (Andrew) Jiang

correct t UMEs is A/§ > 2(h2;(C) + 1), which depends on the ratio
A/6S. The value of d(C) can tell us that the code can potentially
correct L%(d (C) —1)] UMEs, however it cannot guarantee that any
L% (d(C)—1)] UMEs are correctable without knowing the ratio A/§;
that is, d(C) provides only a necessary but not sufficient condition
for the error correction capability.

In this section, we study how to find the m-height of an Ana-
log ECC given its generator matrix. We present an algorithm that
discovers the m-height via solving n(n — 1)(,':1__21)2’" linear pro-
grams, which — compared to a baseline algorithm — reduces the
complexity by a factor of (m —1)!- (n—m —1)!- 2"~

3.1 A Baseline Algorithm for m-Height Problem

Consider a linear [n, k] code C over R. For any non-empty subset
of codewords C C C, we define

B (C) = max hp, (c).
ceC

And we define hy,(0) = 0.

Let 7 : [n) — [n) denote a permutation on [n), and let IT denote
the set of all the n! such permutations. Let s = (sg, 51, ** ,Sn—1) €
{1, —1}" be a binary vector of length n, and let S = {1, —1}" denote
the set of all the 2" such vectors. Let sgn be the sign function:

1ifx >0
-1ifx <0

sgn(x) = {

Let Cy s denote the subset of codewords of C such that a codeword
¢ = (co,c1,°,cn) € Cisin Crsif ¢ # 0, sgn(ey(jy) = sj for
j € [n), and
lex(yl =i €n(jy 2 SjHt - Crar) = lex(jan)l
for j € [n—1). Since C — {0} = U e ses Cr,s and hy (0) = 0, we
get
hm(C) = max hu(Crys).
mell,seS

LEMmA 3.1. LetC beallinear [n, k] code overR.LetG = (gi,j)kxn €

RKX" pe the generator matrix of C. Let m € [d(C)) — {0}, r € I
ands = (80,51, -+ ,Sn—1) € S. Let Fr 5 denote the following linear-
fractional program with k real-valued variables ug, uy, - - -, up_q:

50 Yiefky (UiGim(0))
$m*Die (k) (Uidi e (m))

s.t. sg - Zie[k) Uigin(0) | > 0

Sn—1" Die[k) (uigi,n(n—l)) 20

maximize

Sj - Zie[k) (uigi,n(j)) 2> Sj+1 'Zie[k) (uigi,n(j+1))
Vie[n-1)

Let fr s be the optimal objective value of F s if Frs is feasible, and
let fr s = 0 otherwise. Then

n(©) = s

The proof for the above lemma is skipped due to space limitation.
The lemma above considers Ay, (C) for m > 0 because hy(C) = 1
as long as C contains a nonzero codeword. It indicates a baseline
algorithm for finding the m-height of an Analog Code: solve n! - 2"
linear-fractional programs Fy s, and take the maximum of their
corresponding values of frs. It turns the m-Height Problem to a

Error Correction and Detection
for Analog Al Computing in Edge Systems

computational problem. But when n is large, the number of linear-
fractional programs to solve, n! - 2", is still prohibitively high. In
the following, we present an improved method that makes the
computation substantially more efficient.

3.2 A More Efficient Algorithm for m-Height

Let m € [n) — {0}. Let ¥ = {—1, 1} be the set of 2" binary vectors
of length m whose elements are either 1 or —1.

Let (a,b, X,) be a tuple where a € [n), b € [n) —{a}, X C
[n) — {a,b}, |1X| = m—-1,and ¢ = (so,81,-* ,Sm—1) € ¥.LetT
denote the set of all the

n(n— 1)(n B 2)2'”
m-—1
such tuples.

Given a tuple (a,b,X,¥) € T, let x1,xp, -+, xm;—1 denote the
m — 1 integers in X such that

X1 <x3 <+ <Xm_1.

Define Y £ [n) — X — {a, b}, and let x+1, Xm+2, - + , Xn—1 denote
the n — m — 1 integers in Y such that

Xm+1 < Xm+2 < < Xp-1.

Let x9p = a and x;,; = b. Then x¢, x1,- -+ ,x,—1 are the n distinct
integers in [n). Let 7 denote the permutation on [n) such that
7(j) = xj for j € [n). We call 7 the quasi-sorted permutation given
(a,b, X,). Let Cy p x4 denote a subset of nonzero codewords of
C such that a nonzero codeword ¢ = (cg,¢1,- -+ ,¢n—1) € Cisin
Cap,x,y if and only if it satisfies the following properties:

(1) Forj=1,2,--- ,m—1,leo)| 2 lez(yl 2 lez(myl-

(2) Forj=m+1,m+2,--,n=1cr(m| 2 lez(jyl-

(3) V j € [m), sgn(c;(j)) = sj. (Note that here s; is the j-th

element of ¢.)

