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Abstract
To realize the full potential of deep neural networks (DNNs) in

AI-empowered edge systems, DNNs need to be much more efficient.

Analog in-memory computing can potentially improve the speed

and energy efficiency of AI by multiple orders, and break the "mem-

ory wall" that is currently a major bottleneck for AI. This work

explores the design of analog error-correcting codes (Analog ECCs).

The codes focus on the correction of errors in vector-matrix multi-

plications, which are a dominant part of computation in DNNs. The

codes consider small but ubiquitous noise in analog edge circuits

as tolerable, and focus on the correction of large errors. It presents

a linear-programming based algorithm that finds the error correc-

tion/detection capabilities of codes. It also presents a number of

newly discovered codes that achieve state-of-the-art performance.

Keywords
Analog Error-Correcting Code, In-Memory Computing

ACM Reference Format:
Anxiao (Andrew) Jiang. 2024. Error Correction and Detection for Analog

AI Computing in Edge Systems. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’24). ACM, New York, NY,

USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Machine learning algorithms have found wide applications in many

fields of engineering. A new type of Analog Error-Correcting Codes

(Analog ECC), which has important potential applications to ma-

chine learning, has been proposed recently [19] [20]. Let C be a

linear [𝑛, 𝑘] Analog ECC over R. Let c = (𝑐0, 𝑐1, · · · , 𝑐𝑛−1) ∈ R𝑛

denote a generic codeword in C. There are two types of additive

errors that can be added to a codeword by the channel: a type of

limited-magnitude errors (LMEs), and a type of unlimited-magnitude
errors (UMEs), defined as follows.

Let [𝑛⟩ denote the integer set {0, 1, · · · , 𝑛 − 1}. Let 𝛿 and Δ be

two positive real thresholds, where Δ > 𝛿 > 0. An error vector

𝜺= (𝜀0, 𝜀1, · · · , 𝜀𝑛−1) ∈ R𝑛
is called a limited-magnitude error vector

(i.e., LME vector) if 𝜀𝑖 ∈ [−𝛿, 𝛿] for all 𝑖 ∈ [𝑛⟩. Given a vector
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e = (𝑒0, 𝑒1, · · · , 𝑒𝑛−1) ∈ R𝑛
, define its support with respective to Δ

as

SuppΔ (e) = {𝑖 ∈ [𝑛⟩ : |𝑒𝑖 | > Δ}.
The above definition can be extended to Δ = 0. Then by this defini-

tion, the ordinary support of e is Supp
0
(e). And the Hamming

weight of e, denoted by w𝐻 (e), is |Supp
0
(e) |. An error vector

e = (𝑒0, 𝑒1, · · · , 𝑒𝑛−1) ∈ R𝑛
is called an unlimited-magnitude er-

ror vector (i.e., UME vector) of Hamming weight𝑤 if w𝐻 (e) = 𝑤 . A

noisy codeword y = (𝑦0, 𝑦1, · · · , 𝑦𝑛−1) ∈ R𝑛
is the sum of the code-

word c ∈ C and the two error vectors 𝜺 and e, namely, y = c+𝜺+e.
The code is designed such that significant UMEs will be corrected.

A strong motivation for the introduction of Analog ECC is to

support vector-matrix multiplication, a common operation in ma-

chine learning algorithms, including deep learning [19] [20]. In the

following, we introduce its application to Analog In-Memory Com-
puting for deep neural networks (DNNs) in edge systems. DNNs

have achieved significant progress for AI in recent years, covering

computer vision, natural language processing, generative AI and

more areas. However, the cost for their training and inference, in

both time and power consumption, is also increasing substantially.

A fundamental emerging technology, Analog In-Memory Comput-

ing, promises to make DNNs much more efficient in both speed and

energy consumption [8–10, 21]. By storing the real-valued parame-

ters of DNNs in nanoscale analog non-volatile memory (NVM) cells

and using them directly for computing, in-memory analog comput-

ing may overcome the “von Neumann bottleneck” of conventional

computers. The new paradigm avoids the movement of massive

amounts of data between GPUs and external memories, which

incurs massive energy consumption and accounts for extensive

latency [24] in current AI systems. There has been good progress

in the development of analog chips in recent years, which realize

DNNs for training [26] and/or inference [7] in analog circuits. They

achieve software-comparable AI performance (e.g., classification

accuracy), can run with substantially higher speed and power effi-

ciency compared to digital circuits (e.g., 35 times lower in power

consumption [10]), and promise more in the future.

The high efficiency of Analog In-Memory Computing achieved

for DNNs is largely due to the efficient implementation of Vector–
Matrix Multiplications, which are widely used in DNNs, in the

crossbar architecture of NVM cells. Vector–matrix multiplication is

dominantly the most frequent operation in most DNNs, whether it

is a dense network, convolutional network (CNN), recurrent net-

work (RNN), graph network or transformer model. The crossbar

architecture is illustrated in Fig. 1 (a). The crossbar array has 𝐿 row

conductors, 𝑘 column conductors, and 𝐿𝑘 nanoscale nonvolatile

resistive memories (e.g., memristors [24], phase-change memo-

ries [8, 21], etc.) at the junctions. Let A = (𝑎𝑖, 𝑗 )𝐿×𝑘 be a matrix of
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non-negative numbers. For 𝑖 = 0, 1, · · · , 𝐿−1 and 𝑗 = 0, 1, · · · , 𝑘 −1,