For any nonzero codeword ¢ = (cp,c1,- - ,cn—-1) € C, there
exists at least one tuple (a,b,X,¢) € T such that ¢ € Cyp x y-
(To see that, let 7 € II be a permutation such that |c;(g)| >
lex(yl = -+ = leg(n-1)|- Then we let a = #(0), b = n(m),
X = {n(1),7(2),---,7(m — 1)}. Let x1,x2, - - , xm—1 denote the
m — 1 integers in X such that x; < x3 < -+ < x;u—1, and let xo = a.
Then we let ¢ = (so, 51, * -, Sm—1) Where V j € [m), s; = sgn(cx;).
For the above tuple (a,b, X, ¢), we have ¢ € Cyp x,y-) Therefore
we have C — {0} = U(apx,y)er Cap x,y- Since hm (0) = 0, we get

hm(C)= ma
(a,bX,))e

THEOREM 3.2. Let C be a linear [n, k] code over R. Let G =
(9i,/)kxn € RKX™ be a generator matrix of C where no column is0. Let
d(C) be the minimum distance of C, and letm € {1,2,- - - ,min{d(C),
n—1}}. Let (a,b, X,) € T, where y = (s0,$1," - ,Sm—1). Define
Y £ [n) — X —{a, b}, and let T be the quasi-sorted permutation given
(a,b,X,y). Let LP,p, x denote the following linear program with k
real-valued variables ug, uy, - - -, U _q:

r hm (Ca,b,X,lﬁ)

maximize Yie(k)(S09i,a) - Ui
s.t. Yielk) (Sz-1()Gij — S0gi,a) ~ui <0 forj e X

Zie[k)(_sr‘l(j)gi,j) cu; < -1 forjeX
Yielk) ip - ui =1

Dielk) 9ij Ui <1 forjey
Zie[k) —gij-ui <1 forjeY

ICCAD’24, October 27-31, 2024, Newark, NJ

Letzqp x,y be the optimal objective value of LP4p, x y if it is bounded,
let zp x,y = oo if the optimal objective value of LPyp x y is un-
bounded, and let z, x,y = 0 if LP,p xy is infeasible. Then

hm(C) = Zab X,y

max
(abX,y)el
The proof of the theorem is skipped due to space limitation.
The above theorem naturally leads to an algorithm that computes
all the m-height of a code C, for m = 0,1,---,n — 1, and also
discovers the minimum distance d(C):
(1) ho(C) = 1.
(2) Form=1,2,3---, compute hy,(C) = maXg p X,y el Za,b,X,
by solving the linear programs LPy j, x for all (a,b, X, ¥) €
T. Stop as soon as we meet the first value m* such that
hm* (C) = 00. We get d(C) = m*.
B) Form=m*"+1,m"+2,---,n—1, hju(C) = o.
The above algorithm solves n(n —1) (;:21)2’" linear programs of
k variables to compute an hy, (C). That is much more efficient than
the baseline algorithm, which needs to solve n! - 2" linear-fractional
programs of k variables. The number of (linear or linear-fractional)
programs to solve is reduced by a factor of

n!-2"
n(n— 1)(;‘1‘_21)2'"

4 Analog ECCs for One or More Errors

The algorithms for computing the m-heights of Analog ECCs enable
us to construct new codes through computer search and optimiza-
tion. We search for new codes based on Genetic Programming [2]:
first, a number of codes are randomly generated (e.g., using Gauss-
ian distributions to randomly generate the generator matrices),
their m-heights are computed, and the set of codes with the smallest
m-heights are used as the initial population of genetic program-
ming; then, evolutionary operations including mutations (e.g., small
perturbations to generator matrices) and crossover (e.g., random
combination of two generator matrices) are used to generate new
codes, their m-heights are computed, and the set of codes with the
smallest m-heights are selected as the new population for the next

=(m-1)!-(n-m-1)!.2""™

round of evolutionary operations.

We have used the search algorithm to construct a number of new
codes. The codes can correct one or more errors (i.e., UMEs), and to
the best of our knowledge, their error-correction performance (mea-
sured by their m-heights) is the best known performance by now.
A summary of the codes is shown in Fig. 2. The table lists the m-
heights of different linear [n, k] Analog ECCs. Here the columns la-
belled by “known” refer to known codes from [19], and the columns
labelled by “new” refer to the new codes presented here. > Notice
that when m > 4, codes with finite m-heights can correct two or
more UMEs; and the smaller the m-height is, the smaller the ratio
A/ (where A and § are the two threshold values for UMEs and
LMEs as described earlier) needs to be. Many of the new codes here
can correct two or more errors. Some of them have finite m-heights
for m as large as 8 (e.g., the [10, 2] code in the table), which means
they can correct up to 4 UMEs.