the resistor at the junction of the 𝑖-th row and the 𝑗-th column is

programmed to have conductance that is proportional to 𝑎𝑖, 𝑗 . Let

u = (𝑢0, 𝑢1, · · · , 𝑢𝐿−1) ∈ R𝐿
be a vector. For 𝑖 = 0, 1, · · · , 𝐿 − 1,

let the input voltage on the 𝑖-th row be proportional to 𝑢𝑖 . Let

(𝑐0, 𝑐1, · · · , 𝑐𝑘−1) = uA be the multiplication of the vector u and

the matrix A. Then (𝑐0, 𝑐1, · · · , 𝑐𝑘−1) can be computed by reading

the currents at the columns, where for 𝑗 = 0, 1, · · · , 𝑘−1, the current
on the 𝑗-th column is proportional to 𝑐 𝑗 . Note that if A contains

negative numbers [10, 17], we can write it as A = A+ − A−
, where

A+
and A−

are both non-negative matrices, and use two crossbar

arrays to compute (𝑐0, 𝑐1, · · · , 𝑐𝑘−1) as uA+ − uA−
. In DNNs, the

matrix A represents model parameters (i.e., edge weights in the

DNN), which remain constant during inference. The vector u rep-

resents the input to a layer in the DNN, which are variables since

their values change for different input samples. Compared to digital

computing, which needs 𝐿𝑘 scalar multiplications and (𝐿 − 1)𝑘
additions to compute uA, the crossbar can compute uA in a single

time step by exploiting Ohm’s law and Kirchhoff’s law, thus signif-

icantly improving the speed and energy efficiency of computing,

potentially by multiple orders.

A challenge for analog in-memory computing, however, is the

reliability of computing against errors. Nonvolatile memories are

known to have many noise mechanisms, include cell-programming

noise, cell-level drifting, random noise, read/write disturbs, stuck

cells, short cells, etc. In general, the errors can be partitioned into

two types: (1) those that are small but ubiquitous (i.e., appearing

in nearly all cells), such as programming noise, cell-level drifting,

random noise, etc., and (2) those that are more isolated but can

be much more significant, such as stuck cells, short cells (e.g., due

to faults in the programming process [17]), memory/circuit de-

fects, etc. The two types of errors are modeled by LMEs and UMEs,

respectively. DNNs often naturally have some tolerance of small

ubiquitous noise [8, 10, 12, 17, 21]. However, they are challenged by

significant outlier errors, which need to be detected and corrected.

Analog ECC has been proposed to address the above challenge

as follows [19]. Let C be a linear [𝑛, 𝑘] Analog ECC. We extend

the 𝐿 × 𝑘 crossbar array for vector–matrix multiplication to an

𝐿 × 𝑛 crossbar array, as illustrated in Fig. 1 (b). Each row in the

original matrixA = (𝑎𝑖, 𝑗 )𝐿×𝑘 is extended to a codeword. That is, for

𝑖 = 0, 1, · · · , 𝐿 − 1, the 𝑖-th row in the matrix, (𝑎𝑖,0, 𝑎𝑖,1, · · · , 𝑎𝑖,𝑘−1),
is encoded into a codeword c𝑖 ≜ (𝑎𝑖,0, 𝑎𝑖,1, · · · , 𝑎𝑖,𝑛−1), and the𝑛−𝑘
extra memory cells in the row are programmed so that their conduc-

tance values are proportional to 𝑎𝑖,𝑘 , 𝑎𝑖,𝑘+1, · · · , 𝑎𝑖,𝑛−1, respectively.
By the linearity of the code, no matter what the input variables

𝑢0, 𝑢1, · · · , 𝑢𝐿−1 are, the output vector c ≜ (𝑐0, 𝑐1, · · · , 𝑐𝑛−1) =∑𝐿−1
𝑖=0 𝑢𝑖c𝑖 is also a codeword in C. Therefore, significant errors in

c can be corrected by the decoder of C. And note that the first 𝑘

elements in c are simply the desired output of the vector–matrix

multiplication uA. For more details on the design and experimental

performance, please refer to [17] [18] [19] [20].

Analog ECCs consider LMEs as tolerable (as long as 𝛿 is small),

and focus on the detection and correction of the UMEs, especially

those UMEs whose magnitudes exceed the threshold Δ. Given the

above considerations, the decoding objective of Analog ECC is set

as follows.
1
The decoder for a linear [𝑛, 𝑘] Analog ECC C is a

function

D : R𝑛 → 2
[𝑛⟩

that returns a set of locations of UMEs. Let 𝛿 , Δ ∈ 𝑅+ be positive

thresholds with 𝛿 < Δ as mentioned earlier, and let 𝑡 be a nonneg-

ative integer. We say that “the decoder D corrects 𝑡 UMEs (with

respect to the threshold pair (𝛿,Δ))” if for every possible vector

y = c+𝜺+e with c ∈ C being a codeword, 𝜺 being an LME vector

and e being an UME vector whose Hamming weight w𝐻 (e) is at
most 𝑡 , the following condition holds:

SuppΔ (e) ⊆ D(y) ⊆ Supp
0
(e).

The above condition not only ensures that the decoder will find all

the locations of UMEs whose magnitudes are more than Δ (thus no

“false negative”), but also ensures that all the found locations, namely

D(y), have UMEs (thus no “false positive”).
2
After the decoder

locates the UMEs (which include as a subset all those significant
UMEs whose magnitudes exceed Δ), those UMEs can be removed

by either re-computing the corresponding entries in the codeword c
(as in the case of the vector-matrix multiplication application where

c is the result of such a multiplication [17] [18]), or by estimating

the values of those UMEs via an extended decoding algorithm [19].

In spite of the importance of Analog ECCs for machine learning,

the designs of such codes are still relatively limited. Most existing

codes focus on the detection or correction of only one UME [19].

A main challenge in the designing of more codes, including codes

that correct more than one UME, lies in the analysis of the error-

correction capabilities of codes. Such an analysis requires the com-

puting of an important quantity of the code named𝑚-height [19].
In this paper, we present an algorithm based on linear program-

ming for computing the𝑚-height of an Analog ECC, which reduces

the time complexity by a factor of (𝑚 − 1)! · (𝑛 −𝑚 − 1)! · 2𝑛−𝑚
compared to the baseline algorithm. It can be used to analyze not

only the error-correction – but also error-detection (as defined

in [19, 20]) — capabilities of analog codes. Assisted by the algo-

rithm, we use genetic programming to search for new codes. A

number of new codes that achieve state-of-the-art performance are

discovered, whose𝑚-heights are summarized in Fig. 2. The codes

can be used to correct one or more (up to 4) UMEs.

2 Existing Constructions for Analog ECCs
In this section, we summarize the known constructions for Analog

ECCs, with a focus on their error correction – instead of error

detection – capabilities. We first review an important analytical tool

called𝑚-height and its relation to the error-correction capability of

an Analog ECC [19]. Let x = (𝑥0, 𝑥1, · · · , 𝑥𝑛−1) ≠ (0, 0, · · · , 0) be a
vector in R𝑛

. Let 𝜋 : [𝑛⟩ → [𝑛⟩ be a permutation such that

|𝑥𝜋 (0) | ≥ |𝑥𝜋 (1) | ≥ · · · ≥ |𝑥𝜋 (𝑛−1) |.

1
The original decoding objectives include both error correction and detection. In this

work, we focus on error correction alone. So the decoding objective described here is

simplified compared to [20].

2
Note that given a pair of noiseless and noisy codewords (c, y) , there can be different

pairs of error vectors (𝜺 , e) that change c into y, and the decoding objective needs to

be realized for all such possible pairs of error vectors.
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Figure 1: (a) A crossbar architecture for vector–matrix multiplication. (b) Using Analog ECC for the multiplication, where each
row (𝑎𝑖,0, 𝑎𝑖,1, · · · , 𝑎𝑖,𝑛−1) in the array and the output vector (𝑐0, 𝑐1, · · · , 𝑐𝑛−1) are codewords of the code.

For any𝑚 ∈ [𝑛⟩, the𝑚-height of x is defined as

ℎ𝑚 (x) =
���� 𝑥𝜋 (0)𝑥𝜋 (𝑚)

����
if 𝑥𝜋 (𝑚) ≠ 0, and as ℎ𝑚 (x) = ∞ if 𝑥𝜋 (𝑚) = 0 . For the all-zero

vector 0 = (0, 0, · · · , 0), its𝑚-height is defined as ℎ𝑚 (0) = 0 for all

𝑚. Then, the𝑚-height of a linear [𝑛, 𝑘] code C over R is defined as

ℎ𝑚 (C) = max

c∈C
ℎ𝑚 (c).

The next important result was proven in [19].

Theorem 2.1. Let C be a linear [𝑛, 𝑘] code overR. Given 𝛿 ,Δ ∈ R+

with 𝛿 < Δ and a positive integer 𝑡 , there exists a decoder for C that
corrects 𝑡 UMEs if and only if

Δ ≥ 2(ℎ2𝑡 (C) + 1)𝛿.

We now present the existing constructions for Analog ECCs.

Let us start with the Repetition Code [19]. Let C be the [𝑛, 1] rep-
etition code over R, whose generator matrix is the all-one vector

1 = (1, 1, · · · , 1). Its 𝑚-height is ℎ𝑚 (C) = 1 for 𝑚 ∈ [𝑛⟩. So by

Theorem 2.1, the code can correct ⌊(𝑛 − 1)/2⌋ UMEs as long as

Δ ≥ 4𝛿 .

The next code to consider is the Cartesian power of repetition
code [19]. Let C be a linear [𝑛 = 𝑤𝑘, 𝑘] code over R that is the

𝑘-fold Cartesian power of the [𝑤, 1] repetition code. Its generator

matrix is a 𝑘 × 𝑛 binary matrix where each row has 𝑛/𝑘 = 𝑤 1s

and each column has one 1, while all the remaining elements are

0s. If we use𝐺𝑛=𝑤𝑘,𝑘 to denote its generator matrix, then it has the

recursive form

𝐺𝑤𝑘,𝑘 =

(
1 1 · · · 1 0 0 · · · 0

0 𝐺𝑤 (𝑘−1),𝑘−1

)
.

Its𝑚-height is ℎ𝑚 (C) = 1 for𝑚 ∈ [𝑤⟩, and ℎ𝑚 (C) = ∞ for𝑚 ≥ 𝑤 .