30nly m-heights of finite values are shown in the table. And for those cells in the table
where m > n — k, we cross them out by a horizontal line because by the Singleton
bound, the minimum distance of the code d(C) < n — k + 1, s0 by, (C) = co when
m > n — k for any code C.

ICCAD’24, October 27-31, 2024, Newark, NJ

hm(C) [TL, k] = [5’ 2] [TL, k] = [6’ 2] [’FL, k] = [6a 3]
known [new | known [new | known [new
m=1 1 1 1
m =2 1.83 1 2.87
m=3 3.25 3 2.28 7
m =4 — — 4.10 — —
hm(C) [[0k =[7,2] | [nk]=1[7,3] | [n,k]=][74]
known | new | known | new | known [new
m=1 1 1 2
m=2 1 2 3.15
m=3 1.90 3 12.56
m=4 2.78 10.14 — —
m=25 4.95 — — — —
known | new | known | new known | new
m=1 1 1 1
m=2 1 2.49 3
m=3 1 3.71 3
m=4 2.88 9.01 20.96
m=>5 3.79 20.37 — —
m =06 7.16 — — — —
hm(C) | [0,k =18,5] | [n,k[=109,2] | [n,k[=19,3]
known | new [known [new | known | new
m=1 2 1 1
m=2 7.18 1 1
m=3 22.48 1 3.05
m=4 — J— 1.92 5.76
m=>5 —_ —_ 3.32 12.71
m==6 — — 3.88 29.92
m=7 — — 12.76 — —
known | new known | new known | new
m=1 1 2 2
m=2 3.38 4 8.56
m=3 5.42 12.51 48.72
m=4 12.32 76.49 - J—
m=>5 99.90 [— — [— [—
hm(C) [[n, k] =110,2] | [n,k]=[10,3] | [n,k]=1[10,4]
known [new known [new | known [new
m=1 1 1 1
m=2 1 1 <3
m=3 1 2.12 5.00
m=4 1 4.36 7.22
m=5 1.92 5.97 21.56
m=6 3.88 17.18 300.92
m="7 3.88 69.44 — —
m=28 28.74 J— — J— J—
known | new known | new known [new
m=1 1 2 3
m=2 4.23 4 12.86
m=3 8.90 23.06 89.81
m=4 29.80 273.24 J— J—
m=>5 334.75 — — — -

Figure 2: The m-heights of different linear [n, k] Analog ECCs.

Anxiao (Andrew) Jiang

2 0911 0.03 1481 -0.756 1.249
G5, =

-0.049 0.975 1511 -1.303 0.74

- 7[0909 0014 1493 -0.738 1‘235]
327120039 0967 1519 —1299 0.719

-0.037 0977 -0.033 -0.323 -0.315 0.635 0.394

1.087 —0.085 —0.087 1.134 05 019 0.955
G4, =
13

-0.109 0.035 1.039 0.527 -1.093 0.751 0.159

00 00 10 10 00 00 -0.665 -0.665 0715 0.715

1.0 1.0 00 00 00 00 -0761 -0.761 -185 —1.85
G35 =
103

0.0 00 00 00 1.0 1.0 -0.748 -0.748 -0.609 —0.609

00 10 0.0 1303 0.257 0.401 -0.526 -—1.155 0.397 0.79

1.0 00 00 1773 -1.133 1.017 -1.559 0.195 -1.01 -0.374
G?n,z =
00 00 10 0305 0283 -0.125 -0.715 -0.971 -0.426 -0.885

0.005 1.002 0.005 -0218 -0.053 0616 0.583 -0312 -0.901 -1.056

1.004 -0.001 -0.003 0.893 1511 -0375 0208 -1.17 -1427 0.057
Gzo,a =
0.0 0.007 1.023 0.239 2.255 0.317 0.838 0.109 2.005 -0.284

G _[1.009 0.034 -1.678 -0319 -0.09 0407 0235 -0.77 -1.429 1.751]
102 -0.036 0956 -0.62 -0.721 1.066 -1.115 1612 -0.616 -0.221 -0.402

Figure 3: Generator matrices of some new Analog ECCs.

Some codes in Fig. 2 have m-height equal to 1 for some m values.
They are either the Repetition Code or the Cartesian Power of
Repetition Code presented in [19], or their simple extension: for an
[n, k] code, repeat each of the k information numbers either [n/k]
or |n/k] times in the codeword. We call such codes Generalized
Repetition Codes.