So by Theorem 2.1, the code can correct ⌊(𝑤 − 1)/2⌋ UMEs as long

as Δ ≥ 4𝛿 .

The third code to present has an upper bounded for its 1-height [19].

Although it is not for correcting any UME, it can detect a single

UME by the definition of error detection in [20]. Let 𝐻 be a 𝑟 × 𝑛

binary matrix over {0, 1} with 𝑟 < 𝑛 that satisfies two properties:

(1) every column in 𝐻 has exactly one 1, and (2) each row of 𝐻

has either ⌊𝑛/𝑟⌋ or ⌈𝑛/𝑟⌉ 1s. Let C be a linear [𝑛, 𝑘 = 𝑛 − 𝑟 ] code
over R with 𝐻 as its parity-check matrix. Then its 1-height satisfies

ℎ1 (C) ≤ ⌈𝑛/𝑟⌉ − 1. When 𝑛 is a multiple of 𝑟 , the code is the dual

code of the 𝑟 -fold Cartesian power of the [𝑛/𝑟, 1] repetition code.

The fourth code to introduce has an upper bound for its 2-

height [19], which is useful for correcting one UME. Let 𝑟 be a posi-

tive even integer, and let 𝑛 be an integer such that 𝑟 ≤ 𝑛 ≤ 𝑟 (𝑟 − 1).
Let𝐻 be a 𝑟 ×𝑛 matrix over {−1, 0, 1} that satisfies three properties:
(1) all the columns in 𝐻 are distinct, (2) every column in 𝐻 has

exactly two nonzero entries, the first of which being a 1, and (3)

the number of nonzero entries in each row of 𝐻 is either ⌊2𝑛/𝑟⌋
and ⌈2𝑛/𝑟⌉. Note that such a matrix 𝐻 is guaranteed to exist [13].

For example, when 𝑟 = 4 and 𝑛 = 12, 𝐻 can be [19]:

©­­­«
1 1 1 1 0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1 1 −1 0 0

1 −1 0 0 1 −1 0 0 0 0 1 1

0 0 1 −1 0 0 1 −1 0 0 1 −1

ª®®®¬
Let C be a linear [𝑛, 𝑘 ≥ 𝑛−𝑟 ] code overRwith𝐻 as its parity-check

matrix. Then its 2-height satisfies

ℎ2 (C) ≤ ⌈2𝑛/𝑟⌉ − 1.

So by Theorem 2.1, the code can correct one UME as long as Δ/𝛿 ≥
2⌈2𝑛/𝑟⌉.

The fifth code is an extension of the fourth code [19]. Recall

that the parity-check matrix 𝐻 of the fourth code satisfies three

properties. Now let us generalize the second property as follows:

instead of requiring every column of 𝐻 to have Hamming weight 2,

we now require it to have Hamming weight 𝑏 for some prescribed

integer 𝑏 ≥ 2. Let 𝑛 =
(𝑟
𝑏

)
· 2𝑏−1. Then the 2-height of C satisfies

ℎ2 (C) ≤ ⌈𝑏𝑛/𝑟⌉ − 1.

So by Theorem 2.1, the code can correct one UME as long as Δ/𝛿 ≥
2⌈𝑏𝑛/𝑟⌉.

The sixth code to introduce has known finite 2-height values,

and therefore is suitable for correcting one UME [19]. Let 𝑛 ≥ 3

be an integer, let 𝛼 = 𝜋/𝑛, and let 𝜔 = 𝑒𝑖𝛼 with 𝑖 =
√
−1, namely,

𝜔 is the complex primitive 2𝑛-th root of unity. Let C be a linear
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[𝑛, 𝑘 = 𝑛 − 2] code over R defined by

C =

{
(𝑐0, 𝑐1, · · · , 𝑐𝑛−1) ∈ R𝑛

:

∑︁
𝑗∈[𝑛⟩

𝑐 𝑗𝜔
𝑗 = 0

}
.

C is a negacyclic code because if (𝑐0, 𝑐1, · · · , 𝑐𝑛−2, 𝑐𝑛−1) is a code-
word, then so is (−𝑐𝑛−1, 𝑐0, 𝑐1, · · · , 𝑐𝑛−2). Its generator polynomial

is

𝑔(𝑥) = 1 − 2 cos(𝛼)𝑥 + 𝑥2,

and its parity-check matrix can be 𝐻 = (h𝑗 ) 𝑗∈[𝑛⟩ with

h𝑗 =
(
cos( 𝑗𝛼) − cos(( 𝑗 + 1)𝛼)
sin( 𝑗𝛼) − sin(( 𝑗 + 1)𝛼)

)
.

The 2-height of C satisfies

ℎ2 (C) =
1

2 sin
2 (𝜋/(2𝑛))

− 1.

So by Theorem 2.1, the code can correct one UME as long as Δ/𝛿 ≥
1/sin2 (𝜋/(2𝑛)).

There have been previous works that study the correction of

analog noise in different settings, including in the joint source-

channel coding (JSCC) paradigm [1, 11, 15, 22] for communications.

There have also been works on ECCs for nonvolatile memories

(NVMs), where codes for two or more discrete levels are studied. [3,

4, 6, 14, 16, 25]. Analog ECC differs from the JSCC paradigm in that it

does not depend on the probabilistic distributions of data and noise

(namely, it optimizes the worst-case performance), differs from the

ECC-for-NVM paradigm in that it focuses on analog values (instead

of discrete values) for both data and errors, and differs from both

paradigms in that it considers two types of errors LME and UME

(instead of only one). By tolerating small LMEs and combatting large

UMEs, it aims at making machine learning algorithms (especially

deep neural networks) run more reliably in next-generation analog

computers in edge systems.

3 Finding the𝑚-Height of Analog ECC
The𝑚-height of Analog ECC is analogous to the minimum distance

of conventional ECCs (e.g., codes over finite fields), as evidenced

by Theorem 2.1. It is crucial for finding the error-correction capa-

bility of a code. It is known to be NP-hard to find the minimum

distance of conventional linear ECCs [5, 23]. For Analog ECC, the

corresponding𝑚-Height Problem can be defined as follows: given
a generator matrix𝐺 ∈ R𝑘×𝑛 , find the𝑚-height of the corresponding
Analog ECC, where 𝑚 ∈ [𝑛⟩. Note that the 𝑚-Height Problem is

more general than finding the minimum distance 𝑑 (C) of the Ana-
log ECC C. Let w𝐻 (c) denote the Hamming weight of a codeword

c. Then 𝑑 (C) equals the minimum Hamming weight of a nonzero

codeword in C, namely, 𝑑 (C) = minc∈C−{0} w𝐻 (c). Based on the

definition of𝑚-height, we have

ℎ0 (C) ≤ ℎ1 (C) ≤ · · · ≤ ℎ𝑛−1 (C).
Let ℎ𝑛 (C) ≜ ∞. Then 𝑑 (C) is the minimum index 𝑚 ∈ [𝑛 + 1⟩
such that ℎ𝑚 (C) = ∞. Namely, ℎ𝑚 (C) = ∞ if and only if 𝑚 ≥
𝑑 (C). So when the 𝑚-height values are found for all 𝑚 ∈ [𝑛⟩,
the value of 𝑑 (C) also becomes known. Knowing the 𝑚-height

values is also more important for analyzing the error-correction

capability of an Analog ECC than simply knowing 𝑑 (C), because
the necessary and sufficient condition for the code to be able to

correct 𝑡 UMEs is Δ/𝛿 ≥ 2(ℎ2𝑡 (C) + 1), which depends on the ratio

Δ/𝛿 . The value of 𝑑 (C) can tell us that the code can potentially

correct ⌊ 1
2
(𝑑 (C) − 1)⌋ UMEs, however it cannot guarantee that any

⌊ 1
2
(𝑑 (C)−1)⌋ UMEs are correctable without knowing the ratio Δ/𝛿 ;

that is, 𝑑 (C) provides only a necessary but not sufficient condition

for the error correction capability.

In this section, we study how to find the𝑚-height of an Ana-

log ECC given its generator matrix. We present an algorithm that

discovers the 𝑚-height via solving 𝑛(𝑛 − 1)
(𝑛−2
𝑚−1

)
2
𝑚

linear pro-

grams, which — compared to a baseline algorithm — reduces the

complexity by a factor of (𝑚 − 1)! · (𝑛 −𝑚 − 1)! · 2𝑛−𝑚 .

3.1 A Baseline Algorithm for𝑚-Height Problem
Consider a linear [𝑛, 𝑘] code C over R. For any non-empty subset

of codewords 𝐶 ⊆ C, we define
ℎ𝑚 (𝐶) = max

c∈𝐶̃
ℎ𝑚 (c).

And we define ℎ𝑚 (∅) = 0.

Let 𝜋 : [𝑛⟩ → [𝑛⟩ denote a permutation on [𝑛⟩, and let Π denote

the set of all the 𝑛! such permutations. Let s = (𝑠0, 𝑠1, · · · , 𝑠𝑛−1) ∈
{1,−1}𝑛 be a binary vector of length 𝑛, and let S = {1,−1}𝑛 denote

the set of all the 2
𝑛
such vectors. Let sgn be the sign function:

sgn(𝑥) =
{
1 if 𝑥 ≥ 0

−1 if 𝑥 < 0

Let C𝜋,s denote the subset of codewords of C such that a codeword

c = (𝑐0, 𝑐1, · · · , 𝑐𝑛) ∈ C is in C𝜋,s if c ≠ 0, sgn(𝑐𝜋 ( 𝑗 ) ) = 𝑠 𝑗 for

𝑗 ∈ [𝑛⟩, and
|𝑐𝜋 ( 𝑗 ) | = 𝑠 𝑗 · 𝑐𝜋 ( 𝑗 ) ≥ 𝑠 𝑗+1 · 𝑐𝜋 ( 𝑗+1) = |𝑐𝜋 ( 𝑗+1) |

for 𝑗 ∈ [𝑛 − 1⟩. Since C − {0} = ⋃
𝜋∈Π,s∈S C𝜋,s and ℎ𝑚 (0) = 0, we

get

ℎ𝑚 (C) = max

𝜋∈Π,s∈S
ℎ𝑚 (C𝜋,s).