As examples, the generator matrices of some new codes in Fig. 2
are shown in Fig. 3. (Due to space limitation, we skip the generator
matrices of other codes here.). Each G;"’k in the figure refers to the
generator matrix of the new [n, k] code whose m-height is shown in
Fig. 2. The new codes in Fig. 2, with their relatively small m-heights
for multiple values of m — and therefore the corresponding error
correction capabilities — that were not known before, can form a
basis for the search and construction of more codes in the future.

5 Conclusions

Analog ECCs consider small ubiquitous noise as tolerable, and fo-
cus on correcting errors of larger magnitudes that can significantly
affect the performance of machine learning algorithms. One appli-
cation is the implementation of deep neural networks in nanoscale
analog circuits (a realization of in-memory computing), where Ana-
log ECCs can make the widely used vector-matrix multiplication
operations more reliable. In this paper, an algorithm is presented
for computing the m-heights of Analog ECCs, which are directly
related to the codes’ error-correction and error-detection capabil-
ities. The algorithm is used to find new codes that correct one or
more errors. A list of new codes with the best known performance
are summarized.

Acknowledgments
This work was supported in part by the NSF Grant CCF-2416361.

Error Correction and Detection
for Analog Al Computing in Edge Systems

References

(1]

[2

[

[12

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22

[23]

[24]

[25

Emrah Akyol, Kumar B. Viswanatha, Kenneth Rose, and Tor A. Ramstad. 2014.
On Zero Delay Source-Channel Coding. IEEE Transactions on Information Theory
60, 12 (2014), 7473-7489. https://doi.org/10.1109/TIT.2014.2361532

Wolfgang Banzhaf, Randal S. Olson, William Tozier, and Rick Riolo. 2018. Genetic
Programming Theory and Practice XV. Springer.

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu. 2017. Error
Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State
Drives. Proc. IEEE 105, 9 (2017), 1666-1704. https://doi.org/10.1109/JPROC.2017.
2713127

Yuval Cassuto, Moshe Schwartz, Vasken Bohossian, and Jehoshua Bruck. 2010.
Codes for Asymmetric Limited-magnitude Errors with Application to Multilevel
Flash Memories. IEEE Transactions on Information Theory 56, 4 (2010), 1582-1595.
https://doi.org/10.1109/TIT.2010.2040971

Ilya Dumer, Daniele Micciancio, and Madhu Sudan. 2003. Hardness of Approxi-
mating the Minimum Distance of a Linear Code. IEEE Transactions on Information
Theory 49, 1 (2003), 22-37.

Noha Elarief and Bella Bose. 2010. Optimal, Systematic, g-ary Codes Correcting
All Asymmetric and Symmetric Errors of Limited Magnitude. IEEE Transactions
on Information Theory 56, 3 (2010), 979-983. https://doi.org/10.1109/TIT.2009.
2039065

Cheng-Xin Xue et al. 2021. A CMOS-integrated Compute-in-memory Macro
Based on Resistive Random-access Memory for Al Edge Devices. Nature Elec-
tronics 4, 1 (2021), 1-10.

Manuel Le Gallo et al. 2023. A 64-core Mixed-signal In-memory Compute Chip
Based on Phase-change Memory for Deep Neural Network Inference. Nature
Electronics 6 (2023), 680-693. https://doi.org/10.1038/s41928-023-01010-1

Wei Wang et al. 2022. A Memristive Deep Belief Neural Network Based on Silicon
Synapses. Nature Electronics 5 (2022), 870-880.

Wenbin Zhang et al. 2023. Edge Learning Using a Fully Integrated Neuro-inspired
Memristor Chip. Science 381, 6663 (2023), 1205-1211. https://doi.org/DOI:
10.1126/science.ade3483

Yichuan Hu, Javier Garcia-Frias, and Meritxell Lamarca. 2011. Analog Joint
Source-Channel Coding Using Non-Linear Curves and MMSE Decoding. IEEE
Transactions on Communications 59, 11 (2011), 3016-3026. https://doi.org/10.
1109/TCOMM.2011.081711.090298

Kunping Huang, Paul H. Siegel, and Anxiao (Andrew) Jiang. 2020. Functional
Error Correction for Robust Neural Networks. IEEE Journal on Selected Areas
in Information Theory 1, 1 (2020), 267-276. https://doi.org/10.1109/JSAIT.2020.
2991430

G. O. H. Katona and A. Seress. 1993. Greedy Construction of Nearly Regular
Graphs. European Journal of Combinatorics 14, 3 (1993), 213-229.