Lemma 3.1. LetC be a linear [𝑛, 𝑘] code overR. Let𝐺 = (𝑔𝑖, 𝑗 )𝑘×𝑛 ∈
R𝑘×𝑛 be the generator matrix of C. Let𝑚 ∈ [𝑑 (C)⟩ − {0}, 𝜋 ∈ Π
and s = (𝑠0, 𝑠1, · · · , 𝑠𝑛−1) ∈ S. Let 𝐹𝜋,s denote the following linear-
fractional program with 𝑘 real-valued variables 𝑢0, 𝑢1, · · · , 𝑢𝑘−1:

maximize
𝑠0 ·

∑
𝑖∈ [𝑘⟩ (𝑢𝑖𝑔𝑖,𝜋 (0) )

𝑠𝑚 ·∑𝑖∈ [𝑘⟩ (𝑢𝑖𝑔𝑖,𝜋 (𝑚) )
s.t. 𝑠0 ·

∑
𝑖∈[𝑘 ⟩

(
𝑢𝑖𝑔𝑖,𝜋 (0)

)
> 0

𝑠𝑛−1 ·
∑
𝑖∈[𝑘 ⟩

(
𝑢𝑖𝑔𝑖,𝜋 (𝑛−1)

)
≥ 0

𝑠 𝑗 ·
∑
𝑖∈[𝑘 ⟩

(
𝑢𝑖𝑔𝑖,𝜋 ( 𝑗 )

)
≥ 𝑠 𝑗+1 ·

∑
𝑖∈[𝑘 ⟩

(
𝑢𝑖𝑔𝑖,𝜋 ( 𝑗+1)

)
∀𝑗 ∈ [𝑛 − 1⟩

Let 𝑓𝜋,s be the optimal objective value of 𝐹𝜋,s if 𝐹𝜋,s is feasible, and
let 𝑓𝜋,s = 0 otherwise. Then

ℎ𝑚 (C) = max

𝜋∈Π,s∈S
𝑓𝜋,s

The proof for the above lemma is skipped due to space limitation.

The lemma above considers ℎ𝑚 (C) for𝑚 > 0 because ℎ0 (C) ≡ 1

as long as C contains a nonzero codeword. It indicates a baseline

algorithm for finding the𝑚-height of an Analog Code: solve 𝑛! · 2𝑛
linear-fractional programs 𝐹𝜋,s, and take the maximum of their

corresponding values of 𝑓𝜋,s. It turns the𝑚-Height Problem to a
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computational problem. But when 𝑛 is large, the number of linear-

fractional programs to solve, 𝑛! · 2𝑛 , is still prohibitively high. In

the following, we present an improved method that makes the

computation substantially more efficient.

3.2 A More Efficient Algorithm for𝑚-Height
Let𝑚 ∈ [𝑛⟩ − {0}. Let Ψ = {−1, 1}𝑚 be the set of 2

𝑚
binary vectors

of length𝑚 whose elements are either 1 or −1.
Let (𝑎, 𝑏, 𝑋,𝜓 ) be a tuple where 𝑎 ∈ [𝑛⟩, 𝑏 ∈ [𝑛⟩ − {𝑎}, 𝑋 ⊆

[𝑛⟩ − {𝑎, 𝑏}, |𝑋 | = 𝑚 − 1, and 𝜓 = (𝑠0, 𝑠1, · · · , 𝑠𝑚−1) ∈ Ψ. Let Γ
denote the set of all the

𝑛(𝑛 − 1)
(
𝑛 − 2

𝑚 − 1

)
2
𝑚

such tuples.

Given a tuple (𝑎, 𝑏, 𝑋,𝜓 ) ∈ Γ, let 𝑥1, 𝑥2, · · · , 𝑥𝑚−1 denote the

𝑚 − 1 integers in 𝑋 such that

𝑥1 < 𝑥2 < · · · < 𝑥𝑚−1 .

Define 𝑌 ≜ [𝑛⟩ − 𝑋 − {𝑎, 𝑏}, and let 𝑥𝑚+1, 𝑥𝑚+2, · · · , 𝑥𝑛−1 denote
the 𝑛 −𝑚 − 1 integers in 𝑌 such that

𝑥𝑚+1 < 𝑥𝑚+2 < · · · < 𝑥𝑛−1 .

Let 𝑥0 = 𝑎 and 𝑥𝑚 = 𝑏. Then 𝑥0, 𝑥1, · · · , 𝑥𝑛−1 are the 𝑛 distinct

integers in [𝑛⟩. Let 𝜏 denote the permutation on [𝑛⟩ such that

𝜏 ( 𝑗) = 𝑥 𝑗 for 𝑗 ∈ [𝑛⟩. We call 𝜏 the quasi-sorted permutation given
(𝑎, 𝑏, 𝑋,𝜓 ). Let C𝑎,𝑏,𝑋,𝜓 denote a subset of nonzero codewords of

C such that a nonzero codeword c = (𝑐0, 𝑐1, · · · , 𝑐𝑛−1) ∈ C is in

C𝑎,𝑏,𝑋,𝜓 if and only if it satisfies the following properties:

(1) For 𝑗 = 1, 2, · · · ,𝑚 − 1, |𝑐𝜏 (0) | ≥ |𝑐𝜏 ( 𝑗 ) | ≥ |𝑐𝜏 (𝑚) |.
(2) For 𝑗 =𝑚 + 1,𝑚 + 2, · · · , 𝑛 − 1, |𝑐𝜏 (𝑚) | ≥ |𝑐𝜏 ( 𝑗 ) |.
(3) ∀ 𝑗 ∈ [𝑚⟩, sgn(𝑐𝜏 ( 𝑗 ) ) = 𝑠 𝑗 . (Note that here 𝑠 𝑗 is the 𝑗-th

element of𝜓 .)

For any nonzero codeword c = (𝑐0, 𝑐1, · · · , 𝑐𝑛−1) ∈ C, there
exists at least one tuple (𝑎, 𝑏, 𝑋,𝜓 ) ∈ Γ such that c ∈ C𝑎,𝑏,𝑋,𝜓 .

(To see that, let 𝜋 ∈ Π be a permutation such that |𝑐𝜋 (0) | ≥
|𝑐𝜋 (1) | ≥ · · · ≥ |𝑐𝜋 (𝑛−1) |. Then we let 𝑎 = 𝜋 (0), 𝑏 = 𝜋 (𝑚),
𝑋 = {𝜋 (1), 𝜋 (2), · · · , 𝜋 (𝑚 − 1)}. Let 𝑥1, 𝑥2, · · · , 𝑥𝑚−1 denote the

𝑚 − 1 integers in 𝑋 such that 𝑥1 < 𝑥2 < · · · < 𝑥𝑚−1, and let 𝑥0 = 𝑎.

Then we let𝜓 = (𝑠0, 𝑠1, · · · , 𝑠𝑚−1) where ∀ 𝑗 ∈ [𝑚⟩, 𝑠 𝑗 = sgn(𝑐𝑥 𝑗
).

For the above tuple (𝑎, 𝑏, 𝑋,𝜓 ), we have c ∈ C𝑎,𝑏,𝑋,𝜓 .) Therefore

we have C − {0} = ⋃
(𝑎,𝑏,𝑋,𝜓 ) ∈Γ C𝑎,𝑏,𝑋,𝜓 . Since ℎ𝑚 (0) = 0, we get

ℎ𝑚 (C) = max

(𝑎,𝑏,𝑋,𝜓 ) ∈Γ
ℎ𝑚 (C𝑎,𝑏,𝑋,𝜓 )

Theorem 3.2. Let C be a linear [𝑛, 𝑘] code over R. Let 𝐺 =

(𝑔𝑖, 𝑗 )𝑘×𝑛 ∈ R𝑘×𝑛 be a generatormatrix ofC where no column is 0. Let
𝑑 (C) be theminimumdistance ofC, and let𝑚 ∈ {1, 2, · · · ,min{𝑑 (C),
𝑛 − 1}}. Let (𝑎, 𝑏, 𝑋,𝜓 ) ∈ Γ, where 𝜓 = (𝑠0, 𝑠1, · · · , 𝑠𝑚−1). Define
𝑌 ≜ [𝑛⟩ −𝑋 − {𝑎, 𝑏}, and let 𝜏 be the quasi-sorted permutation given
(𝑎, 𝑏, 𝑋,𝜓 ). Let 𝐿𝑃𝑎,𝑏,𝑋,𝜓 denote the following linear program with 𝑘
real-valued variables 𝑢0, 𝑢1, · · · , 𝑢𝑘−1:

maximize
∑
𝑖∈[𝑘 ⟩ (𝑠0𝑔𝑖,𝑎) · 𝑢𝑖

s.t.
∑
𝑖∈[𝑘 ⟩ (𝑠𝜏−1 ( 𝑗 )𝑔𝑖, 𝑗 − 𝑠0𝑔𝑖,𝑎) · 𝑢𝑖 ≤ 0 for 𝑗 ∈ 𝑋∑
𝑖∈[𝑘 ⟩ (−𝑠𝜏−1 ( 𝑗 )𝑔𝑖, 𝑗 ) · 𝑢𝑖 ≤ −1 for 𝑗 ∈ 𝑋∑
𝑖∈[𝑘 ⟩ 𝑔𝑖,𝑏 · 𝑢𝑖 = 1∑
𝑖∈[𝑘 ⟩ 𝑔𝑖, 𝑗 · 𝑢𝑖 ≤ 1 for 𝑗 ∈ 𝑌∑
𝑖∈[𝑘 ⟩ −𝑔𝑖, 𝑗 · 𝑢𝑖 ≤ 1 for 𝑗 ∈ 𝑌

Let 𝑧𝑎,𝑏,𝑋,𝜓 be the optimal objective value of 𝐿𝑃𝑎,𝑏,𝑋,𝜓 if it is bounded,
let 𝑧𝑎,𝑏,𝑋,𝜓 = ∞ if the optimal objective value of 𝐿𝑃𝑎,𝑏,𝑋,𝜓 is un-
bounded, and let 𝑧𝑎,𝑏,𝑋,𝜓 = 0 if 𝐿𝑃𝑎,𝑏,𝑋,𝜓 is infeasible. Then

ℎ𝑚 (C) = max

(𝑎,𝑏,𝑋,𝜓 ) ∈Γ
𝑧𝑎,𝑏,𝑋,𝜓

The proof of the theorem is skipped due to space limitation.

The above theorem naturally leads to an algorithm that computes

all the 𝑚-height of a code C, for 𝑚 = 0, 1, · · · , 𝑛 − 1, and also

discovers the minimum distance 𝑑 (C):
(1) ℎ0 (C) = 1.