Torleiv Klove, Bella Bose, and Noha Elarief. 2010. Systematic Single Limited Mag-
nitude Asymmetric Error Correcting Codes. In Proceedings of IEEE Information
Theory Workshop. https://doi.org/10.1109/ITWKSPS.2010.5503196

V. A. Kotelnikov. 1959. The Theory of Optimum Noise Immunity. New York:
McGraw-Hill.

A. V. Kuznetsov and A. J. H. Vinck. 1994. On the General Defective Channel
with Informed Encoder and Capacities of Some Constrained Memories. IEEE
Transactions on Information Theory 40, 6 (1994), 1866—1871. https://doi.org/10.
1109/18.340461

Can Li, Ron M. Roth, Cat Graves, Xia Sheng, and John Paul Strachan. 2020.
Analog Error Correcting Codes for Defect Tolerant Matrix Multiplication in
Crossbars. In Proceedings of IEEE International Electron Devices Meeting. https:
//doi.org/10.1109/IEDM13553.2020.9371978

Ron M. Roth. 2019. Fault-Tolerant Dot-Product Engines. IEEE Transactions on
Information Theory 65, 4 (2019), 2046-2057. https://doi.org/10.1109/TIT.2018.
2869794

Ron M. Roth. 2020. Analog Error-Correcting Codes. IEEE Transactions on Infor-
mation Theory 66, 7 (2020), 4075-4088.

Ron M. Roth. 2022. Fault-Tolerant Neuromorphic Computing on Nanoscale
Crossbar Architectures. In Proceedings of IEEE Information Theory Workshop.
Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evangelos
Eleftheriou. 2020. Memory Devices and Applications for In-memory Computing.
Nature Nanotechnology 15 (2020). https://doi.org/10.1038/s41565-020-0655-z
Claude E. Shannon. 1949. Communication in The Presence of Noise. Proceedings
of the IRE 37, 1 (1949), 10—-21.

Alexnader Vardy. 1997. The Intractability of Computing the Minimum Distance
of a Code. IEEE Transactions on Information Theory 43, 6 (1997), 1757-1766.
https://doi.org/10.1109/18.641542

H.-S. Philip Wong and Sayeef Salahuddin. 2015. Memory Leads The Way to
Better Computing. Nature Nanotechnology 10 (2015), 191-194.

Eitan Yaakobi, Paul H. Siegel, Alexander Vardy, and Jack K. Wolf. 2011. On
Codes That Correct Asymmetric Errors with Graded Magnitude Distribution.
In Proceedings of International Symposium on Information Theory. 1021-1025.
https://doi.org/10.1109/ISIT.2011.6033692

ICCAD’24, October 27-31, 2024, Newark, NJ

[26] Peng Yao, Huagiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang

Zhang, J. Joshua Yang, and He Qian. 2020. Fully Hardware-implemented Mem-
ristor Convolutional Neural Network. Nature 577 (2020), 641-646. https:
//doi.org/10.1038/s41586-020-1942-4

https://doi.org/10.1109/TIT.2014.2361532
https://doi.org/10.1109/JPROC.2017.2713127
https://doi.org/10.1109/JPROC.2017.2713127
https://doi.org/10.1109/TIT.2010.2040971
https://doi.org/10.1109/TIT.2009.2039065
https://doi.org/10.1109/TIT.2009.2039065
https://doi.org/10.1038/s41928-023-01010-1
https://doi.org/DOI: 10.1126/science.ade3483
https://doi.org/DOI: 10.1126/science.ade3483
https://doi.org/10.1109/TCOMM.2011.081711.090298
https://doi.org/10.1109/TCOMM.2011.081711.090298
https://doi.org/10.1109/JSAIT.2020.2991430
https://doi.org/10.1109/JSAIT.2020.2991430
https://doi.org/10.1109/ITWKSPS.2010.5503196
https://doi.org/10.1109/18.340461
https://doi.org/10.1109/18.340461
https://doi.org/10.1109/IEDM13553.2020.9371978
https://doi.org/10.1109/IEDM13553.2020.9371978
https://doi.org/10.1109/TIT.2018.2869794
https://doi.org/10.1109/TIT.2018.2869794
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1109/18.641542
https://doi.org/10.1109/ISIT.2011.6033692
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4

	Abstract
	1 Introduction
	2 Existing Constructions for Analog ECCs
	3 Finding the m-Height of Analog ECC
	3.1 A Baseline Algorithm for m-Height Problem
	3.2 A More Efficient Algorithm for m-Height

	4 Analog ECCs for One or More Errors
	5 Conclusions
	Acknowledgments
	References