(2) For𝑚 = 1, 2, 3 · · · , compute ℎ𝑚 (C) = max𝑎,𝑏,𝑋,𝜓 ∈Γ 𝑧𝑎,𝑏,𝑋,𝜓

by solving the linear programs 𝐿𝑃𝑎,𝑏,𝑋,𝜓 for all (𝑎, 𝑏, 𝑋,𝜓 ) ∈
Γ. Stop as soon as we meet the first value 𝑚∗

such that

ℎ𝑚∗ (C) = ∞. We get 𝑑 (C) =𝑚∗
.

(3) For𝑚 =𝑚∗ + 1,𝑚∗ + 2, · · · , 𝑛 − 1, ℎ𝑚 (C) = ∞.

The above algorithm solves 𝑛(𝑛 − 1)
(𝑛−2
𝑚−1

)
2
𝑚

linear programs of

𝑘 variables to compute an ℎ𝑚 (C). That is much more efficient than

the baseline algorithm, which needs to solve 𝑛! · 2𝑛 linear-fractional

programs of 𝑘 variables. The number of (linear or linear-fractional)

programs to solve is reduced by a factor of

𝑛! · 2𝑛

𝑛(𝑛 − 1)
(𝑛−2
𝑚−1

)
2
𝑚

= (𝑚 − 1)! · (𝑛 −𝑚 − 1)! · 2𝑛−𝑚 .

4 Analog ECCs for One or More Errors
The algorithms for computing the𝑚-heights of Analog ECCs enable

us to construct new codes through computer search and optimiza-

tion. We search for new codes based on Genetic Programming [2]:

first, a number of codes are randomly generated (e.g., using Gauss-

ian distributions to randomly generate the generator matrices),

their𝑚-heights are computed, and the set of codes with the smallest

𝑚-heights are used as the initial population of genetic program-

ming; then, evolutionary operations including mutations (e.g., small

perturbations to generator matrices) and crossover (e.g., random

combination of two generator matrices) are used to generate new

codes, their𝑚-heights are computed, and the set of codes with the

smallest𝑚-heights are selected as the new population for the next

round of evolutionary operations.

We have used the search algorithm to construct a number of new

codes. The codes can correct one or more errors (i.e., UMEs), and to

the best of our knowledge, their error-correction performance (mea-

sured by their𝑚-heights) is the best known performance by now.

A summary of the codes is shown in Fig. 2. The table lists the𝑚-

heights of different linear [𝑛, 𝑘] Analog ECCs. Here the columns la-

belled by “known” refer to known codes from [19], and the columns

labelled by “new” refer to the new codes presented here.
3
Notice

that when𝑚 ≥ 4, codes with finite𝑚-heights can correct two or

more UMEs; and the smaller the𝑚-height is, the smaller the ratio

Δ/𝛿 (where Δ and 𝛿 are the two threshold values for UMEs and

LMEs as described earlier) needs to be. Many of the new codes here

can correct two or more errors. Some of them have finite𝑚-heights

for𝑚 as large as 8 (e.g., the [10, 2] code in the table), which means

they can correct up to 4 UMEs.

3
Only𝑚-heights of finite values are shown in the table. And for those cells in the table

where𝑚 > 𝑛 − 𝑘 , we cross them out by a horizontal line because by the Singleton

bound, the minimum distance of the code 𝑑 (C) ≤ 𝑛 − 𝑘 + 1, so ℎ𝑚 (C) = ∞ when

𝑚 > 𝑛 − 𝑘 for any code C.
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Figure 2: The𝑚-heights of different linear [𝑛, 𝑘] Analog ECCs.

Figure 3: Generator matrices of some new Analog ECCs.

Some codes in Fig. 2 have𝑚-height equal to 1 for some𝑚 values.

They are either the Repetition Code or the Cartesian Power of

Repetition Code presented in [19], or their simple extension: for an

[𝑛, 𝑘] code, repeat each of the 𝑘 information numbers either ⌈𝑛/𝑘⌉
or ⌊𝑛/𝑘⌋ times in the codeword. We call such codes Generalized
Repetition Codes.

As examples, the generator matrices of some new codes in Fig. 2

are shown in Fig. 3. (Due to space limitation, we skip the generator

matrices of other codes here.). Each 𝐺𝑚
𝑛,𝑘

in the figure refers to the

generator matrix of the new [𝑛, 𝑘] code whose𝑚-height is shown in

Fig. 2. The new codes in Fig. 2, with their relatively small𝑚-heights

for multiple values of𝑚 – and therefore the corresponding error

correction capabilities – that were not known before, can form a

basis for the search and construction of more codes in the future.

5 Conclusions
Analog ECCs consider small ubiquitous noise as tolerable, and fo-

cus on correcting errors of larger magnitudes that can significantly

affect the performance of machine learning algorithms. One appli-

cation is the implementation of deep neural networks in nanoscale

analog circuits (a realization of in-memory computing), where Ana-

log ECCs can make the widely used vector-matrix multiplication

operations more reliable. In this paper, an algorithm is presented

for computing the𝑚-heights of Analog ECCs, which are directly

related to the codes’ error-correction and error-detection capabil-

ities. The algorithm is used to find new codes that correct one or

more errors. A list of new codes with the best known performance

are summarized.
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